Finding Discipline in an Agile Acquisition Process

Tricia Oberndorf
Mary Ann Lapham
Michael Bandor
Charles “Bud” Hammons

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

18 May 2011
Finding Discipline in an Agile Acquisition Process

Carnegie Mellon University
Software Engineering Institute
Pittsburgh, PA, 15213

Presented at the 23rd Systems and Software Technology Conference (SSTC), 16-19 May 2011, Salt Lake City, UT. Sponsored in part by the USAF. U.S. Government or Federal Rights License
Outline

The Question
On “Rigor”
A New IT Acquisition Process
Discipline in the Existing Process
Discipline in the New IT Acquisition Process
Recommendations
The Question:

How can rigor be accomplished within DoD’s new IT Acquisition Process?

• In particular: how can the new IT Acquisition Process maintain rigor similar to that found in today’s traditional approach while still achieving the objectives of a more flexible, responsive process?
Rigor – What Do We Really Want?

Rigor:

1a (1): harsh inflexibility in opinion, temper, or judgment: severity
(2): the quality of being unyielding or inflexible: strictness
...

b: an act or instance of strictness, severity, or cruelty

2: a condition that makes life difficult, challenging, or uncomfortable;

3: strict precision: exactness <logical rigor>

4a obsolete: rigidity, stiffness
 b: rigidness or torpor of organs or tissue that prevents response to stimuli
 c: rigor mortis
Discipline, not Rigor

Discipline:
1: punishment

2: a field of study

3: training that corrects, molds, or perfects the mental faculties or moral character

4: a rule or system of rules governing conduct or activity

5a: control gained by enforcing obedience or order
 b: orderly or prescribed conduct or pattern of behavior
 c: self-control
Defense Acquisition Business Process

User Needs

Technology Opportunities & Resources

A
B (Program initiation)

User Needs

Technology Opportunities & Resources

Pre-Systems Acquisition

Technology Development

PDR

Materiel Development Decision

Engineering & Manufacturing Development

CDR

Post CDR Assessment

Systems Acquisition

Production & Deployment

LRIP/IO&T&E

Systems Acquisition

Post CDR Assessment

Defense Acquisition Business Process

Finding Discipline in Agile Acquisition
Oberndorf et al, 18 May 2011
© 2011 Carnegie Mellon University
Observations about Today’s Process

Frequent underlying problems in programs using this model include:
• lengthy gestation periods
• management of requirements
• failures in acceptance tests

Significant duration of typical program leads to heavy dependence on documentation to maintain “corporate memory.”

The undesirable side effects of early decisions, both technical and non-technical, only become visible years later, usually during integration and test
Tenets of a New IT Acquisition Process

Some key features of the new IT acquisition process:

• frequent, usable releases of capability
 – early, successive prototyping to support an evolutionary approach
 – deliver early and often
 – incremental and iterative development and testing
 – executable and testable product
• early and continual involvement of the user
• rationalized requirements
• modular, open systems approach with standard interfaces
• knowledgeable and experienced IT workforce
• flexible, tailored processes
Discipline in Today’s Approach

Integrated Defense Acquisition, Technology, and Logistics Life Cycle Management System

Finding Discipline in Agile Acquisition
Oberndorf et al, 18 May 2011
© 2011 Carnegie Mellon University
Features of Today’s Discipline

External scrutiny by decision makers
 - mandated decision events (Milestones A, B, C, ...)

Operational expectations documented in the Initial Capabilities Document (ICD) and Capabilities Development Document (CDD) artifacts
 - informal English language specifications

Numerous *plans* to document both business and technical approaches
 - by program offices and contractors
 - from management of technology to deployment

Documentation of *processes with compliance audits*
 - ensuring that processes are followed

Financial *performance reported against plan* (earned value)

Identification and management of *risks*
Key Elements of Today’s Process

Requirements: key artifacts used to
- govern development
- form the basis of major reviews
- orchestrate product evaluation, user acceptance, sell-off

Systems engineering documentation:
- Subject Matter Experts (SMEs) at various levels
 - act in part as advocates for their perception of user expectations
- users sporadically involved (e.g., attend reviews) until field trials and acceptance testing

Reviews:
- progressively more detailed evaluations of information about product(s)
- synchronized with major decision points to provide basis for decision makers to appropriately intervene to influence development.
Model of As-Is Discipline

Acquisition Side

- Acquisition Strategy
- Info Support Plan
- Risks, Progress, Deltas
- ADMs, Requirements
- Plans, Risks, Progress, Deltas
- Development (IPT leads, contractors, testers)
- Oversight (PMO & Above)
- Oversight (PMO Chief Engrs & Below)
- Tech Management (PMO Chief Engrs & Below)
- Oversight/Insight

Operational/Execution Side

- CONOPS, Doctrine, Tactics, “KPPs”
- ICD, CDD
- Oversight (COCOMS, Base Cmdrs & Above)
- Materiel Mgmt (Logistics Mgt/Brigade & Below)
- Users (Maintainers, Users)
- TRD, Execution needs (log, training)
- Execution needs (maintenance & use)
- Oversight/Insight
Discipline in the New IT Acquisition Process

Acquisition Side

- **Acq Strategy, CONOPS, Info Support Plan**
- **Oversight** (PMO & Above)
 - Risks, Progress, Deltas
 - ADMs, Funding, Schedule, Cost, ...

