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ABSTRACT

The Pareto distribution has been proposed recently as a model for intensity

clutter measurements, for maritime high resolution radar returns. Using the

theory of spherically invariant random processes, the Neyman-Pearson optimal

detector is derived. The generalised likelihood ratio test yields a simple sub-

optimal approximation, and its performance is gauged against the whitening

matched filter.
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Coherent Multilook Radar Detection for Targets in Pareto

Distributed Clutter

Executive Summary

This work supports the Microwave Radar Branch’s research efforts in the area of high

grazing angle detection of small maritime targets from an airborne surveillance platform. It

contributes to the research requirements of Task 07/040 (Support to AIR 70001). Detection

of targets is a major function of radar systems, and hence detector performance is an

important component in the efforts of Task 07/040. Detectors are designed to find targets

within specific clutter models. Recently it was found the simple Pareto Distribution fitted

high grazing angle clutter quite well. This was validated using the DSTO Ingara data,

collected in a trial during 2004. Hence it is necessary to investigate the design of radar

detection schemes in such a clutter environment.

The theory of spherically invariant random processes (SIRPs) puts this problem into a

formulation that allows the determination of detection decision rules. The Pareto distri-

bution is put into this framework, and the Neyman-Pearson detector is specified. Due to

intractibility of the latter, several suboptimal approximations are considered. The major

contribution of this work is to examine coherent multilook detection under the assump-

tion of a Pareto clutter model. Although the Pareto SIRP and form of the generalised

likelihood ratio test for detection has been presented already in the literature, it has not

been applied directly to the multilook problem under consideration.

In addition to this, it will be shown that for Pareto models whose parameters are

typical of clutter obtained from a radar operating in vertical polarisation, the whitening

matched filter is an appropriate suboptimal detector. This is useful because the generalised

likelihood ratio test solution depends on clutter parameters, unlike the whitening matched

filter.

1Future Maritime Patrol and Response Capability.
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1 Preliminaries

1.1 Introduction

The Pareto distribution [1, 2] is a simple power law model that has been proposed as an

alternative to the more complex high resolution radar maritime clutter models such as the

K- and KK-Distributions [3]. It has been validated both for the case of low, as well as

high, grazing angle sea clutter returns [4, 5]. Its advantage is that it is a much simpler

model that only requires two parameters to be fitted, and its performance matches that

of other modern clutter models. Given this, it is thus important to investigate detection

schemes for targets in Pareto distributed clutter. In order to achieve this it is necessary to

construct the multidimensional clutter and signal probability distribution functions (pdfs).

Such an exercise is quite challenging and so a general framework is required. The theory of

spherically invariant random processes (SIRPs) [6-9] provides a solution to this problem.

Such processes model the clutter in the complex domain as a product of a nonnegative

random variable S, and a zero mean complex Gaussian process GGG. The latter process and

S are assumed to be independent, and GGG has a N×N covariance matrix Σ. We will assume

the latter is semi-positive definite, so that its inverse possesses a Cholesky decomposition,

as in [10].

The application of the Pareto distribution to sonar detection performance is outlined

in [7], which is a useful reference on the analysis to follow. Here we focus on the radar

detection problem, based upon a series of N returns, which differs significantly from the

application in [7], although the mathematical derivations of detectors is similar.

Coherent multilook radar detection for targets embedded within Pareto distributed

clutter has been introduced in [11], which includes generalised likelihood ratio test detec-

tors and comparison to whitening matched filters. The Pareto distribution is embedded

within a spherically invariant random process (SIRP), which enables the decision rules to

be determined. The Pareto distribution has been shown in [12] to arise as the intensity

distribution of a compound Gaussian model for which a linear threshold detector is opti-

mal. Other recent applications of the Pareto distribution to radar include [13, 14] who use

the fact that from extreme value theory, the tail of any distribution can be modelled as
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a generalised Pareto distribution. Consequently, CFAR processes are derived for targets

in Pareto distributed clutter. However, the resultant threshold/false alarm probability

relationship is dependent on both Pareto parameters, which is a significant shortcom-

ing. A Bayesian approach to constructing Pareto CFAR detectors is outlined in [15], but

the resultant threshold/false alarm probability relationship is not amenable to numerical

methods. Coherent radar detection for the Pareto distribution has also been considered

in [16], from the point of view of a compound Gaussian model with inverse gamma tex-

ture1. It is shown that the CFAR property does not hold in general for coherent detection

schemes considered. However, this is addressed by introducing some conditions under

which a CFAR process can be produced.

