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Polytope Codes Against Adversaries in Networks
Oliver Kosut, Lang Tong, and David Tse

Abstract— Network coding is studied when an unknown subset
of nodes in the network is controlled by an adversary. To
solve this problem, the class of polytope codes is introduced.
Polytope codes are linear codes operating over bounded polytopes
in real vector fields. The polytope structure creates additional
complexity, but it induces properties on marginal distributions
of code vectors so that validities of codewords can be checked by
internal nodes of the network. It is shown that a cut-set bound for
a class planar networks can be achieved by the polytope codes.
It is also shown that this cut-set bound is not always tight, and
a tighter bound is given for an example network.

I. I NTRODUCTION

Network coding allows routers in a network to execute
possibly complex codes in addition to mere forwarding; it
has been shown that allowing them to do so can increase
throughput [1]. However, taking advantage of this use of cod-
ing at internal nodes means that the sources and destinations
must rely on other nodes—nodes they may not have complete
control over—to reliably perform certain functions. If these
internal nodes do not perform the function correctly, or, worse,
maliciously attempt to subvert the goals of the users, launching
a so-called Byzantine attack [2], [3], standard network coding
techniques fail.

Suppose an omniscient adversary controls an unknown
portion of the network, and may arbitrarily corrupt the values
sent on certain links. We wish to determine how the size of
the adversarial part of the network influences the capacity.
If the adversary may control anyz unit-capacity edges in the
network, then it has been shown that, for the multicast problem
(one source and many destinations), the capacity reduces by2z
compared to the non-Byzantine problem [4], [5]. To achieve
this rate, only linear network coding is needed. Furthermore,
if there is just one source and one destination, only routing is
needed at internal nodes.

The above model assumes that any set ofz edges may
be adversarial, which may be overly pessimistic depending
on the situation. If the adversary cuts a certain number of
transmission lines in a network, this would be a reasonable
model. If, on the other hand, the adversary seizes a single
router, it will control the values on all links connected to
that router; the number of these links may vary in number
depending on which router is attacked. It is easy to construct
examples (see [6]) for which allowing the adversary to control
any set ofz edges results in a much lower throughput than
allowing them only to controlz edges if they all emerge
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from the same node. It is therefore reasonable to consider
the problem of the adversary controlling any set ofz nodes,
as we do in this paper.

A. Related Work

Byzantine attacks on network coding were first studied
in [7], which looked at detecting adversaries in a random
linear coding environment. Thez unit-capacity edge adversary
problem was solved theoretically in [4], [5]. In [8], the same
problem is studied, providing distributed and low complexity
coding algorithms to achieve the same asymptotically optimal
rates. In addition, [8] looks at two adversary models slightly
different from the omniscient one considered in [4], [5] and
in this paper. They show that higher rates can be achieved
under these alternate models. In [9], a more general view of
the adversary problem is given, whereby the network itself is
abstracted into an arbitrary linear transformation.

Network coding under Byzantine attacks that are more
general than the simple edge-based model was first studied in
[6] and [12]. The former studied node-based attacks by means
of several examples, and the latter looked at the problem of
edge-based attacks when the edges could have unequal capac-
ities. This problem was found to have similar complications
to the node-based problem. Both found that linear coding
is suboptimal, and that simple nonlinear operations used to
augment a linear code can improve throughput. It is shown in
[13] that the node-based problems subsumes even the unequal
edge problem.

All of these works, in addition to ours, seek to correct for
the adversarial errors at the destination. An alternative strategy
known as the watchdog, studied for wireless network coding in
[10], is for nodes to police downstream nodes by overhearing
their messages to detect modifications. In [11], a similar
approach is taken, and they found that nonlinear operations
similar to ours can be helpful, in which comparisons are made
to detect errors.

B. Main Results

The primary contribution of the present paper is to elab-
orate the theory of polytope codes, originally introduced in
[6] under the less descriptive term “bounded-linear codes”.
Polytope codes make use of probability distributions defined
over polytopes in real vector fields. The main innovation of
these distributions is that it they possess properties having to
do with constraints against their marginal distributions. This
property is stated and proved is Section V, and it allows
more effective checks at internal nodes in a network; these
checks either detect and correct adverserial actions or force
adversaries to act properly.



