
Cost Effective Applications of High
Integrity Software Processesg y

John H. Robb
Embedded Software Engineer PrincipalEmbedded Software Engineer Principal
Lockheed Martin Aeronautics Fort Worth
John.H.Robb@lmco.com
817 935 4648

© 2011 Lockheed Martin Corporation AER201103026

817.935-4648
18 May, 2011

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Cost Effective Applications of High Integrity Software Processes

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Lockheed Martin Aeronautics Fort Worth,1 Lockheed Boulevard,Fort
Worth,TX,76108

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the 23rd Systems and Software Technology Conference (SSTC), 16-19 May 2011, Salt Lake
City, UT. Sponsored in part by the USAF. U.S. Government or Federal Rights License

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

26

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Not All Lessons Learned Are Equal…

“Managing software developers is like herding cats” –g g p g
Various (disgruntled managers)

“A man who carries a cat by the tail learns something he
can learn in no other way” - Mark Twain

© 2011 Lockheed Martin Corporation AER201103026

Motivation
• This presentation looks at the practical lessons

learned in applying High Integrity software processes
both domestically and internationally
− High Integrity software is like landing a man on the moon

within several feet of the target area

− Most of the industry would find landing on the moon to be
more than sufficient (and cost effective)

• The goal of this presentation is to discuss practical
(t ff ti) h th t id d

This image is in the Public Domain

© 2011 Lockheed Martin Corporation AER201103026

(cost effective) approaches that provide good
(enough) coverage

Why Should I Care About High Integrity Software?

What is High Integrity software?
Either Safety or Security critical software− Either Safety or Security critical software

− Software that cannot fail because it is doing something so
critical the consequence of failure is very high

What characterizes High Integrity software?
− Very high reliability of the software
− Robust processes are used to assure the software

achieves its reliability objectives
− Very costly to develop, verify and certify, but very y y p, y y, y

inexpensive to maintain

How does this contrast with typical industrial software needs?

© 2011 Lockheed Martin Corporation AER201103026

How does this contrast with typical industrial software needs?

High Integrity Software Practices

• Requirements

• Inspections/peer reviewsp p

• Checklists

• Programming Languages and Coding Standards• Programming Languages and Coding Standards

• Static Code Analysis

C d l it• Code complexity

• Unit Testing

• Automated Testing

• Qualification Testing Cycle Time

© 2011 Lockheed Martin Corporation AER201103026

Experience Based – Not a Recipe

We’re going to discuss lessons learned from each of these basic
tenets and what they may mean to you – this is not intended to be atenets and what they may mean to you this is not intended to be a
formula but recommendations

Recipe - “a series of step-by-step instructions for preparing
ingredients you forgot to buy, in utensils you don't own, to make a dish
the dog won't eat." - Anonymous

© 2011 Lockheed Martin Corporation AER201103026

This image is in the Public Domain

Requirements Development - Some Thoughts

• Complex large system requirements development is not
easy
− It is an arbitrary slice of abstraction for understanding by

the customer, the developers and the testers
− Each requirement is represented by several design classes

and several hundred lines of code
E h i t h it t t d ifi− Each requirement has its own context and specific
knowledge space

− It is typically specified in English which is not very precise

• Despite the numerous requirements specification and
elicitation approaches and techniques

It still remains one of the most elusive areas of software− It still remains one of the most elusive areas of software
process improvement

© 2011 Lockheed Martin Corporation AER201103026

Requirements Development - Observations
Maturation of requirements is a key concept

− The most successful areas seem to use working models in
parallel to requirements developmentp q p
• Either through specific models or thru prototypes (e.g., Agile)

− Working models tend to faithfully emulate both the
controller (software) and the system (e.g., vehicle)

Controller System

− What seems to distinguish the quality of a model is not the
quality of the controller model but of the system model

Sensor

quality of the controller model but of the system model
• When the system model is complicated a modeling process

(e.g. MBD) seems to work better than a prototype process
− A good functional model is still very much needed even in

© 2011 Lockheed Martin Corporation AER201103026

A good functional model is still very much needed even in
the UML paradigm

Requirements Development - Recommendations

• When the system model is complex
− Use a model based approach to mature the requirements
− This doesn’t necessarily mean that the model must

generate executable target code

Wh th t d l i t l• When the system model is not complex
− Utilize a prototype approach (Agile or Spiral)
− The customer/user in essence becomes the system model

• In either case, the model or prototype doesn’t
necessarily have to be the deliverable product
− The main consideration is reduction of rework, not in auto-

generation or reuse of code (which is relatively cheap)
− Typically, it is better to have software engineers develop

the production target for long term maintenance reasons

© 2011 Lockheed Martin Corporation AER201103026

the production target for long term maintenance reasons

The Eye of The Beholder…

Many things are a matter of perspective
Ponton: I consider her the most beautiful woman in the o to co s de e t e ost beaut u o a t e

world… What about yourself?
Inspector Clouseau: No, I don't consider myself a

beautiful woman

We can become too familiar with the beauty of our own
productproduct

One very effective way to achieve this is to have someone
felse observe our work and critique it from their own

perspective

© 2011 Lockheed Martin Corporation AER201103026

Inspection/Peer Reviews
• Reduce costly rework

− Focus on defect removal – rework can cost up to 20x the cost
of correcting the same problem during an inspection/review

