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Abstract

A topology optimization model for conceptual wing structure layouts of mor-

phing micro air vehicles (MAVs) has been developed and implemented in MATLAB.

Specifically, a six degree-of-freedom finite element (FE) model with a general quadri-

lateral discretization scheme was created by superposition of a known simple linear

plane membrane element and a Kirchhoff plate bending element derived herein. The

purpose of the six degree-of-freedom model was to accommodate in-plane and out-

of-plane aerodynamic loading combinations. The FE model was validated and the

MATLAB implementation was verified with classical beam and plate solutions. A

compliance minimization optimization objective was then formulated with the Solid

Isotropic Material with Penalization (SIMP) method, subject to the equilibrium con-

straint computed by the FE model, and solved with the Optimality Criteria (OC)

method. With the topology optimization model in place, four aerodynamic loading

scenarios were extracted from points along a feasible MAV perching flight trajectory

and used to determine wing thickness distributions for given planform shapes. The

results suggest conceptual structural layouts in morphing MAVs, but equally impor-

tant, the simple MATLAB implementation of the model can be adapted for a variety

of objective statements for MAV morphing wing design.
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Conceptual Layout of Wing Structure Using Topology

Optimization for Morphing Micro Air Vehicles in A

Perching Maneuver

I. Introduction

1.1 Morphing

The ambiguous characterization of an aircraft as “morphing” could denote any

one of sundry possible modifications to an aircraft’s structure during flight. Disregard-

ing landing gear, incidence noses, and other geometry-changing devices, even further

limiting the scope of the term “morphing” to that of the aircraft wing structure still

lacks specificity. Whether the deforming wing-warping technique used on the Wright

Flyer for roll control, the flaps found on nearly every modern day aircraft for the

purposes of increasing lift and lowering stall speed, or the variable sweep wings of the

F-111, all of these examples (and many others) are relatively simple modifications to

the geometry that do not radically alter the optimal mission advantage. Addition-

ally, wing shape-changing aircraft have been conceived and built since the inception

of aviation, as will be surveyed in Chapter 2. But a more recent goal in this venue

seeks to characterize morphing aircraft as those that can significantly modify their

wing shape to adapt to multiple mission roles, hence developing high-performance in

dissimilar flight regimes.

In 2003, the Defense Advanced Research Projects Agency (DARPA) began the

2 1/2 year Morphing Aircraft Structures (MAS) program in conjunction with the Air

Force Research Laboratory’s (AFRL) Air Vehicles Directorate. The MAS program

sought to design and build aircraft where, distinct from all of the historical morphing

efforts of the past, morphing would entail radical, aerodynamically efficient shape

change, thus transforming the mission of an aircraft. DARPA set forth the following

description of a morphing aircraft: “a morphing aircraft is a multirole platform that

1



1. Changes its state substantially to adapt to changing mission environments.

2. Provides superior system capability not possible without reconfiguration.

3. Uses a design that integrates innovative combinations of advanced materials,

actuators, flow controllers, and mechanisms to achieve the state change.” [45]

DARPA further elaborates that “the program envisions changing wing areas, wing

spans, and other dimensions far more radically than before,” where “radical” describes

a change on the order of 50%. Thus, merely rotating the sweep angle of the F-111

Aardvark further back does not fit the agenda of the MAS program. Rather, instead of

solely rotating an otherwise fixed wing, morphing will take inspiration directly from

nature, keeping in spirit with biomimicry, which ultimately led to the conception

of aviation. A DARPA official elaborates, “We will develop a lightweight, actively

controlled system of sensors (nerves), actuators (muscles), and structures (skin and

bones) that mimic the ability of animals to adapt to widely changing environments and

threats”. [45] Depending on the mission requirements, these efforts will likely convert

military aircraft from large and heavy, piloted aircraft to relatively small, unmanned

aerial vehicles (UAVs). That nature does in fact take advantage of drastic wing

morphing through disparate flight maneuvers is piquantly and elegantly epitomized

by the eagle owl in Figures 1.1–1.3, in which the planform shapes are outlined.