Polytope codes are used to prove that the cut-set bound,
stated in Section III, is tight for a certain class of planar
networks. Planarity requires that the graph can be embedded in
a plane such that intersections between edges occur at nodes.
This allows additional comparisons that might otherwise not
be present, allowing the code to more well defeat Byzantine
attacks.

Finally, we show in Section VIII that the cut-set bound is
not always tight, by giving an example with a tighter bound.

II. PROBLEM FORMULATION

Let (V,E) be an directed acyclic graph. For each edge
e ∈ E, there is an edge capacityce, which we assume to
be an integer. One node inV is denotedS, the source, and
one is denotedD, the destination. We wish to determine the
maximum achievable throughput fromS to D when any set
of z nodes inV \ {S,D} are traitors; i.e. they are controlled
by the adversary. Given a rateR and a block-lengthn, the
messageW is chosen at random from the set{1, . . . , 2nR}.
Each edgee holds a valueXe ∈ {1, . . . , 2nce}.

A code is be made up of three components:

1) an encoding function at the source, which produces val-
ues to place on all the output edges given the message,

2) a coding function at each internal nodei ∈ V \ {S,D},
which produces values to place on all output edges from
i given the values on all input edges toi,

3) and a decoding function at the destination, which pro-
duces an estimatêW of the message given the values
on all input edges.

SupposeT ⊆ V \{S,D} with |T | = z is the set of traitors.
They may subvert the coding functions at nodesi ∈ T by
placing arbitrary values on all the output edges from these
nodes. LetZT be the set of values on these edges. For a
particular code, specifying the messageW as well asZT

determines exactly the values on all edges in the network,
in addition to the destination’s estimatêW . We say that a
rate R is achievable if there exists a code operating at that
rate with some block-lengthn such that for all messages, all
sets of traitorsT , and all values ofZT , W = Ŵ . That is,
the destination always decodes correctly no matter what the
adversary does. Let thecapacity C be the supremum over all
achievable rates.

III. C UT-SET UPPERBOUND

Theorem 1: Consider a cutA ⊆ V with S ∈ A andD /∈ A.
Let EA be the set of edges that cross the cut. For two not
necessarily disjoint sets of possible traitorsT1, T2, let E1 and
E2 be the subset of edges inEA that originate at nodes inT1

andT2 respectively. LetẼ be the set of edges inE1 ∩ E2 in
addition to all edgese ∈ E1 ∪ E2 for which there is no path
that flows throughe followed by any edge inEA\E1\E2. The
following upper bound holds on the capacity of the network:

C ≤
∑

e∈EA\Ẽ

ce. (1)

Proof: A version of this theorem was proved in [6]. The
proof follows along the lines of the Singleton bound.

The corresponding cut-set bound when an arbitraryz unit-
capacity edges can be modified by the adversary was proved
in [4]. In [12], it was conjectured (for the edge adversary
problem with unequal capacities) that the cut-set bound (stated
more in the more general form than that in [4], but essentially
the same as Theorem 1) is not tight. We prove in Sec. VIII
that the cut-set bound stated in Theorem 1 is not tight in
general. The example used to demonstrate this, though it is
a node adversary problem, can be easily modified to confirm
the conjecture stated in [12].

IV. CAPACITY OF A CLASS OFPLANAR NETWORKS

Theorem 2: Let (V,E) be a network with the following
properties:

1) It is planar.
2) No node other than the destination has more than two

unit-capacity input edges (i.e. either one 2-capacity edge
or two unit-capacity edges).

3) No node other than the source has more output capacity
than input capacity.

If z = 1, cut-set bound is tight for this network.
Proof: Omitted due to space limitation. See [13]. Sec-

tion VI illustrates the proof for an example, and Section VII
briefly sketches how planarity is used.

The key ingredient in the proof of the above theorem is
the use of a new class of codes referred to as Polytope Codes,
introduced next in Sec. V. Polytope codes are nonlinear codes,
but they are not drastically different from linear codes; they
are linear codes defined on polytopes in real field. The proof
of the above theorem seems to suggest that the cut-set bound
may be tight for a much larger class of networks. Indeed,
we conjecture that this theorem can be generalized, and that
polytope codes achieve capacity for all planar networks and
all z.

