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Abstract

The Air Force Reserve Officer Training Corps (AFROTC) faces a declining budget

and increased enrollment, creating the necessity for improving officer candidate selec-

tion thorough the various stages of its commissioning program. Three critical stages

have a major impact on the type of officer AFROTC commission. This research pro-

poses a multi-stage model to evaluate three stages: 1) the high school scholarship

allocation process, 2) the in-college scholarship allocation process, and 3) commis-

sioning. Each stage is examined individually so that collectively AFROTC decision

makers are able to meet commissioning goals. Stage one involves allocating scholar-

ships to high school candidates using the index policy heuristic. Stage two involves

examining which candidates should be awarded an enrollment allocation while taking

into account the probabilities of the candidate completing field training (FT) and

going on to commission. A logistic regression is used to estimate the probabilities

of FT completion and commissioning given a candidate’s demographic information

and college performance. Stage two is examined using dynamic programming with

a knapsack formulation. Stage three involves selecting the most qualified cadets to

commission into the USAF and is examined using a knapsack approach.

This research enables AFROTC to shape the workforce during the commissioning

program with respect to specialty, diversity, and cost requirements. In addition, it

provides the decision maker with an effective means to select candidates at each stage

of the commissioning program. Analysis conducted for stage one indicates that use

of the index policy heuristic provide AFROTC a means to achieve higher quality at

equal expense. Analysis conducted for stages two and three allow AFROTC to assess
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changes in total quality when considering different commissioning policies.
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A MULTI-STAGE OPTIMIZATION MODEL FOR AIR FORCE RESERVE

OFFICER TRAINING CORPS OFFICER CANDIDATE SELECTION

I. Introduction

Every year, the United States Air Force (USAF) projects officer accessions to meet

future USAF needs. The backbone of the USAF is its personnel. Without person-

nel, the USAF would fail to accomplish its mission, to defend the United States and

protect its interests through aerospace power [11]. The personnel structure requires

that the right number and quality of officers be assessed to satisfy future leadership

requirements. The right mix of officers must be available to ensure a broad range of

daily operations are maintained [13].

The Air Force Reserve Officer Training Corps (AFROTC), the Air Force Academy,

and the Officer Training Corps (OTS) are the three commissioning programs in the

USAF. AFROTC supplies over half of the total officer accessions annually and up to

70% of the officers accessed into the Air Force’s technical Air Force Specialty Codes

(AFSC) [9]. AFSCs are specific codes used to group positions based on similarity

of functions and requirements for knowledge, education, training, experience, ability,

and other common criteria [3]. Technical AFSCs require specific Science, Technology,

Engineering, and Math (STEM) baccalaureate degrees. Besides AFROTC producing

the most officers with STEM degrees, AFROTC also produces the largest number of

foreign language and nursing majors [13].

The mission of AFROTC is to develop quality leaders for the USAF [11]. AFROTC

recruits, educates, and commissions officer candidates from the 144 colleges and uni-

versities that host an AFROTC program based on Air Force (AF) requirements [11].

With AFROTC experiencing high enrollment numbers and retention rates, it is im-
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perative that AFROTC select the most qualified students during each milestone in

the program.

The three major milestones in AFROTC are the High School Scholarship Selec-

tion Process (HSSP), awarding of enrollment allocations (EA), and AFSC assignment.

The purpose of the scholarship program is to support the mission of AFROTC and

provide an incentive to attract and retain officer candidates of high quality whose

leadership potential, personal and physical qualities, and academic objectives meet

AF accession objectives. The EA process determines which cadets are eligible to

attend field training and enter into the Professional Officer Course (POC). Once stu-

dents complete the POC course, they are commissioned into the USAF, and awarded

an AFSC by the Air Force Personnel Center (AFPC).

This research focuses on the development of a multistage optimization model that

selects officer candidates for high school scholarships, enrollment allocations, and

AFSC selection in order to maximize expected total quality. The quality score is

measured by the candidate’s Air Force Officer Qualifying Test (AFOQT) score. Cur-

rently, AFROTC uses historical information as a means of determining the number of

scholarships and EA to give out and to whom. Historical attrition rates are calculated

using personnel data collected over previous years, then used to forecast requirements.

However, with complicating factors such as economic conditions, increased retention,

and college and military costs, AFROTC requires a more flexible and reliable model

[13].

AFPC is responsible for the assignment of AFSCs to commissioned officer can-

didates. AFPC allocates the different AFSCs based on the needs of the Air Force,

academic major, and student preference. This thesis offers a method of allocating

scholarships based on the Air Force needs, academic major, and an officer candi-

date’s quality score.
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Other branches of the military have approached similar problems in different ways.

Raymond focuses on determining the number of reenlistments necessary to satisfy fu-

ture force requirements in the United States Marine Corps by analyzing personnel

numbers and applying transition rates over a period of time [22]. Ali et. al. examine

the assignment of Navy enlisted personnel with the complicating factor of en route

training [4]. They determine the optimal assignment of personnel through the use of

the assignment problem with specially structured side constraints [4].

This thesis describes a multistage approach for allocating scholarship resources to

officer candidates. Techniques depend on the stage of the problem. The quiz problem

is used to determine a near optimal policy for allocating high school scholarships to

officer candidates. Dynamic programming is utilized to determine an optimal policy

for the allocation of EA slots to the most qualified cadets by considering budget, like-

lihood of completing FT and POC, and number of slots available. The assignment of

AFSCs is examined using a knapsack problem formulation.

This thesis is organized into five chapters. This chapter provides an introduction

to the material. Chapter two provides a literature review of the AFROTC commis-

sioning process and in depth discussion of the knapsack problem, dynamic program-

ming, quiz problem, and logistic regression. Chapter three discusses the methodology

utilized to address the research problem while taking into consideration the decision

makers’ inputs. Chapter four discusses results and presents findings related to the

research objectives. Chapter five provides concluding comments and ideas for future

research.

3



II. Literature Review

This chapter provides provides a detailed description of the Air Force Reserve Offi-

cer Training Corps (AFROTC) commissioning program and reviews of the techniques

used to formulate and analyze the problems of interests in this thesis. Section 2.1

details presents the background and the major milestones in the program to include

commissioning, the high school scholarship selection process (HSSP), the enrollment

allocation (EA) process, and the assignment of Air Force Specialty Codes (AFSC)

to commissioned cadets. Sections 2.2, 2.3, 2.4, and 2.5 present the different methods

utilized to analyze each of the milestones. These methods include application of the

quiz problem, dynamic programming, logistic regression, and the knapsack problem.

2.1 Air Force Reserve Officer Training Corps

The mission of AFROTC is to develop quality leaders for the USAF. The AFROTC

commissioning process begins with recruitment of high school students into the pro-

gram. Ideally, students enter into the program during their freshman or sophomore

year in college and enter into one of the Aerospace Studies (AS) courses. The program

is divided into two categories: the General Military Course (GMC) and the Profes-

sional Officer Course (POC). The GMC course is composed of AS100s and AS200s

while the POC course consists of AS300s and AS400s. In order to transition from the

GMC to the POC course, officer candidates must compete and be awarded an EA.

Once awarded an EA, the candidate must attend and complete Field Training (FT)

in order to be to enter the POC and be qualified for commission. Upon completion of

the POC course, students are commissioned into the USAF and assigned an AFSC by

the Air Force Personnel Center (AFPC). Figure 1 is a representation of the AFROTC

commissioning process.

4



In order to recruit and train the best qualified commissioning candidates, AFROTC
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Figure 1. AFROTC Commissioning Process

uses scholarships as an incentive. The scholarship program consists of three main

parts and has six distinct scholarship types. The program is authorized by Title

10, United States Code, Section 2107, Financial Assistance Program for Specially

Selected Members, amendments to 10 U.S.C. 2107, and annual Nation Defense Au-

thorization Acts [1]. AF/A1 provides requirements for officer production needs which

guide the scholarship authorizations by academic specialty [1].

The AFROTC College Scholarship Program (CSP) contains the following three

components: the High School Scholarship Program (HSSP), the In-College Schol-

arship Program (ICSP), and the Enlisted Commissioning Program (ECP) [1]. The

5



entire scholarship program is managed by the AFROTC Scholarships Branch

(AFROTC/RRU). The component programs are managed by two offices within

AFROTC/RRU, the High School Scholarships Section (AFROTC/RRUC) and the

In-College and Enlisted Scholarships Section (AFROTC/RRUE).

The HSSP provides 3- and 4-year scholarship offers to high school seniors and

graduates with no full-time college experience. If students have participated in a

joint high school/college program prior to high school graduation, they are still eligi-

ble to apply for a scholarship. Typically, to be eligible for a scholarship consideration,

an applicant must attain an un-weighted cumulative grade point average (CGPA) of

3.0 (as measured at the end of the junior year in high school) or higher and achieve

either a Scholastic Assessment Test (SAT) total score of 1100 or an American College

Test (ACT) composite score of 24.

AFROTC establishes the CSP application and selection process. The annual allo-

cation of scholarships is determined based on fiscal considerations and AF production

goals. From this information, the total amount, types, and academic categories are

determined. The CSP awards 4-Year Type 1, 4-Year Type 2, and 4-Year Type 7

scholarships to select applicants. Students granted the 4-Year Type 7 scholarship

have the option of converting to a 3-Year Type 2 scholarship [1].

The AFROTC CSP begins with the application period. The application pe-

riod runs from 15 March to 1 December of each year [2]. Students are required

to submit applications no later than 1 December using the on-line CSP application

at www.afrotc.com. In order to become eligible to compete for a scholarship, each

applicant must send in all required materials no later than 15 January [2]. The

required information includes the on-line application, certified transcripts, physical

fitness exam results and SAT/ACT scores [2]. The applicant must be at least 17

years old by the last day of the term in which the scholarship is activated and be a

6



United States citizen [2]. Once the application is received by AFROTC/RRUC, the

information is put into a database to confirm an applicant’s eligibility status [2]. If

an applicant is determined eligible, he or she is scheduled for a personal interview

with an Air Force officer [2].

Once the results of the interview are sent to and received by AFROTC/RRUC,

the applicant’s package meets the next available CSP board [2]. The board consists

of a 3-member panel typically consisting of AFROTC detachment commanders and

Air Liason Officers (ALOs) [2]. Official board results are normally released within

four weeks of the conclusion of each board and RRUC notifies each applicant of the

board result [2].

Historically, when evaluating applicants for a scholarship offer, the 3-member panel

reviews each applicant’s academic summary, interview results, resume, and extracur-

ricular activity sheet [17]. Each board member then decides a maximum point value

for each of the following areas for each applicant: Leadership, Motivation, Fitness,

and Other (optional) [17]. Each area has a maximum point value of 34 points [17].

During the AS200 year, officer candidates compete for EAs. The number of EAs

given out by AFROTC is based on AF/A1 fiscal year commissioning requirements

while taking into consideration attrition rates. An award of an EA indicates a candi-

date is guaranteed commission as long as he.she successfully completes field training

and the remaining two years of the program. Recently, the number of EAs have been

cut due to cut backs in the USAF resulting in fewer cadets receiving EAs.

According to AFROTC Instruction 36-2011 [1], an eligible candidate is submitted

for EA consideration by his/her detachment commander. Detachment commanders

provide a unit commander ranking (UCR) and order of merit (OM) for each candi-

date. The UCR evaluates a candidates potential based on performance as a cadet

in the program and based on a whole person concept. The OM is calculated by
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weighting factors including the relative standing score (RSS), CGPA, physical fitness

assessment (PFA) score, and SAT-R (highest score between AFOQT, SAT and ACT).

Table 1 is a representation of the different components and weightings for the OM.

Per AFROTC Instruction 36-2011, candidates who do not receive and EA are disen-

rolled from the program.

Per AFROTC instruction 36-2011 [1], Towards the end of the program, during a

Table 1. Order of Merit Factors

FACTORS RANGE MULTIPLIED BY WEIGHT

RSS (Note 1) 5-10 5 50%

Cumulative GPA 2.0-4.0 5 20%

PFT 75-100 0.15 15%

SAT-R (Note 2) 650-1600 0.009375 15%

Notes:
1. The formula for calculation RSS is (10*((1-R/c)+0.5/C),
where R = UCR and C = Class Size
2. The SAT-R is used only for selection processing

candidate’s AS400 year, he/she assigned an AFSC by AFPC via the AFROTC Form

53. AFSC classification is primarily based on the needs of the Air Force at the time

of entry onto extended active duty (EAD). AFPC published a ”target list” of higher

need AFSCs for the subject fiscal year. Candidates use this ”target list” to decided

which AFSCs for which they may be qualified and for which they are interested in

volunteering.

AFROTC is currently interested in developing techniques to better allocate schol-

arships and enrollment allocations. The motivation is to increase the quality of future

officer candidates. Sister service ROTC programs are also interested in improving the

allocation of scholarships. In 1999, RAND conducted a study of the Army ROTC

scholarship program to offer alternate ways for its design [12]. This study examined

the program from a financial and value perspective [12]. It examined different ways
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Army ROTC could balance tuition costs and value of different academic institutions:

private, prestigious, and other [12]. RAND’s approach was first to examine lessons

learned from the previous and tiered scholarship programs [12]. It drew on both

quantitative and qualitative data [12]. With this data, they examined how different

scholarship programs affected students attending varied valued academic institutions

and how it impacted the quality of the officer produced [12]. The value of the academic

institution was determined by evaluating the records of students that had graduated

and commissioned from a certain type of institution [12]. The two measures consid-

ered were the officer’s years of service and promotion rates [12].

From its analysis, RAND discovered that officers graduating from prestigious pri-

vate schools are the only type that display significantly higher promotion rates at all

grades in a standard 20-year career. However, sending students to these institutions

is also the most expensive alternative [12]. Based on this information, RAND recom-

mended four different types of scholarship programs that balance quality and tuition

costs that differ based on the Army’s priorities [12].

Civilian academic institutions are also concerned with ensuring that they enroll the

most qualified students into their programs. Camarena-Anthony [8] examines schol-

arship allocation at Texas Tech University. Her research seeks to satisfy enrollment

goals while achieving, simultaneously, other institutional objectives [8]. Likelihood of

enrollment is predicted, initially, using a logisitic regression. This information is then

used in a goal-programming model that seeks an optimal, merit-based scholarship al-

location aligned with major institutional goals of academic quality and diversity [8].

The model provides decision makers with an effective way of distributing scholarships

to incoming freshman.
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2.2 The Quiz Problem

When considering how to allocate scholarships to the most qualified officer candi-

dates, it is important to define an optimal policy for doing so. One way to define an

optimal policy is through the use of the quiz problem, which is an example of a class

of stochastic scheduling problems [6]. In its simplest form, the quiz problem involves

an individual who is given a list of N questions to answer in any order desired. There

is a probability pi that the individual will get question i correct and receive reward vi.

The goal is to choose the optimal sequence of questions that results in the maximum

expected reward.

The quiz problem can be thought of as a deterministic combinatorial problem,

where one is seeking the goal of obtaining the optimal sequence in which to answer

questions [6]. The simple form of the optimal solution to the quiz problem is deter-

ministic; questions should be answered in decreasing order of pivi/(1− pi) [6]. When

this policy is used in variations of the quiz problem where it is not necessarily opti-

mal, it is referred to as an index policy [6]. The greedy policy answers questions in

decreasing order of the expected reward pivi and is considered suboptimal because it

does not consider the future loss associated with getting a question incorrect [6].

Before one can apply the quiz problem, it is important to understand why it yields

an optimal policy. Let N denote the number of questions available, and M denote the

maximum number of questions which may be attempted. Each question has an ex-

pected reward or value vi and a probability of a correct answer, pi [6]. There are time

window or precedence constraints on the possible order of questions. The expected

reward of a feasible question order (i1, . . . , iM) is V (i1, . . . , iM) where:

V (i1, . . . , iM) =pi1(vi1 + pi2(vi2 + pi3(. . .+ piMviM ) . . .)). (2.1)
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If the question order (i1, . . . , iM) is infeasible, it is denoted:

V (i1, ..., iM) = −∞. (2.2)

When M = N , this is the classical quiz problem and all question orders are

feasible. For this case, the optimal solution is obtained by using an interchange

argument [6]. Let i and j be the kth and (k+ 1)st questions on an optimally ordered

list

L = (i1, ..., ik−1, i, j, ik+2, . . . , iN). (2.3)

Now, consider the list

L′ = (i1, . . . , ik−1, j, i, ik+2, . . . , iN), (2.4)

which is obtained from L by interchanging the order of questions i and j. When

comparing the expected reward of L and L′, the following result is [6]

E{reward of L} =E{reward of{i1, . . . , ik−1}}

+ (pi1 , .., pik−1
)(pivi + pipjvj)

+ pi1 ...pik−1
pipjE{reward of{ik+2, ..., iN}}.