Tech Management (PMO Chief Engrs & Below, Users)

- Plans, Risks, Progress, Demos, Releases
- Operational Architecture

Development (IPT leads, Iteration Teams, Users)

- Execution needs (maintenance & use)

Operational/Execution Side

- **Oversight** (COCOMS, Base Cmdrs & Above)
 - ADMs, Funding, Schedule, Cost, ...

- **Materiel Mgmt** (Logistics Mgt/Brigade & Below)

- **Users** (Maintainers, End Users)

- Oversight (KPPs, Doctrine, Tactics, ICD, CDD)

- Execution needs (log, training)

Finding Discipline in Agile Acquisition

Oberndorf et al, 18 May 2011

© 2011 Carnegie Mellon University
Highlighted Differences

• The content of the information flows
• Deltas include
 – familiar items (deviations from plans and requirements)
 – use cases deferred to future iterations/releases, based on experience in a given iteration/release
• Demonstrations and formal Releases provide feedback
• Use cases:
 – take the place of functional requirements
 – give actionable specification of behavior as well as the context
 – provide direct mapping to testing and evaluation

The central role formerly served by requirements is replaced by the Operational Architecture.
The Operational Architecture

A structured representation of:

• doctrine, tactics, and CONOPS
• the set of use cases that formally characterize behavior of the envisioned system in operational terms
• quality attributes that characterize performance and other system-level characteristics of the envisioned system
 – beyond the functions the system will perform, e.g., security, reliability
• the range of technology to be employed
• constraints such as mandated standards

Evolves

• through the information and experience gained in each iteration
• across multiple releases
• becomes the living information about the system context
Discipline in the New IT Acquisition Process

External scrutiny by decision makers at mandated decision events as well as the end of iterations and releases

- short duration of iterations and releases provides feedback to decision makers on choices they *personally* made, enabling corrective actions

Operational expectations:

- well-formed use cases more detailed than typical CDDs
 - retains context and fine points influencing the behavior
 - more likely to be directly usable by development team
- Operational Architecture more actionable explication of user expectations, constraints, quality attributes

Plans and compliance audits

- frequent sprints of much shorter duration require less elaborate plans
- compliance audits replaced by regular delivery of executable capability
Discipline in the New IT Acquisition Process

PLUS

Personnel
- time-constrained iterations force personnel from all disciplines/roles to work together repeatedly
 - amplifies experience in executing all parts of development cycle together, from up-front systems analysis to test, integration, and deployment

Deltas
- use case deferrals, shortfalls, test deficiencies are in domain-relevant language of end users and decisions makers
 - avoids translation from technical to domain terminology
Bottom Line

When we speak of discipline, we are advocating the creation of a more disciplined mechanism (structures + processes) to:

- describe user expectations
- enhance communications between user and acquisition/developer communities
- acknowledge there is of necessity an evolving understanding of what is operationally required

- The Operational Architecture is the key set of artifacts that document the results of the employment of this mechanism.
- The processes and mechanisms establish the ongoing interaction among players in the user and acquiring organizations.
Recommendations

- Conduct effort to take this approach down to the next level of detail
- Make some additions to the proposed process:
 - Begin each iteration with an architecture segment
 - Assess architecture and potential extensions/revisions
 - Begin each release cycle with a reassessment of the business case
 - Capture what has changed in system context and environment
- Revise the culture
 - Organizational structure, rewards systems, communication style, decision-making style, staffing model (roles, team make-ups, etc.)
- Look for personnel with special traits
 - Self-starters, team players, multiple roles, communicators, adaptable
- Institute new training
 - Assists with culture change
- Resolve issues in customer interaction
 - Access to true end users is an essential element of the new process
QUESTIONS ?
Contact Information

Mary Ann Lapham
Senior Member of Tech Staff
Acquisition Support Program
412-268-5498
mlapham@sei.cmu.edu

Tricia Oberndorf
Senior Member of Tech Staff
Acquisition Support Program
412-973-3459
po@sei.cmu.edu

U.S. Mail
Software Engineering Institute
Customer Relations
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
USA

Web
www.sei.cmu.edu
NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copyright license under the clause at 252.227-7013.
Acronyms

CDD: capabilities development document
CDR: critical design review
COCOMS: combatant commanders
CONOPS: concept of operations
DAU: Defense Acquisition University
DSB: Defense Science Board
DoD: Department of Defense
DT: developmental test
EVMS: earned value management system
FOC: full operational capability
FRP: full rate production
ICD: initial capability document
IOC: initial operational capability
IOT&E: operational test and evaluation
IPT: integrated product team
IT: information technology
KPP: key performance parameter
LRIP: low rate initial production
OT: operational test
PDR: preliminary design review
PMO: program management office
SME: subject matter expert
TRD: technical requirements document