Fig. 1 shows an example of a network that satisfies the
conditions of Theorem 2. Thus the capacity of this network
(achieved by a polytope code) is 4. If only linear codes are
allowed, the maximum achievable rate is 3 (see [6] for a
proof of a similar fact). The polytope code used to prove
achievability is discussed in detail in Section VI.

V. THE POLYTOPE CODE

We begin with a simple example of the distribution under-
lying the polytope code. For some positive integerk, consider
the set ofX,Y, Z,W ∈ {−k, . . . , k} satisfying

X + Y + Z = 0 (2)

3X − Y + 2W = 0. (3)

This is the set of integer lattice points in a polytope. Let the
distributionp(xyzw) be uniform over these points. The region
of (X,Y ) pairs with positive probability is shown in Fig. 2.
Observe that even thoughX andY are linearly independent
in the subspace given by (2)–(3), they are not statistically
independent, because the boundedness ofZ andW requires
thatX andY satisfy certain linear inequalities. Nevertheless,
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Fig. 2. An example polytope projected into the(X, Y ) plane.

the area of the polygon shown in Fig. 2 grows asO(k2).
Hence,

lim
k→∞

H(XY )

log k
= 2. (4)

Note also that

lim
k→∞

H(X)

log k
= lim

k→∞

H(Y )

log k
= 1. (5)

Therefore, for largek, X and Y are nearly independent in
that their joint entropy is close to the sum of the individual en-
tropies. The four variablesX,Y, Z,W make up something like
a (4, 2) MDS code, in that each pair is close to independent
for largek, and any two completely determine the other two.
These distributions over polytopes can be made to perform
many of the same functions as standard linear variables defined
over finite fields.

More generally, given a matrixF ∈ Z
u×m, consider the

polytope
{

x ∈ Z
m : Fx = 0, |xi| ≤ k for i = 1, . . . ,m

}

. (6)

We may also describe this polytope in terms of a matrix
K whose columns form a basis for the null-space ofF .
Let p(x) be a uniform distribution over this polytope. In a
polytope code, each codeword is a sequencexn with joint
type equal top(x). Each edge in the network holds a sequence

xn
i . The following lemma generalizes the entropy calculations

performed above.
Lemma 1: According top(x), for anyS ⊆ {1, . . . ,m}

lim
k→∞

H(XS)

log k
= rank(KS) (7)

whereKS is the matrix made up of the rows ofK correspond-
ing to the elements ofS.

Recall that in a linear code operating over the finite fieldF,
we may express the elements on the edges in a networkx ∈
F
m as linear combinations of the messagex = Kw, where

K is a linear transformation over the finite field, andw is the
message vector. Taking a uniform distribution onw imposes
a distribution onX such thatH(XS) = rank(KS) log |F|.
This differs from (7) only by a constant factor, and also that
(7) holds only in the limit of largek. Hence, polytope codes
achieve a similar set of entropy profiles as linear codes.

In a polytope code, every node in the network observes
several sequencesxn

i , from which it may determine their
joint type. It will check whether the joint type matches the
corresponding distribution fromp, and forward a bit specifying
whether it does along all its outgoing edges. In addition, all
nodes will continue forwarding these comparison bits all the
way to the destination. The number of these bits is determined
only by the size of the network, so they occupy an arbitrarily
small amount of link capacity asn grows. These comparisons
force a traitor to make a choice: it causes the comparison to
fail, which may give away its location, or it is constrained so
that the comparison pass. The following theorem allows us to
analyze how these constraints influence the traitors’ actions.

Theorem 3 (Fundamental Property of Polytope Codes):
Let p(x) be a probability distribution forx ∈ {−k, . . . , k}m

such thatp(x) > 0 only if Fx = 0. For another distribution
q(x) on the same space subject to

q(Alx) = p(Alx) for l = 1, . . . , L (8)

whereAl ∈ R
ul×m, q must be identical top if the following

properties ofF and theAl hold:

1) There exists a positive definite matrixC such that

FTCF =

L
∑

l=1

AT
l ΣlAl (9)

for someΣl ∈ R
ul×ul .