(2.5)

Since L is optimally ordered, the following is obtained

E{reward of L} ≥ E{reward of L’},
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so it follows that

pivi = pipjvj ≥ pjvj + pjpivi (2.6)

or equivalently

pivi
1− pi

≥ pjvj
1− pj

. (2.7)

From this, one can conclude in order to maximize the total reward, the question

should be answered in decreasing order of pivi
1−pi ; this yields the index policy [6].

During the high school scholarship and enrollment allocation selection processes,

the decision maker’s goal is to select the most qualified cadet for each opportunity.

The HSSP process involves considering all applicants based on the different qualifiers

mentioned previously and summarizing each cadet’s achievement into one composite

or quality score [17]. The composite scores help to determine each candidate’s quali-

fication. This relates to the quiz problem by assigning a probability of a scholarship

offer being accepted (probability of getting a question correct) and quality of com-

missioned cadet (reward).

The EA selection process is similar to the HSSP process, however the quality

score is determined differently. The Order of Merit (OM) or quality score for the

EA selection process is a weighted multiple of the detachment commander’s rating,

cumulative GPA, Physical Fitness Test (PFT), and SAT equivalent score [21]. For

this thesis, the analysis uses a student’s Air Force Officer Qualifying Test (AFOQT)

score due to data limitations regarding OM scores. The probability of completing

field training and commissioning will be used to determine a near optimal policy for
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selecting cadets for EAs.

2.3 Dynamic Programming Approach

Dynamic programming (DP) is a mathematical analysis technique where complex

problems are broken down into simpler decisions that are solved in a sequence of steps

or stages [16]. At each stage the outcome cannot be explicitly defined and may have

some probability associated with a specific outcome. Usually, the goal is to minimize

an undesirable cost. The goal is to balance some current cost with unknown future

costs.

The basic DP model has two assumptions: (1) an underlying discrete-time dy-

namic system, and (2) a cost function that is additive over time [5]. The dynamic

system considers the evolution of the decision variables over time. The state of the

system changes from stage to stage as decisions are made. The system has the form

[5]:

xk+1 = fk(xk, uk, wk), k = 0, 1, ..., N − 1, (2.8)

where

k indexes discrete time,

xk is the state of the system and summarizes past information that is relevant to

future optimization,

uk is the control or decision variable to be selected at time k,

wk is a random parameter (also called the disturbance or noise depending on the

context),

N is the horizon or number of times control is applied,
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and fk is a function that describes the system and in particular the mechanism by

which the state is updated.

The total cost function is additive and is denoted:

J(xN) +
N−1∑
k=0

gk(xk, uk, wk), (2.9)

where gk is the cost in stage k and J(xN) is a terminal cost incurred at the end of

the process. Due to the presence of wk, the cost is typically a random variable with

some associated probability. Therefore the problem is formulated as an optimization

of expected cost

E

{
gN(xN) + [

N−1∑
k=0

gk(xk, uk, wk)]

}
, (2.10)

where the expectation is with respect to the joint distribution of the random variables

involved. The optimization is over the controls u0, u1, ..., uN−1, where each control uk

is selected with some knowledge of the current state xk [5].

2.4 Knapsack Problems

Once students are commissioned into the USAF, AFPC must decide how to allo-

cate the students to the different AFSCs. Priority is given to students with technical

majors in order to fill technical AFSCs first. A useful method for assigning the best

qualified individuals to technical AFSCs is through the use of knapsack problems.

The knapsack problem is a problem of combinatorial optimization where given a set

N , consisting of n items j with profit pj and weight wj, and the capacity value c, the

objective is to select a subset of N such that the total profit of the selected items is
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maximized and the total weight does not exceed c [19].

Consider the following simple example of the knapsack problem from Keller et.al

[19]. A hiker is packing his knapsack (or rucksack) for an intense hiking trail and

must decide which items to take with him. He has a large number of items all of

which have the potential to be very useful to him. Each item is assigned a number

j ∈ 1, . . . , n and a certain profit, pj, representing the benefit to the hiker. Each item

also has a weight, wj, which increases the load of his bag with each new item placed

in the knapsack. The hiker would like to limit the total weight of his bag so he fixes

the maximum load capacity to c.

A knapsack problem can be solved by obtaining a solution to the following linear

integer programming formulation [19]:

(KP) maximize
n∑
j=1

pjxj

subject to
n∑
j=1

wjxj ≤ c,

xj ∈ {0, 1}, j=1,...,n.

(2.11)

The optimal solution vector is denoted by x∗ = x∗1,...,x
∗
n and the optimal solution

value is denoted z∗. The set X∗ denotes the optimal solution set (i.e. the set of items

corresponding to the optimal solution vector) [19].

2.5 Logistic Regression

Regression analysis is a statistical technique that allows modeling of relationships

between one or more independent indicator variables and response variables [20].

Logistic regression is used when the response is binary . [20] When examining the

EA and HSSP process, the relationship between various indicator variables, such as
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standardized test scores, grade point average, etc. and the response variable, officer

candidate retention is analyzed. Logistic regression concepts are used to construct a

predictive model.

Logistic regression differs from linear regression because it does not represent the

response variable as a linear combination of the indicator variables. Logistic regression

establishes a relation between the response and the predictors using the logit function

as the dependent variable and modeling it as a linear function of the predictors [23].

The binary response yi has a probability of success, πi, given a certain certain

independent variables χi. The probability can take on any value between 0 and 1 and

is expressed by:

πx = β0 + xi1β1 + xi2β2 + . . .+ xikβk. (2.12)

This function does not guarantee that the probability, πx, will fall between 0 and

1. Instead, the following form is used:

πx =
1

1 + expβ0+xi1β1+xi2β2+...+xikβk
. (2.13)

A model with more than one predictor can be written as:

πx =
expβ0+xi1β1+xi2β2+...+xikβk

1 + expβ0+xi1β1+xi2β2+...+xikβk
. (2.14)

This thesis involves classifying cadets into a 0 or 1 response, where 1 indicates a

student that completes field training and commissions into the USAF. When a stu-

dent is classified in the 0 category, the student failed to complete FT and commission.

The logistic regression model assigns new observations to one of the categories de-

pending on what stage is being optimized.
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The classification process involves a series of steps. First, the probability of be-

longing to a specific class is calculated then it is classified into a specific category

based on a cutoff value [23]. Typically, the cutoff value is set a 0.5. When the prob-

ability is greater than 0.5, the case is classified as a 1 and 0 otherwise. The cutoff

value can be adjusted to a different value depending on the event’s probability.

The cutoff value is an indication of sensitivity and specificity that classifies a test

result. The cutoff value is determined using the area under the receiver operating

characteristic (ROC) curve. The area under the ROC curve, ranging from zero to

one, indicates the model’s ability to discriminate between the subjects who experi-

ence an outcome of interest. The optimal cutoff value is one that maximizes both

sensitivity and specificity.

With logistic regression, there are many assumptions that do not hold when com-

pared with linear regression. The errors or residuals in the model will not have a

normal distribution [20]. Since the response variable takes on the value of 0 or 1,

the distribution would approximate to the binomial distribution [23]. Also, the the

assumption of constant variance is violated [20]. The variance is a function of the

mean. This means a higher variance will occur when pix ≈ 0.5.

This thesis implements the statistical packages MINITAB and JMP to perform

the logistic regression analysis. Although other statistical packages, MINITAB and

JMP were chosen due to ease of use and interpretation [8]. JMP is used to com-

plete forward selection, backward elimination, and mixed stepwise logistic regression.

MINITAB is used because it provides diverse goodness of fit statistics and diagnostic

graphic capabilities that JMP does not [8].

MINITAB offers five tests for examining goodness of fit: Pearson Chi-square,

Deviance, Hosmer-Lemeshow, and two Brown tests. Each test provides a different

interpretation of how well the logistic regression fits.
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The Pearson Chi-square and deviance tests are the two most popular goodness of

fit measures [14]. The Pearson test detects only major departures from the logistic

response function by dividing the cases into unique classes with different combina-

tions of the predictor variables and the groups [8]. Within each class, the replicated

cases are of the same combination [8]. The expected number of responses in each

category is calculated according to the logistic regression function. This determines

the Chi-square goodness of fit statistic. The deviance test is based on comparison

of the likelihoods of the fitted model and the full model [14]. Both models require

multiple or repeated observations at all combinations of factors [8]. Since the sample

used in this thesis may not necessarily meet this requirement, these two goodness of

fit methods may not be appropriate.

The Hosmer-Lemeshow test is based on the grouping of estimated probabilities

obtained from the fitted logistic model [14]. This test can be applied to unreplicated

data and data with few replications [8]. This test assigns estimated probabilities,

where the logit values are similar, into groups of risk which ensures that there are a

fair number of observations in each group [14]. In order to determine if the logistic

function is an appropriate fit, the chi-square statistic is examined against the cut-

off value (chi-square statistic ≤ χ2(1 − α, c − 2), where c is the number of different

combinations of predictor variables) [8]. If the value of the test is greater that α, the

model fit is appropriate [8].

MINITAB also provides two Brown goodness of fit tests: the alternative and

symmetric alternative Brown tests. Brown examines the goodness of fit of a logistic

regression model using a score test statistic [14].The general alternative test statistic,

asymptotically distributed Chi-Square with two degrees of freedom, is determined
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using the following:

T = s′C−1s (2.15)

where C is the estimated covariance matrix fro s, and s′ = (s1, s2), a vector of

score statistics defined as the partial derivatives of the log likelihood
(

dl
dm1

, dl
dm2

)
and

estimated in MINITAB as follows [8]:

s1 = S(yi = P (xi))(1 +
log[P (xi)]

1− P (xi)
), (2.16)

s2 = S(yi = P (xi))(1 +
log[1− P (xi)]

P (xi)
). (2.17)

The one degree of freedom test for the symmetric alternative is [8]:

(s1 + s2)
2

Var (s1 + s2)
. (2.18)

This test proved to perform better than the general alternative when the true

model is symmetric [7]. The Brown statistic p-value is examined to conclude the

model fit. A p-value less than α, indicates a lack of fit, hence the null hypothesis that

the logistic model fits the data is rejected [8].
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III. Methodology

3.1 Overview

This chapter provides a detailed description of the methodology used to optimize

the selection of officer candidates during various stages in the AFROTC program. In

order to address this problem, it is considered as a multi-stage model with three stages:

1) the high school scholarship allocation process, 2) the enrollment allocation process,

and 3) Air Force Specialty Code (AFSC) allocation. Each stage must be examined

individually so collectively AFROTC decision makers are able to meet commissioning

goals. Stage one involves allocating scholarships to high school candidates. Stage two

involves examining which candidates should be admitted into the POC while taking

into account the probability that a student meet requirements for commission. Stage

three involves selecting the most qualified cadets to commission into the USAF. Figure

2 is a representation of the AFROTC multistage process.

3.2 Stage One

Stage one involves selecting the most qualified high school officer candidates to

award scholarships. A full analysis of stage one is not presented due to time con-

straints. Instead, a cursory analysis is presented using heuristics developed through

the use of the classical quiz problem. This allows us to rank cadets based on the

historical probability of certain students being offered a scholarship and a student’s

probability of remaining in the program until commission.
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Figure 2. Multistage AFROTC Problem

3.3 Stage Two

Stage two focuses on the selection of officer candidates to receive an enrollment

allocation (EA) which allows admission of the officer candidate into the POC. Each

candidate’s probability of successfully completing the program and becoming eligi-

ble for commission into the USAF must also be considered. This stage is examined

using a d-dimensional knapsack problem with dynamic programming by evaluating

students probability of completing field training and remaining in the program from

the AS300 year through their final year in the ROTC program. Also, each cadet has

a cost associated with continuing in the program. For this dynamic program, the

state space is defined by the AFROTC budget, the number of POC applicants, and

POC slots available.

21



Stage two is examined using LINGO software. LINGO is a comprehensive opti-

mization software package developed by LINDO systems Inc. This software allows

ease of model formulation, import/export of files into other programs, and powerful

solvers.

The multi-dimensional knapsack problem can be viewed as a knapsack problem

with a collection of different resource constraints or one constraint involving a mul-

tidimensional attribute [19]. Basically, the dimensionality of the knapsack problem

refers to the number of constraints in the problem.

Decisions that consist of a series of interdependent stages resulting in a final

decision are referred to as multiple-stage decisions problems [18]. These problems

require the decision-maker to decide at each stage what action to take next in order

to optimize performance at each stage [18]. Some examples include making decisions

regarding working towards a degree, troubleshooting , medical treatment, scheduling,

and budgeting [18].

Often, the method of backward induction or dynamic programming is used to

solve such multi-stage problems [18]. Backward induction is the process of solving or

examining a problem by working backwards in time to determine an optimal sequence

of actions. For this multiple-stage decision problem, one begins by finding the optimal

solution for the final stage and then proceeding backwards one stage at a time, finding

the optimal solution at each stage, until the last (first) stage is complete. In order

to utilize dynamic programming, all required assumptions must hold. In order to

implement dynamic programming, one starts by solving a smaller sub problem of the

d-KP and then extending the problem iteratively until the complete problem is solved

[19]. After the various stages or periods are examined, the near optimal solution is a

combination of near optimal solution to subproblems [19].
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A near optimal solution to a knapsack problem, when an item or for this thesis,

an officer candidate, is removed from the optimal knapsack packing, the remaining

solution is near optimal for the subproblem defined by a decreased capacity and the

new officer candidate set [19]. Making any other choice would decrease the optimal

solution value.

The focus of stage two is maximizing the quality of the officer candidate subject to

d-constraints. The base model examines the set of constraints related to the various

AFSC requirements. The base model can be extended to examine other constraints

concerning demographics such as an officer’s candidate’s region, sex, ethnicity, etc.

The model for stage 2 is a d-dimensional knapsack problem that seeks to maximize

the overall quality of officer candidates. The model is represented as follows:

Max
n∑
i=1

m∑
j=1

XijP (Ci)Qi (3.1)

subject to
n∑
i=1

Xij ≤ Nj,j=1,...,m (3.2)

Xij ∈ 0, 1,i=1,...,n and j=1,...,m (3.3)

where decision variable Xij = 1, if student i is awarded an EA slot during period j,

0 otherwise, P (Ci) is the probability that a student will complete a certain portion

of the program, Qi is the quality score for student i, and Nj is the number of EA

slots available during period j. This produces an optimal index policy zn(Nj). The

objective, 3.1, seeks to maximize the total quality of the officers selected while taking

into consideration a students probability that the student will satisfy the requirements

to commission. Constraint 3.2 limits the number of of officer candidates awarded a

EA slot. Constraint 3.3 indicates whether student i was awarded an EA slot during

period j. There are n students and m periods

The probability that a student will satisfy commissioning requirements, P (Ci) is
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determined using a logistic regression on historical data. The probability is calculated

then a student is assigned a 1 if it is likely the student will meet the requirement, 0

otherwise. For period/stage one, we assume students are assigned a one and N0 is

equal to the total number of officers required to meet AF/A1 goals. For period two,

N1, the probability of an AS300 going on to commission is considered and period

three, N2 focuses on whether or not an officer candidate will complete FT.

If zj−1(Nj) is known for all capacity values, Nj = 0, . . . , c, then we can consider

an additional item j and compute the corresponding solutions zj(Nj) by the following

recursive formula

zj(Nj) =


zj−1(Nj) if Nj <

∑n
i=1

∑m
j=1Xij

max zj−1(Nj), zj−1(Nj −
∑n

i=1

∑m
j=1Xij) + P (Ci)Qi

1−P (Ci)
if Nj ≥

∑n
i=1

∑m
j=1Xij

(3.4)

The case Nj <
∑n

i=1Xij means the considered knapsack is too small to contain

item j at all. Therefore, item j does not change the optimal solution [19]. If item

j does fit into the knapsack there are two possible choices. Either (1) the previous

solution zj−1(Nj) remains unchanged or (2) adding item j to the knapsack improves

the solution but decreases the capacity remaining. It is clear that the remaining ca-

pacity should be filled with the officer candidates that contribute the most quality.