− Good software development teams use inspections (peer
reviews) to remove up to 80 percent of their defects

• It doesn’t have to be hard
− Reviews can be of many different types (very formal

inspections all the way to peer reviews)
− The key is to have adequate preparation, expert participation,

and good leadership (“moderator”)
− If you can’t review all the products start at the beginning of

the life cycle first (i e requirements are the most important)the life cycle first (i.e., requirements are the most important)
− Reviews are so important that they should be built into the

schedule/budget and should drive the initial schedule
− Do not sacrifice reviews without first presenting a business

© 2011 Lockheed Martin Corporation AER201103026

Do not sacrifice reviews without first presenting a business
case to program management

Checklists and Using Them
• Checklists

− Pilots use them for pre-flight and pre-landing
− Used for surgery and other complicated medicalUsed for surgery and other complicated medical

procedures
− They are consistently cited as a best practice for

software development (e.g. peer reviews)so t a e de e op e t (e g pee e e s)
− Yet they are still not widely used

Lack of use prevents several effective things from• Lack of use prevents several effective things from
happening:
1. Defect prevention (checklist updated from experience)
2 Training of new engineers2. Training of new engineers
3. Audit records and proof of compliance
4. General process improvement through sharing of

checklists

© 2011 Lockheed Martin Corporation AER201103026

checklists

Checklists and Using Them (cont.)

• Best thing to do is to create checklists and require them
as entry criteria for peer reviews (inspections)

• If you don’t have checklists then create some
− Borrow from industry best practice checklists
− Survey your company to determine if specific

projects already have them
− If you are fortunate enough to have a common

f fsoftware resource group see if they have them

© 2011 Lockheed Martin Corporation AER201103026

What About Languages?
“Why can a man never starve in the Great Desert?

Because he can eat the sand which is there.
But what brought the sandwiches there?But what brought the sandwiches there?
Why, Noah sent Ham and his descendants mustered and

bred”
- Richard Whately Archbishop of Dublin- Richard Whately, Archbishop of Dublin

Then you should say what you mean," the March Hare
twent on.

"I do," Alice hastily replied; "at least--at least I mean what I
say--that's the same thing, you know."

"Not the same thing a bit!" said the Hatter. "You might just
as well say that 'I see what I eat' is the same thing as 'I
eat what I see'!“

© 2011 Lockheed Martin Corporation AER201103026

- Lewis Carroll, Alice in Wonderland

Programming Languages and Coding Standards
• Just like verbal languages programming languages also

have idiosyncrasies
− Features that reduce or eliminate determinism

• Exception handling
• Object lifetime (constructors, destructors)
• Tasking
• Memory allocation/deallocation
• Dead and/or deactivated code
• Type conversions and numerical representations (e.g. NaN)

− Non-determinism in software development is the same as a
surprise (and these rarely uncover buried treasure)
• Spend a little time considering some of these features and

develop a simple coding standards to address these
• The coding standards document should not be a dissertation

T t t t h k ibl

© 2011 Lockheed Martin Corporation AER201103026

• Try to automate as many checks as possible

An Extra Set of Eyes for Code Reviews

• Static Code Analysis (SCA) - the static analysis of computer
programs – typically performed by a tool

• SCA tools are used to detect the following
− Dead/unreachable/unfeasible code
− Uninitialized variables/null-pointers/Divide by zeroesp y
− Buffer underflow/overflow
− Language syntax errors/known vulnerabilities
− Expert best practicesp p

• SCA tools have several advantages
− Streamline code reviews (to focus code reviews on semantics)()
− Train new programmers (enforce language standards)
− View them as a advanced compiler

© 2011 Lockheed Martin Corporation AER201103026

Smart Use of SCA Tools
• Good things to consider

− Develop programming standards
− Use SCA tools as entry criteria for peer reviews of initial code

baseline (training)
− Best to have a common resource group own the SCA tool and

standards (share start-up costs) and to develop training

• Things to avoid
− Underestimating the number of false positives – you will need a

dedicated resource to develop a good “true positives” report
− Running a “quickie” SCA tool check on an existing baseline –

analysis of false positives will take a while (maybe weeks)
R i SCA t l h k ith t h i i− Running a SCA tool check without having programming
standards

− Using an SCA for any other event than a peer review entry gate

© 2011 Lockheed Martin Corporation AER201103026

On Simplicity…

“’Think simple’ as my old master used to say - meaning reduce
the whole of its parts into the simplest terms getting back tothe whole of its parts into the simplest terms, getting back to
first principles.” – Frank Lloyd Wright

