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Abstract

A novel, fully reconfigurable collimator device for y-ray and X-ray imaging was built
and tested as a coded aperture. The device consisted of 10x10, 5x5x5 mm?® cham-
bers. Each chamber either was filled with an attenuating liquid, stopping photons,
or evacuated of the attenuating liquid, allowing the photons to pass through. As the
pattern of “on” and “off” chambers was manipulated, different, semi-independent
views of the y-ray source were found. Noise in reconstructed images decreased in all
tests. Image reconstruction was performed with correlation methods and Maximum
Likelihood Expectation Maximization (ML-EM). With ten mask patterns, the signal-
to-noise ratio (SNR) in images of a Co-57 point source increased by a factor of 4.3
using correlation methods and by a factor of at least 50 using ML-EM. SNR in images
of a Cd-109 source with high background increased by a factor of 3.0 using correlation
methods and by a factor of 1.8 with ML-EM. Two extended sources were imaged, and
the images improved when more masks were used. The Multiplexed Compton Scat-
ter Tomography (MCST) forward problem using a PHDs Co high purity germanium
(HPGe) detector was tested and evaluated. Potential applications are discussed in

detail.
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A PROGRAMMABLE LIQUID COLLIMATOR FOR BOTH CODED
APERTURE ADAPTIVE IMAGING AND MULTIPLEXED COMPTON
SCATTER TOMOGRAPHY

I. Introduction

1.1 Overture

Numerous scientific and engineering endeavors rely on the ability to image ra-
dioactive sources that emit high-energy photons, either X-rays or v-rays. Detection
of fissile material, nondestructive material testing, medical imaging and astronomy
are a few notable examples. This paper focuses on 7-rays, although all of the prin-
ciples and techniques are equally valid for X-rays, particularly hard X-rays. ~-ray
imaging is difficult for two main reasons. First, significant depth is required to stop a
given photon fully in order to measure the energy deposited. The mean free path in a
detector can be longer than the detector’s depth, resulting in low detection efficiency.
The charge displaced by the incoming photons must be collected by equipment that
can be bulky, increasing the overall size of the device. y-ray detectors never will have
the pixel density of a visible light detector. Secondly, high-energy photons cannot
effectively be diffracted and focused by a lens. The wavelength is many orders of
magnitude smaller than the characteristic sizes of a detection device. For photons
above about 30 keV, diffraction may be ignored [27, 45].

Since the photons cannot be focused, they must be constrained in some other way.
Often a pinhole collimator is used. A pinhole collimator is simply a small hole drilled

into a sheet of high-Z material. When the pinhole collimator is placed between a ~y-ray



source and a position-sensitive detector, all of the v-rays are blocked except for those
that pass through the pinhole. An inverted image is projected onto the detector. As
the pinhole diameter decreases, the spatial resolution of the system increases. The
image becomes sharper. However, decreased pinhole diameter also causes decreased
throughput. A smaller pinhole corresponds to increased detection durations since a

minimum number of detected photons are needed to form a good image.

Figure 1. Left: A pinhole collimator. Right: Basic overview of the coded aperture
imaging procedure [26].

One way to increase throughput, while maintaining good image resolution, is to
drill more holes in the sheet of high-Z material. This is called a coded aperture. The
raw data from the detector consists of the projections from each of the pinholes, all
summed together. Knowing the positions of the pinholes relative to the detector,
a computer routine can be used to unfold all of the projections and reconstruct an
image of the source [21, 2]. The coded-aperture technique has been used successfully
for many decades. The main drawback to the technique is that no computer routine
can reconstruct an image of the source perfectly. All reconstruction routines introduce
what is termed inherent noise to the final image. Some inherent noise is related to
the pinhole positions whereas some inherent noise is randomly placed. In either case,

if different mask patterns are used, and the reconstructed images from the different



patterns are summed together, the inherent noise will cancel out. Therein lies the
purpose of the programmable collimator. By reconfiguring the coded-aperture during
data collection, the inherent noise cancels out in the final image.

In 2010, at the Air Force Institute of Technology (AFIT), Dr. Larry Burggraf
conceived of the programmable aperture collimator concept. Confirmation of a pro-
grammable collimator’s feasibility and utility was provided by Maj Benjamin Kowash.
They pictured a device that would use a liquid, high-Z metal to block ~v-rays, jux-
taposed with a low-Z plastic through which ~-rays could pass. If the high-Z metal
and the low-Z plastic could be moved around relative to each other, incident y-rays
would be blocked in different patterns. To achieve this goal, a grid was drilled out of a
5x5x5 cm? steel block. Small plastic plugs were fabricated to snugly fit in to each grid
chamber. The plugs are pushed or pulled back and forth in the chambers. From one
side of the grid block, the liquid, high-Z metal is allowed to flow freely. By pushing
the plug backward, the high-Z liquid metal is displaced from the chamber, leaving
only air and plastic to attenuate a given ~-ray. If the plug is pulled forward in a given
chamber, the chamber fills with the liquid metal so that y-rays are blocked in that
particular chamber. In effect this setup can be thought of as a 10x10 matrix, where
each element of the matrix can be turned either “on” or “oft” to y-ray transmission.

Two potential uses for this device are presented in this document:

e Coded-Aperture Imaging: As mentioned above, a coded-aperture provides good
throughput and resolution comparable to a pinhole collimator. The computer
routine introduces noise into the reconstructed image. By using different pinhole
configurations, or mask patterns, the noise and artifacts from the reconstruction

process cancel out in the final image.

e Multiplexed Compton Scatter Tomography: A radionuclide and a v-ray detec-

tor are placed on one side of a sample. v-rays are Compton scattered within

3



a material of interest. The scattered v-rays are collected by a position and en-
ergy sensitive detector. An image of the electron density in the sample is found,
which is useful in nondestructive testing or medical imaging, especially bone
density studies. The problem is ill-conditioned, and could benefit from con-
straints through physical collimation. Current commercial systems are highly
collimated and examine one voxel in the sample at a time. By viewing mul-
tiple voxels simultaneously, acquisition time decreases and/or required source

activity decreases.

1.2 Coded Aperture Application

The coded aperture system was first suggested by Dicke [21] and Ables [2] in 1968.
X-ray astronomers had been seeking a system in which heavenly X-ray sources could
be imaged with good resolution and in the shortest time possible. A pinhole collimator
is used to increase the resolution of an X-ray camera system. The smaller the pinhole
diameter is, the better the resolution will be. However, with a smaller pinhole the
number of counts incident on the detector decreases. Dicke and Ables suggested
that an array of pinhole collimators could be placed in front of the detector. The
pinholes are small so as to provide good resolution. The greater quantity of pinholes
increases the count rate. This pinhole array, or coded-aperture, can be configured
in a variety of ways. As light from a source travels through the pinholes, it is cast
onto the detector in a different way from each pinhole. Each pinhole causes a unique
projection onto the detector. A computer must be used to interpret the data from the
detector, unfolding all the pinhole projections to arrive at an image that reasonably
recreates the original object. A coded aperture increases the Signal-to-Noise Ratio

(SNR) of a standard detector [21]. The SNR advantage of the coded-aperture scheme



is most prominent with point sources and becomes less pronounced as more sources
are placed in the Field-of-View (FOV).

Multiple coded-aperture mask configurations have been used to increase the fi-
delity of a reconstructed image [16]. Alternatively, the mask and/or detector can
be moved to different locations around the object to increase the number of unique
views. Prefabricated masks have been used for y-ray coded-apertures, hitherto. Of-
ten tungsten is used, or other heavy metals such as lead. For ~-rays in the 100’s to
1000’s of keV, a coded-aperture thickness on the order of centimeters is required. The
closed portions of the coded-aperture collimator must be thick enough to attenuate
a large portion of the y-rays. The programmable collimator of this study is a 10x10

" meaning that y-rays are allowed

array, where each array element can be turned “on,’
through, or “off,” meaning that v-rays are attenuated. The ability to configure the
collimator in different ways allows for multiple, semi-independent views to be made
of the object, increasing image fidelity over a given, total measurement time.

As a dynamic coded-aperture, the programmable collimator has many potential

applications in the Department of Defense (DoD) and elsewhere. These applications

are discussed further in Sections 2.6.5 and 6.2.6.

e The programmable collimator could be mated with a position and energy sen-
sitive detector and employed as an imaging y-ray detector on an unmanned,
ground-based robot or aerial vehicle. The SNR advantage from the coded-
aperture technique would be advantageous in environments where a source is
either weak or shielded. A vehicle of this type could survey large areas after a
nuclear attack or a nuclear reactor accident, as well as find certain radioactive

nuclides in effluents for treaty monitoring applications.

e A passive sensor could continuously search for radioactive material in passing

vehicles at ports, gates, etc.



e The lessons learned from programmable collimation could be applied to surveil-
lance satellites. A future system might consist of a number of detectors, placed
on one satellite or several satellites, watching the Earth for nuclear events.
The same research conducted for choosing the best mask sequence for the pro-

grammable collimator is applicable to space surveillance systems.

e The device could allow for more effective y-ray or X-ray, space-based astron-
omy. Coded-apertures have a long history with astronomy. Sometimes SNR
is increased by spinning the satellite. Programmable collimation removes the

need to spin, since spinning can introduce difficulties in satellite design.

e Medical tomographical imaging could be improved by increasing image quality

and /or decreasing the radioactive dose given to patients.

e The device could be used to give position sensitivity to a position-insensitive
detector. Such functionality has been explored with Rotating Mask Collimators
(RMC) mated with Sodium Iodide (Nal) detectors [74]. A programmable col-
limator/Nal system would be cheaper than most energy and position sensitive
detectors. Such a system could be used in any of the applications mentioned

above, among others.

1.3 Multiplexed Compton Scatter Tomography Application

Another type of application for the programmable collimator is the improvement
of Multiplexed Compton Scatter Tomography (MCST). MCST was first investigated
at AFIT by Brian Evans and Matt Lange in research advised by Professors Jeffrey
Martin and Larry Burggraf [25, 41]. That research demonstrated multiplexed imaging
in a single discretized slice of material. MCST is a methodology for one-sided non-

destructive investigation of materials. It differs from other tomographic techniques



because the source and detector can be placed on the same side of the object, rather
than on opposite sides. In many industrial cases, access to opposite sides of the object
to be imaged is not available. MCST could be applied effectively toward the detection
of cracks and structural failures in airfoils, composite structures, and other aircraft
systems. MCST also could be used for improved medical tomography. Probably
it would complement existing tomographic techniques, like Computed Tomography
(CT) or Positron Emission Tomography (PET), allowing for better resolution and/or
a lower total dose to patients. In MCST, a monoenergetic radionuclide is placed near
an object, beside a position and energy sensitive detector. Shielding is placed between
the source and detector. Photons emitted by the source are Compton scattered in
the sample. Some of these scattered photons are detected. By knowing the position
and energy of the received photons, spatial and compositional information about the
sample is ascertained. MCST is well suited for two-dimensional applications. The
programmable collimator would serve to produce three-dimensional images by con-
straining the highly multiplexed problem, allowing for solutions to be found quickly

and accurately.

1.4 Research Goals

The goal of this research was the characterization of the programmable collimator
given the coded-aperture and MCST setups. To the best knowledge of the author
and his committee, a liquid metal never has been used to attenuate v-rays in quickly
programmable patterns. An evaluation of the viability of this device for different
applications was wanted. Recommendations from this proof-of-concept study will be

used to direct future investigations into programmable collimation.



II. Theory and Background

2.1 Coded-Aperture Theory

The coded aperture system was first suggested by Dicke and Ables in 1968 [21, 2].
In y-ray imaging, a single pinhole collimator is used to increase the resolution of a
detector. With coded apertures the single pinhole is replaced by numerous pinholes
in an array. As high-energy light shines upon the array, each pinhole causes a unique
projection onto a spatially-sensitive detector. Knowing the configuration of the pin-
hole array, mathematical techniques are used to unfold all the projected images from
each other, reconstructing the original image. The term multipler advantage is used
to describe the greater SNR in reconstructed images produced by a coded-aperture
array versus those from a single pinhole (SNR is explained thoroughly in Section
5.3). For point sources the SNR improvement goes roughly as V'N, where N is the
number of pinholes [21]. As more point sources are imaged, the multiplex advantage
decreases. A coded-aperture works better for point sources than for extended sources.
Coded-aperture problems usually are approximated as three parallel planes. Fen-
imore and Cannon outlined a basic coded-aperture methodology in their 1978 paper
[26]. The sources exist in the object plane, O. The radiation moves through a col-
limator in the aperture plane, A, where A is the mask pattern. The light moving
through the aperture plane is projected onto the detector or picture plane, P, given
by
P=(OxA)+N (1)

As with all real detector experiments, noise, N, always is summed with the true
signal and must be considered. Sources of noise include, but are not limited to, low
counting statistics, background scattering, transmission through closed portions of

the array, imprecisions in the detector and electronics noise. In most applications, all



three planes are discretized into two-dimensional matrices. Notice that O is convolved
with A in Equation 1, where * is the convolution operator. An estimate of the object,
O, can easily be found as

<§=Rf4[££ﬁ}

FA) (2)
where F is the Fourier transform and R is the reflection operator. This method is
typically flawed, because F (A) contains regions of frequency with small magnitudes.
In these regions the true signal easily is lost in the noise. Woods et al. showed
that deconvolution techniques can be used in conjunction with a two-dimensional
Wiener filter [77]. Often correlation techniques are preferred. Here « is the correlation

operator. Matched filtering is another term used to describe correlation decoding.