To justify the avant-garde undertaking of morphing, the potential to dramat-

ically alter the aerodynamics and ultimately the nature of flight mission roles must

be well based. Flight roles can be broken down into several different mission seg-

ments [20] consisting of takeoff, climb, cruise, acceleration, dash, endurance, and turn

segment types. For these segments, performance metrics can be devised that evidence

dependency on a few key parameters, namely thrust, weight, lift, drag, lift-to-drag

ratio, and “best” velocities. Of the four principal forces acting on an aircraft, mor-

phing of the wings will directly affect the lift and drag, and do nothing to alter the

weight or thrust. Naturally adjusting the angle of attack will increase or decrease

lift accordingly, so the aim of morphing is to modify the lift at a particular angle of

2



Figure 1.1: Eagle Owl Soaring [4]

Figure 1.2: Eagle Owl Flyby [2]

Figure 1.3: Eagle Owl Perching [3]

3



attack. Modifying drag is crucial as lessening drag is a priority for both long range

endurance missions and high speed manuevers, and accumulating drag is paramount

for rapid deceleration of a vehicle to a landing of near zero velocity. But producing

a change in either lift or in drag should not be thought of as separate affairs, rather

aerodynamic efficiency is influenced each time the lift-to-drag ratio is changed. The

“best” velocity for a particular mission segment often depends directly on wing plan-

form. An effective graphic juxtaposing conventional fixed geometry and morphing

geometry is that of the spider plot shown in Figure 1.4. In the plot, the outermost

radius of the plot is the best possible performance for a particular mission segment.

On the legend, the “Firebee” represents the performance of a fixed-wing aircraft, the

“airfoil” represents the same aircraft but with morphing airfoil capability, and the

“geometry” series represents a study where wing area, wingspan, taper ratio, and

sweep angle are free to vary independently of each other. Clearly a wing capable of

telescoping, chord extension, and variable sweep behooves a multi-role platform.

Figure 1.4: Comparison of Fixed-Wing and Morphing Performances [20]

Even a brief survey of aerodynamic dividends attainable by morphing aircraft

promises a lucrative enterprise, but realizing morphing potential is a multifarious

technical challenge. In an effort to resolve the many challenges, the first two phases

of the MAS program sought to achieve four technical goals:

4



1. “Innovative, active wing structures that change shape;

2. Integration and aeronautical use of advanced sensors, skin and structure mate-

rials, internal mechanisms and distributed power sources;

3. Advanced capabilities for the military community;

4. Advanced shape-changing materials, efficient actuators and sophisticated, smart

mechanisms.” [22]

According to the MAS program manager Terrence Weisshaar, morphing aircraft wings

would ideally have at least a 50% area change, thus reconciling the reconnaissance

mission requirement of a wide wingspan and large wing area with the combat require-

ment of minimum wing area for speeds of Mach 2 and 3. As the MAS program entered

Phase III, two contractor teams, Lockheed-Martin Advanced Development Programs

and NextGen Aeronautics, sought to demonstrate the advantageousness of morphing

by comparing performance in both morphed and unmorphed configurations for climb-

ing and turning maneuvers. Lockheed-Martin developed a UAV, dubbed “Z-Wing”

(Figure 1.5), with two-position wings that essentially fold and tuck up alongside the

fuselage, in effect, hiding a large part of the planform. After working around some

billowing problems, Lockheed’s 1/8 inch thick skin, fabricated by Shape Memory

Polymer (SMP) technology, was capable of stretching 100% upon stimulation of a

current passing through it. Unlike the three-dimensional morphing of the Lockheed

Figure 1.5: Lockheed-Martin’s Z-Wing [22]

5



UAV, NextGen’s morphing concept, called “Batwing” (Figure 1.6), consisted of in-

plane shape change. With the same flexible skin challenge, NextGen achieved a 40%

area change, 30% span change, and 20◦ change in sweep while successfully test flying

a remotely piloted vehicle called the MFX-1. In light of the technical competencies

hoped to be gleaned from the MAS program, progress with flexible skin, structural

actuation, and suitable flight control technologies were realized.

Figure 1.6: NextGen’s Batwing [22]

1.2 Optimization

As stated by the MAS program, the technical challenge of morphing wing de-

sign will involve the multidisciplinary integration of sensors, actuators, structures,

mechanisms, and skins, a challenge far exceeding simple design of beams or four-bar

linkages. Such a combinative problem is likely to have intricate solutions, not easily

approachable on the basis of intuition alone. A promising design approach to a mul-

tifaceted problem is found in the character of optimization. Optimization allows a

designer a direct way of stating any number of objectives—quantities to be minimized

or maximized—and design variables—parameters that can assume a range of values

throughout the optimization process. Then, once the designer has identified the un-

derlying constraints (usually comprised of guiding engineering principles or simple

geometric relationships), as well as governing bounds on the design variables (set by

physical or other reasonable limitations), optimization solvers iterate through a set

of equations numerous times until a stated objective converges within a change tol-

erance. With this manner of problem formulation and assuming the mechanics of a

6



problem have been correctly formulated, a designer focuses his attention on identify-

ing the most desirable objectives to meet. Optimization is not without its difficulties,

as challenges may lay in interpreting results or in the manufacturability of solutions,

but it is certainly an advantageous tool to aid the morphing challenge.

