System Behavior Specification
Using IEEE Std 1175.4

27 April 2010

Dr. Dwayne L. Knirk
Distinguished Member Technical Staff
Sandia National Laboratories
System Behavior Specification Using IEEE Std 1175.4

Sandia National Laboratories, PO Box 5800, Albuquerque, NM, 87185

Approved for public release; distribution unlimited

Presented at the 22nd Systems and Software Technology Conference (SSTC), 26-29 April 2010, Salt Lake City, UT. Sponsored in part by the USAF. U.S. Government or Federal Rights License
Prologue

- System behavior is what delivers value into an application domain, but frequently it is not well understood even after the system has been realized.

- The concepts and language for describing system behavior are not adequately addressed in many system development methodologies.

- IEEE Std 1175.4™-2008 provides a conceptual model for describing the behavior of many kinds of engineered systems.
Questions to be Addressed

About System Behavior Description
 – What is the System?
 – What is System Behavior?
 – What is a System Behavior Description?
 – Where does it fit the Development Life Cycle?

About IEEE Std 1175.4
 – What does 1175.4 standardize?
 – What descriptive concepts does it provide?
 – What can be learned from a Behavior Description?

About Using Behavior Descriptions
 – What use is a Behavior Description?
 – How can you use it?
What is the System?

ISO/IEC 15288, Clause 5.1.2
– The system [is] man-made, created and utilized to provide products and/or services in defined environments for the benefit of users and other stakeholders.

Why
– Purpose is to alter some stakeholders’ environment(s)
– Value is the benefit of change to those stakeholders

How
– Through interactions with the environment
What is System Behavior?

A Scientist's View of the Philosophy of Science

– Behavior is the ongoing interaction of the individual with its environment; It is transient

– The environment with which the individual interacts must be described and understood

– The science of behavior must be descriptive and classificatory

– The key to both the methods and concepts of behavior science is measurement

William S. Verplanck (http://web.utk.edu/~wverplan/apapaper.html)
What is a System Behavior Description?

A Model

– Represents some aspects of the system, but is simpler
– Enhances understanding and agreement about those aspects
– Does not misrepresent the system

Behavior Description

– Represents the interactions of system with its environment and the rules governing the relationships among them (behavior)
– Does not allow inferences about system design
– When quantified, provides product specifications
What is a System Behavior Description?

Black – Box Description

– Describes the behavior patterns of an individual
– Is expressed in terms perceptible outside the system
– Identifies cause-effect and functional relationships

White – Box Description

– Describes the behavior patterns of a collection, given the behavior patterns of the individuals
– Is expressed in terms perceptible inside the system, but outside the individuals
– Identifies causal chains and functional compositions
Where Does It Fit the Development Life Cycle?

Problem Domain: Need for a Result
– Product Criteria, describes desired effects
– Stakeholder Requirements

Solution Domain: Concept for a Thing
– Product Requirements, describes offered capability
– System Requirements
 behavioral, structural, environmental

Boundary between Domains is the System Boundary

• Requirements and Specifications, Michael Jackson (Addison-Wesley, 1995)
• ISO/IEC 15288:2008 Systems and software engineering — System life cycle processes
Where Does It Fit the Development Life Cycle?

Problem Domain = Things with properties and relationships

Product Criteria = Effects created in the problem domain (new things, properties, and relationships)

Solution Domain = System capability interacts with problem domain to bring about required effects
Where Does It Fit the Development Life Cycle?

Mechanization

Conception | Formulation | Implementation | Evaluation

- Problem Requirements
- Behavior Description
- Software Design
- Software Implementation
- Testware Design
- Testware Implementation
- Trace and Pass / Fail

Demonstration
What Does 1175.4 Standardize?

Descriptive Model of System Behavior
– Not a design model for mechanism construction
– Not a mathematical model for proof construction

Goal is Understanding and Agreement
– Identify observables at the system interface
– Identify repeatable patterns of relationships
– Description of all possible lifelines

To Answer
– How will the system be affected by the problem domain, and how will it affect the problem domain?
What Does 1175.4 Standardize?

Presentation
- Graphical Display
- Tabular Display
- Natural Language
- Dynamic Simulation

Viewpoint
- State Transition
- Entity - Relationship
- Data Flow
- Performance

Concept
IEEE Std 1175.4
- Unit, Port, Interaction
- Interaction, Obligation
- Action, State
- Property, Event, Condition
- Assembly, Couple, Aliases
What Descriptive Concepts Does it Provide?

- Assembly
 - Port Alias
 - Port Couple
- Interaction Alias
- Build Structure
- Boundary Interfaces
- Port
- Interaction
- Action
- State
- Obligation
- Behavior Patterns
- Event
- Condition
- Property
- Base Quantities

has, contains, relates, provides, exhibit, characterize
What Descriptive Concepts Does it Provide?

- **Packaging of Behavior**
 - Units, Ports, Interactions
 - Assembly, Couple, and Aliases

- **Observables of Behavior**
 - Interactions, Coordination Patterns
 - Properties, events, conditions

- **Patterns of Behavior**
 - Functionality, causality
 - History dependence
How is Behavior Packaged?

Units, Ports, Interactions

Interaction transfers energy, material, or information

Boundary

Input – interaction entering unit

Output – interaction leaving unit

Ports

Interactions

P1 P4

P2 P5

Unit
How is Behavior Packaged?

Unit
- Recursive architectural element
- System, subsystem, component, module

Port
- Means of interconnection
- Serialization of interactions
- Unidirectional or bidirectional

Interaction
- Phenomenon shared between unit and environment
- Occurrence events, content properties or structures
- Interaction is point-time or extended-time
How is Behavior Compounded?