1.2 Structure and Contributions

The report does not present a detailed analysis of SIRPs but instead derives the ap-

propriate properties directly as required. This is also specialised to the problem under

consideration, which simplifies the form of the detector by applying a whitening approach

first. Section 2 formulates the multilook detection problem. In addition, the Pareto SIRP

is introduced. Although this is presented in [7], the main difference is the performance of

multilook detection schemes for radar are considered here. The optimal Neyman-Pearson

detector is constructed in Section 3 for the case of a completely known target model. This

assumption is then relaxed, by constructing the generalised likelihood ratio test (GLRT), as

a suboptimal approximation to the optimal detector. Section 4 analyses the performance

of the GLRT detector by comparing it with a whitening matched filter approximation.

Detector performance is based upon a Gaussian target model, embedded within clutter

whose parameters have been estimated from Ingara data sets. This is in contrast to the

numerical analysis in [16], whose Pareto parameter values used do not correspond to those

estimated from real clutter. As a consequence of this, it will be shown the whitening

matched filter can be used as a good suboptimal detector for a number of scenarios.

1This paper was published at the time this report was first written
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2 Detection Problem Structure

2.1 Spherically Invariant Random Processes

Spherically Invariant Random Processes (SIRPs) provide a general formulation of the

joint density of a non-Gaussian random process, enabling the construction of densities for

Neyman-Pearson detectors [2, 17]. Traditionally, a SIRP is introduced as a process whose

finite order subprocesses, called Spherically Invariant Random Vectors (SIRVs), possess a

specific density [18, 19]. However, due to an equivalent formulation, we can specify SIRVs

and SIRPs in a manner more intuitive to the modelling of radar returns as follows. Let

ccc = {c1, c2, . . . , cN} be the complex envelope of the clutter returns. Then this vector is

called SIRV if it can be written in the compound-Gaussian formulation

ccc = SGGG, (2.1)

where the process GGG = (G1, G2, . . . , GN )T is a zero mean complex Gaussian random vec-

tor, or multidimensional complex Gaussian process, and S is a nonnegative real valued

univariate random variable with density fS. The latter random variable is assumed to be

independent of the former process. If such a decomposition exists for every N ∈ IN the

complex stochastic process {c1, c2, . . .} is called spherically invariant. For a comprehen-

sive description of the modelling of clutter via SIRPs consult [18]. What is clear from the

formulation (2.1) is that, by conditioning on the random variable S, we can write down

the density of ccc as a convolution. This will be shown explicitly in the analysis to follow.

2.2 General Formulation

The detection decision problem is now formulated. We assume that we have a SIRP model

for the clutter ccc as specified through the product formulation (2.1). Suppose the radar

return is zzz, which is a complex N × 1 vector. Then the coherent multilook detection

problem can be cast in the form

H0 : zzz = ccc against H1 : zzz = Rppp + ccc, (2.2)

where all complex vectors are N × 1, and H0 is the null hypothesis (return is just clutter)

and H1 is the alternative hypothesis (return is a mixture of signal and clutter). Statistical
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hypothesis testing is outlined in [2]. Here, the vector ppp is the Doppler steering vector,

whose components are given by ppp(j) = e−j2πifD , for j ∈ {0, 1, . . . , N − 1}, where fD is the

normalised target Doppler frequency, and −0.5 ≤ fD ≤ 0.5. It will be assumed that this

is completely known. The complex random variable R accounts for target characteristics,

and |R| is the target amplitude. Suppose the zero mean Gaussian process has a covariance

matrix cov(GGG) = IE(GGGGGGH) = Σ. Since it is a covariance matrix, its inverse will exist. It

can be shown that the inverse of Σ is symmetric and positive definite. If we assume it

is semi-definite positive, then we can apply a whitening filter approach to simplify the

detection problem. Hence we suppose the Cholesky Factorisation exists for Σ−1, so that

there exists a matrix A such that Σ−1 = AHA.