In the emerging field of structural optimization, three types of optimization are

defined based on the nature of the design variables.

1. Sizing optimization: The design domain and state variables are known a pri-

ori and are fixed. The design variables will represent some kind of structural

thickness such as cross-sectional area or thickness distribution.

2. Shape optimization: In this case, the shape or contour of the domain now sub-

sumes the design variables and is to be optimized. Neither the connectivity nor

the boundary conditions of the structure is modified in the process.

3. Topology optimization: The most general of the three cases, topology optimiza-

tion determines the features of a structure such as the connectivity of the do-

main, the number of members, and the position of holes. Topology optimization

can be performed discretely or continuously.

All three of these structural optimization problems find application in aerospace tech-

nologies; however, the practicability of topology optimization is considered here.

Topology optimization seeks the optimal layout within a stated design domain

(Figure 1.7). The prescribed quantities consist only of the loading and support con-

ditions, the fraction of the design space to be filled with material (termed “volume

fraction”), and any other desired design restrictions such as a requirement for a hole or

to fill the boundary of the domain. The shape and connectivity are not prescribed and

are determined from the optimization. The topology problem is called a distributed

parameter system because the design variables represent a field or continuum with

infinite degrees of freedom. Thus, formulating a calculable problem will require dis-

cretization of the field such that the field is comprised of a finite set of elements

each with a finite number of degrees of freedom. The selected discretization scheme
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Figure 1.7: Generalized Topology Design Problem

will influence the resulting structure, and hence incites the enterprise of obtaining a

grid-independent solution.

Though a continuum requires discretization, the distributed parameter system

is not to be confused with a discrete parameter system which results when a struc-

tural problem only has a finite number of design variables. Such problems describe

naturally discrete systems (i.e. the sizing of truss cross-sectional areas). Topology op-

timization is capable of driving towards a discrete or a continuous solution depending

on the formulation, and either solution may be worthy of consideration, depending

on how the structure is to be constructed or manufactured. While the objective

function may encourage a discrete or a continuous solution, it is chiefly seeking to

minimize a particular quantity. What that quantity represents is perhaps even more

germane to the structural layout than is the discretization scheme. Of the many ob-

jective functions that can be employed, a natural starting point is that of compliance

minimization, which is equivalent to stiffness maximization. Because a topological

approach to design is very general (i.e. determination of the quantity and/or layout

of beams, trusses, membranes, actuators, springs, pivot locations, etc.) and because

an optimization problem can be formulated by an assortment of objective statements

(i.e. compliance, strain or potential energy, fundamental eigenvalue, buckling load,

etc.), topology optimization is highly practicable to morphing aircraft structures.
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1.3 Problem Description

In view of the many alluring morphing challenges, the structural layout of mor-

phing micro air vehicle (MAV) wings subjected to a gamut of aerodynamic loads as

the MAV executes a perching maneuver will be investigated. A perching maneuver

is a common landing scheme of birds in which they dive below a landing location,

exchange kinetic energy for potential energy while pulling up to the perch, and then

come to an abrupt vertical landing on the perch. The perching maneuver stimulates

much interest because it is a miniature of a multi-role mission, in which an aircraft

leaves a reference condition, such as a loiter wing configuration, “tucks” its wings

into a dive configuration, and then flares them back out both to quickly ascend and

to collect momentum-reducing drag. A few points along the perching trajectory will

be extracted which are representative of the extremes of the maneuver. A three-

dimensional estimation of the aerodynamic loads will be made and applied to the

morphing wing shapes. By constructing a compliance optimization, conceptual wing

layouts of the structure will be investigated for the dissimilar load cases.

1.4 Thesis Outline

This chapter has introduced the notion that morphing wings, engineered by

sophisticated materials, sensors, actuation systems, and distributed power sources,

will create multirole aircraft that can change the character of their mission mid-

flight. Topology optimization is one discipline capable of shedding insight into a

variety of structural problems that morphing wings will face. Chapter II will survey a

brief history of morphing and then review current literature addressing a few aspects

of morphing wing design. Chapter III will develop and validate a suitable finite

element model for wings subjected to three-dimensional loading, and then formulate

the minimum compliance optimization problem. Chapter IV will present the wing

structural layout results from MATLAB simulations and discuss implications on wing

structure at different design points. Conclusions and recommendations for future

work will be laid out in Chapter V.
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II. Literature Review

To begin this chapter, a brief history of morphing aircraft is provided for the enrich-

ment of the reader. Then the remainder of the chapter explores some of the current

design concepts and methods that have been introduced as a means of addressing some

of the technical goals posed by the MAS program. First, multidisciplinary optimiza-

tion of the in-plane morphing wing will be reviewed. The multidisciplinary approach

considers simultaneous mechanism, structure, and skin design for an adaptive wing.