In the correlation methodology, the object reconstruction is defined as

~

O = Px(G
(3)
= RO*x(AxG)+ NG
G is called the postprocessing array, or matched filter, and is only a mathematical
construct. It does not exist physically. G is chosen such that A x G approximates a

two-dimensional Dirac d-function. If this §-function were perfect, the object estimate

would reduce to

~

O=0+(N«G) (4)

Notice that the noise cannot be removed from the estimated object. Unfortunately,
Ax G will deviate from a true d-function in any real application, introducing artifacts
into the estimated object.

In the original astronomy application, a point source is assumed to be infinitely
far away. A star is much more distant than the scale of the detector apparatus. If the

source is at infinity, the aperture pattern is projected onto the detector plane at the



Figure 2. Planar approximation of the coded-aperture problem. Adapted from [65].

same scale. However, in most defense and medical applications, the source cannot be
assumed to be located at infinity. Rather, a magnification effect will exist, and must

be considered. The magnification factor, m, is given as:

S1 + So

m = (5)

S1

where s; is the distance between the object and the aperture planes and s, is the
distance between the aperture and detector planes, as shown in Figure 2. In near-field
applications, it is conceivable that the magnification could be used to determine the
distance of the source from the detector. Information about the source’s location in all

three dimensions could possibly be gathered by factoring in the effect of magnification.

2.2 Mask Configurations

A number of different coded-aperture collimator designs have been employed in the
past, each with its own advantages. Fresnel zone plates, annuli, and Fourier apertures
can be used as coded-apertures [9]. The programmable collimator falls under the
broad pinhole-array category. The term “pinhole” is used here somewhat loosely as

any small round or square aperture. Each element of the programmable collimator is
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shaped as a 5x5 mm? hole, for instance. Square holes are easy to manufacture, and
thus are fairly common. Hexagonal holes also have been organized into a honeycomb
pattern and used successfully [17].

The first pinhole array design considered is called the random array and was
suggested in Dicke’s original paper [21]. Any number of pinholes can be opened, with
varying results. Often 50% of the array elements are opened, as is the case in Figure
3. An initial guess for the matched filter, GG, could be the matrix A itself. Since a
source projects an identical shadow of the aperture pattern onto the detector, this
is a reasonable first guess. However, recall that the term A x G should approach a
o-function as nearly as is possible. If A is used for GG, a distinct triangular base is
formed in the correlation (Figure 3). Anytime that the sidelobes of the correlation

A

deviate from zero, artifacts are introduced into the object estimate, O.

Figure 3. Top: A random pinhole array, A. Bottom-Left: The autocorrelation of the
pinhole array, A. Bottom-Right: A slice in one dimension of the autocorrelation of A.
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Of course, G is nothing but a mathematical abstraction, and can be altered in
any way desired. With this idea in mind, C. Brown suggested that the anti-mask
should be allowed to take on negative values [10]. Namely, the zeros in the mask are
replaced with “-1’s”, or

G(i,j) = 1if A(i,j) =1
(6)
= —1if A(i,7)=0
where ¢ and j are row and column indices, respectively. In the mask, A, a value of “1”
corresponds to an open element where y-rays are allowed through, whereas a value

of “0” corresponds to closed elements, where y-rays are blocked.

Figure 4. Left: The correlation of A from Figure 3, with its Brown anti-mask, G. G is
constructed by replacing the zeros in A with “-1’s”. Right: A 2D slice of the 3D A xxG
plot.

The Brown anti-mask improves the A x G term. The triangular base is removed,
causing the term to approximate a d-function more closely. Note that the inclusion of
negative values in the anti-mask causes negative values in the A x G array. This can
result in non-physical artifacts in 0, though the advantage of the removed triangular

base typically outweighs the disadvantage of these artifacts.
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Another mask configuration is called the Uniformly Redundant Array (URA).
A subset of this mask class is the Modified Uniformly Redundant Array (MURA).
URA'’s were studied extensively by Fenimore and Cannon [26]. In an extension of
Calabro and Wolf’s work, they define the aperture plane as an infinite mosaic of
repeating, pseudonoise arrays [12]. The basic array has dimensions of  and s where

r and s are both prime numbers and r = s+ 2. The basic array, A(I, J) is defined as

A(IJ) = 0if I =0,
= 1if J=0and I #0,
= 1if C()C,(J) =1,

= (0 otherwise

where [ and J are row and column indices of the basic array, respectively, and

Co(B) = 1 if there exists an integer z,1 <z <«
such that / = mod,z? (8)

= —1 otherwise

where o can be r or s and 8 can be I or J. Physical coded-apertures cannot be
infinite, but instead are a finite cutout of the infinite mosaic. Figure 5 shows a coded-
aperture, A, of size 2r x 2s, where r = 19 and s = 17. @, the Brown matched filter,
was found as in Equation 6.

A discrete correlation always doubles the size of the output matrix as compared
to the input matrices. The center square of the correlation is the only part used in
the image reconstruction process. The additional spikes in (A x G) arise from the
repetition of the basic array within A. The URA has been shown to outperform the
random array in most cases, when correlation methods are used [5, 26]. Unfortunately,

the programmable collimator is not equipped with sufficient elements for a proper
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URA/MURA pattern. Technically one could be formed, but whether the resulting
matrix could be classified as a URA would be disputable. As such, random arrays will
be focused upon with the programmable collimator. On top of all this, URA/MURAs

are not necessarily more effective for ML-EM methods.

Figure 5. Top: An example URA, A, where r=19, s=17 and A is 2r x 2s. Bottom-Left:
The correlation of the URA mask, A, with the Brown anti-mask, G. Bottom-Right:
The central slice of the correlation between A and G. [38]

Note that the above figures do not have any noise included. The portions in the
plots of (AxG) that appear to be noise are instead artifacts of the correlation process.
If the A and G planes approach infinite extent in space, the artifacts would diminish
to zero. These artifacts often are termed inherent noise. The choice of aperture
pattern and matched filter pattern should be made so as to diminish the inherent

noise as much as possible.

14



2.3 Reconfiguring the Mask

The primary advantage of the programmable collimator is its ability to be recon-
figured. Multiple “views” are desired of the imaged object. A number of different,
unique projections of an object will increase the fidelity of the final, reconstructed
image. This can be achieved in a variety of different ways. In some cases, the coded-
aperture mask and/or detector is rotated, giving multiple views of the object [17].
Often, in this case, hexagonal arrays are used, being more conducive to rotational
transformations about the center axis of the mask. In the satellite application, this
sort of rotation adds complexity to the satellite system. The entire satellite must
rotate, perhaps causing problems with other systems. In ground-based applications,
the requirement of rotation implies additional actuators to make the whole system
rotate.

In other tests, the coded-aperture mask pattern was altered by sliding a pattern
cut from tungsten in one dimension and only allowing a portion of the pattern to
let radiation through [71, 16]. For example, a 10 x 20 pattern could be cut from the
tungsten. Lead could be used to ensure that only a square of size 10 x 10 would be
open. The pattern could be slid in the long direction, allowing for ten mask patterns.
Such a design was suggested as a way to combat the incomplete attenuation of photons
in the closed portions of a coded-aperture pattern, which becomes a greater factor
with higher energy ~-rays. The programmable collimator is an improvement over
this sort of design in that it can produce any possible pattern, therefore allowing for
“views” that are more independent from each other.

Another means for gaining multiple views of the object is either to rotate the
object or to rotate the coded-aperture/detector system around the object. The latter
method is recognizable as a staple CT technique. This sort of rotation is especially

well suited for three-dimensional imaging, or tomography. The disadvantages are
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Figure 6. A time-coded pinhole array, in the style of Clinthorne et al. [16]. The
columns are shifted once leftward in each subsequent array.

similar to those enumerated previously, namely the additional mechanical complexity
of a rotating system. Furthermore, the rotation can cause problems for iterative
reconstruction algorithms, like ML-EM. Such techniques require the pixel size in the
object be fixed so that the relationship between the object and the projections is
tractable [33].

With the programmable collimator, no rotation is necessary. Semi-independent
views are gained by changing the mask configuration. Thus, the collimator and
detector can stay in the same position relative to the object. Or the programmable
collimator could be conjoined with current methods, making them better.

Though not investigated in this work, a future programmable collimator imaging
system might be able to incorporate incoming data in order to choose the best patterns
for the remainder of the data run. Aperture patterns would be chosen on the fly. After
the first 1-2 arbitrary mask patterns were used, the system would have a good idea of
where the source is located. It could then choose the proper patterns so as to narrow in
on the source. The system could start with a high pinhole density, allowing maximum
throughput with lower resolution. As the source becomes visible, the pinhole density

would decrease, resulting in a sharper image in a shorter duration.
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2.4 The Maximum Likelihood Expectation Maximization Algorithm

Matched filter and correlation techniques are the traditional means for analyzing
data from a coded-aperture system. A more modern and effective method, called the
Maximum Likelihood Expectation Maximization (ML-EM) technique, has been used
for several decades in medical imaging [61]. In ML-EM, an accurate forward model
must first be devised. Good predictions of the detector response are required, given
mask position and configuration, source type, source location, etc. The more accurate
the forward model is, the better the results given by the ML-EM method will be. The
forward model could even be created experimentally, by carefully setting up a source-
mask-detector system and measuring all of the relevant parameters. This approach is
rarely practical. Instead, computer models typically are used as the forward model,
sometimes incorporating real-world data.

The forward model is used to define the ML-EM variable A. The forward model
deals with two sets of spatial locations, being the detector plane and the source
plane. The detector is discretized into N pixels. The source plane is discretized into
M pixels. In more advanced versions, the source region could be split into three-
dimensional voxels. In this study, only 2D pixels are considered. The purpose of the
forward model is to predict the number of counts that would be recorded by a given
detector pixel if the source were located at a given source plane pixel. The model
should incorporate as many physical processes as possible, such as inverse squared
geometric attenuation, material attenuation and the location and configuration of
the coded-aperture mask. More advanced models might include Compton scatter,
heterogeneous efficiencies among detector strips (and within detector strips), and so
forth. The goal of the forward model is to fill in an NxM matrix named A, where A;;
is the predicted response of detector pixel 7 if the source were located at source plane

pixel j (See Section 3.1). The values of the elements of A can be thought of loosely as
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the expected number of counts. However, A must be normalized before being used.
The most appropriate way to consider A;; is as the probability that a photon emitted
from a source at location j is detected by detector pixel 7. A is precomputed and is
used in the ML-EM algorithm.

Once A is computed, the ML-EM iterative sequence is performed. Besides A, the
algorithm requires a few other vectors. 7 is a length N column vector that contains
the real data from an experiment. That is, y; is the number of counts recorded by
detector pixel 1. X is the ob ject/source estimate and is the output of the algorithm. X
is a length M column vector, where ); is the probability that the source was located
at source plane pixel j. b is an additive noise term and represents the probability that
a detected photon is attributable to background or Compton scattering. The single
equation of the ML-EM algorithm is [53, 40, 62]:

old
)\j

Yi
Y — 9
> Aij Z: Tk A + b ®)

new __

In MATLAB® this is written as:

Xnew:Xold.*[A*{g./ (A*X+b)H Ja (10)

where a is a normalization factor for A, found by multiplying the inverse of A by a
length N ones vector. To perform the ML-EM algorithm, every element of \ is first
set to “1.” In other words the source has an equal probability of being anywhere
before the algorithm begins. The code then continues to loop Equation 9. After the
equation is evaluated in each loop, Xold is set to Xnew. The ML-EM equation compares
the real data to the predictions, morphing A with each iteration to make the best
agreement between the prediction and reality. There is no set way to determine the

minimum number of iterations necessary. It must be determined empirically for any
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given problem. It is possible to perform too many iterations (Section 5.2), in some
cases. Weak regions can be lost when too many iterations are performed. The user
must find the proper number of iterations in order to reach convergence without losing

weak regions.