2) There exists anl∗ such that the value ofAl∗x uniquely
determinesx subject toFx = 0. That is, the matrix
[

Al∗

F

]

has full column rank.

Proof: By (8), for all l and ally ∈ {−k, . . . , k}ul ,
∑

x:Alx=y

q(x) =
∑

x:Alx=y,Fx=0

p(x) (10)

where we have used the fact thatp(x) is only positive ifFx =
0. Multiplying (10) by yTΣly and summing over ally and all
l, then applying (9), yields

∑

x

[xTFTCFx]q(x) =
∑

x:Fx=0

[xTFTCFx]p(x). (11)



Observe thatxTFTCFx is 0 if Fx = 0 and positive ifFx 6=
0, becauseC is positive definite. Therefore the right hand side
of (11) is 0, and the left hand side is a linear combination of
{q(x) : Fx 6= 0} with strictly positive coefficients. Therefore
q(x) = 0 if Fx 6= 0.

Now we make use of the property (2). For anyx ∈
{−k, . . . , k}m with Fx = 0, we may rewrite (10) forl∗ as

∑

x′:Al∗x
′=Al∗x,Fx′=0

q(x′) =
∑

x′:Al∗x
′=Al∗x,Fx′=0

p(x′). (12)

But observe thatAl∗x
′ = Al∗x andFx′ = 0 imply that x′ =

x. That is, there is only one term in the summation. Hence,
q(x) = p(x) for all x.

VI. A PPLICATION OF POLYTOPE CODESAGAINST

ADVERSARY NODES

Consider the example in Fig. 1, shown with a routing
scheme for a polytope code that we will show achieves the
cut-set bound of 4 with one traitor. In Fig. 1, variablesX1–
X8 comprise the polytope code equivalent of an(8, 4) MDS
code. That is, the matrixF imposing constraints on theXs
is such that any four variables are linearly independent, and
determine the other four. Recall that each of these variables
represents a sequencexn

i transmitted across the respective link
so that(xn

1
, . . . , xn

8
) has joint type equal top(x1 · · ·x8), and

each message is associated with one such joint sequence. In
addition to these sequences, comparison bits are generated and
sent through the network, as discussed above.

To decode, the destination first compiles a listL ⊂ V of
which nodes may be the traitor. It does this by taking all
its available data: received comparison bits as well as the
xn
i sequences it has access to, and determines whether it is

possible for each node, if it were the traitor, to have acted in a
way to cause these data to occur. If so, it adds that node toL.
For example, if the comparison bit from node 8 reports that
the distribution ofX2 andX5 did not matchp, then the traitor
must be a node that can influence one of those two symbols;
i.e. L ⊂ {1, 3, 5, 6, 8}. Observe that the true traitor is inL.

Depending onL, the destination choses which variables
to decode from. Any traitor action leads to someL, so it
is comprehensive to consider all values forL. If |L| = 1,
then this single node must be the traitor, so the destination
can simply disregard all symbols that came into contact with
that node (there are at most 2) and decode the message from
the rest. Now consider the case that|L| ≥ 2. Say nodei is
the traitor, andj ∈ L, j 6= i. This places certain constraints
on the behavior of nodei that we may exploit. The following
lemma allows us to conclude that the code is effective.

Lemma 2: If node i is the traitor, butj ∈ L, then i could
only have corrupted variables that are also touched by nodej.

By Lemma 2, the destination can ignore variables touched
by all nodes inL and decode from the rest. For example,
suppose node 3 is the traitor and node 6 is inL. The only
symbol node 3 may have corrupted isX5, so the destination
may decode from the rest.

