Model Driven Software Development,
A Case Study
The Good, the Bad and the Ugly

Gari Palmer
Senior Principal Software Engineer
Information Systems and Computing Technology Area
Director
May 18, 2011
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>18 MAY 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. REPORT TYPE</td>
<td></td>
</tr>
<tr>
<td>3. DATES COVERED</td>
<td>00-00-2011 to 00-00-2011</td>
</tr>
<tr>
<td>4. TITLE AND SUBTITLE</td>
<td>Model Driven Software Development, A Case Study The Good, the Bad and the Ugly</td>
</tr>
<tr>
<td>5a. CONTRACT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5b. GRANT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5c. PROGRAM ELEMENT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5d. PROJECT NUMBER</td>
<td></td>
</tr>
<tr>
<td>5e. TASK NUMBER</td>
<td></td>
</tr>
<tr>
<td>5f. WORK UNIT NUMBER</td>
<td></td>
</tr>
<tr>
<td>6. AUTHOR(S)</td>
<td></td>
</tr>
<tr>
<td>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</td>
<td>Raytheon Company, Integrated Defense Systems, 870 Winter Street, Waltham, MA, 02451-144</td>
</tr>
<tr>
<td>8. PERFORMING ORGANIZATION REPORT NUMBER</td>
<td></td>
</tr>
<tr>
<td>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</td>
<td></td>
</tr>
<tr>
<td>10. SPONSOR/MONITOR’S ACRONYM(S)</td>
<td></td>
</tr>
<tr>
<td>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</td>
<td></td>
</tr>
<tr>
<td>12. DISTRIBUTION/AVAILABILITY STATEMENT</td>
<td>Approved for public release; distribution unlimited</td>
</tr>
<tr>
<td>13. SUPPLEMENTARY NOTES</td>
<td>Presented at the 23rd Systems and Software Technology Conference (SSTC), 16-19 May 2011, Salt Lake City, UT. Sponsored in part by the USAF. U.S. Government or Federal Rights License</td>
</tr>
<tr>
<td>14. ABSTRACT</td>
<td></td>
</tr>
<tr>
<td>15. SUBJECT TERMS</td>
<td></td>
</tr>
<tr>
<td>16. SECURITY CLASSIFICATION OF:</td>
<td></td>
</tr>
<tr>
<td>a. REPORT</td>
<td>unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>unclassified</td>
</tr>
<tr>
<td>17. LIMITATION OF ABSTRACT</td>
<td>Same as Report (SAR)</td>
</tr>
<tr>
<td>18. NUMBER OF PAGES</td>
<td>19</td>
</tr>
<tr>
<td>19a. NAME OF RESPONSIBLE PERSON</td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
MDSD Case Study: Agenda

- The Good, the Bad and the Ugly
- Model Driven Software Development – The Basics
- Case Study Scope and Method
- The Raytheon System
- The MDSD Components
- MDSD Summary Results
- MDSD Consultants
- Shortcomings of MDSD Program Use
- Advantages of MDSD Program Use
- New Technology Adoption Factors
- Towards a Culture of Change
- Suggested Improvements
The Good, The Bad, The Ugly

- **The Good**
 - *Model Driven Software Development (MDSD) reduced development time, staffing and cost*

- **The Bad**
 - *Model Driven Software Development was not fully embraced by the development and integration teams*

- **The Ugly**
 - *Model Driven Software Development has not gained the adoption we would like to see*

There are many sides to the MDSD story
Model Driven Software Development – The Basics (1 of 3)

Traditional Software Development

Model Driven Software Development
Model Driven Software Development – The Basics (2 of 3)

- Model-Driven Software Development is the term used for defining systems, including behavior, in models, and then using the models to generate deliverable code.

- Platform Independent Model (PIM) of an application’s functionality and behavior.

- Developers mark up the PIM with platform specific notations.

- Models transformed to code using standardized mappings for specific target platforms (can be provided by mature tool such as PathMATE by Pathfinder Solutions).

- Design and code are always synchronized.