A SIRP is unaffected by a linear transformation [6]. This means that applying a

linear operator to the clutter process alters the complex Gaussian component, but the

characteristic function of the SIRP is preserved. Hence in the literature, a whitening

approach is often applied to the detection problem of interest. Note that, by applying the

Cholesky factor matrix A to the statistical test, we can reformulate (2.2) in the statistically

equivalent form

H0 : rrr = nnn against H1 : rrr = Ruuu + nnn, (2.3)

where rrr = Azzz, nnn = Accc and uuu = Appp.

The transformed clutter process nnn = SAGGG, and AGGG is still a multidimensional complex

Gaussian process, with zero mean but covariance cov(AGGG) = IE(AGGGGGGHAH) = AΣAH .

Since Σ−1 = AHA, it follows that IN×N = ΣAHA, from which it is not difficult to

deduce that A = (AΣAH)A. Let B = AΣAH , then note that B2 = B, so that B is idem-

potent. Also, it follows that B must be invertible, since det(B) = det(A)det(Σ)det(AH )

and det(Σ) 6= 0 and det(Σ−1) = det(AH )det(A) 6= 0. Thus it follows that B must be

the N × N identity matrix. Consequently, we conclude that the transformed Gaussian

process AGGG has zero mean and covariance matrix this identity matrix. Hence the clutter,

conditioned on the variable S, is completely decorrelated through this linear transform.

We write this as AGGG d
= CN(000, IN×N ). Observe that nnn|S is still complex Gaussian with

zero mean vector but covariance matrix s2IN×N , hence its density is

fnnn|S=s(xxx) =
1

πNs2N
e−s−2‖xxx‖2

, (2.4)
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where the norm in (2.4) is the complex Euclidean norm on vectors. Hence by using

conditional probability [20]

fnnn(xxx) =

∫ ∞

0
fnnn|S=s(xxx)fS(s)ds

=

∫ ∞

0

1

πNs2N
e−s−2‖xxx‖2

fS(s)ds. (2.5)

Hence if we define a function hN (p) by

hN (p) =

∫ ∞

0
s−2Ne−s−2pfS(s)ds, (2.6)

then the clutter joint density can be written in the compact form

fnnn(xxx) =
1

πN
hN (‖xxx‖2). (2.7)

The function hN defined in (2.6) is of paramount importance in SIRP theory, as all densities

of interest are expressed in terms of it. It is thus called the characteristic function. Much

of the literature is devoted to determining hN and fS pairs for particular desired clutter

models [6, 19].

Next we derive the marginal amplitude and intensity distributions of the complex

clutter process nnn, which are intimately related to the special function hN . Let the kth

element of nnn be nk, so that nk = SAGGGk, where GGGk is the kth component of GGG, for 1 ≤ k ≤ N .

Then the complex Gaussian density of AGGGk is

fAGGGk
(z) =

1

π
e−|z|2. (2.8)

Hence, equivalently, AGGGk is a complex Gaussian process with mean zero and covariance

matrix 1
2I2×2. Consequently, it follows that its amplitude |AGGGk| has a Rayleigh distribution

with parameter 1√
2
. Hence, using the fact that S and AGGGk are independent, and the

definition of the Rayleigh density, we can show that

f|nk|(t) =

∫ ∞

0

2t

s2
e−

t
2

s2 fS(s)ds = 2th1(t
2), (2.9)

yielding the marginal amplitude distribution for each k. Transforming to the intensity

domain, it is not difficult to show

f|nk|2(t) =
1

2
t−

1
2 f|nk|(

√
t) = h1(t), (2.10)
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also for each k.

The importance of the results (2.9) and (2.10) is that they indicate how an arbitrary

distribution can be embedded within a SIRP model. The key to the determination of a

relevant SIRP for a given detection problem is the specification of the random variable

S through its density fS . For a desired marginal distribution, we can form an integral

equation using (2.10) and (2.6) with N = 1. The literature contains extensive discussion

of this problem; in particular, [6] contains guidelines on performing this, as well as case

studies for most desired marginal distributions.