A baseline example will be first laid out, where only one planform shape is consid-

ered, followed by optimization that includes target shape-matching for multiple wing

configurations. Next, some flexible skin design concepts will be described relating

potential one-dimensional morphing skins, and then delineating the role of topology

optimization in developing flexible skin. A two-step design process for synthesizing

skins suitable for morphing is discussed. Finally, background behind perching ma-

neuver trajectories is detailed.

2.1 Early Morphing

Through the 1920s and ’30s, Geoffrey Hill designed a series of tailless aircraft

dubbed the Westland-Hill Pterodactyl series. The fourth variant included variable

wing sweep through a range of angles for longitudinal trim in the absence of ele-

vators. In 1931, Ivan Makhonine, an expatriate Russian aircraft designer living in

France, successfully flew the MAK-10 (Figure 2.1), his new telescoping wing concept.

The MAK-10 could reduce its wingspan from 69 feet to 43 feet, which constituted a

planform area decrease from 355 square feet to 204 square feet—a 42.5% area reduc-

tion. The improved MAK-123 completed its first flight in 1947, demonstrating with

no adverse characteristics its extension-retraction system. In fact, the pilot was able

to kill the engine, extend the wing tips and glide for an entire hour. A similar concept,

the Gerin Varivol biplane (1936) had leading and trailing edges that could be unfurled

from the fuselage out to the wingtips, greatly increasing the area of the otherwise thin

wings. Also alike in nature, the Baksaev LIG-7 (Figure 2.2) was developed in the So-
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Figure 2.1: MAK-10 with Telescoping Wing [5]

viet Union the following year with chordwise panels made of plywood that could be

stowed entirely in the fuselage and then manually extended two-thirds of the way

out along the wingspan. Though flight tests demonstrated successful retraction and

extension of the panels, the fact that only 20% of the total drag was due to the wings

severely limited the effect of morphing on performance. The Pterodactyl series used

variable sweep primarily as a means for stability, but the MAK-10, the Varivol bi-

plane, and the LIG-7 were all able to change the basic characterization of the aircraft

by significantly increasing the aspect ratio of the wings for cruising conditions and

reducing the aspect ratio for higher lift and subsequently slower landings. Another

Figure 2.2: Bakshaev LIG-7 with Extendable Chordwise Panels [1]
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example of an early morphology is that of the polymorphic Nikitin-Schyevchyenko IS

series also produced in the USSR just prior to WWII in 1938, which took advantage

of both the climb capabilities of the biplane and, upon flipping the lower wing into

the upper one, the speed of the monoplane. In light of all the early century inno-

vative planform alteration ideas, the variable sweep wing concept certainly persisted

throughout the 20th century leading to the development of the swing-wings of the

experimental Bell X-5 (1951), and into production of the F-111 Aardvark (1964), the

USN’s F-14 Tomcat (1970), the Royal Air Force’s Panavia Tornado (1979), and the

strategic B-1 Lancer (1986).

Other interesting morphology has emerged in recent decades aside from two-

dimensional planform changing devices. The F-8 Crusader (1955) had variable inci-

dence wings in which the leading edges could tilt up during short takeoffs. The XB-70

Valkyrie (1964) had wing tips that folded down 90◦ to increase lift-to-drag ratio. Sev-

eral aircraft possessed wings that took advantage of variable camber, such as the

thin supercritical airfoil of NASA’s X-29 (1984) on its forward swept wings and the

flexible fiberglass leading and trailing edges of the AFTI/F-111 (1985) spurred on by

the Mission Adaptive Wing (MAW) program. And in recent days, Active Aeroelastic

Wing (AAW) Technology, as implemented on the Boeing X-53 (2006), in contrast to

kinematically altering wing geometry, seeks to foster and utilize favorable aeroelastic

wing twist to control and eliminate the phenomenon of “aileron reversal”. This results

in the benefits of reduced aerodynamic drag, increased control power, and increased

design leeway with wing span, sweep, and thickness.