3.4 Stage Three

The last decision point examined is the selection of the most qualified cadets to fill

various AFSC requirements (Stage three). For this stage of the multistage problem, a

d-dimensional knapsack problem (d-KP) is formulated and implemented in LINGO.
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An integer program is used to find a solution to the d-KP, with the objective of

maximizing the total quality. Once cadets are commissioned into the USAF, AFPC

determines how to allocate the officer candidates into the varying career fields. AFPC

makes these decisions based on requirements set forth by AF/A1. The basic model

assumes that AFPC requires all AFSC requirements are met and the best qualified

candidates are selected. Moreover, the model may be extended by considering other

constraints or demographics such as an officer’s regional background, sex, ethnicity,

etc. When allocating these officer candidates into the varying career fields, these

constraints determine the dimensions of the knapsack. For example, in the simple

case, concerning only allocating scholarships to one career field, it is considered a

one-dimensional knapsack problem (KP). When there are d-constraints, it is referred

to as a d-dimensional knapsack problem (d-KP).

An integer program is a linear program in which at least one of the variables must

take on an integer value [10]. When integer variables are restricted to 0 or 1 values, it

is called a 0-1 (binary) integer program or binary IP [10]. A binary IP with a single

≤ constraint and positive objective function and constraint coefficients is referred to

as a knapsack problem [10]. If the integer variables are not restricted to 0 or 1, it is

referred to as an integer knapsack problem [10].

Stage three is formulated as follows:

Max
n∑
i=1

m∑
j=1

XijQi (3.5)

subject to
n∑
i=1

Xij ≤ Pj, j=1,...,m (3.6)

m∑
j=1

Xij ≤ 1 (3.7)

Xij ∈ {0, 1}, i=1,...,n and j=1,...,m (3.8)
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where the decision variable Xij = 1, if student i is assigned to AFSC j, 0 otherwise,

Qi is the quality score for student i, and Pj is the required number of officers that

must be assigned to AFSC j. The objective, 3.5, seeks to maximize the total quality

of the officer candidates selected subject to constraints 3.6, 3.7, and 3.8. Constraint

3.6 limits the number of students assigned to each AFSC j. Constraint 3.7 ensures

each candidate is only assigned one AFSC and constraint 3.8 is indicates whether

student i was selected for AFSC j.

The quality of each candidate is indicated by his or her AFOQT score. A 2010

RAND study showed that the AFOQT is reasonable for predicting training success

for a variety of Air Force officer specialties [15]. It is important to note that all officer

candidates are not required to take the SAT or ACT and may not have a score in

AFROTC’s Web Intensive New Gain System (WINGS) database. Each officer can-

didate is required to take the AFOQT in order to be eligible for commission into the

USAF and the score is maintained in WINGS.
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IV. Implementation and Results

Chapter four presents the implementation and results for the multi-stage problem.

Each stage requires a data mining process before the method is implemented. Using

a dynamic programming approach, chapter four is presented working in decreasing

order of the three stages. Analysis and results are presented for each stage.

4.1 Stage One

4.1.1 Data Mining Process.

AFROTC maintains a database of scholarship applicants in WINGS. During the

application process candidate information is input into the WINGS database and

stored for future use during the scholarship boards. AFROTC/RR provided an excel

spreadsheet of all applicants who applied from 2001 through 2006 with the exception

of 2003. The information for 2003 is unavailable due to a system malfunction that

erased the information. This file contains an identification number of each applicant

as well as 43 attributes including whether or not a student was offered and/or accepted

a scholarship. This file is stored as 2001-2006 (HSSP Application and Selection).xls

in a file entitled Scholarship Applicants.

Next, the file is broken into five different files by application year: 2001 Ap-

plicants.xls, 2002 Applicant.xls, 2004 Applicants.xls, 2005 Applicants.xls, and 2006

Applicants.xls. Next, each file is prepared for analysis. Using the vlookup function

in excel and the cadet commissioned data file, a new column was created to indicate

whether a candidate went on to commission. The data is sorted using the eligible

column to determine which students are eligible for scholarship. Only applicants eli-

gible for scholarship are considered in this study.

Next, students are sorted from smallest to largest by scholarship offer. Applicants
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may be boarded more than once during an application period. For this study, the

analysis is based on the best scholarship offered. Next, the file is sorted by student

identification number and duplicates are removed from the data set.

Finally student probabilities of scholarship acceptance and commission are cal-

culate using two scoring metrics: a student’s individual composite and SAT equiv-

alent scores. The scores were separated into different groupings and the conditional

probabilities are calculated based on his/her given score. These probabilities were

calculated for three different files: FY 2003, FY2004, and FY 2001-2006. They are

then combined and applied to FY 2004 data. These probabilities are found in the

Appendix C.

4.1.2 Analysis.

Using the probabilities, the quiz problem formulation is implemented to determine

the optimal policy for allocating scholarships. The probability of a student accepting

a scholarship offer is equivalent to the probability of answering a question correctly

and the probability of commission is equivalent to the reward. Each applicant’s quiz

score is calculated, then all scores sorted from largest to smallest. In order to make

a comparison against AFROTC actual offers and commissionees, the quiz problem

is utilized to determine the number of scholarship offers necessary to meet the same

expected commissioning result. The average quality of commissioned applicants and

total score are examined using the quiz policy. The estimated yearly scholarship cost

are based on the average scholarship cost by type for FY2007. The costs are esti-

mated using the actual offer and acceptance rate. This information can be found in

Appendix C. Tables 2 and 3 indicate the results of the analysis.

As indicated in the literature review, AFROTC currently uses an applicant’s in-
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Table 2. Individual Composite Score Comparison
Data Used # Apply # Offers #Accept Scholarship Cost Offer Avg Quality # Comm Comm Avg Quality Total Quality

Actual 1620 293 94 $503,626 79 85 78.5 6,672.50

Historical (2001-2006 Averages) 1620 301 97 $517,342 88 85 87 7,395.00

Overlap 82 89 23 87 2,001.00

FY04 Data 1620 340 109 $584,374 75.64 85 73.78 6,271.30

Overlap 72 79.15 21 75.5 1,585.50

FY03 Data 1620 301 97 $517,342 88 85 85 7,225.00

Overlap 87 87 28 84 2,352.00

Table 3. SAT Comparison
Data Used # Apply # Offers #Accept Scholarship Cost Offer Avg Quality # Comm Comm Avg Quality Total Quality

Actual 1552 293 94 $503,626 1266 85 1246 105,910.00

Historical (2001-2006 Averages) 1552 292 94 $503,626 1405 85 1373 116,705.00

Overlap 85 1279 28 1251 35,028.00

FY04 Data 1552 360 115 $618,749 1275 85 1253 106,505.00

Overlap 85 1279 28 1251 35,028.00

FY03 Data 1552 292 94 $503,626 1404 85 1373 116,705.00

Overlap 69 1408 21 1377 28,917.00

dividual composite score to determine scholarship allocation. Using their existing

method of assigning the individual composite score and combining it with the quiz

problem, the results are compared with the actual offers. From Tables 2 and 3, it is

seen that the average quality of student’s who are offered a scholarship increases when

the historical average and previous years probabilities are used. Using the historical

average probabilities results in a 10.1% increase in the average quality of the applicant

offered a scholarship. When examinging the index policy using the previous year’s

data the average quality of the applicant offered a scholarship increases by 7.6%. The

average quality of the commissioned applicant increase by similar percentages with a

10.8% increase using historical data and 8.3% using the previous years data. Also,

examining the estimated scholarship cost increase when the percentage of specific

types of scholarships offered remains consistent with actual AFROTC offers. The

historical (2001-2006 averages) result in the highest increase of the three categories.

Similar results are indicated when using SAT scores as the quality score.

Stage one analysis using the index policy allows the decision maker to consider

utilize a policy that not only takes into account an applicant’s quality but to con-
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sider his/her probability of accepting a scholarship offer and going on to commission.

Given a student’s quality score, individual composite or SAT score, the index policy

is useful in allowing the decision maker to rank order applicants from highest to low-

est and determine to whom to offer a scholarship. It also aids the decision maker in

determining the number of scholarships to give out in order to meet a certain com-

missioning number.

4.2 Stage Two

4.2.1 Data Mining Process.

The data mining process for stage two is similar to the process done in stage three.

The fall data pull files are used to compile all cadet information. For stage two, the

data used is based on the selected indicator variables from the logistic regression

which did the best job predicting whether an officer candidate goes on to commis-

sion or complete field training (FT). In order to complete the logistic regression, the

data files are examined to determine which factors may contribute toward a student’s

completion of field training or commissioning.

4.2.1.1 Probability of Field Training Completion.

First, the probability of completing FT is examined. The ROTC Fall data pulls

for FY 2006, 2008, 2009, and 2010, for all AS200 and AS250 students is extracted.

FY 2007 data is left out for validation purposes. Once the information is extracted,

it was compared with the FT selection file, extracted from the WINGS database, to

determine which students are selected for FT using the vlookup function in excel. For

each candidates’s information it was compared with the next year’s FY to see if the
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student is enrolled in the program as an AS300. This information is used to indicate

whether a student completed FT.

All officer candidates’ information who were selected for field training is com-

piled into an excel spreadsheet named FY06toFY10 FT woFY07.xls and saved in the

”ROTC” data file. Each student has 74 different attributes describing their status

in the program. Only factors that may contribute to an officer candidate’s success

in FT are kept: student id, region, AS level, Sex, Reserve Branch, Guard Branch,

Active Duty Branch, CAP, Ethnicity, Race, Tech Major, CGPA, Scholarship Status,

ACT, AFOQT, SAT, and AFPFT scores. Students who were missing CGPA,PFT,

or had no score reported for either the SAT, ACT, or AFOQT are removed from the

database. This resulted in 1,702 data points remaining.

From the remaining cadet records, the variables are analyzed to determine fac-

tors of interest. First, the variables are coded as categorical variables using Table 4.

Next, the model is built to determine the candidate’s probability of completing the

program.

In order to build the model it is important to note the following considerations:

(1) The initial analysis includes all possible factors that may influence a candi-

date’s completion of FT. The final model is built only on significant factors resulting

from the logistic regression.

(2) The model is based on existing records from the AFROTC database for the

selected FYs. For validation purposes, the model was tested using FY 2007 data.

(3) Only incomplete information was removed.

(4) In order to provide AFROTC with useful results, AFROTC personnel was

included in the planning/information gathering process.

In order to fit the logistic regression, three selection methods are used for the

variable selection process. The selection methods include forward selection, back-
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Table 4. Variable Coding
Variable Coding Type Count Frequence(%) Mean Std Dev Description

ID Num Student ID assigned to each candidate

Regn

NW = 1

Cat

1818 25.3

Numeric values assigned to each region
NE = 2 1730 24.1

SW = 3 1687 23.5

SE = 4 1954 27.2

AS Level
AS200 = 1

Cat
6842 95.2

Officer candidate’s AS year
AS250 = 2 347 4.8

FT Comp
Completed = 1

DI
6457 89.8

Indicates completion of Field Training
NonCompletion = 0 732 10.2

Sex
Male = 1

Cat
5602 77.9

Assigns value to student’s sex
Female = 2 1587 22.1

Race

American Indian = 1

Cat

44 0.6

Numeric values assigned to each category of racial group

Asian = 2 476 6.6

Black = 3 406 5.6

Interracial = 4 140 1.9

Pacific Islander = 5 40 0.6

Unknown = 6 446 6.2

White = 7 5637 78.4

Tech Major
Technical = 1

Cat
3303 45.9

Student has tech or nontech major
Non-Technical = 2 3886 54.1

Term GPA N/A Num 3.07 0.62 A student’s term GPA at the beginning of the Fall when elgible for FT

Cumm GPA N/A Num 3.10 0.50 A student’s cumlative GPA at beginning of Fall when elgibile to attend FT

On Schol
On Scholarship = 1

Cat
5450 75.8

Indicates whether a student is on scholarship during the Fall enrollment of FT eligibility year
Non-Scholarship = 2 1739 24.2

SAT-R 1195.54 173.03 Student’s highest SAT equivalent score

AFPFT Score N/A Num 90.40 6.62 Student’s most current physical fitness test score

Mil Experience
Yes = 1

Cat
288 4.0

Indicates whther student has any military experience or participated in CAP
No = 2 6901 96.0

ward elimination and mixed stepwise logistic regression. These procedures are based

on the Wald statistic and its p-value and is examined using the software JMP. The

forward selection process involves selection of predictors using univariate analysis.

This involves testing each factor individually for a logistic fit in the first stage. The

significant factors are used to construct a multivariate model. The backwards elimi-

nation approach builds an initial model with all possible factors and drops the least

significant factor until only significant factors remain. Mixed stepwise logistic regres-

sion allows factors that were removed/added to be added/removed again until only

significant factors remain.

All models are then compared within each stepwise regression, and the best are

selected from each for comparison and goodness of fit. Then interaction variables are

examined using the same techniques and the best model is chosen based on goodness

of fit.

First, basic models are examined and the best models chosen. Next, the models
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are examine using interaction variables. The basic models can be found in the Ap-

pendix B. Below are the results for forward selection (Table 5), backward elimination

(Table 6), and mixed stepwise (Table 7) regression with interaction included. Models

4.4, 4.5, 5.7, and 6.4 are selected based their log-likelihood values. From this infor-

mation, each model is built in MINITAB to obtain five goodness of fit test values:

Pearson Chi-square, Deviance, Hosmer-Lemeshow, and two Brown tests, indicated in

table 8. For this thesis only the Hosmer-Lemeshow and two Brown tests are used

to determine goodness of fit. The Pearson Chi-square and Deviance tests are not

used because they require multiple or repeated observations of the same values for all

possible predictors. Since this cannot be guaranteed, these two goodness-of-fit tests

may not be appropriate for this model.

Table 5. FT Forward Stepwise Logistic Regression w/ Interaction Results
Variable Model 4.1 Model 4.2 Model 4.3 Model 4.4 Model 4.5

Tech Major - - - 0.009 0.008

Cumulative GPA 0.000 0.000 0.000 0.000 0.000

Scholarship Status - 0.000 0.000 0.000 0.000

AFPFT 0.000 0.000 0.000 0.000 0.000

Tech Major * Tech Major

Tech Major * CGPA

Tech Major * Scholarship Status 0.066 0.073

Tech Major * AFPFT

CGPA * CGPA

CGPA * Scholarship Status 0.012 0.012 0.010 0.010

CGPA * AFPFT 0.061 0.219 0.392 0.412 0.517

Schoalrship Status * Scholarship Status

Scholarship Status * AFPFT 0.145

AFPFT * AFPFT 0.009 0.008 0.011

Log-Likelihood -2247.814 -2224.708 -2220.864 -2216.174 -2215.116

Pearson Test (p-value) 0.097 0.342 0.289 0.451 0.409

Deviance Test (p-value) 1.000 1.000 1.000 1.000 1.000

Hosmer-Lemeshow (p-value) 0.201 0.306 0.642 0.513 0.901

Brown: general alt. (p-value) 0.001 0.001 0.074 0.061 0.056

Brown: symmetric alt. (p-value) 0.023 0.002 0.198 0.154 0.366

Examining the Hosmer-Lemeshow and two Brown tests, the first three models are

greater than the acceptance criterion (α = 0.05). This means each of the first three

model’s fit is appropriate and the logistic is the appropriate link function. Examining
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Table 6. FT Backward Stepwise Logistic Regression w/ Interaction Results
Variable Model 5.1 Model 5.2 Model 5.3 Model 5.4 Model 5.5 Model 5.6 Model 5.7

Tech Major - - - - - - 0.014

Cumulative GPA 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Scholarship Status - - - - 0.000 0.000 0.000

AFPFT 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Tech Major * Tech Major - - - - - -

Tech Major * CGPA 0.973

Tech Major * Scholarship Status 0.063 0.059 0.057 0.061 0.072 0.064

Tech Major * AFPFT 0.408 0.406 0.393 0.378

CGPA * CGPA 0.525 0.525 0.478

CGPA * Scholarship Status 0.011 0.011 0.009 0.007 0.007 0.005 0.007

CGPA * AFPFT 0.605 0.606

Schoalrship Status * Scholarship Status - - - -

Scholarship Status * AFPFT 0.144 0.144 0.127 0.117 0.123

AFPFT * AFPFT 0.009 0.009 0.007 0.007 0.009 0.005 0.005

Log-Likelihood -2214.547 -2214.548 -2214.681 -2214.936 -2215.325 -2216.507 -2218.214