2.5 Multiplexed Compton Scatter Tomography

Multiplexed Compton Scatter Tomography (MCST') has been explored previously
at the Air Force Institute of Technology (AFIT). Brian Evans and Matt Lange, in
research advised by Professors Jeffrey Martin and Larry Burggraf, looked at defects
in thin aluminum airfoils [25, 41]. Evans used six HPGe detectors and collimated the
scattered photons down to a two-dimensional slice. MCST, in that case, would be
useful in detecting cracks that develop around rivets on aircraft. Marc Sands used
MCST to image a phantom representing a wrist bone [59]. Noninvasive bone density
measurements would be useful for the medical characterization of osteoporosis in
patients. Sand’s MCST system was able to differentiate between normal, osteoporotic,
and void bone densities.

MCST is a nondestructive inspection technique whereby an object’s near-surface
interior structure may be discerned. In MCST, high energy photons shine into an
object. By detecting the photons that Compton scatter back toward the detector,
information about the elements within the object is found. This technique differs
from computed tomography (CT) where the object is placed between the source and
the detector and the attenuation through the object is found. With MCST, the source
and the detector are located on the same side of the object. The CT-type setup is
not always possible.

MCST takes advantage of the fact that the energy of a Compton scattered photon

is angle dependent. Furthermore, the cross section for scatter depends on the electron
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density, and thus the atomic number, of the scattering element in question. Compton

scattering is governed by the Klein-Nishina equation [37]

2
o _ 72 1 1442 o’ (1-)
o = ZT0(1+Q(1_B)) < 2 > <1+ m)

8 = cosf

(11)

where o is the cross section for scattering, in barns, ry is the classical electron radius,
0 is the scattering angle, 2 is the solid angle into a given detector pixel, and a =
E/moc®. The experimenter is most interested in finding the Z of the material, and
thus must integrate over the solid angle, which is often # dependent. In MCST, the
experimenter gets a response in each detector pixel. From an ideal point sample,
this response would be a d-function at a certain energy, multiplied to a certain count

height. The energy of the scattered photon is given by the Compton formula [37]:

E
E = 12
1+ 25 (1—cosb) (12)

moc?

where F and E’ are the energy of a photon before and after Compton scattering,
respectively. By looking at the energy of the detected photon, and by knowing the
initial energy from a monoenergetic source, the angle of scattering can be deduced.
The number of counts received by each detector pixel would also be known, which is
directly proportional to the cross section for scattering. Given all this knowledge, the
electron density of the material point is found. From electron density, atomic number
can follow.

Note that the Compton equation assumes that the photon scatters off of an ini-
tially stationary electron. In reality the electrons are moving about the atoms at
significant speeds. Depending on how a given electron is moving relative to the de-

tector, the scattered energy can be more or less than that given by the Compton
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formula. This effect is called Doppler broadening, and serves to widen the detec-
tor response peaks. Doppler broadening in MCST problems has been characterized

previously [25, 41].

Figure 7. By knowing the source and detector positions, as well as the initial and
scattered energy of a single photon, an isogonic arc of possible scatter locations is
found [25].

From a measured, Compton scattered photon, an infinitesimal point in the sample
is not deduced, but rather the scattered angle into the detector. For an individual,
detected photon, only an isogonic arc of possible locations in the sample where the
scattering angle is € is known. Various techniques can be used to discern the point
at which the scattered photon originated, rather than the isogonic arc. Collimation
can limit the field of view into each detector pixel, chopping the isogonic arc into
small pieces. By changing the collimation, by using more detectors, and by changing
the source-object-detector geometry, the true point of scatter can be determined
from all the different isogonic arcs. The isogonic arcs are similar to the straight line
projections of attenuation in computed tomography. Evans and Lange observed that
the electron density would bleed from high density regions to low density regions as the
reconstruction routine was iterated. The line between high and low electron density

regions in a given phantom would thus appear blurred in the final, reconstructed
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image. Collimation causes the reconstruction routine to be more stable, reducing this
bleeding effect.

Perhaps the greatest hindrance to MCST is the fact that y-rays are attenuated in
the object before and after being scattered. This effect alters the counted events in
the detector as compared to a model that only includes Compton scattering. In non-
destructive testing, the composition of an object being imaged is obviously not known,
meaning that the attenuation through the object is unknown. Several methods have
been investigated for overcoming the problem of attenuation. Lale et al. ignored
attenuation altogether, assuming that higher energy y-rays (5.6 MeV and 1.25 MeV,
respectively) would be negligibly attenuated [39, 15]. Prettyman et al. incorporated
information from a traditional, transmission imaging setup, combined synergistically
with a Compton scatter tomography setup [56]. Such a technique would certainly
be viable in medical imaging applications where attenuation information is already
be known. However, a standalone system could be required, especially in industrial
applications where access to only one side of an object is given. With such constraints
iterative techniques must be used, such as those which were first rigorously developed
by Hussein et al. and Arendtsz [36, 7]. Regularization methods are used to solve
the problem, such as the ML-EM and Penalized Weighted Least Squares (PWLS)
methods. Evans utilized the PWLS method in his work and developed a Fortran
code for its execution [25].

A group from France is showing some interest in Compton scatter tomography for
medical applications [51, 52, 23, 22]. They expand upon a method called the Com-
pounded Conical Radon Transform, a form of filtered backprojection. This methodol-
ogy may be useful in further AFIT work on MCST. Unfortunately, they assume that
attenuation in the medium is negligible. Earlier, Arendtsz argued that attenuation in

the scattering medium is the greatest stumbling block to MCST [7]. Nevertheless, the
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Compounded Conical Radon Transform method is worth note. They examine some
iterative methods, as well. They simulate both collimated and uncollimated MCST
systems in their work. Their work is done with the Single Photon Emission Computed
Tomography (SPECT) application in mind, making theirs a subtly different problem
than the MCST problem investigated here.

B. Guerin and G. El Fakhri of the Massachusetts General Hospital and the Har-
vard Medical School, respectively, argue that energy data already present in PET
scans can be used for Compton scatter compensation [28]. Specifically, the Cerium-
doped Lutetium Yttrium Orthosilicate (LYSO) crystals used in PET have better
energy resolution than the formerly used Bismuth Germinate (BGO) crystals. The
11.5% resolution of the LYSO crystals would not be adequate for good MCST spatial
resolution (See Figure 19). This group uses the data to correct for Compton scatter
corruption in the PET data. They do not use the data in a standalone manner, but
rather to correct blur in the standard PET image.

An ideal Compton scatter imaging device would consist of an uncollimated source
that shines photons upon the entire object and an uncollimated detector array which
views the entire object at once. Such a problem would be highly multiplexed. The
signals from photons that are scattered in all the voxels of the object would be con-
volved together. As the problem becomes more multiplexed, numerical instabilities
cause the reconstruction method to fail. The multiplexed problem is ill-conditioned.

Commercial devices are in use that perform Compton scatter imaging. One such
device, called COMSCAN;, uses an X-ray generator and measures the backscattered
photons [66]. This device is able to overcome the mathematical issues of the Compton
scatter problem by highly collimating both the source and the detectors, as seen in
Figure 8. The device physically moves, examining one voxel in the object at a time.

In 2010, this particular device was successfully used to analyze historic artifacts,
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Figure 8. A diagram of the COMSCAN system, a commercially available device which
uses Compton scatter X-rays [66].

including a fresco, and Egyptian mummy, and a medieval clasp [30]. It was found
that Compton scatter imaging was useful for imaging objects of large size and/or high
density. In either of those cases, too few X-rays would transmit through the object
in order to use conventional X-ray imaging techniques.

Compton scatter imaging has been used for security applications, to scan personnel
and equipment at airports, ports, etc. The full body, X-ray backscatter scanners used
at airports (infamous for their ability to see through clothes) use low energy X-rays
that can barely penetrate the body. This system is also highly collimated, like the
COMSCAN system [8].

The highly collimated method is not ideal for the medical application, because the
dose given to the patient could be unsatisfactorily high. Unlike with the airport full-
body scanner, medical X-rays would have to be of a high enough energy to penetrate
the body. A slow scan through the body with high energy X-rays would result in

too high of a dose. Thus, multiplexing and lesser collimation would be useful. In
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the industrial application the current systems are usable, but if multiplexing were

incorporated then scan-time would decrease dramatically.

2.6 Other Applications

2.6.1 Unmanned robots or UAVs

Unmanned Aerial Vehicles (UAV) and unmanned robots are becoming increasingly
popular in the DoD. The idea of placing a position-sensitive y-ray detector on one of
these vehicles is a promising one. Already, Sodium lodide (Nal) scintillator crystals
have been placed aboard small aircraft in order to detect uranium, thorium, and
potassium over a wide area of land [43]. Position sensitivity is achieved by flying over
a large area. If the detector aboard the aircraft was position-sensitive, then required
flight times and distances would be reduced. A similar application would be to place
a position-sensitive detector on a ground-based robot.

These types of vehicles are not likely to help in preventing a nuclear attack. Nei-
ther uranium nor plutonium is very active, meaning that there would be few ~-rays
to detect, especially from long distances. Furthermore, a nuclear weapon would prob-
ably be encased in lead or tungsten shielding to prevent its detection by ~-rays. The
best application for unmanned vehicles is the detection of radioactive material after
a nuclear reactor accident or a nuclear weapon detonation [70]. Whether by a nuclear
detonation or a nuclear reactor accident, highly radioactive substances could be dis-
pelled over a large area of land. Unmanned vehicles can easily traverse radioactive
areas, sending back readings. These readings would give valuable data to decision-
makers regarding evacuations and movement of responders and military personnel.
Also, collection of radioactive effluents is an important component of several treaty-
monitoring organizations. A position-sensitive system would help to guide members of

these organizations toward the locations where radioactive efluent content is highest.
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Lastly, a position-sensitive detector would be useful inside of a running reactor

facility in order to detect leaks.

2.6.2 Space Surveillance

Since the 1960s, the United States has launched numerous satellites with the
ability to detect y-rays emitted from terrestrial sources [73]. These satellites are par-
ticularly well-suited to detect the v-rays from nuclear detonations. The satellites are
used to ensure that other nations are adhering to their treaty obligations, especially
with regard to nuclear weapon tests. Better position-sensitive y-ray detectors could

locate the source of the y-rays with better resolution.

2.6.3 Space-based Gamma-Ray Astronomy

Worldwide, over eighty satellites have been launched with ~-ray detection capa-
bilities. A good list of all the satellites that have been used for y-ray astronomy can
be found at the NASA website [46]. ~-ray detectors are used to investigate solar
flares and supernova events [31]. Perhaps the most significant use, currently, is the
detection of Gamma-Ray Bursts (GRB). GRBs are the most intense electromagnetic
events in the universe. There is still not a full consensus as to the origin of GRBs,
though it is generally thought that GRBs are caused by supernovae or neutron star
creation events in distant galaxies [72]. GRBs last from between less than a second
to several minutes. Typical durations are from 20-40 seconds.

Current satellites systems used in ~v-ray imaging can be large, heavy, and ex-
pensive. The Compton Gamma-Ray Observatory (CGRO), for instance, weighed a
whopping 17 tons. Perhaps a better approach to v-ray astronomy would be to deploy
a greater number of small, inexpensive satellites. Cubesat and Nanosat technology is

becoming increasingly popular [18]. Position-sensitive y-ray detectors could be placed
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on a large number of small satellites. These satellites could be used to observe a large
area of the sky. The satellites could also be used in a large array configuration, all
of them pointed with the same field-of-view, in order to increase image resolution of
stellar ~-ray sources.

Coded-apertures have successfully been used on satellites for y-ray astronomy [60,
54, 49]. One possible way to increase the views given to the satellite, thus decreasing
inherent noise, is to spin the satellite [32, 1]. Spinning the satellite introduces several

complexities in satellite control, communications, and solar power acquisition.