“Newton was a genius, but not because of the superior
computational power of his brain. Newton's genius was … so
that it became, in some measure, tractable to the brains of
perfectly ordinary men.” - Gerald M. Weinberg

© 2011 Lockheed Martin Corporation AER201103026

Code Complexity - Cyclomatic and Essential Complexity
• Overly complex modules are

1. More prone to error
2. More difficult to understand
3. More difficult to test
4. More difficult to modify

This image is in the Public Domain

• Cyclomatic and essential complexity measures provide
a way of developing modules that avoid these issuesa way of developing modules that avoid these issues
− Cyclomatic complexity measures the amount of decision

logic in a single software module
− Essential complexity quantifies the extent to whichEssential complexity quantifies the extent to which

software is unstructured

• Tools (including SCA tools) can provide both of these

© 2011 Lockheed Martin Corporation AER201103026

(g) p
measures – use them prior to submitting code for review
− You will need to establish a threshold for complexity first

Don’t Build Upon a House of Cards

• The best way to avoid building upon a house of cards
is

• To build upon a strong foundation - unit testing is

This image is in the Public Domain

© 2011 Lockheed Martin Corporation AER201103026

that first foundation

Unit Testing – Building a Strong Test Foundation
• Unit Testing – testing of the smallest part of an application

to make it fit for later test
− Required for High Integrity software
− Cornerstone of the Agile (Extreme Programming) process
− Will require either a unit test harness or an unit test framework

(automated test tool)

• Unit Testing completion criteria
− For High Integrity software this is typically either full source or

full object (MC/DC) – can be very expensive
− For Agile the objective is to “test everything that can possibly

break”

• For High Integrity software most of the cost is incurred in
− Achieving initial coverage requirements

© 2011 Lockheed Martin Corporation AER201103026

− Updating unit test cases and re-testing with each code change

Unit Testing - Testing From the Bottom-Up (cont.)

• Practical recommendations
− Test each function both nominal and stress cases – do not try

to achieve coverage required for High Integrity softwareto achieve coverage required for High Integrity software
− Require test to be performed prior to code peer review
− Perform test on each code baseline and perform peer review

on code changesg
− May want to look at cyclomatic complexity and size when

deciding what to unit test
• Complexities of less than 3 to 4 may not require unit testing

(depending upon the size) and may only require a peer review
− Object oriented design/coding also affects unit testing

strategies
Hi h l iti /l i t d t t d th “ t ll ”• Higher complexities/larger size tend to go toward the “controller”
classes which warrant unit testing

• Test complexity is shifted more toward integration (of controllers
and methods and with other controllers) than unit testing

© 2011 Lockheed Martin Corporation AER201103026

and methods and with other controllers) than unit testing

Automation of Test
• Excellent and poor reasons to automate

− Because it sounds impressive
− Because management directed it

This image is in the Public Domain

− To reduce the ever growing backlog
− There are many repetitive tests and/or data driven tests
− To reduce time spent performing regression testing and

you expect to perform regression testing quite a bit

• Test tasks to automate
− Any test that is highly repetitive with little expected change
− To produce a consistent test cycle time
− To reuse tests

• Typically these lead to automation of Functional, Regression,
Stress and Performance tests

© 2011 Lockheed Martin Corporation AER201103026

Automation of Test (cont.)

• Some tests may not be good candidates for automation
− User Interface (when very volatile and automation doesn’t

offset the cost of change)
− One of a kind tests (e.g., destructive tests)
− Tests against a specific baseline that are not intended to be

t drepeated
− Tests that have a near-term deadline where automation is

too expensive to create and/or tools don’t exist

• Automation decisions need to be driven by engineering
economics

© 2011 Lockheed Martin Corporation AER201103026

Qualification Testing Cycle Time
• Eventually after initial product delivery you will make an

amazing discovery
− Quick turn updates are driven by the time it takes to

i l / h d d h idimplement/test the update and to ensure that no side
affects have occurred

− Typically the latter (qualification test) takes the longest and
drives the entire quick turn cycledrives the entire quick turn cycle

• It is prudent to establish early in the development a
reasonable qualification test cyclereasonable qualification test cycle
− Identify what functions will be part of the regression test

suite
− Identify how long the test cycle should take (and estimateIdentify how long the test cycle should take (and estimate

how long it might take)
− Automate what drives the qualification cycle (if possible)
− Look at trading parallelism between sequential activities for

This image is in the Public Domain

© 2011 Lockheed Martin Corporation AER201103026

g p q
slightly increased risk (e.g., starting test with in
intermediate product)

Summary

We’ve discussed some of the tenets of High Integrity
software and how they could be applied to your domain
− Requirements
− Inspections/peer reviews
− Checklists
− Programming Languages and Coding Standards− Programming Languages and Coding Standards
− Static Code Analysis
− Cyclomatic complexity
− Unit Testing
− Automated Testing
− Qualification Testing Cycle Time

The rest is up to you
This image is in the Public Domain

© 2011 Lockheed Martin Corporation AER201103026

This image is in the Public Domain