2.3 Pareto SIRP

The Pareto SIRP is defined to be that whose marginal intensity distributions are Pareto,

with given parameters α and β. Recall that X
d
= Pa(α, β) if its density is given by

fX(t) =







0 t < β,

αβα

tα+1 t ≥ β.
(2.11)

The parameter α is called the distribution’s shape parameter, while β is called the scale

parameter. The latter specifies where on the real line the distribution’s support begins,

which is the interval [β,∞). The shape parameter controls how fast the distribution’s tail

decreases. In order to specify a multidimensional process of the form (2.1), we need to

specify an appropriate density of S. The choice below has been based upon the results in

[7].

Consider the function fS(s) defined by

fS(s) =
2βα

Γ(α)
s−2α−1e−βs−2

, (2.12)

for s > 0, where α and β are positive. An application of L’Hopital’s Rule shows

lims→o+ fS(s) = 0, so we can set fS(0) equal to zero to make fS continuous on the half

interval [0,∞). Clearly fS(s) ≥ 0 ∀s ≥ 0 and by a change of variables to u = βs−2,

∫ ∞

0
fS(s)ds =

βα−1

Γ(α)

∫ ∞

0

(

u

β

)α−1

e−udu = 1, (2.13)

using the definition of the Gamma Function. Hence the function fS(s) is a valid density

on [0,∞).
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It is not difficult to show that its first and second moments are given by

IE(S) =

√
βΓ(α − 0.5)

Γ(α)
and IE(S2) =

β

α − 1
. (2.14)

Using this density, we determine the characteristic function hN . By applying the

transform u = [p + β]s−2, we can show

hN (p) =
2βα

Γ(α)

∫ ∞

0
s−2N−2α−1e−[p+β]s−2

ds

=
βα

Γ(α)[p + β]N+α

∫ ∞

0
uN+α−1e−udu

=
βαΓ(N + α)

Γ(α)[p + β]N+α
, (2.15)

where the definition of the Gamma Function has been applied as previously.

Next we construct the marginal intensity distribution. By an application of (2.10), we

see that by setting N = 1 in (2.15),

f|nk|2(t) =
αβα

[t + β]α+1
, (2.16)

showing the marginal distributions corresponding to the whitened SIRP with the choice

of fS(s) in (2.12) being shifted Pareto distributions. Note that the linear transform zk =

|nk|2 + β yields a density

fzk
(t) = f|nk|2(t − β) =

αβα

tα+1
(2.17)

for t ≥ β, which is the standard form of the Pareto density. Hence, the clutter process

is modelled as a product of a random variable generated by S with density (2.12), and a

complex Gaussian process with covariance matrix Σ. Note that since the Gaussian process

is zero mean, cov(ccc) = IE(S2)Σ, implying we can produce a desired covariance structure

for our clutter process by scaling the Gaussian process by the mean squared value of S.

3 Neyman-Pearson Detectors

We now turn to the determination of optimal and suboptimal decision rules using the

Neyman-Pearson Lemma [17] and the SIRP structure derived in the previous section. We

begin with the case of a fully specified target model.

UNCLASSIFIED 7
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3.1 Case of a Completely Known Target

It is useful to begin with the case of a fixed known target model, which means we assume

that R is a fixed constant that is completely specified.

Under H1, rrr = Ruuu + nnn, and conditioned on S, this is still complex Gaussian, with the

same covariance as nnn (since Ruuu is constant), but its mean is shifted by the vector Ruuu.

Hence the density under H1 is

fH1
(rrr) =

1

πN
hN (‖rrr − Ruuu‖2). (3.1)

Consequently, the Neyman-Pearson optimal detector is the ratio of the densities under H1

and H0. The density under H0 is given by (2.7), with an application of (2.15). Hence the

likelihood is

L(rrr) =
[‖rrr‖2 + β]N+α

[‖rrr − Ruuu‖2 + β]N+α
, (3.2)

using (3.1). Thus, the likelihood ratio test takes the form

M(rrr) =
‖rrr‖2 + β

‖rrr − Ruuu‖2 + β

H1

><
H0

τ, (3.3)

where τ is the detection threshold, which can be determined numerically from the false

alarm specification. The notation X
H1

><
H0

Y means that we reject H0 if and only if X > Y .