2.6.4 Medical Nuclear Imaging

Many researchers have investigated coded-apertures for medical applications. Nu-
merous nuclear medical spheres have been considered, including Single Photon Emis-
sion Tomography (SPECT), Positron Emission Tomography (PET) and Computed
Tomography (CT) [5, 33, 47, 65, 42, 14]. Often the thyroid phantom is used as a
gauge for the effectiveness of a given system [3]. Small animals and capillary tubes
have also been imaged [4, 50]. Methods for decoding include correlation methods,
ML-EM, and PWLS. Coded-apertures are most useful in cases where a y-emitting
radionuclide (typcially Tc-99m) is injected into the body or ingested by the patient.
Prominent issues in medical imaging are the limited doses that can be administered to
patients, limitations on how close a detector can be placed to source, and movement
of the patient over time. Coded-apertures are less successful in the CT case, where
the source and the detector are placed on opposite sides of the body, and varying spa-
tial attenuation in the patient’s body causes spatially varying strength of the X-rays.

Different methods have been employed to account for vignetting effects.
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2.6.5 Position Sensitivity from a Single Detector Crystal

There are a number of dynamic collimators that have been considered in the past.
Some examples, in addition to coded-apertures, are the fresnel zone plate, the rotating
slit collimator, the stochastic aperture, and the Fourier aperture [9]. These apertures
can be modulated in time in order to gain different views of the source.

A rotating mask collimator has been successfully mated with a Nal detector, giving
position sensitivity to the single crystal [74]. The time-dependent signal given by the
detector is compared to the known, time-dependent modulation of the collimator.
Since the problem is constrained in a known, repetitive way, information about the

location and strength of the source can be deduced.
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III. Computer Modeling

3.1 Coded Aperture Ray Tracing Forward Model for ML-EM

A model was created in MATLAB® to calculate the coded-aperture forward prob-
lem. The term forward problem is used to describe the situation in which the location,
size, activity, and other relevant parameters of the source plane are known and the
detector response is measured. The forward model process is the opposite of the
image reconstruction process (or inverse problem) in which the detector response is
known and the source plane must be characterized. The forward model helps in image
reconstruction.

This model utilizes the coordinates shown in Figure 15. First, three relevant
coordinates are specified, being the location of a point source, the location of the
programmable collimator and the location of the detector (which is set as the origin).
The mask pattern is input, from which the collimator is constructed virtually, in three
dimensions. Two planes are defined, being the front and back of the collimator. On
each plane, a 10 x 10 grid is carved out, representing the fronts and backs of the
chambers of the collimator. The size of the detector crystal and the size of the source
plane also can be set. The resolution of the source and the detector planes are set
by the user. In other words, a factor is placed in the code which changes how finely
or coarsely the two planes are discretized, which can be adjusted based on memory
and/or time constraints.

The forward model’s primary function is the calculation of the matrix A for use
with the ML-EM algorithm, as described in section 2.4. Within the script the user
defines the activity of a point source. All of the pixels in the source plane and the de-
tector plane are labeled. The program then systematically moves through the source

plane, placing the source at each spot in the source plane. At each source position, the
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Figure 9. Two images of the detector plane from the model, given two different point
source positions. Notice how the features are thinner in the right image. This is due
to collimator depth, or vignetting, effects, and is accounted for in the model.

program loops through the detector pixels. For each source and detector pixel combi-
nation, the program computes the vector between the centers of the two. By simple
geometry, the points of intersection of this vector and the front and rear collimator
planes are found. From these coordinates in the collimator planes, the chambers tra-
versed by the vector are found. If the vector passes through open chambers of the

collimator only, then the number of counts recorded into A is given as:

I
Aj=5 NP (13)
B 1
Py = exp(——pt) (14)
p

where [ is the number of photons emitted by the point source, d is the distance
between detector pixel ¢ and source location 5. When the program checks each vector,
it records the number of grid walls that the vector passes through, labeled here as
N. If a photon were to pass through multiple open collimator elements, it would
experience some attenuation in the steel grid that separates the collimator elements.
The fractional attenuation due to one of these interior grid walls is given as P,, where

% is the mass attenuation coefficient (taken to be that of steel, given by the NIST
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website), p is the density of the steel and ¢ is the thickness of the steel [37, 34]. For
simplicity, t was set to a constant, approximate value.

If the program finds that the vector between a given source location and detector
pixel passes through a closed collimator element, it sets the corresponding element of
A to zero. All photons that enter the closed chambers are assumed to be attenuated
(See Section 4.1 for justification of this assumption). It was found experimentally that
a significant number of photons are Compton scattered inside of the collimator. These
events are ignored by the model because an energy discriminating detector was used.
The detector can be set to record only those detected photons that were received
with the known energy of the monoenergetic radionuclide source (plus or minus 2-3
keV). Since the detector filters out the Compton scattered photons, the model need
not include them. Additionally, every tenth row and column of the detector matrix is

set to zero, as well as the corner pixels, to mimic the real detector (see Section 4.2).

Figure 10. An illustration of the vignetting effect. Viewed from the source, through
the collimator. A chamber directly in line with the source and a given detector pixel
allows full throughput. Off-axis chambers block part of the possible paths, as a result
of collimator depth.
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One bit of functionality added later to the model was the ability to characterize,
more accurately, the vignetting that occurs from sources in the near-field region due
to the collimator’s physical depth. Some work has been done to account for the effect
of collimator depth on correlation methods, particularly by Mu and Liu in 2006 [50].
Using a different method, this model accounts for vignetting by first over-resolving the
detector plane. The script allows for the user to define how fine the resolution should
be. Each detector plane pixel is thus split into smaller squares. The probability of a
photon reaching each smaller square is found in the same manner as before. All of
the probabilities of the little squares are then averaged to find the overall probability

for a given detector plane pixel.

Table 1. Run-times and memory requirements for the calculation of the A matrix.
Run-times are based on an above-average desktop computer (for 2011).

M N | Time | RAM Req. (MB)
100 | 25,600 | 10m 10

2,500 | 25,600 | 4h7m 250

3,600 | 25,600 6h 369

10,000 | 25,600 | 16h 1,024

The computation of the A matrix is nontrivial. As M increases, the RAM and
time required to compute A also increases, as seen in Table 1. There is a limit to
how finely the source and detector planes can be discretized based on the computer
setup.

In a future version of the model, differences in strip efficiencies should be taken into
account, as well as the change in efficiency across a strip. As with the MCST forward

model, inclusion of detector depth information would increase model accuracy.
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3.2 MCNP Forward Model

A forward model was also created using a Monte Carlo program called Monte
Carlo N-Particle Transport Code (MCNP). MCNP was originally developed by Los
Alamos National Laboratory to model neutron transport in nuclear reactors, but it
can be useful for modeling 7-rays and their interactions with matter as well [69].
MCNP was chosen over other Monte Carlo programs simply because of the author’s
familiarity with the code and its immediate availability. A primer by Shultis and Faw
of KSU was frequently referenced during the writing of this model [63].

The term Monte Carlo was first coined and used extensively by John von Neu-
mann, Stanislaw Ulam, and Nicholas Metropolis for the Manhattan Project [24]. In
Monte Carlo methods, the geometry of the system is carefully specified so that the
material of all of the objects, or cells, in the system is specified. Starting at the source
position, dice are rolled, figuratively, and a photon is emitted in a random direction.
A large number of distributions are stored in the software for many different types
of materials. The distributions are based on cross sections for interactions. For in-
stance, the software has a stored distribution describing how often a Compton scatter
event will occur in air for a photon of a given energy. The code will randomly pick
different outcomes for each photon, weighted by the appropriate distributions. An
outer sphere is usually defined, the interior of which is called the universe. Photons
that exit the sphere are “killed.” The code probabilistically determines the path of
a single photon until that photon is either killed or deposits all of its energy in one
of the cells within the universe. Once either of those criteria are met, the program
records the path of the photon and starts a new photon. Millions of photons can be
tracked in this fashion.

A MATLAB® script was developed to write the input file for MCNP. The in-

put files were thousands of lines long and therefore could not reasonably be written
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Figure 11. Left: The programmable collimator, as modeled in MCNP. Right: A side
view of the programmable collimator and the detector crystal, as modeled in MCNP.

manually. To use the MATLAB® script, the user simply inputs the location of the
source and the mask relative to the detector crystal in three dimensions, as well as
the mask configuration. Based on the mask configuration, the script fills in the cells
corresponding to the collimator chambers either with air and a PEEK plug at the
rear, or with a PEEK plug at the front and AIM-70 in the rest of the chamber,
depending on whether the chamber is “on” or “off.” The script also defines 160 x
160 detector cells, corresponding to the detector subpixels. A 122 keV ~y-ray point
source was used. Initially the detector crystal was made from germanium. The idea
was to record tallys. Each time a photon deposits its full energy in a detector cell,
a tally corresponding to that cell increments up by one. However, MCNP only will
track 1000 tallys, significantly less than the 25,600 cells of the detector crystal. After
this realization, it was decided that the ptrac files would be used. The ptrac files list
the track of all of the particles of interest. The detector crystal material was set to
vacuum, and any photon that passed through the detector in the appropriate energy
range is recorded in the ptrac file. Just like with the real detector, MCNP has an

energy window, which was set to 122 keV +/- 5 keV. At that time the plan was that

34



the actual detector would use a 10 keV energy window, though this was later reduced
to 6 keV to further filter out Compton scattered photons.

To further increase computational efficiency, the photons emitted from the source
were constrained to a cone which subtended an area slightly bigger than the pro-
grammable collimator. In other words, the source was only allowed to emit photons
in the solid angle of the cone. By not allowing photons to be emitted in the oppo-
site direction of the programmable collimator, for instance, computation time was

reduced dramatically.

Figure 12. Predictions of the detector response from a point source, given by MCNP,
using 100,000 particles (Left) and 1,000,000 particles (Right).

A ptrac parser was written to interpret the ptrac data. For a given particle track,
the parser records which detector cells that the path traversed. Also, for a given path,
the parser records the number of detector cells traversed, called EC' (for event count).
The parser script then adds ELC to each of the affected detector cells, assuming full
energy deposition to be equally possible for each of the traversed cells. This is done
for all particle tracks.

At one time, there was hope that MCNP could be used to provide the A matrix

for ML-EM. However, without a sufficient number of particles in MCNP, there is too
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Table 2. Run-times and ptrac file-sizes for MCNP simulations based on the number of
particles emitted from the source. Run-times are based on an above-average desktop
computer (for 2011).

Particles | File-Size (MB) | Run-Time | Avg. Counts per Det. Subpixel
10,000 0.8 13.6s 0.00377
50,000 2.7 43s 0.018
100,000 ) 1m18s 0.0329
500,000 24 5m16s 0.1736
1,000,000 47 9m5H7s 0.349
5,000,000 235 47Tm16s 1.74
10,000,000 471 1h33m -
100,000,000 4,698 15h22m -

much variation from pixel to pixel in A. The data must be smooth if they are to work
for ML-EM. To achieve the proper smoothness, at least 10,000,000 particles must be
used, although 100,000,000 would be better. An average A matrix has about 1,000
source positions with up to 10,000 in some cases. Conservatively, using the data from
Table 2, it would take 65 days to compute A. This simply is not reasonable, especially
given the fact that a different A is needed for every source-collimator-detector ge-
ometry and mask configuration. Nevertheless, the MCNP simulation provided good
insight into the number of expected Compton scatter events, the expected attenua-
tion through the “off” chambers, and things along similar lines. Perhaps by using
variance reduction, or other more sophisticated techniques, MCNP could be used to

calculate the forward model for ML-EM.

3.3 The Optimal Mask Sequence

A code was developed to find the optimal mask sequence for the coded-aperture
application of the programmable collimator. The code iteratively determines a se-

quence of matrices that are most independent from each other. The cross-correlation
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Figure 13. Methods to find the sequence of masks that are least correlated with each
other.

is used as a measure of independence between mask matrices. More specifically, the
magnitude of the central spike of the cross-correlation is used as the metric. If the
central spike is zero, then the two mask matrices are completely independent. The
two iterative methods are shown in Figure 13.

It was found that the right-hand method shown in Figure 13 converged more
quickly than did the left-hand method. Also, by observing the operation of these
codes, it was discovered that the least correlated sequence of matrices is that in
which each mask element is open or closed for equal durations. For instance, in a
sequence of six mask configurations, each element should be open in three of the
masks and closed in three of the masks. After this discovery was made, a code was
written to construct a sequence of random masks that adhere to this criterion.

An additional algorithm was written which orders the masks in the sequence for
which the programmable collimator user will have the least number of element changes
to make during an experiment. This algorithm can lower the number of changes by 40-
50 for a six-mask sequence of 10x10 matrices. Later, code may be developed in which
the number of changes is determined by the user, and the code will find the sequence
of least-correlated masks with the specified number of changes. Additionally, this

code could be modified to choose the best masks on the fly. Incoming information
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would be incorporated to help choose the next mask to use. These optimal mask

sequences would vary based on the application.