2.2 Multidisciplinary Optimization of an In-plane Morphing Wing

A discussion of morphing wing design efforts would be incomplete without giving

consideration to addressing the integration of the entire adaptive structure, since

adaptive structures are a multidisciplinary technology incorporating power systems,

structures, mechanisms, and actuators. Maute and Reich [27] demonstrated that

simultaneous optimization of mechanism layout, pivot point locations, and actuator
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configurations has advantages over multi-step, decomposed procedures. Also, Joo

et al. [19] demonstrated via experiment that a distributed actuation system is more

conducive to increasing system efficiency for a relatively flexible scissor-like morphing

wing mechanism than a single, stand-alone actuator. Therefore, it is necessary to

synthesize rigid-body mechanisms to perform the shape change, structures to support

the loading, and skins that do not inhibit the aerodynamics, in order to produce an

efficient adaptive structure. To this end, an optimization formulation for a wing in a

specified, single configuration is first discussed, followed by an optimization problem

addressing a wing morphing through multiple configurations.

2.2.1 Single Configuration. A primal effort to optimize the topology of a

three-layer model was undertaken by Joo and Sanders [18]. In order to achieve a

prescribed motion, a truss element layer is intended to efficiently generate motion

by virtue of rigid body rotation rather than through deforming the structure. A

membrane layer represents the flexible skin and is bonded to a frame layer. A frame

layer is added to support bending and torque caused by out-of-plane loads, and the

combined frame and membrane layer is attached to the truss structure through springs

at locations to be determined. The intended motion of the wing was to return from

a swept position to a position of no sweep; however, a single point at the leading

edge of the tip chord was directed in a chordwise path to simplify the problem. The

multi-objective optimization problem was then formulated as a weighting of mutual

potential energy of the point and strain energy stored in the structure. The mutual

potential energy was to be maximized in order to produce the maximum work output

while morphing, and the strain energy was to be minimized for the purposes of efficient

morphing. The results of the study revealed effective combinations of structure and

mechanism for both linear and nonlinear synthesis, as well as syntheses with and

without the frame layer. Joo and Sanders also compared by analytical means the

bending and membrane stiffness sensitivities of the entire wing, modeled as a sandwich

beam, to the skin thickness. The total membrane, or in-plane, stiffness of the wing is
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more sensitive than the total bending stiffness of the wing to changes in skin thickness.

Thus an anisotropic engineered skin that is flexurally stiff, but flexible in-plane, is

desirable in order to avoid thickening the skin for prevention of out-of-plane deflection

(which would in turn produce inefficient in-plane morphing). However, the available

skin model was simply a membrane model that did not include the capability of

responding to bending loads, and bending loads were therefore not considered.

2.2.2 Multiple Configurations. An important aspect of the morphing mech-

anism involves determining the kinematics that will transform one planform shape

into another. Emphasizing the formulation of the combined mechanization, actuator

placement, and topology optimization problem, Inoyama et al. formulated objective

functions seeking to minimize actuator usage and shape-matching error terms. For

simplicity, point-matching was utilized to achieve shape change, rather than function-

matching [24]. A sample in-plane morphing wing model with semi-ground connectivity

and consisting of joint and line elements representative of their problem of interest is

shown in Figure 2.3.

Figure 2.3: Sample In-Plane Morphing Problem Definition

In their model [14], the state of both the line elements and the joint elements

were considered design variables and had to be determined by the optimization pro-

cess. Elements could be designated as “soft” morphing elements, “stiff” non-morphing
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load-bearing elements, or elements could be considered “voids” and removed from the

structure. Line elements could be selected as telescoping members, actuators, or

frame elements, and joint elements could be selected as either revolute or semi-rigid

joints. The frame elements were conventional FE beams with both axial and bending

stiffness. Telescoping members had relatively low axial stiffness, but they did have

bending stiffness. The actuators behaved like telescoping two-force members. Addi-

tional constraints were applied to limit the stroke of the actuators and telescoping

members. Whenever the optimization yielded “very low” stiffness for all of an ele-

ment’s degrees-of-freedom, then the element was mechanically non-contributing and

considered “void”. Revolute and semi-rigid joints differ in that revolute joints had

relatively low rotational stiffness, whereas semi-rigid joints had relatively high rota-

tional stiffness. Both joints had relatively high stiffness in all other directions. The

model also necessarily contained flexible skin. However, the skin was represented

simply by four-node rectangular membrane elements that did not support bending

stiffness. Although out-of-plane schemes that can handle aerodynamic pressure loads

were wanting, the methodology did demonstrate that a multidisciplinary approach is

a viable solution. Further refinements of the methodology were made by Inoyama et

al. in Reference [15]. Inoyama et al. [16] also exhibited the methodology for three

configurations—a reference loiter configuration with 15◦ of sweep, a high-lift config-

uration with an 84% area increase, and a climb configuration with a 30◦ sweep angle

and 14% area increase. Improvements were made accounting for actuator distribu-

tion control, external load dependency, morphing reversibility, and modified relative

volume constraint.