In all reasonable applications, we will not have knowledge of R, and so we must extend

this result to account for an unknown R. This is the subject of the next subsection.

3.2 Unknown Target: Generalised Likelihood Ratio Test

In this case we assume R is unknown but constant within a given range profile. This means

we can apply the GLRT to first estimate this parameter, and then apply the estimate to

the test (3.3). The methodology of GLRT is described in [7, 10]. We essentially produce

a suboptimal detector for the case of an unknown target, based upon the optimal decision

rule formulated for a completely known target model.

We call this estimate R̂, which is taken to be the maximum likelihood estimator [2]. It

is chosen to minimise the quantity ‖rrr−Ruuu‖2. This is because, in view of the density (3.1)

and the definition of hN in (2.6), maximising the density with respect to R is equivalent

to minimisation of this quantity.
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By applying a simple expansion, we can show

‖rrr − Ruuu‖2 = ‖rrr‖2 + |R|2‖uuu‖2 − 2<(RuuuHrrr), (3.4)

where <(z) is the real part of the complex number z. Recalling the proof of the Cauchy-

Schwarz inequality (see [21] for example), this is minimised with the choice R̂ = uuuHrrr
‖uuu‖2 .

Substituting this in (3.4) shows that

min
R

‖rrr − Ruuu‖2 = ‖rrr − R̂uuu‖2 = ‖rrr‖2 − |uuuHrrr|2
‖uuu‖2

. (3.5)

An application of (3.5) to (3.3) results in the GLRT

L(rrr) =
‖rrr‖2 + β

‖rrr‖2 − |uuuHrrr|2
‖uuu‖2 + β

H1

><
H0

τ. (3.6)

This result is also derived in [7] in the context of sonar signal processing. However, our

application is significantly different from that in the latter. The decision rule (3.6) gives

a suboptimal detector for the detection of a target in clutter that has Pareto marginal

distributions. The next Section will analyse its perfomance.

4 Detector Performance Analysis

The performance of the GLRT detector (3.6) is now examined. It will also be compared to

the performance of the whitening matched filter (WMF), which can serve as a suboptimal

decision rule. Determining when the WMF performs well is important because it does

not depend on the clutter parameters, as does the GLRT solution. Four examples will

be considered: the first two explore the role of the Pareto clutter parameters on detector

performance. The second two examine the performance of the decision rules when applied

to scenarios with Pareto parameters estimated from the 2004 Ingara data sets [22]. How-

ever, the clutter is simulated using the estimated parameters, to determine the receiver

operating characteristic curves. Details of the Ingara clutter are not repeated here, but

are available in a number of references. Refer to [3] and [22] for specific details of the data

and trial, and [5] for information on the Pareto fit to the Ingara data.

For a given false alarm probability, the detection threshold τ has been estimated using

Monte Carlo simulation. The number of independent and identically distributed samples

UNCLASSIFIED 9
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used is 106 in all cases. For a given SCR, the detection probability has also been estimated

using Monte Carlo simulation, where for each given SCR, 106 independent and identically

distributed samples have been used to estimate the detection probability.

4.1 Signal to Clutter Ratio

The signal to clutter ratio (SCR) measures the signal power relative to the clutter power.

It is defined as SCR = S1/S2, where

S1 = IE|Ruuu|2 = IE[(Ruuu)H(Ruuu)] = IE|R|2‖uuu‖2. (4.1)

Since R is assumed to be bivariate Gaussian, it follows that |R| has a Rayleigh distribution

with parameter σ, and so

IE|R|2 = var(|R|) + (IE(|R|))2 = 2σ2. (4.2)

Next, the clutter has mean squared value

S2 = IE|nnn|2 = IE(S2)IE|AGGG|2. (4.3)

But recall the effect of the matrix A is that it decorrelates the Gaussian component GGG.