Assembly, Alias, Couple

Assembly

Unit A

Unit B

Unit C

Unit D

Unit E

Alias

Couple
How are Behaviors Coordinated?

Inputs

U₁

U₃

Subject Unit

Stimulus

Uncoordinated
Uncontrolled Input

Uncoordinated
Uncontrolled Output

Response

Uncoordinated
Controlled Input

Uncoordinated
Controlled Output

Subordination

Coordinated
Uncontrolled Input

Coordinated
Controlled Output

Outputs

U₂

U₄

Subordinate Unit

U₅

Occurrence Control
How Are Interactions Quantified?

Property

– Measurable (observable) phenomenon of interaction
– Constant or time-varying, simple or compound, discrete or continuous

Event

– Marker for time when an observable change occurs
– Interaction occurrence, time-dependent property changes, or time changes

Condition

– Assertion about properties, events, or other conditions that is observably True/False at a given time
What Is a Behavior Occurrence?

<table>
<thead>
<tr>
<th>Cause</th>
<th>implies</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>This event with these inputs and satisfying these criteria</td>
<td></td>
<td>Those events with those outputs and making these guarantees</td>
</tr>
</tbody>
</table>

A Simplified Table Format

<table>
<thead>
<tr>
<th>A#</th>
<th>X0</th>
<th>C0</th>
<th>E0</th>
<th>X1</th>
<th>C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>An</td>
<td>input</td>
<td>precondition</td>
<td>trigger</td>
<td>output</td>
<td>post condition</td>
</tr>
</tbody>
</table>
What Is a Behavior Pattern?

• Abstraction of Behavior Occurrences
 – Common set of interactions
 – Common set of conditions
 – Common trigger event
 – Different property values and event times, but within well-defined domain boundaries
 – Same True preconditions

• Action
 – A behavior pattern
 – Describes causal and affective relationships among a set of possible interactions
What Is a Behavior Pattern?

Precondition

State

Required Action

Provided Action

Postcondition

causes

enables

changes

needs

expects

P_1

J_S

P_2

J_R

P_3

J_Q

J_P
How is History Dependence Described?

- Modification of Causal Dependencies
 - Behavior State

- Modification of Functional Dependencies
 - Property State

- Modification of Event Dependencies
 - Temporal State

- Modification of Interaction Dependencies
 - Port State
How is History Dependence Described?

<table>
<thead>
<tr>
<th>Cause</th>
<th>implies</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>This event with these inputs at this point in unit history and satisfying these criteria</td>
<td></td>
<td>Those events with those outputs advancing unit history and making these guarantees</td>
</tr>
</tbody>
</table>

A Simplified Table Format

<table>
<thead>
<tr>
<th>A#</th>
<th>X0</th>
<th>S0</th>
<th>C0</th>
<th>E0</th>
<th>X1</th>
<th>S1</th>
<th>C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>An</td>
<td>input</td>
<td>initial state</td>
<td>pre condition</td>
<td>trigger</td>
<td>output</td>
<td>final state</td>
<td>post condition</td>
</tr>
</tbody>
</table>
What is a System Behavior Description?

Unit: ⟨Name⟩

- Specification of Ports, Interactions
- Specification of Properties, Events, Conditions, States
- Specification of unique cause-effect and functional relationships with a catalog of Action patterns, e.g.

<table>
<thead>
<tr>
<th>A#</th>
<th>X0</th>
<th>S0</th>
<th>C0</th>
<th>E0</th>
<th>X1</th>
<th>S1</th>
<th>C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>An</td>
<td>input</td>
<td>initial state</td>
<td>pre condition</td>
<td>trigger</td>
<td>output</td>
<td>final state</td>
<td>post condition</td>
</tr>
<tr>
<td>A101</td>
<td>N1, N2</td>
<td>Sa</td>
<td>Ca</td>
<td>E1</td>
<td>---</td>
<td>Sb</td>
<td>Cb</td>
</tr>
<tr>
<td>A102</td>
<td>N1, N2</td>
<td>Sa</td>
<td>Cc</td>
<td>E1</td>
<td>U1</td>
<td>Sa</td>
<td>Cd</td>
</tr>
<tr>
<td>A103</td>
<td>N4</td>
<td>Sb</td>
<td>Ce</td>
<td>E4</td>
<td>U2</td>
<td>Sa</td>
<td>Cf</td>
</tr>
</tbody>
</table>
What Use Is a Behavior Description?

For Informal Understanding

– Suppose I do \(\langle \text{treatment of unit} \rangle \)

 What should I expect to be the result?

– Suppose I want \(\langle \text{effect in my world} \rangle \)

 How could I get that result?
What Use Is a Behavior Description?

For Formal Checking

– Will Unit deliver expected value into problem domain?

Subject Unit Behavior
\[\land \text{Environment Assumptions} \land \text{External Unit Behavior} \Rightarrow \text{Desired Result} \]

– Will Unit design provide the Unit behavior?

Component Unit Behaviors
\[\land \text{Interconnection Structure} \Rightarrow \text{Subject Unit Behavior} \]
How Can You Use It?

Framing Requirements Analysis Work
- Concept instances to be found and identified
- Questions to be asked and answered
- Specifications to be determined

Guiding Test Case Design Work
- Interaction samples for stimuli
- Interaction observations for responses
- Behavior sequences for historical dependencies
How Can You Use It?

Define as a Product Artifact
– Product “Scope and Vision” satisfying product criteria
– Target for product architecture and design
– Target for test architecture and design

Use a Data Metammodel (IEEE P1175.5*)
– Formalized expressions for concepts
– Formalized entity-relation-attribute/object-role-model
– Formalized model consistency verification
– Presentation-level support

* Discuss participation in 1175WG with the presenter after this session
Questions?