Figure 14. An example, optimized sequence of random mask matrices. Notice that
each mask element in this six-mask sequence is open in three masks and closed in three
masks.

3.4 MCST Forward Model

A three dimensional Cartesian coordinate system was devised. The millimeter
was chosen as the unit in this space. The detector crystal is assumed to be a square,
and the origin was placed at the furthest, lowest point of the detector to keep all
coordinates positive. Only three points in space need to be defined for a given photon
event: the point source, a point in the material, and a point in the detector. Vectors
following the rays of light are found between the source and the material and between

the material and the detector, defined as

srcmatvect = <xmat — Tsrey Ymat = Ysres mat — Zsrc> (15)

matPiXVGCt = <xpix — Tmats ypicc — Ymat, Zpiac - Zmat> (16)
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The Compton scattering angle, 6, is found through the dot product, such that

srcmatvect ematpixvect
0 =7 — cos ( P ) (17)

|srcmatvect||matpixvect|

Of course, the detector pixel is not a point, but rather is three dimensional. Each
pixel is approximated as a square that extends in y and z. The angles from the
point material to the top and bottom of the detector pixel, called (4 and [B,in, are
found using the same methodology as used above. In the same way, the angles to
the left and right sides of the detector pixel, a4, and g, are found. These angle
ranges are used to find the solid angle subtended by the detector pixel as part of the
Klein-Nishina integration.

A point material was placed in the space based on the coordinates in Figure 15.
A detector was constructed virtually as an 80x80 mm? square, with 256, 5x5 mm?
pixels. The scattered energy, E’, was calculated using the Compton equation for each
detector pixel (Equation 12). Given a Z of 29 for copper, the expected cross section,

in barns, for each detector pixel was calculated.

Figure 15. The coordinate system and relevant dimensions used for modeling with the
PHDs Co. DSSD.
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Eventually, this model can be used in conjunction with an ML-EM or PWLS
method. It may be useful to include detector depth information in this model. The
PHDs strip detector system is able to make relatively accurate estimates of the depth
at which an event occurred [75]. The inclusion of depth information would result in

a more accurate model, geometrically. And, of course, the more accurate the model

is, the better the iterative methods like ML-EM and PWLS will perform.

Figure 16. Left: The predicted photon energy into each pixel from the copper “point”
phantom. Right: The cross section for scatter, from the copper “point” phantom into
each detector pixel.

3.5 MCST Resolution and Setup Analysis

At first, when thought was given to an MCST setup, it was unclear what the
optimal setup would be. On the one hand, the Klein-Nishina distribution is angle
dependent. The scattering cross-section, in the backscatter region, is greatest at 180
degrees. So to get the greatest number of scatters over a given time, the source and
the detector would have to be close to each other with the sample between them
in y and out a ways in . On the other hand, as the sample moves closer to the

detector the angles of the source-detector pixel vectors are differentiated more. With
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Figure 17. Left: The energy of an 88 keV photon after a Compton scatter, from the
Compton formula. Right: The differential cross section for scatter in various materials,
from the Klein-Nishina formula [37].

greater differences in the angles into each detector pixel, there are greater differences
in the energies found in each detector pixel. A goal of the detector positioning is
that the detector subtends the greatest solid angle of scattered photon paths from

the material.

>0 ~—
¢ 5
X2

Detector crystal

Figure 18. At the closer material-detector distance, x;, the detector subtends a much
larger solid angle, ¢ as compared to the solid angle ¢ subtended by the detector when
the material-detector distance is increased only modestly (z2).
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It was discovered empirically that the angle discrimination advantage gained by
moving the material closer to the detector outweighs the decreased cross section
for scatter. Indeed, to allow for the closest material-detector distance, the source-
material-detector angle becomes about 90 degrees, being the angle with the lowest
scattering cross section. In a real application, the sample-detector distance may be
fixed to a longer than desirable length. To get the best results this distance was
minimized in experiments. The effect of this distance on potential resolution is given

in Figure 19.

The spatial resolution possible given an average detector response energy difference,
For different detector-material distances. Based on the Compton Fomula

Det-Mat Dist: 164
(200,75+/-sep,49.5)

e}
T

The separation between the two copper points [mm)

0 i i i i b i i i i i
0 05 1 15 2 25 3 35 4 45 5
The difference in energy, at an average pixel, between the two detected Gaussian peaks [keV]

Figure 19. Using the model, two infinitesimally small pieces of copper were separated
by various distances (y-axis). The difference in Compton scattered photon energy from
each piece was found (x-axis). This graph gives the MCST spatial resolution possible
in the sample given the minimum difference in energy between detected photons that
is distinguishable. Three sample-detector distances are shown.

To make things more clear, a two-dimensional phantom was conceived, as shown
in Figure 20. A model was written to predict the Gaussian response that each piece
of material would cause in the detector. These responses must be distinguishable if
the MCST method is to be effective. As seen in Figure 20, the distance between

the material and the detector significantly affects this distinguishability. To reiterate,
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the minimization of the detector-sample distance should be the primary focus when
considering the dimensions of the MCST setup. In importance, the minimization of

this distance far outweighs the maximization of the cross section for scatter.

Figure 20. Top: The A1CuCu phantom used for modeling. Left: The predicted detector
response, if the phantom were located at 105.4 mm. Right: The predicted detector
response if the phantom were located at 205 mm. Notice how indistinguishable the

Gaussians from the three materials become when the detector/material distance is
doubled.
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IV. Design and Experimental Setup

4.1 Progammable Collimator Design

In the first design iteration, it was thought that plastic rods would be submerged
in a liquid metal, all within a sealed container. The rods would have small magnets on
each end and would be actuated by external permanent magnets or electromagnets.
However, the attenuation in the plastic rods was calculated as being too great and
significant difficulties were foreseen in actuating the rods. Eventually the current

design was chosen.

Figure 21. Molten AIM-70

The programmable collimator, in its present form, was built by the AFIT model
shop in the Summer and Fall of 2011. A steel block was fabricated, using Electrical
Discharge Machining (EDM), to include 100 elements, or chambers, in a 10x10 array.
The square, cross-section of each chamber is 5x5 mm?, like the PHDs DSSD detector
pixels. Each chamber can be turned “on” or “oft” to v-rays. The design was optimized
for the 511 keV ~-rays from electron/positron annihilation. Originally the device
was intended for AFIT’s ongoing positron work. Lower and higher energy photons

certainly can be imaged through this collimator.
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Figure 22. Left: The front face of the programmable collimator. Right: The tool used
to move the PEEK rods back and forth in the collimator chambers, locked to a single
PEEK plug.

The primary component of the collimator apparatus is the grid block, as shown
in the left of Figure 23. The block’s outer dimensions are 5x5x5 cm?. The block
is suspended in the center of the outer housing. While in operation the housing is
filled with a liquid metal called AIM-70, also known as CerroBEND, Wood’s Metal or
MCP 158. AIM-70 is a eutectic alloy composed of 50% bismuth, 26.7% lead, 13.3%
tin and 10% cadmium, by weight, with a melting point of only 70° C (158° F) [48].
Due to its high Zg¢fective, AIM-70 is a good attenuator of y-rays. Each chamber also
contains a plug made of PolyEther Ether Ketone (PEEK), which prevents the liquid
AIM-70 from spilling out of the front of the grid block. PEEK is a highly machinable
plastic that is able to withstand high temperatures. The particular flavor of PEEK
chosen is filled with carbon to 30%. By filling the PEEK with carbon, the com-
pressive strength increases, the expansion rate decreases and the themal conductivity
increases, as compared to unfilled PEEK [55]. Having a low Zgtsecrive, PEEK is a
poor v attenuator.

Centered on the rear plate of the apparatus is a square window, also made of

PEEK. This window is 5 mm thick. When the apparatus is assembled, the rear face

of the chamber block is only 3 mm from the rear PEEK window. This spacing allows
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Figure 23. Left: The rear face of the chamber block, suspended in the center of the
housing plate, as seen from the interior. Right: The PEEK window in the back of the
collimator assembly.

the AIM-70 to flow into the chambers from the outer housing box. A “T” pattern
was cut out of each PEEK plug (Figure 22). A matching tool was fabricated with a
similar “T” shape on the end. The tool is inserted into the chamber with the proper
orientation to allow entry into the cutout of the PEEK plug. Once inside the plug,
the tool is turned ninety degrees, locking it in place. The user may then push and
pull the PEEK plug within the chamber.

To operate the collimator, each of the 100 chambers is configured in one of two
ways. The chamber is turned “on,” meaning that vy-rays are allowed through, or
“off,” meaning that ~-rays are attenuated. To turn the chamber “off,” the PEEK
plug is pulled all the way to the front of the grid block. The AIM-70, which fills
the outer housing, flows around the back of the grid block into the chamber. The
AIM-70 in the chamber attenuates any ~v-rays that try to pass through. To turn a
given chamber “on,” the PEEK plug is pushed as far back as possible so that it mates
with the rear PEEK window. While the PEEK plug is pushed backward, the AIM-70
is displaced from the chamber and into the outer housing assembly. Once the PEEK

plug is mated to the rear PEEK window, a v-ray passing through that particular
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Figure 24. A slice through the programmable collimator. If the PEEK plug is pulled
out (top chamber), the chamber fills with AIM-70, and ~-rays are blocked. If the PEEK
plug is pushed in (bottom chamber), the AIM-70 is pushed out of the chamber and
~v-rays must only pass through a small bit of PEEK.
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chamber will encounter only air and 17 mm of PEEK, and thus will be only lightly
attenuated.

More quantitatively, it is known that
L _ () (18)

where [ is the number of transmitted photons, I is the original number of photons,
(‘—;) is the mass attenuation coefficient and pt is the mass thickness of the material
in question [37]. Hubbell and Seltzer’s NIST data were used, para—70 was taken
as 9.38 %y and ppppx was assumed to be ppoiyethyiene, Which is 1.19 -3 [34]. As
one example, at 511 keV, 83% of the photons will pass through a chamber in the
“on” configuration, whereas only 0.57% of the photons will pass through a chamber
in the “off” configuration. For 100 keV photons, 72% of the ~-rays would make it

through an “on” chamber, whereas 10~7°% of the y-rays would make it through an

“off” chamber.

Energy (keV) Length [cm] An\"-[[;?lf(\l;l;;fllh 0) AIM-701/1 0 PEﬁllfl(f;:giho)
100 1.7 4.73E+00 1.85546E-33 0.1641 0.71750576
100 3.6 4.73E+00 4.85438E-70 0.1641 0.4950956
511 1.7 0.1476 0.095023638 0.0941 0.82665793
511 3.6 0.1476 0.006845548 0.0941 0.66822897
1000 1.7 0.0686 0.334909277 0.0687 0.87024535
1000 3.6 0.0686 0.098619645 0.0687 0.7450449

Figure 25. Selected attenuation data for AIM-70 and PEEK (approximated as polyethy-
lene) for two different lengths at three different energies.

To keep the AIM-70 in liquid form, the entire apparatus must be kept above

70° C. This was accomplished using a hot plate. In the future, heating tape may
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be used to maintain operating temperatures. Initially there was concern that the
PEEK plugs would fit differently within the steel chambers upon heating, in that
the thermal expansion coefficient for each material is different. In other words PEEK
and steel expand at different rates when heated. In practice, however, this differential
expansion seems to be negligible. The plugs move similarly at all temperatures tested.

An initial test with AIM-70 resulted in some leakage from the housing. The outer
housing was disassembled and the edges that make contact with each other were
ground and polished, resulting in no further leakage. In another test, the apparatus
was filled with water under the assumption that water would leak more than would
the thicker, liquid AIM-70. The apparatus was heated to operating temperatures and
the PEEK plugs were pushed and pulled within the chambers. During this test, no
water leaked from any of the junctures. Furthermore this test again proved that the
difference in expansion between the PEEK and steel, with temperature increase, is
inconsequential.

As the collimator was tested, concern developed that the experimenter might
pull a given PEEK plug all the way out of the grid block when trying to change
a given chamber to the “off” configuration. If this were to occur, molten AIM-70
would eject from the device, spilling out into the experimental area. To assuage this
risk, the collimator configuration was changed in a fume hood. The collimator was
placed within a large, metal tub. The AIM-70 happened to cool and solidify by
the time it was taken to the detector setup. The cooling AIM-70 is something that
warrants consideration. AIM-70 expands 0.006 inches per inch upon cooling [13].
This expansion causes stress on the chamber walls within the grid block. A few of
the chamber walls have shown cracking, possibly due to this effect.