Pearson Test (p-value) 0.312 0.317 0.361 0.434 0.472 0.525 0.474

Deviance Test (p-value) 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Hosmer-Lemeshow (p-value) 0.598 0.686 0.503 0.632 0.835 0.335 0.649

Brown: general alt. (p-value) 0.053 0.055 0.046 0.045 0.037 0.034 0.061

Brown: symmetric alt. (p-value) 0.834 0.832 0.537 0.287 0.203 0.068 0.126

Table 7. FT Mixed Stepwise Logistic Regression w/ Interaction Results
Variable Model 6.1 Model 6.2 Model 6.3 Model 6.4 Model 6.5 Model 6.6

Tech Major - - -

Cumulative GPA 0.000 0.000 0.000 0.014 0.008 0.008

Scholarship Status - 0.000 0.000 0.000 0.000 0.000

AFPFT 0.000 0.000 0.000 0.000 0.000 0.000

Tech Major * Tech Major 0.000 0.000

Tech Major * CGPA

Tech Major * Scholarship Status 0.064 0.072

Tech Major * AFPFT

CGPA * CGPA

CGPA * Scholarship Status 0.012 0.012 0.007 0.005 0.007

CGPA * AFPFT 0.061 0.219 0.392

Schoalrship Status * Scholarship Status

Scholarship Status * AFPFT 0.123

AFPFT * AFPFT 0.009 0.006 0.005 0.009

Log-Likelihood -2247.814 -2224.708 -2220.864 -2220.054 -2218.388 -2215.939

Pearson Test (p-value) 0.097 0.342 0.289 0.555 0.601 0.507

Deviance Test (p-value) 1.000 1.000 1.000 1.000 1.000 1.000

Hosmer-Lemeshow (p-value) 0.201 0.306 0.642 0.505 0.758 0.802

Brown: general alt. (p-value) 0.001 0.001 0.074 0.004 0.002 0.008

Brown: symmetric alt. (p-value) 0.023 0.002 0.198 0.011 0.005 0.086
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Table 8. FT Completion Goodness of Fit Results
Variable Model 4.4 Model 4.5 *Model 5.7* Model 6.4

Tech Major 0.009 0.008 0.014

Cumulative GPA 0.000 0.000 0.000 0.000

Scholarship Status 0.000 0.000 0.000 0.000

AFPFT 0.000 0.000 0.000 0.000

Tech Major * Tech Major

Tech Major * CGPA

Tech Major * Scholarship Status 0.066 0.073

Tech Major * AFPFT

CGPA * CGPA

CGPA * Scholarship Status 0.010 0.010 0.007 0.007

CGPA * AFPFT 0.412 0.517

Scholarship Status * Scholarship Status

Scholarship Status * AFPFT 0.145

AFPFT * AFPFT 0.008 0.011 0.005 0.006

Log-Likelihood -2216.174 -2215.116 -2218.214 -2220.054

Pearson Test (p-value) 0.451 0.409 0.474 0.555

Deviance Test (p-value) 1.000 1.000 1.000 1.000

Hosmer-Lemeshow (p-value) 0.513 0.901 0.649 0.505

Brown: general alt. (p-value) 0.061 0.056 0.061 0.004

Brown: symmetric alt. (p-value) 0.154 0.366 0.126 0.011

Concordant Pairs(%) 68.8 68.8 68.7 68.6

Discordant Pairs (%) 30.4 30.4 30.5 30.5

Ties (%) 0.9 0.8 0.9 0.9

the two brown values of the last model, we see that it is not a fit. Of the first

three models, it is seen that log-likelihood values vary minimally. The concordant

pair’s values also do not show much variation. Any of the first three models could be

chosen for the predictive model. Since model 5.7 contains only significant variables,

this model is chosen.

The estimated coefficients of the final model become the parameters in the logistic

regression probability function. This allows the estimation of the probability of an

officer candidate completing FT using the following:

πx = 1− expβ0+xi1β1+xi2β2+...+xikβk

1 + expβ0+xi1β1+xi2β2+...+xikβk
(4.1)

= 1− exp5.8901+(0.2000)x1−(0.7897)x2−(0.6757)x3−(0.0589)x4−(0.4424)x5−(0.0008)x6

1 + exp5.8901+(0.2000)x1−(0.7897)x2−(0.6757)x3−(0.0589)x4−(0.4424)x5−(0.0008)x6
(4.2)
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where x1 = Tech Major 1, x2 = CGPA, x3 = Scholarship Status 1, x4 = AFPFT

Score, x5 = CGPA*Scholarship Status, and x6 = AFPFT Score*AFPFT Score.

Next, the model is validated using FY 2007 data. FY 2007 data was excluded

from the observations used to build the model. Each officer candidate’s predicted

likelihood of completing FT is computed using the above equation. For the model

a cutoff value of 0.69 determines whether a candidate completes FT. If the logistic

response is greater than 0.69, the candidate is assigned a 1 indicating FT completion.

If the logistic response is less than 0.69, the candidate is predicted not to complete

FT and is assigned a 0. The cutoff value is selected using receiving operating charac-

teristic (ROC) analysis in JMP.

The validation involves comparing these values with the actual values of FT com-

pletion. When the prediction and actual values match, there is an accurate prediction.

When the values do not match, the prediction in incorrect. Table 9 provides a sum-

mary of the validation results. When FT completion is predicted, the prediction is

correct approximately 89% of the time. However, when FT non-completion is pre-

dicted it is only correct 69% of the time. Overall, the model is able to predict over

95% of officer candidates that did complete FT. These results indicate this model

may be useful for the prediction of FT completion.

Table 9. FT Completion Validation Results

Predicted Actual Frequency

1 1 1493

1 0 196

0 1 9

0 0 4
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4.2.1.2 Probability of Commissioning.

Next, the probability of commissioning given a student is enrolled as an AS300 is

examined. Using the ROTC Fall data pulls for FY 2006, 2008, and 2009, all AS300

data is extracted. FY 2007 data is left out for validation purposes. Once the in-

formation is extracted, it is compared with the commissioned file, extracted from

the WINGS database, to determine which students commissioned using the vlookup

function in excel. If a student is listed in the commissioned file, this indicates the

student did commission.

All commissioned officer candidate’s information is compiled into an excel spread-

sheet named FY06toFY10 AS300 woFY07.xls and saved in the ”ROTC” data file.

Each student has 74 different attributes describing their status in the program. Only

factors that may contribute to an officer candidate’s success in FT were kept: student

id, region, Sex, Reserve Branch, Guard Branch, Active Duty Branch, CAP, Ethnic-

ity, Race, Tech Major, CGPA, Scholarship Status, ACT, AFOQT, SAT, and AFPFT

scores. Students who are missing CGPA, PFT, or had no score reported for either

the SAT, ACT, or AFOQT are removed from the database. This resulted in 6,357

data points remaining.

From the remaining cadet records, the variables are analyzed to determine fac-

tors of interest. First, the variables are coded as categorical variables using table 10.

Next, the model is built to determine the candidate’s probability of completing the

program.

In order to build the model it is important to note the following considerations:

(1) The initial analysis includes all possible factors that may influence a can-

didate’s probability of commissioning. The final model is built only on significant

factors resulting from the logistic regression.

(2) The model is based on existing records from the AFROTC database for the
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Table 10. Variable Categorical Coding
Variable Coding Type Count Frequence(%) Mean Std Dev Description

ID Num Student ID assigned to each candidate

Regn

NW = 1

Cat

1818 25.3

Numeric values assigned to each region
NE = 2 1730 24.1

SW = 3 1687 23.5

SE = 4 1954 27.2

AS Level
AS200 = 1

Cat
6842 95.2

Officer candidate’s AS year
AS250 = 2 347 4.8

FT Comp
Completed = 1

DI
6457 89.8

Indicates completion of Field Training
NonCompletion = 0 732 10.2

Sex
Male = 1

Cat
5602 77.9

Assigns value to student’s sex
Female = 2 1587 22.1

Race

American Indian = 1

Cat

44 0.6

Numeric values assigned to each category of racial group

Asian = 2 476 6.6

Black = 3 406 5.6

Interracial = 4 140 1.9

Pacific Islander = 5 40 0.6

Unknown = 6 446 6.2

White = 7 5637 78.4

Tech Major
Technical = 1

Cat
3303 45.9

Student has tech or nontech major
Non-Technical = 2 3886 54.1

Term GPA N/A Num 3.07 0.62 A student’s term GPA at the beginning of the Fall when elgible for FT

Cumm GPA N/A Num 3.10 0.50 A student’s cumlative GPA at beginning of Fall when elgibile to attend FT

On Schol
On Scholarship = 1

Cat
5450 75.8

Indicates whether a student is on scholarship during the Fall enrollment of FT eligibility year
Non-Scholarship = 2 1739 24.2

SAT-R 1195.54 173.03 Student’s highest SAT equivalent score

AFPFT Score N/A Num 90.40 6.62 Student’s most current physical fitness test score

Mil Experience
Yes = 1

Cat
288 4.0

Indicates whther student has any military experience or participated in CAP
No = 2 6901 96.0

selected FYs. For validation purposes, the model was tested using FY 2007 data.

(3) Only officer candidates with incomplete information were removed.

(4) In order to provide AFROTC with useful results, AFROTC personnel was

included in the planning/information gathering process.

In order to fit the logistic regression, similar to the FT completion probability

analysis, three selection methods are used for the variable selection process. The se-

lection methods include forward selection, backward elimination and mixed stepwise

logistic regression. These procedures are based on the Wald statistic and its p-value

and are examined using the software JMP.

Next, all models are compared within each stepwise regression, and the best are

selected from each for comparison and goodness of fit. Then interaction variables are

examined using the same techniques and the best model is chosen based on goodness

of fit.

Below are the results for forward selection (Table 11), backward elimination (Ta-
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ble 12), and mixed stepwise (Table 13) regression with interaction. Models 7.1, which

also corresponds to models 8.7 and 9.4, and 10.2 are selected based on their log-

likelihood values. From this information, each model is built in MINITAB to obtain

five goodness of fit test values: Pearson Chi-square, Deviance, Hosmer-Lemeshow,

and two Brown tests. For this thesis only the Hosmer-Lemeshow and two Brown

tests are not to determine goodness of fit. These values are indicated in table 14.

The Pearson Chi-square and Deviance tests are not be used because they require

multiple or repeated observations of the same values for all possible predictors. Since

this cannot be guaranteed, these two goodness-of-fit tests may not be appropriate for

this model.

Table 11. Commissioned Forward Selection Stepwise Logistic Regression with Interac-
tion Results

Variable Model 10.1 Model 10.2

Region 0.000 0.000

Ethnicity 0.023

Mil Experience 0.007 0.007

Region*Ethnicity

Region*Mil Experience 0.160 0.148

Ethnicity*MilExperience

Log-Likelihood -2922.031 -2919.185

Pearson Test (p-value) 0.242 0.410

Deviance Test (p-value) 0.253 0.238

Hosmer-Lemeshow (p-value) 0.926 0.963

Brown: general alt. (p-value) 0.242 0.929

Brown: symmetric alt. (p-value) 0.095 0.822

Examining the Hosmer-Lemeshow and two Brown test, both models are greater

than the acceptance criterion (α = 0.05). This means each model’s fit is appropri-

ate and the logistic is the appropriate link function. The log-likelihood values vary

minimally. The concordant pair’s values also do not show much variation. Either

model could be chosen for the predictive model. Since model 7.1 only has significant

variables, this model is chosen.
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Table 12. Commissioned Backward Elimination Stepwise Logisitc Regression with In-
teraction Results

Variable Model 11.1 Model 11.2 Model 11.3 Model 11.4

Region 0.000 0.000 0.000 0.000

Ethnicity 0.011 0.054 0.023 0.024

Mil Experience 0.014 0.014 0.007 0.004

Region*Ethnicity 0.635

Region*Mil Experience 0.129 0.126

Ethnicity*MilExperience 0.289 0.276 0.148

Log-Likelihood -2918.142 -2918.268 -2918.388 -2920.178

Pearson Test (p-value) 0.269 0.337 0.288 0.325

Deviance Test (p-value) 0.260 0.329 0.250 0.225

Hosmer-Lemeshow (p-value) 0.955 0.978 0.821 0.804

Brown: general alt. (p-value) 0.274 0.642 0.210 0.530

Brown: symmetric alt. (p-value) 0.427 0.706 0.521 0.451

Table 13. Commissioned Mixed Stepwise Logistic Regression with Interaction Results

Variable Model 12.1

Region 0.000

Ethnicity 0.023

Mil Experience 0.007

Region*Ethnicity

Region*Mil Experience 0.148

Ethnicity*MilExperience

Log-Likelihood -2919.185

Pearson Test (p-value) 0.410

Deviance Test (p-value) 0.276

Hosmer-Lemeshow (p-value) 0.963

Brown: general alt. (p-value) 0.929

Brown: symmetric alt. (p-value) 0.822
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Table 14. Commissioned Goodness of Fit Results
Variable *Model 7.1/8.7/9.4* Model 10.2

Region 0.000 0.000

Sex

Race

Ethnicity 0.021 0.023

Tech Major

Cumulative GPA 0.224

Scholarship Status

SAT-R

AFPFT

Mil Experience 0.004 0.004

Region*Ethnicity

Region*Mil Experience 0.148

Ethnicity*MilExperience

Log-Likelihood -2919.409 -2919.185

Pearson Test (p-value) 0.026 0.410

Deviance Test (p-value) 0.273 0.238

Hosmer-Lemeshow (p-value) 0.146 0.963

Brown: general alt. (p-value) 0.113 0.929

Brown: symmetric alt. (p-value) 0.169 0.822

Concordant Pairs(%) 56.6 56.8

Discordant Pairs (%) 40.7 40.5

Ties (%) 2.8 2.7

The estimated coefficients of the final model become the parameters in the logistic

regression probability function. This allows the estimation of the probability of an

officer candidate completing FT using the following:

πx = 1− expβ0+xi1β1+xi2β2+...+xikβk

1 + expβ0+xi1β1+xi2β2+...+xikβk
(4.3)

= 1− exp−1.8349+(0.2251)x1−(0.4319)x2−(0.3640)x3−(0.0854)x4

1 + exp−1.8349+(0.2251)x1−(0.4319)x2−(0.3640)x3−(0.0854)x4
(4.4)

where x1 = Region, x2 = Military Experience, x3 = Ethnicity, and x4 = CGPA.

Next, the model is validated using FY 2007 data. FY 2007 data is excluded from

the observations used to build the model. Each officer candidate’s predicted likelihood

of commissioning is computed using the above equation. This model uses a cutoff

value of 0.91 to determine whether a candidate commissions. If the logistic response

is greater than 0.91, the candidate is assigned a 1 indicating the officer candidate

will go on to commission. If the logistic response is less than 0.91, the candidate is
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predicted not to commission and is assigned a 0. The cutoff value is selected using

receiving operating characteristic (ROC) analysis in JMP.

The validation involves comparing these values with the actual values of commis-

sioning. When the prediction and actual values match, there is an accurate prediction.

When the values do not match, the prediction in incorrect. Table 15 provides a sum-

mary of the validation results. When commissioning is predicted, the prediction is

correct approximately 81% of the time. However, when non-commission is predicted

it is only correct 33% of the time. Overll, the model was able to predict over 99%

of officer candidates that did commission. These results indicate this model may be

useful for the prediction of commissioning which is the focus.

Table 15. Commissioned Validation Results

Predicted Actual Frequency

1 1 1766

1 0 421

0 1 6

0 0 3

4.2.2 Analysis.

Stage two analysis is implemented in LINGO. The input file consists of student

eligible for entrance into the POC during FY2007. The input file consists of each stu-

dents identification number, his/her detachment, estimated tuition rate, region, sex,

ethnicity, race, major, cumulative grade point average, scholarship status, AFOQT

aptitude score, AFPFT score, and a column indicating whether or not a candidate

has any military experience.

The tuition amounts for students enrolled during FY2007 were obtained from HQ

AFROTC and Holm Center staff. All tuition rates are assumed to be type 7 schol-
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arships. These scholarships have a cap of $9,000. Since students from a detachment

can come from multiple colleges/universities, the maximum tuition rate paid for one

student was used from that year.