Hence it is simple to show IE|AGGG|2 = N , and so S2 = N IE(S2). Consequently it follows

that

SCR =
2σ2‖uuu‖2

IE(S2)N
=

2σ2pppHΣ−1ppp

IE(S2)N
=

2σ2pppHΣ−1ppp(α − 1)

βN
, (4.4)

using (2.14). In order to assess detector performance, the SCR is varied from -10 to +30

dB, and a Gaussian target model is used, whose parameters are determined from (4.4).

4.2 Whitening Matched Filter

As a comparison, the whitening matched filter, or Gaussian optimal detector is used as a

suboptimal approximation. For a return rrr, this decision rule takes the form

|uuuHrrr|2
H1

><
H0

τwmf , (4.5)

where τwmf is the detector’s threshold.
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4.3 Receiver Operating Characteristics

A series of receiver operating characteristic (ROC) curves are now provided to assess

detector performance. Throughout, a Toeplitz structure will be assumed for the clutter

covariance matrix Σ. In particular, it will be assumed that Σ(j, k) = κ|j−k|, for each

j, k ∈ {0, 1, 2, . . . N −1}, and 0 < κ < 1. As pointed out in [3], the azimuth angle of Ingara

is the angle the radar looks towards. For the Ingara trial, the wind speed is reported to

have been 7.1 metres per second, in a direction of 47◦, for the Australian Government’s

Bureau of Meterology estimates. This means that the upwind angle is 227◦, which is the

point where the clutter will be strongest [3].

All ROC curves show the performance of the suboptimal detectors relative to the

optimal decision rule (3.3), denoted OPT throughout.

4.3.1 Example 1

The first set of ROC curves we examine explore the effect of the Pareto parameters on

detector performance. Figure 4.1 is for the case where the number of looks is N = 5, the

normalised Doppler frequency is fD = 0.5, the probability of false alarm is 10−6 and the

Toeplitz factor is κ = 0.1. The top two subplots in figure 4.1 show the effect of increasing

the Pareto shape parameter α. The top left subplot is for the case where α = 3 and β = 1.

The top right subplot is for the case where α = 10 and β = 1. These two plots show

a phenomenon observed quite frequently in the ROC analysis. As the shape parameter

is increased, the WMF becomes a good approximation to the GLRT detector. This is

probably because the clutter is becoming more Gaussian like. The bottom two subplots

in figure 4.1 show the effect of changing the scale parameter, while the shape parameter

is held constant. The bottom left subplot is for α = 3 and β = 10, while the bottom right

subplot is for α = 3 and β = 100. This was observed in other simulations: it appears that

the scale parameter does not affect the detector’s performance significantly. We observe

that the GLRT has good performance throughout.
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Figure 4.1: ROC curves. showing the effect of varying the Pareto parameters. Top left

plot is for α = 3 and β = 1, top right is for α = 10 and β = 1. Bottom left is for α = 3

and β = 10, bottom right is for α = 3 and β = 100.
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4.3.2 Example 2

As a second example, the effect of varying α, while the scale parameter is held fixed,

is examined. Figure 4.2 is for the case where N = 10, fD = 1, false alarm probability

10−6 and Toeplitz factor κ = 0.9 is considered. The scale parameter is fixed at β = 0.01,

while the shape parameter is increased. This type of scale parameter has been found to

be typical for horiziontally polarised Ingara clutter returns, when modelled by a Pareto

distribution. The top left plot in figure 4.2 is for α = 3, the top right is for α = 10, the

bottom left is for α = 30 and the bottom right subplot is for α = 50. This example shows

the WMF becoming a very good suboptimal decision rule as α increases. For large α, it

matches the GLRT very closely. As before, the GLRT is always a good approximation to

the optimal decision rule.

4.3.3 Example 3

The third example considered uses Pareto parameters estimated from the Ingara data sets.

In this case, the parameters are sourced from run34683, at an azimuth angle of 225◦. This

is only 2◦ off from the upwind direction, and so the clutter should be strong. Throughout,

the normalised Doppler frequency has been set to fD = 0.4, the Toeplitz factor κ = 0.5

and false alarm probability of 10−6.