Ultimately, a different alloy is desired. Another eutectic alloy called AIM-47 (or

LOW 117) may be considered. It has roughly the same Zgtecrive as AIM-70 but has
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a lower melting temperature (47° C or 117° F) and less expansion upon solidification
(4+0.0002 inches per inch over the first 6 minutes, followed by shrinkage to -0.0002
inches per inch). This is discussed further in Section 6.4.

The FOV of the collimator was constrained because of the collimator’s depth. The
height or width of the square plane visible to the collimator, Hynychamb, is given in cm
by

2D

HAnyCha.mb =5+ 1_0 (19>

where D is the distance from the front of the collimator (or the source side of the
collimator) to the source plane, in cm. The equation gives the height of the maximum
visible plane, meaning that source positions in which the source is visible through as
little as a single chamber are included. If the source is to be seen through all of the
chambers, then the visible square is somewhat smaller, where the width or height,

Hjp11chamy, 10 cm, is given by

Hpiicnamy = Hanyenans — 95 D > 20 (20)

Notice that the source must be at least 20 cm from the front of the collimator if it is

to be viewable through all of the chambers.

4.2 The PHDs HPGe Strip Detector

A PHDs Co. Double-Sided Strip Detector (DSSD) was used in the experimental
portions of this study. The detector consists of a single, 9 cm diameter High-Purity
Germanium (HPGe) crystal, with an active depth of 11 mm. The crystal is split into
16 strips on the front and rear faces of the detector, where the front and rear strips
are orthogonal to each other. Because the crystal is round, only the middle ten strips

on each side extend to a length of 8 cm. Moving outward from the center ten strips,
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each strip is progressively 5 mm shorter, so as to conform to the shape of the crystal.
The strips are 5 mm wide, effectively resulting in 220, 5x5 mm? energy-sensitive pixels
(Figure 26). The rear strips, which run vertically, are termed the AC side, whereas
the front strips, which run horizontally, are termed the DC side. The AC strips are
labeled from 0-15, where 0 is the left-most strip and 15 is the right-most strip. The
DC strips are labeled from 16-31, where 16 is the top strip and 31 is the bottom strip
[75]. The segmented detector contacts were fabricated using amorphous-germanium
detector technology [29, 44, 57, 35]. A Stirling-cycle mechanical cooler maintains
the detector operating temperature near 68 K in a vacuum crystat assembly having
a mass of about 12 kg [78]. The mechanical cooling and low weight mean that the
programmable collimator and detector combination could be made portable for future

applications.

Figure 26. The configuration of the PHDs detector crystal [75].

The strips are connected to an electronics system called the Spect32. The Spect32
contains four Field Programmable Gate Arrays (FPGA), each optimized for imag-
ing. Subpixel resolution can be attained through subpixel interpolation. When the
electrons and holes move through a given strip after a photon event, transient charge

is induced in the adjacent strips. The amount of transient charge induced in one
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adjacent strip relative to the other adjacent strip is related to the location across the
event strip in which the photon event occurred. If the photon event occurred closer
to one side of the event strip, more transient charge will be induced in the closer
adjacent strip [11, 75, 67]. The transient charge in the adjacent strips is measured
by the detector system. By interpolation, subpixel resolution down to 0.5 mm is
achieved. Thus, the overall resolution of the detector is increased by a factor of ten.
Several subpixel interpolation schemes are built in to the detector system software.
Every tenth row and column subpixel always reads zero counts, corresponding to the
location of the physical separator between strips.

The detector has a FWHM energy resolution of 1 keV at 88 keV. Before use the
detector must be calibrated in energy using a known source. Ideally, the same source

that is to be imaged should be used for calibration.

4.3 MCST Uncollimated Forward Problem Experimental Setup

A view from the top of the basic setup for MCST is shown in Figure 27. A 101.8
uCi (on 07TNOV11), Cd-109 button source was used (T-098). The source was secured
to a wooden block, and the block was secured to a precision lab jack. A set of three
girders, arranged as three sides of a square, was placed in front of the detector. The
square formed by the girders was much taller and wider than the detector, so that
Compton scattered photons from the girders would be attenuated geometrically and
so that Compton scattered photons from the girders would be of a much different
energy than those from sample. Two pieces of nylon fishing line then were hung from
the top girder. Weights were tied to the bottom of each fishing line, to keep the
lines taut. The samples were then taped to the fishing lines, effectively levitating the
samples in front of the detector.

Originally, the samples were taped to a block of polyethylene and were placed on
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the same lab jack as the source. This approach suffered from the vibration of the de-
tector cooler. The vibration caused the block to skate around on top of the laboratory
jack. The feet of the girder assembly were far enough away from the detector not to
be affected by the vibration, and the feet of the girder assembly are padded. Also, by
hanging the samples, the Compton scatter events in the polyethylene, which would
add noise to the results, are eliminated. The wooden block and the steel shielding
block also suffered translation over long periods of time due to the vibration of the
cooler. These were secured to the jack with screws. The detector system has built-in
mechanisms to dampen the effects of the cooler vibration on the detector crystal.
Thus, with the hanging sample configuration, the sample and the detector crystal

can be considered stationary relative to each other.

Figure 27. The basic setup used to begin to characterize the MCST forward problem,
without collimation.

If Cd-109 is being used for the source, then lead cannot be used for shielding.
Cd-109 emits an 88 keV ~-ray. There is a good probability that a y-ray with 88 keV
of energy will knock out a K-shell electron in the lead. When the vacancy then is
filled with another electron, an X-ray between 72 keV and 88 keV is emitted [20].

The measured backscattered photons from the sample are between about 65 keV
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and 80 keV. Essentially the lead shielding becomes an additional, unwanted source,
emitting photons in the energy range of interest. A lower Z material with lower K-
shell transition energies was chosen for shielding. Steel was used in this case, based
on availability. A 5 cm thick block was used, sufficiently stopping direct photon travel

from the source to the detector.

Figure 28. The MCST setup, viewed from the front, looking back at the detector.

Alternatively, a higher energy source could be used, such that the photons scat-
tered in the sample would be easily distinguishable from the lead X-rays. Cd-109
was chosen because it was the most active source available at the time and because it
was in the smallest package, making the point source approximation more legitimate.

Brian Evans et al had originally found the 88 keV photons from Cd-109 to be opti-
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mal for Compton backscatter studies in metals for several reasons [25]. First, Cd-109
does not have significant ~-ray emissions of energies higher than 88 keV, which would
downscatter into the energy range of interest, introducing noise. Second, the energy
must be high enough so that Compton scatter is the dominant mode of interaction
in the material. Third, the energy must be low enough such that the mean free path
in the material is not too high. The higher the mean free path, the less chance of
interaction there will be in the sample.

In millimeters, based on the coordinate system shown in Figure 15, the source
was placed at (122.4 +/- 1, 175 +/- 1, 52.5 +/- 2.5). The sample was placed at 205.4
mm +/- 1 mm in the x direction. Typically in the y and z directions, the source was
located at 80 and 50 mm, respectively, though these value varied by centimeters from
test to test.

Numerous samples were fabricated by the AFIT model shop. Each sample was
about 5 mm x 5 mm x 0.7 mm. Samples were made of copper, aluminum, brass and
steel. A CuCu “phantom” was constructed, in which two of the copper samples were
arranged 5 cm from each other, center to center, and glued to stiff paper. Another
phantom was made in which one sample of aluminum and two samples of copper
were arranged in an isosceles triangle pattern (Figure 20). The copper strips were
spaced 2 cm apart and the aluminum sample was placed 2 cm above the copper strips,

centered.

4.4 Coded Aperture Experimental Setup

For the coded-aperture experiments, the coordinate system shown in Figure 15 was
used again. The programmable collimator was placed on a laboratory jack as close to
the detector in the x direction as was possible. By minimizing the detector-collimator

distance, the magnification parameter was also minimized. In the x direction, mea-
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Figure 29. The basic setup for the coded-aperture experiments. Distances used are
given in Table 3. Notice that collimator depth is significant with the distances used.

surements were made from the middle of the detector crystal and the middle of the
programmable collimator.

Early on it was discovered that the PEEK plugs did not move easily in the cham-
bers, even when liberal amounts of way oil were used as lubrication. The plugs could
be pushed in to the “on” position easily enough, but problems occurred when pulling
the plugs out to the “oft” position. Sometimes excessive force would be needed to
pull the plugs out. Each plug had been machined a bit larger than the chambers,
and was broached so as to form the tightest possible seal. A few of the plugs fit
too tightly. Sometimes in dry tests, when pulling a given plug out, the plug would
be pulled out of the chamber entirely. The experimenter would have to apply great
strength to overcome the static friction. Once the plug started moving he would not
be able to stop himself in time, and the plug would come completely out. If this were
to happen during an experiment, molten AIM-70 would gush from the open chamber
onto the experimenter and the setup.

The experimental setup was adjusted to temporarily circumvent the above short-

comings of the device until a permanent solution is found. To change the mask
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Table 3. Source Positions for the Coded-Aperture Experiment

Mask-Det Dist [cm] | Src-Det Dist [cm] | Magnification
Position 0 2.6 30.3 1.33
Position 1 2.6 60.6 1.13
Position 2 5.6 177.6 1.04
Position F 8 60.6 1.16

configuration, the programmable collimator was taken to a fume hood. The device
was drained of AIM-70 before the configuration was changed. After the configuration
change, the collimator was refilled with AIM-70. The collimator was then placed
back in to the experimental setup. This method obviously is not ideal and takes
much longer than the intended method. However, one advantage of this method is
that the collimator can cool before being used in the experiment. There had been
concern about a hot programmable collimator being too close to the detector. The
detector crystal must be kept at about 50 K. By letting the AIM-70 cool and solidify,
one need not worry about heating up the detector. Also, the additional complexities
of having a hot plate in the experimental area, along with the need to monitor the

molten AIM-70, are eliminated.

Figure 30. Three selected sources used in the experiments. Left: A 115 pCi, Co-57
button source. Center: An intermittent 38.13 uCi, Co-57 Rod. Right: A 47.66 uCi,
Co-57, Flexible Rope
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Three source positions were used in order to try different magnifications. Various
sources were imaged. The Co-57 sources were used most in the coded-aperture testing.
The button source was useful for approximating a point source. The Co-57 rod is
about 15 cm long, and is “dotted,” or intermittent. There are 1 cm long lead pieces
spaced 1 cm apart down the length of the rod. The Co-57 rope was arranged in
a distinctive shape. For each mask configuration, the sources were placed at the
different positions and data were taken for various amounts of time.

Because the detector is energy-sensitive, an energy window could be set. For
instance, with a Co-57 source, the energy window is set such that the only photon
events recorded in the image are those with energies of 122.1 keV +/- 3 keV or
136.5 keV +/- 3 keV. By limiting the energy of the photons allowed, photons that
have Compton scattered can be excluded. Indeed, only photons that pass straight
through a chamber in the “on” configuration are desired. The energy sensitivity of
the detector helps to exclude those photons that scatter in closed chambers. The
energy sensitivity also serves to limit the background 7-rays that are measured, thus
decreasing the noise in the raw data. Even so, the detector was surrounded on the

back and sides with walls of lead bricks, to shield the detector from scattered photons

originating from other experiments taking place in the laboratory.

Table 4. A selection of the sources used.

Designator | Isotope | Form | Activity [uCi] | Ref. Date | v Energy [keV]
T-122 Co-57 Button 115 15NOV11 122.06, 136.47
Rod Co-57 Rod 38.13 04JAN12 122.06, 136.47
Rope Co-b7 Rope 47.66 04JAN12 122.06, 136.47
T-124 Co-60 | Planchet 5.85 04JAN12 1173, 1333
T-098 Cd-109 | Button 101.8 07NOV11 88.03
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V. Results and Discussion

5.1 Coded-Aperture Image Reconstruction Using Decorrelation Methods

A good first place for data analysis is with the correlation methods. Historically
these methods were used first and are still used today in some applications. They
are much less computationally intensive and much easier to implement. As for the
choice of the matched filter, there are a few different options. One is to use the mask
pattern as the matched filter G. Another choice is the Brown matched filter, where

the zeros are replaced with “-1’s.”