From the probability calculations, new columns indicating each candidate’s prob-

ability of each event are added to the spreadsheet. LINGO is used to implement

the knapsack problem using dynamic programming and seeks to optimize overall of-

ficer candidate selection. It starts with determining which candidates to select at

Period three. Period three assumes all students will commission. Period two takes

into account a candidate’s probability of commission. Finally, period one utilizes the

calculated probability of field training completion. The LINGO formulation can be

found in Appendix A.

First, the basic model is examined. Each officer candidate decision variable is a

binary variable and is labeled 1 - if the candidate is selected and 0 - if the student is

not selected. There are three constraints: 1) there is a requirement for each AFSC,

2) an officer candidate can only be selected for one AFSC, and 3) an officer candidate

cannot be assigned to an AFSC in which he/she is not eligible. Table 16 displays the

results from the basic model.

Next, an extended form of the model is implemented. In addition to the con-

Table 16. Stage 2 Basic Model Results

Period 3 Percentages Period 2 Percentages Period 1 Percentages

Overall Quality Score 99,155 83,790 91,487

Mean Quality Score 79 77 76

Female 280 22.2% 294 22.2% 316 22.7%

Hispanic 43 3.4% 45 3.4% 51 3.7%

Black 34 2.7% 36 2.7% 45 3.2%

Asian or Pacific Islander 66 5.2% 65 4.9% 71 5.1%

American Indian 8 0.6% 8 0.6% 8 0.6%

MultiRacial 12 1.0% 12 0.9% 13 0.9%

Projected Tuition Cost $5,167,053.00 $5,469,853.00 $5,581,150.00

straints in the basic model, three additional constraints concerning diversity are in-
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cluded. These constraints include minimum percentage requirements on the number

of female, racial minority, and Hispanic candidates selected. This allows the deci-

sion maker to have the option of taking into consideration diversity among officer

candidates to reflect the diversity of American society. For this model, we assume

that the decision maker requires 20% of the candidates to be female and/or minority

and 5% Hispanic. Table 17 reflects the results of the model when ran with the new

constraints. It is important to note that these are minimums. Some officer candidates

decide not to disclose their racial/ethnic background. The LINGO program selects

candidates who are identified in WINGS by a specific racial or ethnic group.

When comparing the two tables, these new requirements cause changes in the

Table 17. Stage 2 Extended Model Results

Period 3 Percentages Period 2 Percentages Period 1 Percentages

Overall Quality Score 97,462 82,522 90,100

Mean Quality Score 77 76 74

Female 282 22.4% 299 22.6% 315 22.7%

Hispanic 64 5.1% 67 5.1% 70 5.0%

Black 101 8.0% 106 8.0% 112 8.1%

Asian or Pacific Islander 76 6.0% 80 6.0% 84 6.0%

American Indian 13 1.0% 14 1.1% 14 1.0%

MultiRacial 11 0.9% 11 0.8% 11 0.8%

Projected Tuition Cost $4,951,385.00 $5,186,461.00 $5,500,031.00

diversity mix and overall quality score during the various periods of the program.

When the extended model is compared against the basic model, there is a decrease

in the overall quality score during each period and in the percentage of female and

Asian/Pacific Islander candidates. The overall quality scores for periods one, two

and three decrease by 1.5%, 1.5%, and 1.7% respectively. These are small percentage

decreases for increases in the diversity percentage mix of Hispanic, African-American,

and American Indian Applicants.

Stage two analysis allows the decision makers to make multiple considerations

when determining enrollment allocations. It allows the decision maker to optimize
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enrollment allocation subject to a defined quality measurement. The decision maker

is able to create and implement his/her own quality measure to determine enrollment

allocation and implement it into the program. For example,AFROTC personnel may

choose to use the SAT-R score in place of the AFOQT aptitude score as the quality

measurement. Stage two also allows the decision maker to change/add constraints

and conduct sensitivity analysis. For this analysis, the diversity requirements were

determined based on attempting to mirror the officer candidate pool with the United

States population of undergraduate students. AFROTC may want to change the

constraints to have diversity mirror the USAF eligible commission population instead

of the overall population. Additional constraints for possible consideration are bud-

get and establishing a minimum number of students that must be selected from the

detachments.

4.3 Stage Three

4.3.1 Data Mining Process.

During the fall of every fiscal year, Air Force Reserve Officer Training Corps

AFROTC) pulls data from the WINGS database. Specific attributes for every cadet

are saved and stored by the Holm Center Commander’s Action Group (Holm Cen-

ter/CCX). In order to determine the near optimal officer Air Force Specialty Code

(AFSC) assignment, the AS400 data is extracted and scrubbed for the necessary

fields.

To obtain the input data, the information is extracted from the AFROTC’s

WINGS database which requires a secure login. The secure login is obtained from

Headquarters AFROTC. The file CADET POOL COMMISSION.xls is extracted from

the website and saved to the ROTC data file. This file contains information for every
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officer candidate that has commissioned from the AFROTC program since FY99.

Once the file is extracted, all social security numbers are removed yet officer iden-

tification (ID) number remain. In order to examine stage three, the information is

sorted and only fiscal year (FY) 2010 information is utilized. FY2010 data is saved

in the same file as FY2010Comm.xls. The commissioned file is used because of the

assumption that AFPC is provided with a similar list of officer candidates eligible for

commission.

The FY2010 commissioned file contains 82 different fields for each cadet. For

stage three, the required fields taken from the file are: student id, sex, region, Race

Total, Ethnicity, Major Degree, Category Select, Aptitude, Verbal, and Quantitative.

The student id is a unique identification number assigned to each student that enrolls

in the AFROTC program. Sex is male or female. AFROTC is broken up into four

regions: Northwest, Northeast, Southwest and Southeast. Race is broken out into

seven categories by an assigned value: 1 - American Indian, 2 - Asian, 4 - Black,

8 - Native Hawaiian/Other Pacific Islander, 16 - White and 32 - Unknown/Decline

to Respond. Students may also indicate more than one race. When this occurs the

values are summed. Any value that is not equal to one of the above indicates the

student is multiracial. Ethnicity has three categories: 1 - Hispanic, 2 - Non-Hispanic,

and 3 - Unknown/Decline to Respond. There are over 1200 majors and each major

is indicated by a four letter/number combination in the Major Degree column. Cat-

egory select indicates in which category a cadet belongs and is indicated in Table 18.

The aptitude, verbal, and quantitative columns indicate the score a student received

from his/her AFOQT score for each category.

Next, the regional, sex, race, and ethnicity columns are formatted into variables.

The sex column is transformed into 1s and 0s where 1 indicates female and 0 indicates
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Table 18. Category Select

Indicator Category

A ABM
D Dental
H Physician Assistant
J Physical Therapy
L Legal
N Navigator/Combat Support Officer
O Line Officer (Non-Tech Major)

OT Line Officer (Tech Major)
P Pilot
Q Nurse
R Premedical
T Occupational Therapy
U Pharmacy
V1 UAV
X Revoked

male. Ethnicity is indicated as follows: 1 - Hispanic and 0 - Non-Hispanic/Unknown.

Race is as follows: 1 - American Indian, 2 - Asian, 3 - Black, 4 - Multiracial, 5- Native

Hawaiian/Other Pacific Islander, 6 - Unknown/Decline to Respond and 7 - White.

Regional information is broken out by 1 - northwest, 2 - northeast, 3 - southwest, and

4 - southeast.

Depending on a student’s major and whether or not a student has been selected

for a rated position, he/she is eligible for specific AFSCs. Students selected for rated

positions are identified in the category select column. Rated positions include pilot,

navigator, ABM, and UAV. Also medical and law students are specifically identified.

This section focuses on optimizing AFSC selection for non-medical and non-legal com-

missioned officer candidates. Medical ans law students are removed from the data

set. Students who are identified with rated slots are assumed to take on that AFSC

and are not eligible for other AFSCs.

Four columns are added to the data set: AFSC1, AFSC2, AFSC3, and AFSC4.

These columns indicate student AFSC eligibility. Each AFSC is assigned a numer-

ical value indicated in Table 19. AFSCs that do not require a specific major are

coded by the number 28. All other AFSCs were given a specific numeric value and
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saved in the ”‘ROTC”’ data file under AFSC.xls. Each AFSC is then matched up

with majors in the data table extracted from WINGS and is saved in the same file

as Wings Major File.xls. The vlookup function in excel is used to match up each

student’s major with eligible AFSCs.

In order to determine the near optimal AFSC allocation policy, stage three seeks to

maximize quality score. The quality score is measured by a student’s AFOQT score.

An additional column is added to the data set entitled Overall AFOQT. Overall

AFOQT is the sum of the aptitude, verbal, and quantitative portions of the AFOQT.

Finally, in order to prepare the data for import into LINGO, name ranges are

assigned for various categories. A named range is assigned to student ids (stu-

dent/studentnum), eligible AFSCs (AFSC), ethnicity (ethnicity), race (race), sex

(sex), and quality score (quality). The final doument containing all FY2010 candi-

dates is named All2010.xls and is saved into the ROTC data file. The output file is

named stage3results.xls. This file identifies the quality score for each candidate and

whether or not the candidate was selected.

4.3.2 Analysis.

Once the data is cleaned, LINGO is used to implement the knapsack formulation

developed for stage three. In order to determine the number of officer candidates

required for each AFSC, AF/A1 provided FY10 AFROTC requirements. AF/A1

provided a data file named AFPC Metric2010.xls. Included in this file are AFSC

requirements and AFROTC production numbers. For this analysis, the values are

compared against each other and the minimum number is chosen. This information

was used as a guide to determine requirements for the analysis.

The requirement information is incorporated into the LINGO code. Initially, a
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Table 19. AFSC Coding

Career Field AFSC MajorRequirement Number

Financial Mgmt 65F/W 12 hrs 1

Cost Analyst 65WX 18 hrs 2

Contracting 64P 24 hrs 3

Cyber Space Warfare 17D 24 hrs tech (probable) 4

Aeronautical Engr 62EXA Aeronautical Engr 5

C-E (Arch) 32EXA Architecture 6

Astronautical Engr 62EXB Astronautical Engr 7

Behav Sci/Human Factors 61BX Behavioral Psychology 8

Chemist/Biologist 61CX Chemistry 9

C-E (Civil) 32EXC Civil Engr 10

Computer Engr 62EXC Computer Engr 11

OSI 71Sx Criminology 12

Electrical Engr 62EXE Electrical Engr 13

C-E (EE) 32EXE Electrical Engr 14

Acquisition Mgmt 63A Engr, Math, Mgt, or 24 hrs 15

C-E(Envir) 32EXJ Environmental Engr 16

Project Engr 62EXG General Engr 17

C-E (Gen) 32EXG General Engr 18

Operations Research Analyst 61AX Math / Ops Research 19

Mechanical Engr 62EXH Mechanical Engr 20

C-E (Mech) 32EXF Mechanical Engr 21

Physics/Nuclear Engineer 61DX Physics 22

Pilot 11 PreSelected 23

Navigator 12 PreSelected 24

Air Battle Managmt 25

Remote Piloted Aircraft 26

Weather 15W Meteorology 27

All Others 28

Band 35BX None

Aircraft Maint 21A None

Mun/Missile Maint 21M None

Logistics Readiness 21R None

Security Forces 31PX None

Public Affairs 35P None

Force Support 38F None

Combat Control 13DXA None

Special Tactics 13DXB None

Air Liasion Officer 13L None

Air Field Operations 13M None

Space/Missile 13S None

Intelligence 14N None
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basic model is utilized that determines how to optimally fill AFSC slots solely based

on quality score. Each officer candidate selection decision is a binary variable and is

labeled 1 if the candidate is selected for an AFSC and 0 if the student is not selected.

There are three constraints: 1) there is a requirement for each AFSC, 2) an officer

candidate can only be selected for one AFSC, and 3) an officer candidate cannot be

assigned to an AFSC in which he/she is not eligible. It is important to note that cer-

tain AFSCs require a specific academic major. For example, an operations research

analyst, 61A, must have an undergraduate degree in mathematics or operations re-

search. The results of the basic model are reflected in Table 20.

From the results in Table 20, the average individual quality score is 92.29. 14.39%

of officer candidates assigned to an AFSC are female. Minority officer candidates

make up 14.48% of the selected candidates and 4.41% of the selected are hispanic

candidates. All AFSC requirements are met.

Next, an extended form of the model is implemented. In addition to the con-

straints in the basic model, three additional constraints concerning diversity are in-

cluded. These constraints include minimum percentage requirements on the number

of female, racial minority, and Hispanic candidates selected. This allows the decision

maker to have the option of taking into consideration diversity among officer candi-

dates to reflect the diversity of American society. For this extended model, we assume

that the decision maker requires 20% of the candidates to be female and/or minority

and 5% Hispanic. Table 21 reflects the results of the model when ran with the new

constraints. It is important to note that these are minimums. Some officer candidates

decide not to disclose their racial/ethnic background. The LINGO program selects

candidates who are identified in WINGS by a specific racial or ethnic group.
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Table 20. Stage 3 Basic Model Results

Overall Quality Score 109,640.30

Average Individual Quality Score 92.29

Diversity

Number Percentage

Female Officers 171 14.39%

Minority Officers 172 14.48%

Hispanic Officers 56 4.71%

AFSC Allocation

Career AFSC Required Results

Financial Mgmt 65F/W 10 10

Cost Analyst 65WX 0 0

Contracting 64P 15 15

Cyber Space Warfare 17D 39 39

Aeronautical Engr 62EXA 13 13

C-E (Arch) 32EXA 2 2

Astronautical Engr 62EXB 2 2

Behav Sci/Human Factors 61BX 3 3

Chemist/Biologist 61CX 5 5

C-E (Civil) 32EXC 6 6

Computer Engr 62EXC 11 11

OSI 71Sx 5 5

Electrical Engr 62EXE 33 33

C-E (EE) 32EXE 2 2

Acquisition Mgmt 63A 53 53

C-E(Envir) 32EXJ 2 2

Project Engr 62EXG 30 30

C-E (Gen) 32EXG 10 10

Operations Research Analyst 61AX 14 14

Mechanical Engr 62EXH 8 8

C-E (Mech) 32EXF 4 4

Physics/Nuclear Engineer 61DX 7 7

Pilot 11 511 511

Navigator 12 120 120

Air Battle Managmt 13 75 75

Remote Piloted Aircraft 18 12 12

Weather 15W 1 1

All Others 195 195

51



Table 21. Stage 3 Extended Model Results

Overall Quality Score 109,279.40

Overall Quality Score 109,279.40

Average Individual Quality Score 91.99

Diversity

Number Percentage

Female Officers 238 20.03%

Minority Officers 238 20.03%

Hispanic Officers 60 5.05%

AFSC Allocation

Career AFSC Required Results

Financial Mgmt 65F/W 10 10

Cost Analyst 65WX 0 0

Contracting 64P 15 15

Cyber Space Warfare 17D 39 39

Aeronautical Engr 62EXA 13 13

C-E (Arch) 32EXA 2 2

Astronautical Engr 62EXB 2 2

Behav Sci/Human Factors 61BX 3 3

Chemist/Biologist 61CX 5 5

C-E (Civil) 32EXC 6 6

Computer Engr 62EXC 11 11

OSI 71Sx 5 5

Electrical Engr 62EXE 33 33

C-E (EE) 32EXE 2 2

Acquisition Mgmt 63A 53 53

C-E(Envir) 32EXJ 2 2

Project Engr 62EXG 30 30

C-E (Gen) 32EXG 10 10

Operations Research Analyst 61AX 14 14

Mechanical Engr 62EXH 8 8

C-E (Mech) 32EXF 4 4

Physics/Nuclear Engineer 61DX 7 7

Pilot 11 511 511

Navigator 12 120 120

Air Battle Managmt 75 75

Remote Piloted Aircraft 12 12

Weather 15W 1 1

All Others 195 195
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When comparing the Tables 20 and 21, it can be seen that the AFSC requirements

are still met while the diversity mix and overall quality score changes. The overall

quality score and average individual quality score change minimally with a 0.3% de-

crease in both however, there is an increase in percentage of every diversity element.

The overall percentage of females and minorities went up 5% and the percentage of

Hipsanics increased by 0.35%.