Aside from the aforementioned investigations, other examples of utilizing topol-

ogy optimization for more comprehensive wing design have been demonstrated. Maute

and Allen [26] used material topology optimization to layout the geometry of a wing’s

internal structure for conceptual design of aeroelastic structures with coupled fluid-

structure interaction. Two different numerical examples were provided that deter-

mined three-dimensional wing stiffener layout, to then be interpreted as spars and
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ribs. The first example was a three-layered plate model that essentially determined

material layout from an in-plane or top plane view, and the second example began

with a three-dimensional spar-rib design domain. Maute and Reich [27] studied three

numerical experiments using topology optimization for shape-adaptive wings. The

objective of the optimization was to maximize lift-to-drag ratio and hence determine

mechanism and actuation system layouts.

2.3 Flexible Skin Concepts

Flexible skin that will cover morphing wings is certainly not least in the techni-

cal challenges faced by adaptive structures. Although some discussion of flexible skin

design has already been mentioned in a multidisciplinary approach, the acclivity flexi-

ble skin design must climb merits its own separate discussion apart from the wholistic

problem. Two general classifications of morphing structures with flexible skin im-

plications can be distinguished: structures with sliding or rotating surfaces (such as

Lockheed’s Z-Wing) and structures with stretching surfaces (such as the NextGen’s

Batwing). The literature reviewed here considers skin suitable for in-plane stretching.

Flexible skin for morphing wings will require two principal mechanical characteristics:

low in-plane stiffness and high out-of-plane bending stiffness. Low in-plane stiffness is

needed so that the skin can undergo large strains (on the order of at least 50%) vital

to significant planform changes, and is desirable for minimizing the actuation energy

required to achieve shape change. But the skin must also be very flexurally rigid such

that it can support pressure loads normal to the planform without aerodynamically

adverse deformation, such as billowing or even simply tearing. These generally are

competing requirements and foster a substantial design challenge.

2.3.1 One-Dimensional Morphing. A few morphing applications only re-

quire distortion in one direction, such as changes in span, chord, or camber. Murray

et al. [30] propose a Flexible Matrix Composite (FMC) as a solution. FMCs are com-

posed of stiff fibers aligned and embedded in a soft matrix material capable of high
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strain. Aligning the matrix-dominated direction with the direction of morphing and

consequently the fiber-dominated direction with the non-morphing direction makes

FMCs plausible for one-dimensional morphing. Thus, the fibers would be aligned

chordwise for span morphing, and spanwise for chord or camber morphing. Both a

theoretical model predicted and experimentation validated that a FMC can simul-

taneously have a high fiber modulus and a low matrix modulus. However, a FMC

with low matrix modulus and high strain capability displays membraneous behavior,

possessing virtually no inherent flexural stiffness. One way to attain flexural rigidity

without adding stiffness in the matrix-dominated direction is by pretensioning the

skin in the fiber-dominated direction. Tensioning a membrane will necessarily reduce

the out-of-plane deflection, but only the fiber-dominated direction should be preten-

sioned for a couple reasons. Since the matrix-dominated direction is the morphing

direction, pretension levels would vary as the wing morphs, were they applied in that

direction. Secondly, the matrix modulus is quite low and the skin would likely rup-

ture under the necessary pretension loads. Also confirmed by experimentation, the

midpoint deflection (greatest deflection) of the FMC flexible skin panel has little sen-

sitivity to the matrix modulus, and pretension has a much greater impact on reducing

out-of-plane deflection than does the matrix modulus.