The top two subplots of figure 4.3 are for the vertically polarised case, where the Pareto

parameters have been estimated to be α = 11.3930 and β = 0.3440. The top left subplot

has number of looks N = 2, while the top right is for N = 8. In this case, the WMF is a

good approximation to the GLRT.

The bottom two subplots are for the horizontally polarised case, where the estimated

Pareto parameters are α = 4.7241 and β = 0.0466. The bottom left subplot is for N = 2

and the bottom right subplot is for N = 8. Here the WMF is not such a good approx-

imation. In many of the Ingara data sets examined, this was found to be the case: the

vertically polarised case resulted in the WMF being a good suboptimal detecor, while for

horizontally polarised clutter, the GLRT is more suitable. The GLRT tends to only incur

a small detection loss throughout.
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Figure 4.2: ROC curves, showing the WMF becoming a better suboptimal decision rule

as α is increased. In all cases, β = 0.01. Top left is for α = 3, top right is for α = 10,

bottom left is for α = 30 and bottom right is for α = 50.
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Figure 4.3: ROC curves based upon the Ingara data set run34683. Top subplots are for

vertical polarisation, bottom two are for horizontal polarisation. The WMF is suitable only

for the vertically polarised case.
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4.3.4 Example 4

As a final example, the ROC performance of detectors with Pareto parameters sourced

from run34683, at an azimuth of 190◦, is considered. In this case, the clutter should

be weaker because the radar is focused in the downwind direction (37◦ discrepancy from

downwind). In this example, the normalised Doppler frequency has been set to fD = 0.5,

the Toeplitz factor is κ = 0.01 and false alarm probability of 10−6. For the vertically

polarised case, α = 8.9028 and β = 0.1109. For the horizontally polarised case, α = 4.9031

and β = 0.0209. Figure 4.4 shows the results. The top two plots are for the vertically

polarised case, while the bottom two are for the horizontal polarisation. The number of

looks is varied from N = 2 to N = 8, moving left to right as illustrated. For the vertically

polarised case, we see that the WMF is a good approximation, while for the horizontally

polarised case, it becomes better as the number of looks increases. Observe the GLRT has

consistent performance.

4.4 Detector Computational Load Considerations

Due to the fact that a radar system must process many sets of returns rapidly, the rel-

ative computation loads of detectors is an important consideration in detector design.

The WMF detector (equation 4.5) requires three operations (multiplication of Hermitian

transpose vector and whitened return, followed by modulus and squaring). It is also in-

dependent of the clutter parameters. By contrast, the GLRT has a higher computational

load (see equation 3.6). Given a whitened return rrr, the GLRT involves calculation of the

WMF, normalisation of it and then passing the result into a ratio function which requires

computation of the modulus squared of the return rrr. This can be done in a total of about

6 operations. However, these are not computationally intense operations2.

As noted previously, the performance of the GLRT was matched by that of the WMF

in a number of cases considered. Given this, the WMF could be used as a computationally

cheaper solution.

2Examples of a high computational load is evaluation of Bessel functions and other integrals, such as

is experienced with similar detectors for the case of K- and KK-Distributed clutter.
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Figure 4.4: ROC curves based upon Ingara data set run34683, with azimuth angle 190◦.

Top two subpolots are for the vertically polarised case, while bottom two are for horizional

polarisation. For vertical polarisation, the WMF is a good approximation to the GLRT.

For the horizontally polarised case, increasing the number of looks seems to make the WMF

improve in performance.
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5 Conclusions

This report examined coherent multilook detection for targets in Pareto distributed clutter.

By introducing the Pareto SIRP, the Neyman-Pearson Lemma yielded the theoretical

optimal decision rule. From this, the suboptimal GLRT was constructed. It was shown

to have small detection loss in a series of examples, some of which have been based upon

Pareto clutter estimates sourced from Ingara data sets. The WMF was observed to be a

good suboptimal approximation in a number of simulations, suggesting it can be used as a

computationally simpler solution. The relationship between the WMF and GLRT will be

explored in subsequent work, hopefully providing some general guidelines when the WMF

is comparable to the GLRT. This will be advantageous from the perspective that it does

not depend on the Pareto scale parameter, as does the GLRT.
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