To prove Lemma 2, in principle one needs to check the
condition for all pairsi andj. We illustrate the argument for

one pair; generalization is not hard. Suppose that node 3 is
the traitor and it acts such that it appears to the destination
that node 2 may be the traitor. Because node 2 and node
3 do not share any symbols, we wish to show that node 3
cannot transmit to nodes 6 and 7 anything but the true values
of X5 andX6 respectively. Letq(x1 · · ·x8) be the empirical
type of the sequences sent through the network, where it may
be different fromp if node 3 has changedX5 or X6. The
following conditions hold onq:

q(x1x2x7x8) = p(x1x2x7x8), (13)

q(x2x5) = p(x2x5), (14)

q(x6x7) = p(x6x7), (15)

q(x1x5x6x8) = p(x1x5x6x8). (16)

Condition (13) holds becauseX1, X2, X7, X8 cannot be in-
fluenced by node 3, so they retain their true values. Condition
(14) holds because if it did not, node 5, which observesX2

andX5, would detect it, and forward the information to the
destination. Since node 2 cannot influenceX2 or X5, this
would remove 2 fromL. Similarly, (15) holds becauseX6, X7

are compared at node 7. Finally, if (16) did not hold, then the
destination could tell that node 2 was not the traitor, because
X1, X5, X6, X8 are untouched by node 2.

We wish now to apply (13)–(16) to Theorem 3 to conclude

q(x1x2x5x6x7x8) = p(x1x2x5x6x7x8). (17)

This is enough to show thatX5 andX6 cannot be corrupted
by node 3, because underp, X1, X2, X7, X8 determineX5

andX6, so they must do so in exactly the same way under
q. We must now check that (13)–(16) satisfy the conditions
of Theorem 3. The second condition can be satisfied by
choosingl∗ to correspond to either (13) or (16), since they both
involve four variables, and by construction any four variables
determine the rest. Satisfying the first condition is not so easy:
there existΣl matrices such that the right hand side of (8) can
be made to be any matrix whose entries corresponding to the
pairs (X2, X6) and (X5, X7) are zero, because these pairs
never exist simultaneously in any of (13)–(16). This places
two linear constraintsC. Observe thatC is 2 × 2, since the
six variables are subject to two linear constraints. It can be
shown that there exists a positive definiteC iff

|K1,2,7,8| |K1,5,6,8| |K1,2,5,8| |K1,7,6,8| < 0 (18)

Observe that in order forX1–X8 to be the equivalent of an
(8, 4) MDS code, each of the determinants in (18) must be
nonzero; here we see that we must design the code being
aware of the signs of these determinants as well as that they
be nonzero. It is, however, possible to designK to satisfy (18).
This concludes our proof of Lemma 2 fori = 3 andj = 2.

VII. PLANAR NETWORKS

We briefly sketch how the arguments in Section VI can be
extended to prove Theorem 2. We need to generate a routing
scheme for an arbitrary network, then prove a more general
form of Lemma 2. The key observation in order to do this in
general is that the important comparisons that go on inside the
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Fig. 3. A network with capacity strictly less than the cut-set bound.

network are those that involve a variable that does not reach
the destination (e.g. (14) and (15) involveX2 andX7). This
is because those symbols that do reach the destination can
be examined there, so further comparisons inside the network
do not add anything. Therefore the key routing problem is to
carefully design the paths of these non-destination symbols to
maximize the utility of their comparisons. In particular, we
design these paths so that, as much as possible, for a node
having one direct edge to the destination and one other output
edge, the output edge not going to the destination holds a
non-destination variable. The advantage of this is that any
variable, before exiting the network, is guaranteed to cross
a non-destination variable at a node where the two variables
may be compared, but this routing requirement may not be
possible if the network is not planar.

VIII. L OOSENESS OF THECUT-SET BOUND

We show that the cut-set bound given in Theorem 1 is not
tight. We do this in two parts. First, consider the problem
that a special subset of nodes are designated as potential
traitors, and the code must guard against adversarial control
of any z of those nodes. We refer to this as the limited-
node problem. Certainly the limited-node problem subsumes
the all-node problem, since we may simply take the set of
potential traitors to be all nodes. Furthermore, it subsumes
the unequal-edges problem studied in [12], because given an
instance of the unequal-edge problem, an equivalent limited-
node problem can be constructed as follows: create a new
network with every edge replaced by a pair of edges of equal
capacity with a node between them. Then limit the traitors to
be only these interior nodes. It can be shown (see [13]) that the
all-node problem actually subsumes the limited-node problem.
This is done by constructing all-node problems equivalent to
a limited-node problem. Next we give an an example of a
limited-node network for which there is an active upper bound
on capacity tighter than the cut-set. This proves that, even for
the all-node problem, the cut-set bound is not tight.