As using pretension to reduce out-of-plane deflection suggests, one interesting

study from Song et al. [41], inspired by flying and gliding mammals such as bats and

marsupial gliders, demonstrated excellent correlation between camber and so-called

“Weber number” for various pretension levels. The simple theory employed repre-

sented static aeroelastic deformation of a compliant membrane by balancing aerody-

namic pressure load generated by airfoil shape with the tension in the membrane. The

Weber number is defined as the force normal to the chord and normalized by Young’s

modulus and skin thickness. A parabola was selected as the deformed shape assumed

by a membrane under such loading, which is the exact solution for a membrane sub-

jected to uniform loading. The results of experimentation revealed that camber does

indeed rise rapidly for increasing Weber number when no pretension is applied. With
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higher pretensions, however, the relationship between camber and Weber number be-

comes nearly linear, indicating that camber is less dependent on Weber number, and

the camber values are much smaller. This study confirms intuition that for a given

aerodynamic load, increasing the Young’s modulus or the thickness of the skin (i.e.

decreasing the Weber number for a given force) lessens the out-of-plane deflection

and consequently the camber. This study of membrane wing aeromechanics further

demonstrates that Young’s modulus and thickness are important design variables for

the flexibility of skin.

2.3.2 Skin Design Using Topology Optimization. In contrast to using FMCs

or shape memory polymers (SMPs) [9] (as in the case of Lockheed’s Z-Wing), cellular-

based structures are yet another alternative to flexible skin fabrication. Olympio and

Gandhi [35] used topology optimization to determine the best material distribution

for cellular structures with voids, or very light filling. Both in-plane one-dimensional

morphing and shear-compression morphing cases were conducted. The constituents

of the skin considered were those of a topologically undetermined cellular core sand-

wiched between thin face sheets. The material comprising the core must possess high

bending stiffness such that it can withstand out-of-plane loads, and the topology of

the core must be capable of high in-plane strain such that the wings can morph with

relatively little energy. The thin face sheet simply provides a smooth surface for air-

flow, and is not intended to add any bending stiffness; its effect on in-plane morphing

strain was not considered (Figure 2.4). The following four quantities were included

in the multi-objective minimization problem: material volume, out-of-plane deforma-

tion, work required to morph the wing, and the ratio of the maximum local strain

to maximum global strain of the skin (i.e. inverse of strain amplification). Minimiz-

ing the ratio of local to global maximum strain ensures that the local stresses remain

lower than the yield stress of the material, and ultimately that morphing is reversible.

The solutions determined by the optimization represent periodic units, or miniature

panels that form a skin like a plate made of an orthotropic material when assembled.
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Figure 2.4: Cellular Flexible Skin Design [33]

Several core layouts resulted from the topology optimization performed by

Olympio and Gandhi, due to using a Genetic Algorithm for the optimization solver

which retains multiple “best” solutions. For the one-dimensional morphing case,

three different groupings of solutions each with advantages and disadvantages were

observed—plain sheet of material, honeycomb-like topologies, and horizontal fibers—

although 43 different topologies were retained by the algorithm. The plain sheet

of material was the heaviest but minimized out-of-plane deflection the most. The

horizontal fiber solutions were the lightest and possessed the characteristic of not

occupying the entire design space in the non-morphing direction, and hence had a

Poisson’s ratio of zero [32]. Perhaps the best compromise was that of the honeycomb-

like topologies with median weight and a strain amplification of 6.5. The solutions

for the shear-compression cases all contained the same groupings with the addition

of a few solutions that were a combination of honeycomb and fiber cells. Unlike one-

dimensional morphing, the long, vertical fiber solutions require less work to morph and
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greater strain amplification. No one topology prevailed, and several of the solutions

may be valuable, depending on the application.

Several other variant features of the baseline cellular honeycomb core were stud-

ied and compared [34]. A filled honeycomb without a face sheet is one way to support

out-of-plane loads, but it significantly increases the needed actuation energy and the

weight of the wing, which ultimately might cause it to be noncompetitive compared

to other designs. Also, any type of fill could create voids or leakage during wing

morphing. Face sheets bonded to the core will also require higher deformation energy

and could also be subject to tearing. In the absence of adequate bending stiffness and

to avoid wrinkling, face sheets may need to be pre-strained to a greater extent than

they can accomodate without tearing. Another alternative skin design is to add one

discrete scale to each honeycomb. This successfully avoids an increase in the energy

requirement but could adversely affect the aerodynamics. One final variant returns to

the idea of sandwiching a voided honeycomb core between two face sheets, but instead

of bonding the face sheets to the core, the two face sheets are connected to each other

by elements running through the core. The advantages of a single encasement of the

core is that the core would deform independently of the sheets. Thus, the face sheets

would not stiffen the core, yet they would be bear the aerodynamic loads through

contact with the core.

2.3.3 Flexible Skin Design Process. This section recapitulates a two-step

design process developed by Joo et al. [17] for engineering a skin suited to meet a

target morphology of an adaptive wing. The design concept stems from the fact that

a morphing mechanism likely has varying motion requirements along the planform.