Stage three analysis allows the decision maker to optimally select candidates to

fill AFSC requirements when the number of officer applicants exceed the number of

AFSC slots available. This happens in cases where the projected number of require-

ments, which are predicted 4-5 years out, decrease due to Air Force budgetary or

end-strength issues. It also allows decision makers to consider diversity constraints

to match the overall United States population that is commission eligible.
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V. Conclusions and Future Research

5.1 Conclusions

The multi-stage problem was developed to assist the decision maker in the officer

candidate selection process through 3 stages of the program: 1) the high school schol-

arship allocation, 2) enrollment allocation, and 3) AFSC selection processes. Stage

one offers an effective optimization tool for allocating scholarships to applicants. The

stage two optimization tool allows the decision maker to optimally select officer candi-

dates for EAs while taking into consideration AF/A1 and/or diversity requirements.

Stage three focuses on the optimal AFSC allocation policy while allowing the decision

maker to consider diversity constraints.

Stage one is cursory analysis of the high school scholarship selection process. Cur-

rently the AFROTC scholarships branch uses applicants’ individual composite score

to determine scholarship application and is considering using SAT equivalent scores

instead. Through the use of the quiz policy, an alternative method of scholarship

allocation is developed. The main advantage of this method is that it allows the

decision maker to consider an applicant’s probability of accepting a scholarship and

commissioning given his or her individual composite or SAT equivalent score when

awarding scholarships. Using this method combined with the historical probabilities

results in an overall quality increase of selected applicants 10.1% with an increase in

the commissioned applicants’ quality score of 10.8%.

For stage two, the inclusion of the logistic regression analysis allows insights into

contributing factors toward Field training completion and commissioning. Signifi-

cant factors determined to influence FT completion were whether the candidate is

a technical major, CGPA, scholarship status, and physical fitness score. An officer

candidate’s region, ethnicity, CGPA, and military experience were significant factors
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affecting a student’s probability of commission. The outcome of the logistic regres-

sion analysis results in probabilities of field training completion and commissioning

respectively. The output is used as an input to the dynamic programming model for

stage two.

The officer candidate selection, provided by the dynamic program for stage two,

is sensitive to changes in AF/A1 and diversity requirements. The decision maker is

able to create and implement his/her own quality measure to determine enrollment

allocation and implement it into the program. For example,AFROTC personnel may

choose to use the SAT-R score in place of the AFOQT aptitude score as the quality

measurement. Stage two also allows the decision maker to change/add constraints

and conduct sensitivity analysis. Additional constraints for possible consideration are

budget and establishing a minimum number of students that must be selected from

the detachments. The optimal selection policy relies on the decision maker’s priorities

and preferences.

Stage three uses a knapsack problem approach to determine the optimal AFSC

allocation based on a student’s AFOQT aptitude score. Stage three analysis allows

the decision maker to optimally select candidates to fill AFSC requirements when

the number of officer applicants exceed the number of AFSC slots available. This

happens in cases where the projected number of requirements, which are predicted

4-5 years out, decrease due to Air Force budgetary or end-strength issues. It also

allows decision makers to consider diversity constraints to match the overall United

States population that is commission eligible.

The main advantages of stages two and three are similar. They are flexible to dif-

fering situations by changing the parameters and/or constraints in the models. They

can be applied to future fiscal years.

Each stage of the multi-stage problem had at least one limitation. In stage one,
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the assumption is made that all applicant’s are evaluated then offered scholarships at

the same time. During the application process, AFROTC holds multiple boards and

offers scholarships at the conclusion of each board. The number of scholarships re-

maining depend on the number of applicants that accept offers from previous boards.

The major limitation of stage two is that it is based solely on quantitative rather

than qualitative data. One major component that AFROTC currently uses when de-

termining EA allocation is the detachment commander ranking which is qualitative;

this is not considered in the analysis. In addition, due to limited information, the

tuition rates are maximums for each detachment and not actual tuition rates for an

officer candidate’s college/university. Also other costs associated with a candidate

continuing in the program are not considered such as book or monthly allowance

stipends.

When an officer becomes eligible to commission, his/her information is sent to

AFPC for AFSC allocation. One limitation of the stage three analysis is it does not

take into account officer candidate preference or detachment commander’s recommen-

dation for AFSC assignment. It is solely based on quantitative data.

Although there are limitations to the multi-stage study, it provides the decision

maker(s) with useful information throughout each stage. Stage one allows the de-

cision maker the option of taking into consideration the probability of an applicant

commissioning in addition to his/her quality score. Stages two and three allows for

ease of sensitivity analysis of overall quality when considering EA/AFSC allocation

and diversity requirements.

This research provides an application for determining officer candidate selection

along various stages of the multi-stage program using various techniques. Stage one

utilized a simple heuristic approach for optimal scholarship allocation. Stages two

and three offer a dynamic knapsack formulation approach supported with software
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and tools to assist the decision-making process. The multi-stage model was formu-

lated to be easily applied by personnel at Headquarters AFROTC.

5.2 Future Research

Each stage of the multi-stage process can benefit from additional research. Stage

one is simply a cursory analysis of the high school scholarship allocation process.

Other factors that should be studied are an applicant’s probability of reaching stage

two, with analysis of contributing factors, and the number of scholarship’s necessary

to ensure AF/A1 goals are met. Also, it would be useful to expand the research to

include the in-college scholarship program. Also, dynamic programming could be uti-

lized to consider the multitple boards held during the scholarship allocation process.

Stage two can be extended to a multi-objective problem to include the objective of

minimizing the overall cost or budget when allocation EAs. All three stages could

benefit from value focused thinking analysis to determine how exactly AFROTC

should evaluate a candidate for selection at different stages. Sensitivity analysis of

the value and evaluation criteria may give insights into what can improve the way

the quality of an officer candidate is measured. This allows the decision maker to

determine importance of an officer candidates college/university of attendance, GPA,

SAT equivalent scores, etc.
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Appendix A. LINGO Code
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! Stage 3 Analysis; 

model: 

title Sample AFSC; 

sets: 

 student:quality, gender, race, ethnicity, studentnum; 

 choice; 

 variables(student,choice): planned, AFSC ; 

 jobs: Required; 

    

endsets 

 

data: 

 choice = 1, 2, 3, 4;  !2 possible AFSC choices; 

 student = @OLE('All2010.xls', 'student'); 

 AFSC = @OLE('All2010.xls', 'AFSC'); 

 quality = @OLE('All2010.xls', 'Score'); 

 gender = @OLE('All2010.xls', 'gender'); 

 race = @OLE('All2010.xls', 'race'); 

 ethnicity = @OLE('All2010.xls', 'ethnicity'); 

 studentnum = @OLE('All2010.xls', 'studentnum'); 

 Required = 10 0 15 39 13 2 2 3 5 6 11 5 33 2 53 2 30 10 14 8 4 7 511 

120 75 12 1 195; 

 TotalRequired = 1188; 

enddata 

 

 

max= @sum(student(i): 

 @sum(choice(j): 

 planned(i,j)*quality(i))); 

 

!Constraints; 

@for(jobs(j):      !Meet AFSC requirements; 

@sum(variables(i,k)|AFSC(i,k) #EQ# j:  

 planned(i,k)) < Required(j)); 

 

@sum(variables(i,k)|gender(i) #EQ# 1:  !At least 20% female; 

              planned(i,k)) > 

               TotalRequired*0.2; 

 

@sum(variables(i,k)|race(i) #EQ# 1:  !At least 20% minorities; 

               planned(i,k)) > 

               TotalRequired*0.2; 

 

@sum(variables(i,k)|ethnicity(i) #EQ# 1: !At least 5% Hispanic; 

               planned(i,k)) > 

               TotalRequired*0.05; 

@for(student(i):     !No more than one job per student; 

 @sum(choice(k): 

  planned(i,k)) < 1); 

 

@for(variables(i,k):    !Don't assign an AFSC that isn't a 

choice; 

 planned(i,k) < AFSC(i,k)); 

 

 

 

 



FinancialMgmt = @sum(variables(i,k)|AFSC(i,k) #EQ# 1:  

 planned(i,k)); 

CostAnalyst = @sum(variables(i,k)|AFSC(i,k) #EQ# 2:  

 planned(i,k)); 

Contracting = @sum(variables(i,k)|AFSC(i,k) #EQ# 3:  

 planned(i,k)); 

CyberSpaceWarfare = @sum(variables(i,k)|AFSC(i,k) #EQ# 4:  

 planned(i,k)); 

AeroEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 5:  

 planned(i,k)); 

CEArch = @sum(variables(i,k)|AFSC(i,k) #EQ# 6:  

 planned(i,k)); 

AstoEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 7:  

 planned(i,k)); 

BehavSciHumanFac = @sum(variables(i,k)|AFSC(i,k) #EQ# 8:  

 planned(i,k)); 

ChemistBiologist = @sum(variables(i,k)|AFSC(i,k) #EQ# 9:  

 planned(i,k)); 

CECivil = @sum(variables(i,k)|AFSC(i,k) #EQ# 10:  

 planned(i,k)); 

CompEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 11:  

 planned(i,k)); 

OSI = @sum(variables(i,k)|AFSC(i,k) #EQ# 12:  

 planned(i,k)); 

ElecEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 13:  

 planned(i,k)); 

CEElecEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 14:  

 planned(i,k)); 

AcqMngmt = @sum(variables(i,k)|AFSC(i,k) #EQ# 15:  

 planned(i,k)); 

CEEnvEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 16:  

 planned(i,k)); 

ProjectEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 17:  

 planned(i,k)); 

CEGenEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 18:  

 planned(i,k)); 

OpsAnalyst = @sum(variables(i,k)|AFSC(i,k) #EQ# 19:  

 planned(i,k)); 

MechEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 20:  

 planned(i,k)); 

CEMechEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 21:  

 planned(i,k)); 

PhysicsNucEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 22:  

 planned(i,k)); 

Pilot = @sum(variables(i,k)|AFSC(i,k) #EQ# 23:  

 planned(i,k)); 

Navigator = @sum(variables(i,k)|AFSC(i,k) #EQ# 24:  

 planned(i,k)); 

ABM = @sum(variables(i,k)|AFSC(i,k) #EQ# 25:  

 planned(i,k)); 

RemotePilot = @sum(variables(i,k)|AFSC(i,k) #EQ# 26:  

 planned(i,k)); 

Weather = @sum(variables(i,k)|AFSC(i,k) #EQ# 27:  

 planned(i,k)); 

AllOthers = @sum(variables(i,k)|AFSC(i,k) #EQ# 28:  

 planned(i,k)); 

 



! Marisha Kinkle 

! Stage 2 Period 3; 

model: 

title Sample AFSC; 

sets: 

 student:quality, CommProb, FTProb, sex, race, ethnicity, ScholStat, 

tuition; 

 choice; 

 variables(student,choice): planned, AFSC ; 

 jobs: Required; 

    

endsets 

 

data: 

 choice = 1, 2, 3, 4;  !2 possible AFSC choices; 

 student = @OLE('stage2prac.xls', 'student'); 

 AFSC = @OLE('stage2prac.xls', 'AFSC'); 

 quality = @OLE('stage2prac.xls', 'quality'); 

 sex = @OLE('stage2prac.xls', 'sex'); 

 race = @OLE('stage2prac.xls', 'race'); 

 ethnicity = @OLE('stage2prac.xls', 'ethnicity'); 

 CommProb = @OLE('stage2prac.xls', 'CommProb'); 

 FTProb = @OLE('stage2prac.xls', 'FTProb'); 

 ScholStat = @OLE('stage2prac.xls', 'ScholStat'); 

 tuition = @OLE('stage2prac.xls','tuition'); 

 Required = 10 0 15 39 13 2 2 3 5 6 11 5 33 2 53 2 30 10 14 8 4 7 0 0 0 

0 0 196; 

 !Required = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 

 TotalRequired = 1261; 

 @OLE('stage2results.xls', 'planned3')=planned; 

 @OLE('stage2results.xls','student')=student; 

 @OLE('stage2results.xls','quality')=quality; 

 @OLE('stage2results.xls','ScholStat')=ScholStat; 

 @OLE('stage2results.xls','tuition')=tuition; 

enddata 

 

 

max= @sum(student(i): 

 @sum(choice(j): 

 planned(i,j)*quality(i))); 

 

!Constraints; 

@for(jobs(j):      !Meet AFSC requirements; 

@sum(variables(i,k)|AFSC(i,k) #EQ# j:  

 planned(i,k))> Required(j)); 

 

@sum(variables(i,k)|sex(i) #EQ# 1:  !At least 20% female; 

              planned(i,k)) > 

               TotalRequired*0.2; 

 

@sum(variables(i,k)|race(i) #eq# 1:  !At least 1% American Indian; 

               planned(i,k)) > 

               TotalRequired*0.01; 

 

@sum(variables(i,k)|race(i) #eq# 2 #OR# race(i) #eq# 5: !At least 6% 

Asian or Pacific Islander; 

               planned(i,k)) > 



               TotalRequired*0.06; 

@sum(variables(i,k)|race(i) #eq# 3:  !At least 8% Black; 

               planned(i,k)) > 

               TotalRequired*0.08; 

 

@sum(variables(i,k)|ethnicity(i) #EQ# 1: !At least 5% Hispanic; 

               planned(i,k)) > 

               TotalRequired*0.05; 

 

 

@for(student(i):     !No more than one job per student; 

 @sum(choice(k): 

  planned(i,k)) < 1); 

@for(variables(i,k):    !Don't assign an AFSC that isn't a 

choice; 

 planned(i,k) < AFSC(i,k)); 

 

@sum(variables(i,k): 

 planned(i,k)) < TotalRequired; 

 

 

 

 

FinancialMgmt = @sum(variables(i,k)|AFSC(i,k) #EQ# 1:  

 planned(i,k)); 

CostAnalyst = @sum(variables(i,k)|AFSC(i,k) #EQ# 2:  

 planned(i,k)); 

Contracting = @sum(variables(i,k)|AFSC(i,k) #EQ# 3:  

 planned(i,k)); 

CyberSpaceWarfare = @sum(variables(i,k)|AFSC(i,k) #EQ# 4:  

 planned(i,k)); 

AeroEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 5:  

 planned(i,k)); 

CEArch = @sum(variables(i,k)|AFSC(i,k) #EQ# 6:  

 planned(i,k)); 

AstoEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 7:  

 planned(i,k)); 

BehavSciHumanFac = @sum(variables(i,k)|AFSC(i,k) #EQ# 8:  

 planned(i,k)); 

ChemistBiologist = @sum(variables(i,k)|AFSC(i,k) #EQ# 9:  

 planned(i,k)); 

CECivil = @sum(variables(i,k)|AFSC(i,k) #EQ# 10:  

 planned(i,k)); 

CompEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 11:  

 planned(i,k)); 

OSI = @sum(variables(i,k)|AFSC(i,k) #EQ# 12:  

 planned(i,k)); 

ElecEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 13:  

 planned(i,k)); 

CEElecEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 14:  

 planned(i,k)); 

AcqMngmt = @sum(variables(i,k)|AFSC(i,k) #EQ# 15:  

 planned(i,k)); 

CEEnvEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 16:  

 planned(i,k)); 

ProjectEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 17:  

 planned(i,k)); 



CEGenEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 18:  

 planned(i,k)); 

OpsAnalyst = @sum(variables(i,k)|AFSC(i,k) #EQ# 19:  

 planned(i,k)); 

MechEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 20:  

 planned(i,k)); 

CEMechEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 21:  

 planned(i,k)); 

PhysicsNucEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 22:  

 planned(i,k)); 

Pilot = @sum(variables(i,k)|AFSC(i,k) #EQ# 23:  

 planned(i,k)); 

Navigator = @sum(variables(i,k)|AFSC(i,k) #EQ# 24:  

 planned(i,k)); 

ABM = @sum(variables(i,k)|AFSC(i,k) #EQ# 25:  

 planned(i,k)); 

RemotePilot = @sum(variables(i,k)|AFSC(i,k) #EQ# 26:  

 planned(i,k)); 

Weather = @sum(variables(i,k)|AFSC(i,k) #EQ# 27:  

 planned(i,k)); 

AllOthers = @sum(variables(i,k)|AFSC(i,k) #EQ# 28:  

 planned(i,k)); 

 

FemaleOfficers = @sum(variables(i,k)|sex(i) #EQ# 1: 

   planned(i,k)); 

 