Consider the network shown in Figure VIII. All edges have
capacity one, and there is at most one traitor, but it is restricted
to be one of the black nodes. The cut-set bound is 2, but in
fact the capacity is no more than 1.5.

Consider a code achieving rateR. For i = 1, 2, 3, 4, let Xi

be the random variable representing the value on the output
edge of nodei. LetY be the value on edge(9, D) and letZ be

the value on(10, D). Let p be the honest distribution on these
variables, and define the following alternative distributions:

q3 = p(x1x2x4)p(x3)p(y|x1x2x3)p(z|x3x4), (19)

q4 = p(x1x2x3)p(x4)p(y|x1x2x3)p(z|x3x4). (20)

If node 3 or node 4 is the traitor, they may induce these
distributions. Therefore

R ≤ Iq3 (X1X2X4;Y Z), (21)

R ≤ Iq4 (X1X2X3;Y Z). (22)

Observe thatq3(x3x4z) = q4(x3x4z), meaning any joint
entropy made up of these three variables is the same for each
distribution. Using this fact, (21), (22), that all edges have
capacity 1, and standard information theoretic inequalities, one
can conclude thatR ≤ 1.5.

IX. CONCLUSION

The main contribution of this paper has been to introduce
the theory of polytope codes. As far as we know, they are the
best known coding strategy to defeat generalized Byzantine
attacks on network coding. However, it remains difficult to
calculate the best possible rate they can achieve for a given
network. We have proved that they achieve the cut-set bound,
and hence the capacity, for a class of planar graphs, and
we conjecture that this holds for all planar graphs. One
would obviously hope to find the capacity of all networks,
including non-planar ones. We have shown that achieving the
cut-set bound is not always possible, meaning there remains
significant work to do on upper bounds as well as achievable
schemes. Whether polytope codes can achieve capacity on all
networks remains an important open question.

REFERENCES

[1] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network information
flow,” IEEE Trans. Inform. Theory, vol. 46, pp. 1204–1216, 2000.

[2] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals
problem,” ACM Transactions on Programming Languages and Systems,
vol. 4, pp. 382–401, 1982.

[3] D. Dolev, “The Byzantine generals strike again,”Journal of Algorithms,
vol. 3, no. 1, pp. 14–30, 1982.

[4] N. Cai and R. W. Yeung, “Network error correction, part I: Basic
concepts and upper bounds,”Comm. in Inf. and Syst., vol. 6, no. 1,
pp 19–36, 2006.

[5] N. Cai and R. W. Yeung, “Network error correction, part II: Lower
bounds,”Comm. in Inf. and Syst., vol. 6, no. 1, pp 37–54, 2006.

[6] O. Kosut, L. Tong, and D. Tse, “Nonlinear network coding is necessary
to combat general Byzantine attacks,” inProc. Allerton, Sept. 2009.

[7] T. Ho, B. Leong, R. Koetter, M. Médard, M. Effros, and D. R. Korger,
“Byzantine modification detection in multicast networks using random-
ized network coding,” inProc. ISIT, 2004.

[8] S. Jaggi, et al, “Resilient network coding in the presence of Byzantine
adversaries,” inProc. INFOCOM, pp. 616–624, 2007.

[9] R. Koetter, F. R. Kschischang, “Coding for Errors and Erasures in
Random Network Coding,”IEEE Transactions on Information Theory,
vol. 54, no. 8, pp. 3579-3591.

[10] M. Kim, M. Médard, J. Barros, R. Koetter, “An algebraic watchdog for
wireless network coding,” inProc. ISIT, June 2009.

[11] G. Liang and N. H. Vaidya, “When watchdog meets coding,”Technical
Report, May 2009.

[12] S. Kim, T. Ho, M. Effros, and S. Avestimehr, “Network error correction
with unequal link capacities,” inProc. Allerton, Sept. 2009.

[13] O. Kosut, L. Tong, D. Tse, “Node-based Byzantine attacks on network
coding”, to be submitted toIEEE Trans. Info. Theory.