MDSD raises the level of abstraction.
Case Study Scope and Method

■ Why:
 – Uncover the pros and cons of MDSD use on a program
 – Provide insight to how we can improve MDSD deployment
 – Communicate to engineers and managers

■ What:
 – A retrospective of the deployment of MDSD on one Raytheon program
 – Interviews with 12 people:
 • Architects
 • Software Developers
 • Integrators
 • Program and Software management
 – Productivity and defect density metrics were collected from a Six Sigma project

Information in this presentation is from the interviewees and Six Sigma Report
The Raytheon System

System Description:

- A weapon system used against:
 - cruise missiles,
 - unmanned aerial vehicles (UAVs)
 - fixed-wing and rotary-wing aircraft
- The system integrates surveillance, command and control, fire-direction, fire distribution and engagement capabilities
- The system is currently delivered
The MDSD Components

- The Communications Architecture. Two of the message handlers (in green) were generated with MDSD
- The existing interfaces were reused from another contract

![Diagram of MDSD Components]
MDSD Summary Results

■ Positives:
 – Generally considered a success by managers and engineers
 – The customer was extremely happy with working components developed under budget, on time with lower defect densities
 – Under ran budget

■ Negatives:
 – Abstract development approach reduces understanding of system details
 – Harder to find the origin of a defect during integration
 – Extensive involvement from Pathfinder Solutions consultants

The Customer: “The Software Organization beat the budget – a refreshing change”
MDSD Summary Results Metrics

Calculation approach:
- Raytheon measures for productivity and defect density are based on Source Lines of Code (SLOC)
- MDSD code generation typically results in greater SLOC than traditional hand coding
- MDSD generated SLOC count was decreased by 50% to normalize measures which reduces productivity and defect density results
- MDSD Consultant costs and Developer training are embedded in Design, Code and Unit Test program costs

Measures:
- Planned for traditional coding approach. Only used 65% of planned developers
- Design, code, unit test and integration (DCTI) **productivity** for both Message Handlers was at least 44% **greater** than standard
- **Defect Density** (defects per KSLOC) was 1/3 **business average**
MDSD Consultants

- Pathfinder Solutions (vendor of PathMATE) highly recommends the use of consultants to get a project off on the correct path

Pros:
- High caliber consultants
- Available for quick fixes to PathMATE (pro & con)
- Provided training and mentoring on architecture methodology, OO design and PathMATE specifics

Cons:
- If the tool were more stable, there was better documentation or Raytheon had more expertise, there would be less need for consultants
- Use of consultants side by side with developers calls productivity into question
- The use of consultants may not be scalable for deployment to Raytheon
Shortcomings of MDSD Program Use

Tool:
- Debugging during integration is more complex
- Need fairly extensive experience with the toolset to make it work properly
- Training and mentoring was required for success when developers preferred to write code
- Very simple changes may require knowledge of multiple tools rather than just a programming language and compiler
- VxWorks integration was immature

People:
- Not all engineers adapt well to new methods and levels of abstraction
- Hands-on training is best for comfort with new tools
- Mentors must be available
- MDSD is built on OO. Therefore, a solid OO foundation is beneficial
- Lots of communication is required
Advantages of MDSD Program Use

- Trivial task to make some global changes
 - Changed 72-word message format to and 80-word message format for hundreds of messages in 1.5 weeks
- Application code generated by MDSD resulted in lower defect density
- Design and code are always in sync
- Method enforced common vocabulary and design guidelines
- Collaborative approach to architecture and design

Program Office Quote “The customer was so impressed that for a year the MDSD success was mentioned in their viewgraphs”
New Technology Adoption Factors

- Risks and opportunities must be communicated
- The advantages and disadvantages must be communicated
- Expect challenges with technology when it is new to the development team
- Not every engineer is ready for the challenge
- Hands on training for all team members is key
- Mentors/consultants need to be available
- Must communicate successes (productivity and quality) to team

The Defense industry and its partners are risk averse – we still need to make forward progress with new technologies
Towards a Culture of Change

- At a Corporate level, Raytheon realizes that new technologies drive better productivity and products.
- Raytheon has been adopting more technology-based development paradigms (Agile, Lean, MDSD, Domain Specific Languages, Software Factories).
- Raytheon software management respects and rewards technology adoption.
Suggested Improvements for Technology Deployment

- Select teams based on their experience and willingness to engage with new technology
- Ensure effective training for all engineers no matter when they join the project
- Existing processes and measures do not always neatly map to new technologies. New processes and measures need to be incorporated to foster wider adoption
- Continue to investigate new MDSD tools and technologies
- Encourage engineers and managers to understand MDSD benefits and pitfalls
- Provide feedback on productivity, schedule and quality status to developers
Summary

Methods Tools Training Communication SUCCESS
Acronyms

- **MDSD** – Model Driven Software Development
- **OO** – Object Oriented
- **SLOC** – Source Lines of Code
- **UML** – Unified Modeling Language