AmericanIndianOfficerCandidates = @sum(variables(i,k)|race(i) #EQ# 1: 

   planned(i,k)); 

AsianorPacificIslanderCandidates = @sum(variables(i,k)|race(i) #eq# 2 #OR# 

race(i) #eq# 5:  

               planned(i,k));  

 

BlackOfficerCandidates = @sum(variables(i,k)|race(i) #eq# 3:  

               planned(i,k)); 

MultiracialOfficerCandidates = @sum(variables(i,k)|race(i) #eq# 4:  

               planned(i,k)); 

 

HispanicOfficersCandidates = @sum(variables(i,k)|ethnicity(i) #EQ# 1:  

               planned(i,k)); 

TotalOfficers = @sum(variables(i,k): 

   planned(i,k)); 

TuitionCost = @sum(variables(i,k):  

 planned(i,k)*tuition(i)*ScholStat(i)); 

@for(variables(i,j):     !0-1 variables; 

 @bin(planned(i,j))); 

! Marisha Kinkle 

! Stage 2 Period 2; 

model: 

title Sample AFSC; 

sets: 

 student:quality, CommProb, FTProb, sex, race, ethnicity, ScholStat, 

tuition; 

 choice; 

 variables(student,choice): planned, AFSC ; 

 jobs: Required; 

    



endsets 

 

data: 

 choice = 1, 2, 3, 4;  !2 possible AFSC choices; 

 student = @OLE('stage2prac.xls', 'student'); 

 AFSC = @OLE('stage2prac.xls', 'AFSC'); 

 quality = @OLE('stage2prac.xls', 'quality'); 

 sex = @OLE('stage2prac.xls', 'sex'); 

 race = @OLE('stage2prac.xls', 'race'); 

 ethnicity = @OLE('stage2prac.xls', 'ethnicity'); 

 CommProb = @OLE('stage2prac.xls', 'CommProb'); 

 FTProb = @OLE('stage2prac.xls', 'FTProb'); 

 ScholStat = @OLE('stage2prac.xls', 'ScholStat'); 

 tuition = @OLE('stage2prac.xls','tuition'); 

 @OLE('stage2results.xls','tuition')=tuition; 

 Required = 10 0 15 39 13 2 2 3 5 6 11 5 33 2 53 2 30 10 14 8 4 7 0 0 0 

0 0 0; 

 !Required = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 

 TotalRequired = 1324; 

 @OLE('stage2results.xls', 'planned2')=planned; 

 @OLE('stage2results.xls','student')=student; 

 @OLE('stage2results.xls','quality')=quality; 

 @OLE('stage2results.xls','ScholStat')=ScholStat; 

enddata 

 

 

max= @sum(student(i): 

 @sum(choice(j): 

 planned(i,j)*quality(i)*CommProb(i))); 

 

!Constraints; 

@for(jobs(j):      !Meet AFSC requirements; 

@sum(variables(i,k)|AFSC(i,k) #EQ# j:  

 planned(i,k))> Required(j)); 

 

@sum(variables(i,k)|sex(i) #EQ# 1:  !At least 20% female; 

              planned(i,k)) > 

               TotalRequired*0.2; 

 

@sum(variables(i,k)|race(i) #eq# 1:  !At least 1% American Indian; 

               planned(i,k)) > 

               TotalRequired*0.01; 

 

@sum(variables(i,k)|race(i) #eq# 2 #OR# race(i) #eq# 5: !At least 6% 

Asian or Pacific Islander; 

               planned(i,k)) > 

               TotalRequired*0.06; 

@sum(variables(i,k)|race(i) #eq# 3:  !At least 8% Black; 

               planned(i,k)) > 

               TotalRequired*0.08; 

 

@sum(variables(i,k)|ethnicity(i) #EQ# 1: !At least 5% Hispanic; 

               planned(i,k)) > 

               TotalRequired*0.05; 

 

 

@for(student(i):     !No more than one job per student; 



 @sum(choice(k): 

  planned(i,k)) < 1); 

@for(variables(i,k):    !Don't assign an AFSC that isn't a 

choice; 

 planned(i,k) < AFSC(i,k)); 

 

@sum(variables(i,k): 

 planned(i,k)) < TotalRequired; 

 

 

 

 

FinancialMgmt = @sum(variables(i,k)|AFSC(i,k) #EQ# 1:  

 planned(i,k)); 

CostAnalyst = @sum(variables(i,k)|AFSC(i,k) #EQ# 2:  

 planned(i,k)); 

Contracting = @sum(variables(i,k)|AFSC(i,k) #EQ# 3:  

 planned(i,k)); 

CyberSpaceWarfare = @sum(variables(i,k)|AFSC(i,k) #EQ# 4:  

 planned(i,k)); 

AeroEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 5:  

 planned(i,k)); 

CEArch = @sum(variables(i,k)|AFSC(i,k) #EQ# 6:  

 planned(i,k)); 

AstoEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 7:  

 

! Marisha Kinkle 

! Stage 2 Period 1; 

model: 

title Sample AFSC; 

sets: 

 student:quality, CommProb, FTProb, sex, race, ethnicity, ScholStat, 

tuition; 

 choice; 

 variables(student,choice): planned, AFSC ; 

 jobs: Required; 

    

endsets 

 

data: 

 choice = 1, 2, 3, 4;  !2 possible AFSC choices; 

 student = @OLE('stage2prac.xls', 'student'); 

 AFSC = @OLE('stage2prac.xls', 'AFSC'); 

 quality = @OLE('stage2prac.xls', 'quality'); 

 sex = @OLE('stage2prac.xls', 'sex'); 

 race = @OLE('stage2prac.xls', 'race'); 

 ethnicity = @OLE('stage2prac.xls', 'ethnicity'); 

 CommProb = @OLE('stage2prac.xls', 'CommProb'); 

 FTProb = @OLE('stage2prac.xls', 'FTProb'); 

 ScholStat = @OLE('stage2prac.xls', 'ScholStat'); 

 Tuition = @OLE('stage2prac.xls', 'tuition'); 

 Required = 10 0 15 39 13 2 2 3 5 6 11 5 33 2 53 2 30 10 14 8 4 7 0 0 0 

0 0 0; 

 !Required = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 

 TotalRequired = 1390; 



 @OLE('stage2results.xls', 'planned1')=planned; 

 @OLE('stage2results.xls','student')=student; 

 @OLE('stage2results.xls','quality')=quality; 

 @OLE('stage2results.xls','ScholStat')=ScholStat; 

 @OLE('stage2results.xls','tuition')=tuition; 

 

enddata 

 

 

max= @sum(student(i): 

 @sum(choice(j): 

 planned(i,j)*quality(i)*FTProb(i))); 

 

!Constraints; 

@for(jobs(j): 

@sum(variables(i,k)|AFSC(i,k) #EQ# j:  

 planned(i,k))> Required(j));      !Meet AFSC 

requirements; 

 

 

 

 

!@sum(variables(i,k)|sex(i) #EQ# 1:  !At least 20% female; 

 !             planned(i,k)) > 

               TotalRequired*0.2; 

 

!@sum(variables(i,k)|race(i) #eq# 1:  !At least 1% American Indian; 

 !              planned(i,k)) > 

               TotalRequired*0.01; 

 

!@sum(variables(i,k)|race(i) #eq# 2 #OR# race(i) #eq# 5: !At least 6% 

Asian or Pacific Islander; 

 !              planned(i,k)) > 

               TotalRequired*0.06; 

!@sum(variables(i,k)|race(i) #eq# 3:  !At least 8% Black; 

 !              planned(i,k)) > 

               TotalRequired*0.08; 

 

!@sum(variables(i,k)|ethnicity(i) #EQ# 1: !At least 5% Hispanic; 

 !              planned(i,k)) > 

               TotalRequired*0.05; 

 

 

@for(student(i):     !No more than one job per student; 

 @sum(choice(k): 

  planned(i,k)) < 1); 

@for(variables(i,k):    !Don't assign an AFSC that isn't a 

choice; 

 planned(i,k) < AFSC(i,k)); 

 

@sum(variables(i,k): 

 planned(i,k)) < TotalRequired; 

 

 

 

 

FinancialMgmt = @sum(variables(i,k)|AFSC(i,k) #EQ# 1:  



 planned(i,k)); 

CostAnalyst = @sum(variables(i,k)|AFSC(i,k) #EQ# 2:  

 planned(i,k)); 

Contracting = @sum(variables(i,k)|AFSC(i,k) #EQ# 3:  

 planned(i,k)); 

CyberSpaceWarfare = @sum(variables(i,k)|AFSC(i,k) #EQ# 4:  

 planned(i,k)); 

AeroEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 5:  

 planned(i,k)); 

CEArch = @sum(variables(i,k)|AFSC(i,k) #EQ# 6:  

 planned(i,k)); 

AstoEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 7:  

 planned(i,k)); 

BehavSciHumanFac = @sum(variables(i,k)|AFSC(i,k) #EQ# 8:  

 planned(i,k)); 

ChemistBiologist = @sum(variables(i,k)|AFSC(i,k) #EQ# 9:  

 planned(i,k)); 

CECivil = @sum(variables(i,k)|AFSC(i,k) #EQ# 10:  

 planned(i,k)); 

CompEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 11:  

 planned(i,k)); 

OSI = @sum(variables(i,k)|AFSC(i,k) #EQ# 12:  

 planned(i,k)); 

ElecEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 13:  

 planned(i,k)); 

CEElecEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 14:  

 planned(i,k)); 

AcqMngmt = @sum(variables(i,k)|AFSC(i,k) #EQ# 15:  

 planned(i,k)); 

CEEnvEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 16:  

 planned(i,k)); 

ProjectEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 17:  

 planned(i,k)); 

CEGenEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 18:  

 planned(i,k)); 

OpsAnalyst = @sum(variables(i,k)|AFSC(i,k) #EQ# 19:  

 planned(i,k)); 

MechEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 20:  

 planned(i,k)); 

CEMechEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 21:  

 planned(i,k)); 

PhysicsNucEng = @sum(variables(i,k)|AFSC(i,k) #EQ# 22:  

 planned(i,k)); 

Pilot = @sum(variables(i,k)|AFSC(i,k) #EQ# 23:  

 planned(i,k)); 

Navigator = @sum(variables(i,k)|AFSC(i,k) #EQ# 24:  

 planned(i,k)); 

ABM = @sum(variables(i,k)|AFSC(i,k) #EQ# 25:  

 planned(i,k)); 

RemotePilot = @sum(variables(i,k)|AFSC(i,k) #EQ# 26:  

 planned(i,k)); 

Weather = @sum(variables(i,k)|AFSC(i,k) #EQ# 27:  

 planned(i,k)); 

AllOthers = @sum(variables(i,k)|AFSC(i,k) #EQ# 28:  

 planned(i,k)); 

 

FemaleOfficers = @sum(variables(i,k)|sex(i) #EQ# 1: 



   planned(i,k)); 

 

AmericanIndianOfficerCandidates = @sum(variables(i,k)|race(i) #EQ# 1: 

   planned(i,k)); 

AsianorPacificIslanderCandidates = @sum(variables(i,k)|race(i) #eq# 2 #OR# 

race(i) #eq# 5:  

               planned(i,k));  

 

BlackOfficerCandidates = @sum(variables(i,k)|race(i) #eq# 3:  

               planned(i,k)); 

MultiracialOfficerCandidates = @sum(variables(i,k)|race(i) #eq# 4:  

               planned(i,k)); 

 

HispanicOfficersCandidates = @sum(variables(i,k)|ethnicity(i) #EQ# 1:  

               planned(i,k)); 

 

TotalOfficers = @sum(variables(i,k): 

   planned(i,k)); 

TuitionCost = @sum(variables(i,k):  

 planned(i,k)*tuition(i)*ScholStat(i)); 

 

@for(variables(i,j):     !0-1 variables; 

 @bin(planned(i,j))); 
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Table 22. FT Completion Forward Selection Stepwise Logistic Regression Results

Region 0.119 0.127

AS Level 0.053 0.053 0.056

Sex

Race

Tech Major 0.015 0.013 0.014 0.013

Cumulative GPA 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Scholarship Status 0.000 0.000 0.000 0.000 0.000

SAT-R

AFPFT 0.000 0.000 0.000 0.000 0.000 0.000

Mil Experience 0.137

Log-Likelihood -2291.058 -2249.535 -2229.340 -2226.405 -2224.629 -2219.625 -2218.685

Pearson Test (p-value) 0.000 0.122 0.370 0.647 0.597 0.860 0.867

Deviance Test (p-value) 0.456 1.000 1.000 1.000 1.000 1.000 1.000

Hosmer-Lemeshow (p-value) 0.419 0.639 0.043 0.034 0.026 0.057 0.031

Brown: general alt. (p-value) 0.175 0.000 0.000 0.000 0.000 0.000 0.000

Brown: symmetric alt. (p-value) 0.114 0.002 0.000 0.000 0.000 0.000 0.000

Table 23. FT Completion Backward Elimination Stepwise Logistic Regression Results

Variable Model 2.1 Model 2.2 Model 2.3 Model 2.4 Model 2.5

Region 0.150 0.150 0.138 0.127 0.119

AS Level 0.058 0.059 0.059 0.056 0.053

Sex 0.901

Race 0.722 0.728

Tech Major 0.025 0.025 0.025 0.013 0.014

Cumulative GPA 0.000 0.000 0.000 0.000 0.000

Scholarship Status 0.000 0.000 0.000 0.000 0.000

SAT-R 0.602 0.608 0.573

AFPFT 0.000 0.000 0.000 0.000 0.000

Mil Experience 0.135 0.137 0.135 0.137
Log-Likelihood -2214.213 -2214.215 -2218.436 -2218.685 -2219.625

Pearson Test (p-value) 0.868 0.870 0.917 0.867 0.860

Deviance Test (p-value) 1 1.000 1.000 1.000 1.000

Hosmer-Lemeshow (p-value) 0.123 0.084 0.031 0.031 0.057

Brown: general alt. (p-value) 0.000 0.000 0.000 0.000 0.000

Brown: symmetric alt. (p-value) 0.001 0.001 0.000 0.000 0.000
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Table 24. FT Completion Mixed Stepwise Logistic Regression Results

Variable Model 3.1 Model 3.2 Model 3.3 Model 3.4 Model 3.5 Model 3.6 Model 3.7

Region 0.119 0.127

AS Level 0.053 0.053 0.056

Sex

Race

Tech Major 0.015 0.013 0.014 0.013

Cumulative GPA 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Scholarship Status 0.000 0.000 0.000 0.000 0.000

SAT-R

AFPFT 0.000 0.000 0.000 0.000 0.000 0.000

Mil Experience 0.137

Log-Likelihood -2291.058 -2249.535 -2229.340 -2226.405 -2224.629 -2219.625 -2218.685

Pearson Test (p-value) 0.000 0.122 0.370 0.647 0.597 0.860 0.867

Deviance Test (p-value) 0.456 1.000 1.000 1.000 1.000 1.000 1.000

Hosmer-Lemeshow (p-value) 0.419 0.639 0.043 0.034 0.026 0.057 0.031

Brown: general alt. (p-value) 0.175 0.000 0.000 0.000 0.000 0.000 0.000

Brown: symmetric alt. (p-value) 0.114 0.002 0.000 0.000 0.000 0.000 0.000

Table 25. Commissioned Forward Selection Stepwise Logistic Regression

Variable Model 10.1 Model 10.2

Region 0.000 0.000

Ethnicity 0.023

Mil Experience 0.007 0.007

Region*Ethnicity

Region*Mil Experience 0.160 0.148

Ethnicity*MilExperience

Log-Likelihood -2922.031 -2919.185

Pearson Test (p-value) 0.242 0.410

Deviance Test (p-value) 0.253 0.238

Hosmer-Lemeshow (p-value) 0.926 0.963

Brown: general alt. (p-value) 0.242 0.929

Brown: symmetric alt. (p-value) 0.095 0.822
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Table 26. Commissioned Backward Elimination Stepwise Logistic Regression