Figure 31. Images from a test using the Co-57 button source at position 1, over 1200
s. Top-Left: The mask pattern. Top-Right: The raw data. Bottom-Left: The object
estimate, using the mask pattern as G. Bottom-Center: The object estimate using
a Brown matched filter. Bottom-Right: The object estimate using a Brown matched
filter, setting negatives to zero.
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A MATLAB® script was written to decorrelate the raw data. The mask pattern
is input as a matrix, as well as the directory of the raw data text file. The routine
imports the data, storing it as a two-dimensional matrix. Next, the routine over-
resolves both the raw data matrix and the mask matrix by the same factor so that
they maintain equal scaling. The pattern size is increased by a factor of m, where
m is the magnification expected. Because the matrices are over-resolved, the mask
shadow can be rounded to a much finer range of sizes. By including the effects of
magnification, the scale of the decorrelated image, or object estimate, is correct.

After the over-resolved raw data and G matrices are defined, the script invokes

the built-in, cross-correlation function, such that

O=PxG (21)

where P is the raw data and O is the ob ject estimate. The numerical cross correlation
function outputs a matrix that is bigger than the two matrices that are input, as
expected. If P is of size [Mp, Np] and G is of size [Mq, N¢|, then O will be of size
[Mp+ Mg—1, Np+ Ng— 1]. Abstractly, the cross correlation process can be thought
of as discretely sliding G over P and recording how well the two “agree” at each
location. In this case only the center part of O was used. More specifically, the center
[Mp, Np| square of O was extracted, and the rest was ignored. The outside portions
do have meaning, representing instances where the mask shadow is not fully on the
detector crystal. However, it was found that the outside portions were not reliable,
and so they were discarded. Furthermore, the sources were placed in a narrow enough

solid angle so that the shadow would not project off of the side of the detector crystal.
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The script also normalizes O. That is,

O = (22)

O

By normalizing the object estimate, the units of O’ become cm~2. The values of O’
are then values of probability density. If O’ were integrated over its limits the result
would be unity. The source is assumed to be located entirely somewhere within the
spatial limits of the O’ matrix and O’ provides the probability of finding it at a given
location within those limits.

Regarding inherent noise and filtering artifacts, perhaps the most instructive of
the tests performed were those that used the Co-57 button source. In the bottom-left
portion of Figure 31, one can see the results of using A as G. A large amount of
inherent noise, or artifacts that arise from the decorrelation process, are seen. This
inherent noise is manifested throughout the reconstructed image. Though the button
source is still clear in this case, it may not be when short detection times are used or
when a weak source is imaged. The Brown matched filter is able to smooth out the
inherent noise, to a somewhat constant baseline, as seen in the bottom-center image.
Nonuniformities are certainly present, but the source is more easily distinguishable.

A peculiarity that arises when using the Brown type matched filter is that O’
can take on negative values. Obviously a negative probability is not meaningful
physically. One way to account for these negative values is to throw them away
entirely. Assuming the negative values of probability to be non-physical, the locations
corresponding to those negative values are given zero probability of containing the
source. This explanation may not sit well with some. Another way to think about
this method is that the baseline is being raised. If the Brown matched filter causes

a relatively constant level of inherent noise across O, this constant noise simply can
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be removed. Some signal may be lost but the SNR should increase. Viewing the
bottom-right image in Figure 31, the advantage of this correction is clear. In practice
one could move the threshold or baseline even higher, discarding even more of the
noise.

It is known that coded-apertures are not as effective for extended source imaging.
This is why astronomy became the first real use for the coded-aperture. Stars are
essentially point sources. Nevertheless, the rod and the rope sources were used to
characterize the programmable collimator’s ability to image extended sources. One
can see a bit of the rod in Figure 32. However, the noise is much more pronounced
in this case. In Figure 33 the rope is mostly indistinguishable.

There are a few factors that worsen the object estimate in this particular case.
First, the detector crystal is round, as can be seen in the left image of Figure 32.
Not only is data lost because of this fact, but data is lost non-uniformly in space.
The decorrelation methods do not have a good way to account for this fact, although
ML-EM does.

Secondly, the total projection through the collimator can become bigger than the
detector crystal if there is any significant magnification. Again, this causes a spatially
dependent loss of data that the decorrelation methods are ill-suited to handle. One
possible solution is to have either a bigger detector or a smaller collimator so that
the projection stays on the crystal, away from the corners. A bigger detector crystal
is not foreseeable with current equipment and funds. A smaller collimator could be
fabricated given two to five months. Another solution is to move the source farther
away from the collimator, decreasing the magnification. This has the disadvantage
of lower count rates. Also, given the resulting smaller solid angle subtended by the
source, from the detector, the resolution of the object image would be worse if the

source were farther away.
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Figure 32. Data from the rod at position zero. Left: The raw data. Center: The object
estimate, using a Brown matched filter. Right: The object estimate, Brown matched
filter, negative values set to zero.

Thirdly, vignetting was significant with the dimensions used in this study. As
mentioned in Section 3.1, there is an analytic formula which can correct the vignetting
effects [50]. Such a correctional factor could be applied in the future. Essentially, the
raw data pixels would be weighted based on their location, where the center pixels

would have a higher weight than the edge pixels.

Figure 33. Left: The Co-57 rope source. Center: The object estimate using a Brown
matched filter. Right: The object estimate, Brown matched filter, negative values set
to zero.
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5.2 Coded-Aperture Image Reconstruction Using ML-EM

The same data analyzed with correlation techniques in Section 5.1 were also ana-
lyzed using the ML-EM method. The matrix A was found as described in Section 3.1.
A script was written to import the data from the detector and to run the algorithm.

The ML-EM equation for imaging, reproduced here from Section 2.4, is [53, 40, 62]:

old
)‘j

Yi
Ay — I 23
> Aij Z: Tk A + b (28]

new __

The method performed well with point sources. The number of iterations required
for a satisfactory object image varies. When imaging a point source, the source
became distinct with just a few iterations. Figure 34 shows the object estimate of
a Co-57 point source. After just 4 iterations, the source is distinct, though with a
halo. After 200 iterations, the source is reduced to a circle with a diameter of about
1 cm. The button source has a physical diameter of 1.5 cm. After 1400 iterations,
the pixels of the image become more differentiated. The right image of Figure 34 is
an example of ML-EM convergence. After 14,000 iterations, for instance, the image

would look similar to that of 1,400 iterations.

Figure 34. The Co-57 button source was imaged for 30 seconds. Shown is the object
estimate after 4 iterations (Left), 200 iterations (Center) and 1400 iterations (Right).
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The average amount that each image pixel changed from iteration to iteration is
shown in Figure 35. Notice the drastic changes below about 100 iterations. Indeed,
convergence can be assumed above a few hundred iterations, where the plots become
asymptotic. One should note that full convergence in ML-EM often results in some
non-physical artifacts. These non-physical artifacts arise due to limitations in the
forward model predications as well as from limited sampling in the raw data. In the
right-hand image of Figure 34, for instance, the blotchy pixelation shown is probably
not physical. In a commercial system the number of iterations would be limited, in
order to prevent these artifacts from developing. By limiting the number of iterations,
the reconstructed image may not reach the same spatial resolution, though the number
of non-physical artifacts is less. Both fully converged and partially converged images

are presented in this document.

Figure 35. The average change in reconstructed image pixels from one iteration to the
next. Left: Data for the Co-57 button source. Right: Data for the Co-57 intermittent
rod.

The field-of-view was constrained because of the collimator’s depth. It was dis-
covered that the ML-EM method would fail if the discretized source plane did not

fit within the field-of-view. Specifically, the reconstructed image would be populated
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entirely with NaNs. This outcome is related to the collimator’s depth. As described
in Section 3.1, the forward model finds a vector between each source pixel and all
of the detector pixels. If a photon traveling along a vector from source pixel j to
detector pixel 7 is blocked by the collimator, then A;; is zero. Now suppose, as an
example, that source pixel 7 = 2 is completely outside of the collimator’s field-of-
view. In this case, photons traveling from source pixel 2 to any detector pixel are
blocked. Therefore the term ) . A;5 goes to zero. This term is located in the de-
nominator of Equation 23. In computers, division by zero results in an assignment of
the value NaN. Continuing with the example, A\5°" thus would go to NaN. The NaN
propagates to other j positions in A because of the ), A\, term. NaN times a
number equals NaN. Within a couple of iterations, A is filled completely with NaNs.
Source configurations must be chosen in which the source is completely within the
field-of-view.

The parameter b represents the average number of counts, per pixel, that are not
attributable to unscattered rays from the source. That is, b represents the average
number of counts that are not of the desired signal. If this parameter is set too
high, true data can be lost. Less active regions of the source plane are set to zero
artificially. On the other hand, if b is set too low, noise and background counts corrupt
the object estimate. The number of iterations and b were set qualitatively, based on
how the object estimate looked after the script was finished. Typically the number of
iterations needed for convergence ranged between 300 and 800. b was usually set to
be 10% of the counts in the raw data pixel with the most counts. A more quantitative
means for determining these two values would be useful in a commercialized system.

The data taken using the extended sources were analyzed using ML-EM. The
method performed well, especially as compared with the correlation methods. As

seen in Figure 36, the full structure of both the rod and the rope is visible. The
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images do not hone in exactly to the width of the rod or the rope. The radioactive
material in both the rod and the rope has a width of 2 mm. In the reconstructed
images shown in Figure 36, the rod has a width ranging from 3-6 mm and the rope
has a width ranging from 4-5 mm. This limited resolution does not stem from any
problem with the ML-EM method but rather is due to an interplay between the
magnification, the cross-sectional area of a given collimator chamber, and the area of
a given detector pixel. The magnification of the system could be altered by changing
the source-mask and mask-detector distances. If the magnification is increased, the
resolution of the reconstructed image increases but then less of the source plane lies
within the system’s field-of-view, and vice-versa. The magnification and the resolution
are directly related. The magnification was chosen in this case so as to fit a significant

portion of the extended sources within the field-of-view.

Figure 36. Top-Left: The Co-57 intermittent rod. Bottom-Left: ML-EM reconstruction
of the rod after 800 iterations. Data taken for 1 hr. Top-Right: The Co-57 rope.
Bottom-Right: ML-EM reconstruction of the rope after 800 iterations. Data taken for
1 hr.
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The primary advantage of the ML-EM method over correlation methods is its
ability to incorporate certain effects and physical characteristics of the detector that
cannot be accounted for using correlation methods. For instance, the A matrix takes
into account the fact that every tenth subpixel in the detector is dead, and that
the detector is round, not square. And, as mentioned before, the forward problem
results naturally compensate for vignetting effects. With the continual improvement
of computer memory and speed, ML-EM will only become better as compared to
the correlation methods. For this problem, algorithm computation times were trivial
except when the number of source plane pixels, M, in the matrix B were greater than
about 20,000, in which case computation times were on the order of ten minutes. A

personal computer was used.

5.3 Quantitative Image Analysis and SNR

Comparing two images, the human eye is usually good at determining when an
image is better than another. In an image of a radioactive source, the source should be
bright (high values) and sharply defined whereas the rest of the image should be black
(values of zero) and free of any artifacts. The eye can pick these sorts of things out, but
a more quantitative analysis is almost always preferable in science and engineering.
Two methods for finding the Signal-to-Noise Ratio (SNR) in reconstructed images
were investigated.

Both methods used the definition of SNR from Cunningham et al as a starting
point [19]. The size and location of the source being imaged is known. The source,
being the signal, is removed from the reconstructed image. Only noise remains in the
image. The signal and the noise then can be compared.

A script was written to determine the SNR in images of button sources. The user

is able to define the center and the radius of a circle which represents the button
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Figure 37. From the object estimate (left), a circle of signal is found, by hand, leaving
the rest to be noise (right).

source. The values of the pixels in the image that are covered by the circle are placed
in a length Mp vector called B, where Mp is the number of pixels that are covered by
the user-defined circle. The values of the pixels not covered by the circle are placed
into a vector called C of length M, where M is the number of pixels that are not
covered by the circle. Notice that Mg+ M¢ equals the number of pixels in the image.

In the first version of SNR used, the mean of the values in the signal list, B, and
the mean of the values in the noise list, C, are found. The SNR is simply:

SNR = (24)

Qll

This formulation works well, except in the correlation method that uses the Brown
matched filter. When the Brown matched filter is used, the object estimate contains
negative values. The negative noise is just as detrimental to the image quality as is
the positive noise. However, if a simple mean is taken of the noise list, then many of
the negative noise values would cancel out the positive values. C' would be close to
zero, yielding an artificially high SNR. Another version of the SNR compensates for

these negative values by using the Root Mean Square (RMS) of the signal list and of
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the noise list. The RMS signal, .S, is defined as

L (25)
and the RMS noise, ( is
M
Mc
The SNRgrus 1s defined as
S
SNRims = z (27)

The signal and noise distributions were examined for general insight and to de-
termine if an appropriate simplification could be made. An example is shown in
Figure 38. The noise that is found in images reconstructed with correlation methods
generally adheres to the Poisson distribution, even through the decoding process. Ra-
dioactive counting experiments in which the counting time is short compared to the
half lives of the nuclides used will follow Poisson statistics. In this case, the standard

deviation is equal to the square root of the mean of the distribution [37, 64].