Variable Model 11.1 Model 11.2 Model 11.3 Model 11.4

Region 0.000 0.000 0.000 0.000

Ethnicity 0.011 0.054 0.023 0.024

Mil Experience 0.014 0.014 0.007 0.004

Region*Ethnicity 0.635

Region*Mil Experience 0.129 0.126

Ethnicity*MilExperience 0.289 0.276 0.148

Log-Likelihood -2918.142 -2918.268 -2918.388 -2920.178

Pearson Test (p-value) 0.269 0.337 0.288 0.325

Deviance Test (p-value) 0.260 0.329 0.250 0.225

Hosmer-Lemeshow (p-value) 0.955 0.978 0.821 0.804

Brown: general alt. (p-value) 0.274 0.642 0.210 0.530

Brown: symmetric alt. (p-value) 0.427 0.706 0.521 0.451

Table 27. Commissioned Mixed Stepwise Logistic Regression

Variable Model 12.1

Region 0.000

Ethnicity 0.023

Mil Experience 0.007

Region*Ethnicity

Region*Mil Experience 0.148

Ethnicity*MilExperience

Log-Likelihood -2919.185

Pearson Test (p-value) 0.410

Deviance Test (p-value) 0.276

Hosmer-Lemeshow (p-value) 0.963

Brown: general alt. (p-value) 0.929

Brown: symmetric alt. (p-value) 0.822
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Nominal Logistic Fit for FT Comp 
Converged in Gradient, 6 iterations 
 
 

Whole Model Test 
Model  -LogLikelihood DF ChiSquare Prob>ChiSq 

Difference 147.4597 6 294.9194 <.0001* 
Full 2218.2135    
Reduced 2365.6732    
 
 
    

RSquare (U) 0.0623 
AICc 4450.44 
BIC 4498.59 
Observations (or Sum Wgts) 7189 
  
  
  
 
Measure Training Definition 

Entropy RSquare 0.0623 1-Loglike(model)/Loglike(0) 
Generalized R-Square 0.0834 (1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n)) 
Mean -Log p 0.3086 ∑ -Log(ρ[j])/n 
RMSE 0.2960 √ ∑(y[j]-ρ[j])²/n 
Mean Abs Dev 0.1750 ∑ |y[j]-ρ[j]|/n 
Misclassification Rate 0.1021 ∑ (ρ[j]≠ρMax)/n 
N 7189 n 
   
 

Lack Of Fit 
Source DF  -LogLikelihood ChiSquare 

Lack Of Fit 6380 2100.9506 4201.901 
Saturated 6386 117.2630 Prob>ChiSq 

Fitted 6 2218.2135 1.0000 
 

Parameter Estimates 
Term   Estimate Std Error ChiSquare Prob>ChiSq 

Intercept  5.89016682 0.6631271 78.90 <.0001* 
Tech major  0.20009948 0.0814118 6.04 0.0140* 
CGPA  -0.7896811 0.0814266 94.05 <.0001* 
Schol Stat  -0.6756668 0.0926124 53.23 <.0001* 
AFPFT Score  -0.0589259 0.0071116 68.66 <.0001* 
(CGPA-3.10001)*(Schol Stat-0.7581)  -0.4424458 0.1645472 7.23 0.0072* 
(AFPFT Score-90.4031)*(AFPFT Score-90.4031)  -0.0008343 0.0003002 7.72 0.0054* 
 
For log odds of 0/1 
 
 

Effect Likelihood Ratio Tests 
Source Nparm DF L-R ChiSquare Prob>ChiSq   

Tech major 1 1 6.0317592 0.0141*  
CGPA 1 1 93.4039986 <.0001*  
Schol Stat 1 1 49.8978609 <.0001*  
AFPFT Score 1 1 72.7000988 <.0001*  
CGPA*Schol Stat 1 1 7.1792443 0.0074*  
AFPFT Score*AFPFT Score 1 1 8.73004611 0.0031*  

 

 



Nominal Logistic Fit for Comm 
Converged in Gradient, 5 iterations 
 
 

Whole Model Test 
Model  -LogLikelihood DF ChiSquare Prob>ChiSq 

Difference 37.0387 4 74.07737 <.0001* 
Full 2927.1301    
Reduced 2964.1688    
 
 
    

RSquare (U) 0.0125 
AICc 5864.27 
BIC 5898.05 
Observations (or Sum Wgts) 6357 
  
  
  
 
Measure Training Definition 

Entropy RSquare 0.0125 1-Loglike(model)/Loglike(0) 
Generalized R-Square 0.0191 (1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n)) 
Mean -Log p 0.4605 ∑ -Log(ρ[j])/n 
RMSE 0.3790 √ ∑(y[j]-ρ[j])²/n 
Mean Abs Dev 0.2875 ∑ |y[j]-ρ[j]|/n 
Misclassification Rate 0.1767 ∑ (ρ[j]≠ρMax)/n 
N 6357 n 
   
 

Lack Of Fit 
Source DF  -LogLikelihood ChiSquare 

Lack Of Fit 2113 1082.5938 2165.188 
Saturated 2117 1844.5363 Prob>ChiSq 

Fitted 4 2927.1301 0.2100 
 

Parameter Estimates 
Term   Estimate Std Error ChiSquare Prob>ChiSq Lower 95% Upper 95% 

Intercept  -1.834966 0.2326183 62.23 <.0001* -2.2929827 -1.3809855 
Region  0.22514274 0.0299293 56.59 <.0001* 0.1666873 0.28403071 
Military Experience  -0.4319335 0.1488619 8.42 0.0037* -0.7336016 -0.1489725 
Ethnicity  -0.3640257 0.1577673 5.32 0.0210* -0.6843752 -0.0646224 
Cum GPA  -0.0854118 0.0702305 1.48 0.2239 -0.2229622 0.05238337 
 
For log odds of 0/1 
 
 

Effect Wald Tests 
Source Nparm DF Wald ChiSquare Prob>ChiSq   

Region 1 1 56.5877123 <.0001*  
Military Experience 1 1 8.41912303 0.0037*  
Ethnicity 1 1 5.32390451 0.0210*  
Cum GPA 1 1 1.47905234 0.2239  
 

Effect Likelihood Ratio Tests 
Source Nparm DF L-R ChiSquare Prob>ChiSq   

Region 1 1 57.9042747 <.0001*  
Military Experience 1 1 9.23746248 0.0024*  
Ethnicity 1 1 5.75664728 0.0164*  
Cum GPA 1 1 1.47722798 0.2242  
 



Odds Ratios 
For Comm odds of 0 versus 1 
 

Unit Odds Ratios 
Per unit change in regressor 
 
Term Odds Ratio Lower 95% Upper 95% Reciprocal 

Region 1.252501 1.181385 1.328474 0.7984022 
Military Experience 0.649253 0.480176 0.861593 1.5402326 
Ethnicity 0.694873 0.504405 0.937421 1.4391112 
Cum GPA 0.918134 0.800145 1.05378 1.0891655 
 

Range Odds Ratios 
Per change in regressor over entire range 
 
Term Odds Ratio Lower 95% Upper 95% Reciprocal 

Region 1.964874 1.648823 2.344547 0.5089384 
Military Experience 0.649253 0.480176 0.861593 1.5402326 
Ethnicity 0.694873 0.504405 0.937421 1.4391112 
Cum GPA 0.757609 0.484505 1.185596 1.3199426 

 

 



Appendix C. Stage One Probabilities
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Table 30. Historical Average Probabilities Using FY01 - FY06 Data by Individual
Composite Score

Probability of being Offered a Scholarship by Individual Composite Score

App Year Unemp Rate 0-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89 90-94 95-100
2001 4.7 0.98 0.25 0.80 0.67 0.52 0.62 0.75 0.83 0.88 0.90 0.93 0.95 0.90

2002 5.8 1.00 0.00 0.40 0.50 0.36 0.43 0.53 0.60 0.69 0.71 0.77 0.80 0.77

2003 6 0.00 0.00 1.00 0.15 0.27 0.21 0.37 0.50 0.59 0.64 0.72 0.90 0.89

2004 5.5 0.00 0.00 1.00 0.10 0.19 0.14 0.24 0.32 0.40 0.44 0.53 0.74 0.64

2005 5.1

2006 4.6 0.38 0.21 0.55 0.38 0.28 0.28 0.41 0.55 0.59 0.62 0.74 0.86 0.89

2007 4.6 0.00 0.67 0.67 0.39 0.30 0.33 0.51 0.63 0.65 0.77 0.79 0.93 1.00

2008 5.8 0.00 0.00 0.00 0.35 0.37 0.41 0.54 0.66 0.75 0.81 0.87 0.93 0.92

2009 9.3 0.00 0.00 1.00 0.28 0.16 0.25 0.40 0.55 0.65 0.70 0.77 0.88 0.94

2010 9.6 0.00 0.00 0.00 0.00 0.06 0.13 0.26 0.38 0.44 0.54 0.63 0.74 0.76

Average: 0.26 0.13 0.60 0.31 0.28 0.31 0.45 0.56 0.63 0.68 0.75 0.86 0.86

Probability of being Graduating (w/in 4 years) given Acceptance of Scholarship by Individual Composite Score

App Year Unemp Rate 0-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 85-89 90-94 95-100
2001 4.7 0.44 0.00 0.75 0.23 0.24 0.36 0.37 0.41 0.45 0.42 0.43 0.53 0.57

2002 5.8 0.40 0.00 0.00 0.40 0.34 0.38 0.35 0.41 0.43 0.43 0.45 0.37 0.60

2003 6 0.00 0.00 0.00 0.00 0.39 0.35 0.30 0.30 0.30 0.24 0.27 0.26 0.13

2004 5.5 0.00 0.00 0.00 0.00 0.47 0.39 0.36 0.41 0.44 0.37 0.42 0.49 0.40

2005 5.1

2006 4.6 0.00 0.20 0.37 0.36 0.30 0.29 0.28 0.26 0.38 0.39 0.39 0.45 0.25

Average: 0.17 0.04 0.22 0.20 0.35 0.35 0.33 0.36 0.40 0.37 0.39 0.42 0.39
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Table 34. Stage One Tuition Costs by Scholarship Type

Type Avg Cost Offer Rate Acceptance Rate

1 $9,391 10.2% 40.0%

2 $5,305 36.5% 45.8%

7 $3,969 53.2% 21.2%
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Appendix D. Thesis Storyboard
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Introduction 

  The Air Force Reserve Officer Training 

Corps (AFROTC) faces a declining budget and 

increased enrollment, creating the necessity 

for improving officer candidate selection 

thorough the various stages of its 

commissioning program. Three critical stages 

have a major impact on the type of officer 

AFROTC commission. This research proposes 

a multi-stage model to evaluate three stages: 1) 

the high school scholarship allocation process, 

2) the in-college scholarship allocation 

process, and 3) commissioning. Each stage is 

examined individually so that collectively 

AFROTC decision makers are able to meet 

commissioning goals. 

A Multi-Stage Model for Air Force Reserve Officer 

Training Corps Officer Candidate Selection 

Model Framework 
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Motivation 

  AFROTC faces a declining budget 

and increased enrolment, creating the 

necessity for improving officer 

candidate selection 

Impacts/Contributions 

 

 

Methodology 

 Stage one involves allocating 

scholarships to high school candidates using 

the index policy heuristic. Stage two involves 

examining which candidates should be 

awarded an enrollment allocation while taking 

into account the probabilities of the candidate 

completing field training (FT) and going on to 

commission. A logistic regression is used to 

estimate the probabilities of FT completion and 

commissioning given a candidate's 

demographic information and college 

performance. Stage two is examined using 

dynamic programming with a knapsack 

formulation. Stage three involves selecting the 

most qualified cadets to commission into the 

USAF and is examined using a knapsack 

approach. 

Results and Analysis 
 

 
 

Stage Two Results 

Stage One Results 

Basic Extended

109,640.30 109,279.40

14.39% 20.03%

14.48% 20.03%

4.71% 5.05%

Career AFSC Required Basic Extended

Financial Mgmt 65F/W 10 10 10

Cost Analyst 65WX 0 0 0

Contracting 64P 15 15 15

 Cyber Space Warfare 17D 39 39 39

Aeronautical Engr 62EXA 13 13 13

 C-E (Arch) 32EXA 2 2 2

Astronautical Engr 62EXB 2 2 2

Behav Sci/Human Factors 61BX 3 3 3

 Chemist/Biologist 61CX 5 5 5

 C-E (Civil) 32EXC 6 6 6

 Computer Engr 62EXC 11 11 11

OSI 71Sx 5 5 5

Electrical Engr 62EXE 33 33 33

C-E (EE) 32EXE 2 2 2

Acquisition Mgmt 63A 53 53 53

C-E(Envir) 32EXJ 2 2 2

 Project Engr 62EXG 30 30 30

 C-E (Gen) 32EXG 10 10 10

Operations Research Analyst 61AX 14 14 14

Mechanical Engr 62EXH 8 8 8

C-E (Mech) 32EXF 4 4 4

Physics/Nuclear Engineer 61DX 7 7 7

Pilot 11 511 511 511

 Navigator 12 120 120 120

Air Battle Managmt 13 75 75 75

 Remote Piloted Aircraft 18 12 12 12

Weather 15W 1 1 1

All Others 195 195 195

Female Officers

Minority Officers

Hispanic Officers

AFSC Allocation

Overall Quality Score

Stage Three Results 

 Stage one offers effective optimization for 

allocation of scholarships 

 Stage two logistic regression analysis 

allows insights into contributing factors 

toward FT completion and commissioning 

 Stages two and three allow decision makers 

an effective optimization tool for 

enrollment allocations and AFSC selection 

respectively 

 Allows the decision maker to consider 

other constraints such as diversity or cost 

 Allows for sensitivity analysis of 

requirements 

Data  Used # Apply # Offe rs #Accept

Schola rship 

Cost

Offe r Avg 

Qua lity

Percntage  

Change # Comm

Comm Avg 

Qua lity

Percentage  

Change

T ota l 

Qua lity

Actual 1620 293 94 $503,626 79 85 79 6,672.50

Historical (2001-2006 Averages) 1620 301 97 $517,342 88 10.1% 85 87 10.8% 7,395.00

Overlap 82 89 23 87 2,001.00

FY04 Data 1620 340 109 $584,374 76 -6.6% 85 74 -6.0% 6,271.30

Overlap 72 79 21 76 1,585.50

FY03 Data 1620 301 97 $517,342 88 7.6% 85 85 8.3% 7,225.00

Overlap 87 87 28 84 2,352.00

Data  Used # Apply # Offe rs #Accept

Schola rship 

Cost

Offe r Avg 

Qua lity

Percntage  

Change # Comm

Comm Avg 

Qua lity

Percntage  

Change

T ota l 

Qua lity

Actual 1552 293 94 $503,626 1266 85 1246 105,910.00

Historical (2001-2006 Averages) 1552 292 94 $503,626 1405 11.0% 85 1373 10.2% 116,705.00

Overlap 85 1279 28 1251 35,028.00

FY04 Data 1552 360 115 $618,749 1275 0.7% 85 1253 0.6% 106,505.00

Overlap 85 1279 28 1251 35,028.00

FY03 Data 1552 292 94 $503,626 1404 10.9% 85 1373 10.2% 116,705.00

Overlap 69 1408 21 1377 28,917.00

SAT 

Individual Composite Score

Basic Period 3 Percentages Period 2 Percentages Period 1 Percentages 

Overall Quality Score 99,155   83,790   91,487   

Mean Quality Score 79   77   76   

Diversity 

Female 280 22.2% 294 22.2% 316 22.7% 

Hispanic 43 3.4% 45 3.4% 51 3.7% 

African American 34 2.7% 36 2.7% 45 3.2% 

Asian or Pacific Islander 66 5.2% 65 4.9% 71 5.1% 

American Indian 8 0.6% 8 0.6% 8 0.6% 

MultiRacial 12 1.0% 12 0.9% 13 0.9% 

Projected Tuition Cost $5,167,053.00   $5,469,853.00   $5,581,150.00   

Expanded Period 3 Percentages Period 2 Percentages Period 1 Percentages 

Overall Quality Score 97,462 -1.7%  82,522  -1.5% 90,100 -1.5%  

Mean Quality Score 77   76   74   

Diversity 

Female 282 22.4% 299 22.6% 315 22.7% 

Hispanic 64 5.1% 67 5.1% 70 5.0% 

African American 101 8.0% 106 8.0% 112 8.1% 

Asian or Pacific Islander 76 6.0% 80 6.0% 84 6.0% 

American Indian 13 1.0% 14 1.1% 14 1.0% 

MultiRacial 11 0.9% 11 0.8% 11 0.8% 

Projected Tuition Cost $4,951,385.00   $5,186,461.00   $5,500,031.00   
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