Figure 38. Left: A histogram of C' taken from an image of the Cd-109 source with
background. Right: A histogram of B from an image of the Cd-109 source with back-
ground.
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The signal list, B, from the correlation method images, as well as both B and C'
from the ML-EM images, do not adhere to any known distribution. For thoroughness,
the standard deviation for B and C was calculated outright for all images. For the

first SNR formulation,

o Zn]\fil (Bm B §)2
op — \/ Mg (28)

oo = \/me1 (AZE(: B C) (29)

Under the SNRgrys formulation,

e \/ e, (]\ZZ —¢) 1)

In the calculation of SNR, the variances add [68]. Eventually the images could
be conditioned, removing noise without significant loss of the true signal. The goal
of this research is not to produce the best possible images but to show the relative

improvement between images when multiple mask patterns are used.

5.4 Image Improvement from a Multiple Mask Sequence

As a coded-aperture, the overarching goal of the programmable collimator is better
image quality. This is accomplished by using different mask patterns, which provide
semi-independent views of the source. The different views provide new data that
helps to cancel out noise and irregularities resulting from the previous views’ data.
The programmable collimator can improve imaging systems in two different fashions.

It can either make better images in the same measurement time as compared to a

71



traditional coded-aperture, or it can arrive at the same quality image that a traditional
coded-aperture would produce but in less time. The former situation was explored
in this test campaign. The Co-57 button source, the Cd-109 button source (with
background injection), the itermittent rod, and the rope were all imaged at Position
F (See Tables 4 and 3). The rope was only imaged with up to five masks, rather than

ten.

2 4 6 8 10 2 4 6 8 10

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10

Figure 39. The 10-mask sequence of random masks used for testing. The sequence was
found by the program described in Section 3.3.

The Cd-109, rod, and rope sources were all imaged for a total of 1 hour. The Co-57
source was imaged for a total of 5 minutes. As more masks were used, the total time
was divided between each mask. For example, when the intermittent rod was viewed
through two masks, data were taken with each mask for 30 minutes. When three
masks were used, data were taken through each mask for 20 minutes, and so forth.
In this way the total measurement time remained the same so that fair comparisons
could be made between sequences with different quantities of masks.

To reduce the number of mask changes to be made to the collimator, all of the
sources were viewed through each mask before changing the mask pattern. All re-

quired data collection times were found for each mask before changing the pattern.
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Unfortunately, the proprietary HPGe detector software did not allow automation,
meaning that each data-run was initiated manually. If automation had been an op-
tion, more more mask patterns would have been used. Nevertheless, good results
were found with ten mask patterns.

A standard coded-aperture setup was used for the test campaign (Figure 29). The
position of the collimator and the sources were marked on their respective stands
using a sharp pen. The collimator was taken to a different laboratory with a fume
hood for reconfiguration. When returned, it was positioned according to the marks
on the stand. The sources were repositioned similarly between tests. This method
led to some net movement or magnification/demagnification of the source in the
reconstructed images, as explained in Subsection 5.4.1. Images were reconstructed
using the Brown matched filter decorrelation technique and using ML-EM. When
multiple masks were used, a reconstruction technique was performed on the data from
each mask pattern. The reconstructed images were weighted equally and summed
together. The summed image was then normalized to allow for legitimate comparisons
between different sequences. Image improvement was demonstrated with all sources,

as described in the following subsections.

Table 5. The data-runs performed for the Cd-109 source. Each “1” represents a single
data-run.

Mask | 3600 s | 1800 s | 1200 s | 900 s | 720 s | 600 s | 514 s | 450 s | 400 s | 360 s
1 1 1 1 1 1 1 1 1
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5.4.1 Image Shift Correction

It was discovered that the collimator had translated between mask patterns. When
the mask was reconfigured in a different laboratory, it was not returned to the exact
same position in the imaging laboratory. This caused a shift in the reconstructed

images.

Table 6. The coordinates of the center/maximum pixel of the reconstructed button
source for each of the ten masks, in mm. Co-57 dataset 1.

Mask Num. |1 |2 [ 3|4 |5 |6 | 7|8 ] 910
Row 48 | 50 | 50 | 51 | 50| 49 | 50 | 50 | 52 | 51
Column 44 | 48 | 51 | 50 | 46 | 52 | 46 | 51 | 51 | 51

For every mask pattern, data were taken using the Co-57 button source. The ML-
EM images of the Co-57 source were so clean that the shift could be discerned. In all
reconstructed images, the pixel with the highest probability density value also was
the pixel at the center of the reconstructed button source. The coordinates of these
maximum /center pixels were recorded. The results from one trial are given in Table
6. Notice that the center pixel varies by as much as 8 mm from mask to mask. Most
of the image movement is horizontal, meaning that the biggest changes in collimator
placement were lateral.

Results from multiple trials were averaged, giving the expected shift from mask
to mask. The values for the first mask were used as the true position. Images formed
using subsequent mask patterns were shifted based on the difference between that
mask’s reference coordinates and the first mask’s reference coordinates. In this way

the effects of collimator movement were reduced. Changes in magnification due to
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collimator movement were not accounted for. However, translation of the collimator
by a few millimeters would change the magnification only negligibly.

For future experiments, an assembly should be built to ensure that the collimator
does not change position. Of course, this system is only a proof of concept. A real
system would be automatically reconfigurable using computer control, eliminating

the need to ever move the collimator.

5.4.2 Co-57

The most straightforward test was that which was performed on the Co-57 button
source. This active and small source served as a good approximation of a point source.
Two datasets were recorded. About 47,000 events inside the energy window were
recorded over a given, total datarun. The correlation reconstruction techniques work
well when a point source is imaged. In the top-left image of Figure 40, the source is
clearly visible when just one mask is used, though significant inherent noise dominates
the image. When five-mask and ten-mask patterns were used, the inherent noise in
the decorrelated image was reduced significantly. The source and its halo stay the
same size regardless of the number of masks that were used.

The ML-EM technique produced a mostly noiseless image with a single mask
pattern. The detail in the source itself increases when more mask patterns are used.
In the fully converged one-mask image, the source has a noticeable, nonphysical,
horizontal discontinuity and an artifact slightly above it. Both features are not present
in the fully converged five-mask image. The ten-mask image shows a tightened source
and a decrease in halo size versus the five-mask image.

The SNR was found for each mask sequence and reconstruction method as ex-

plained in Section 5.3. Results for the correlation method are shown in Figure 41.

1)



Figure 40. Images of the Co-57 button source using Brown correlation, ML-EM with
100 iterations, and ML-EM with 500 iterations. 1, 5, and 10 mask sequences are shown.
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SNRRrwus clearly increases when more mask patterns are used. The SNRrug was 4.30

+/- 0.0003 times higher when ten masks were used versus when one mask was used.

Figure 41. Plot of the SNRrMms versus the number of masks used. Correlation method.
Co-57 button source. 1 hour total measurement time. Error bars are shown.

One interesting feature in Figure 41 is the discontinuous distribution of the data
points. The SNRrums jumps up substantially between 2-3 mask sequences and between
5-6 mask sequences. This effect is explained in Section 5.5.

In the ML-EM images, the SNR and SNRgyg increased by as high as nearly
10,000. It’s unclear why the SNR peaks for the 7 and 8 mask sequences. The radius
of the signal circle was increased, and the plots looked similar, meaning that the
trends are not caused by the chosen position of the signal circle. SNR analyses on
the ML-EM reconstructed images for this source are of some utility but should not
be dwelt upon. The results were included for completeness. Already with a single
mask, the noise in the reconstructed image is very low. Essentially the black areas of
the bottom right image in Figure 40 are zero. The actual values in those pixels are
something very low (about 5x107%3). When those values decrease, on average, by a

factor of ten, the SNR increases by a factor of ten, but the noise in those areas is still
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essentially negligible. Nevertheless, the upward trend in the data presented in Figure

42 is undeniable.
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Figure 42. Left: Plot of the SNR versus the number of masks used in the sequence,
ML-EM method, Co-57 button source, 1 hr total measurement time. Right: Plot of
SNRgrms versus number of masks used. Error bars are shown in both.

5.4.3 Cd-109 Button Source with Background Injection

As was mentioned in Subsection 5.4.2, the ML-EM reconstructed image of the
Co-57 button source was already good with a single mask pattern. In order to better
gauge the image improvement, a higher background and more external sources of
noise were desired. In order to accomplish this, the Cd-109 source was placed 2 cm
above the Co-57 button source (Table 4). The Cd-109 source has an activity of about
10% of the Co-57 button source, for the y-rays of interest.

The unscattered y-rays from the Cd-109 source are observed directly. Some ~-rays
from the Co-57 source scatter down in energy to the energy window and are detected,
also. These extra photons corrupt the image of the Cd-109 source. Figure 43 shows
how the choice of energy window affects the reconstructed image. With a large energy

window, more of the scattered photons from the Co-57 source are observed, and vice
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Figure 43. The effect of different energy windows. The colorscale is fixed. Left: 84-92
keV window. Center: 86-90 keV window. Right: 87-89 keV window.

versa. With a smaller energy window, more of the background is blocked out, but
the count rate decreases. Based on the application, a choice must be made between a
more stringent energy filter or higher count rates. For these tests an energy window of
86 keV - 90 keV was used. About 70,000 events were recorded for each total datarun.

Note that the Co-57 source, seen below the Cd-109 source in the images (Figure
44), is somewhat visible. Even though the scattered photons are observed, a blurred
version of the Co-57 source is still seen. Based on the lead shielding around the detec-
tor, and the AIM-70 within the housing of the collimator, these photons presumably
came through the open chambers of the collimator. Compton scattering of a photon
from 122 keV to 88 keV results in a directional change of about 130 degrees, ruling
out single-scattered photons. Instead, the observed photons from the Co-57 source
likely are those that scatter multiple times inside of the collimator. By bouncing
back and forth between the AIM-70 of the closed chambers, these photons maintain
a similar trajectory to that at which they were emitted, but with lower energies. In
this way the ML-EM algorithm is able to recreate an image of the Co-57 source, even
though the energy window is set much lower than 122 keV.

In the future, this effect could be characterized, leading to a more effective system.
Ideally, the full energy spectrum of detected photons would be used to reconstruct

an image of the source. Again, with a larger energy window, count rates increase.
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Figure 44. Images of the Cd-109 button source with background using Brown correla-
tion, ML-EM with 150 iterations, and ML-EM with 500 iterations. 1, 5, and 10 mask
sequences are shown.
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Returning to the main purpose of the test, the use of multiple mask patterns
successfully reduced noise in the reconstructed images. The inherent noise in the
correlation images is greatly reduced with the use of multiple masks. With the ML-
EM method, the Cd-109 source is apparent above the blur from the Co-57 source.
When 1 mask was used, significant noise is visible in regions of the image where no
source was present. This noise is reduced when more masks are used. The Co-57 blur
remains, regardless of the number of masks used. With more masks the size of the
Cd-109 portion of the image is honed down.

Using the SNR analysis methods presented in Section 5.3, the SNR and SNRgus
were found. The results for the correlation method are shown in Figure 45. The
SNRRrums increased by a a factor of 3.04 when ten masks were used. Notice that
the discontinuities between 2 and 3 mask sequences and 5 and 6 masks sequences
are present again, as they were in the SNR plots for the Co-57 images. A potential

explanation for these discontinuities is given in Section 5.5.
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Figure 45. Plot of the SNR versus the number of masks used. Correlation method.

Cd-109 button source with background. 1 hour total measurement time. Error bars
are shown.
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The ML-EM SNR plots both show significant increases in SNR. SNR increased
by a factor of 1.8 when ten masks were used. The discontinuity between the 5 and 6
mask SNR results is possibly due to the explanation given in Section 5.5. However,

the reason for the SNR jump between 1 and 2 masks is unclear.

Figure 46. Left: SNR versus number of masks used, Cd-109 with background, 1 hr de-
tection time. Right: SNRRrns versus number of masks used, Cd-109 with background,
1 hr detection time.

This source configuration is somewhat strange, in that much of what was consid-
ered noise originated from the Co-57 source located within the field-of-view of the
collimator/detector. It was not expected that the Co-57 would still be visible in the
reconstructed images. The increase in image quality is clear to the eye, with the
Cd-109 source becoming sharper when more masks were used. For a fut