In contrast, for a purely telescopic wing, there is only one motion requirement and

an engineered skin approach may be unnecessary. Thus, a distribution of flexibil-

ity requirements led to the decision to develop a single-layer engineered skin with

distributed advanced materials, such as elastomers and SMPs. The first step of the

method is to determine the material requirements for each “patch” of skin. The num-
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ber of patchs into which the planform is discretized can be driven by the extent to

which the kinematics vary throughout the wing. A relatively straightforward change

in planform may result in a mechanism that needs only 10-20 patchs to capture the

range of motion requirements; whereas more complicated planform changes may re-

quire more like 50-100 patchs. In the second step, the microstructure of each patch

is determined by decomposing the patch into a pattern based on a unique, repeating

“unit cell” (Figure 2.5). Therefore, a topographically unique cell will have to be de-

termined for each patch, as well as the number of repeating cells necessary to realize

the constitutive properties of the patch.

Figure 2.5: Two-Step Skin Design Process

The overall combined wing design follows from the wing design discussed in Sec-

tion 2.2.1, where a mechanism layer is sandwiched between two thin skin layers. The

mechanism layer attaches to the skin layer by virtue of “pivots”. In the optimization

process, these pivots are represented by variable stiffness connector elements that

when “active” indicates rigid attachment of mechanism to skin, and when “void”

implies that the skin slides freely over the mechanism layer. Thus the skin patch

deformation does not necesarily correspond to the mechanism reference cell (Figure

2.3). If the known mechanism was determined with a uniform skin, the mechanism

optimization can be repeated once a distributed skin is determined. One can iterate

through the two processes as needed.
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To develop the material requirements for each patch of skin, design variables

are chosen to represent any or all of the following: Young’s modulus, shear modulus,

element thickness, and Poisson’s ratio. Additionally, ply thickness, orientation angle,

and extra Young’s moduli can be included as design variables if a laminated com-

posite is the intended material. With these variables, the optimization has indirect

control over the constitutive matrix and can independently vary bending and mem-

brane stiffness through the effects of combining the constitutive properties. A variant

of the SIMP method [8] is then used to distribute the material properties across the

wing. Rather than an exponential variation of the design variables across the design

space, a linear one is employed so as not to drive the variables towards discrete 1

and 0 values, since skin is obviously required to cover the entire wing. The objective

function is a minimization of the target displacements of the skin from the realized

ones.

After the material requirements for the skin patches has been set, step two

of the skin design process is to optimally lay out given materials in a multi-phase

model. The unit cell is discretized into a large number of finite elements. Although

two-dimensional membrane elements were used, three-dimensional elements were rec-

ommended after comparing with the skin fabrication; because in the discretization,

the in-plane dimensions were actually smaller than the thickness of the element. Using

the homogenization method of elastic materials, the contribution of element stiffness

to global stiffness is determined by the density of each element, and hence the SIMP

method is again employed. Rather than developing a cell with voids, the SIMP

method is instead used to determine two constitutive matrices, which then represent

two phases of a SMP material before and after the glass transition temperature. Thus,

in order to physically realize the material, heating elements will have to be placed

within the cell to change the material properties. The optimization objective is simply

to match the target constitutive matrix.
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2.4 Perch Landing Maneuvers

Section 1.3 described the perch landing maneuver, which involves conveying a

flight vehicle to a specified location with near-zero final velocity, to be absorbed upon

impact. Seigler et al. [40] derived flight trajectories commonly observed in nature by

minimizing actuation force required at low speeds in a basic optimal control prob-

lem. The typical trajectory profile (Figure 2.6) is made up of an initially descending

movement that undershoots the target, and then a much quicker flare segment where

the flight vehicle exchanges its gained kinetic energy for potential energy and ascends

to the target destination. The basic optimal control formulation contrived by Seigler

Figure 2.6: Typcial Perching Maneuver Trajectory

et al. uses an exponential function in the performance measure to penalize required

actuation force. The choice of exponent for the exponential controls the penalization

of the low velocities. The rational for penalizing low velocities stems from the fact

that aircraft must exude the greatest effort at low speeds to account for lift no longer

generated by higher speeds. The results of the problem reveal that the length of the

descending segment increases for greater initial downward velocities, and consequently

the length of the ascending segment decreases, intensifying the flare.

Seigler et al. [40] then simulated, with longitudinal flight dynamics, a trajec-

tory analysis using a MAV with similar sizing and planform properties as a pigeon.

Thrust was zeroed out to represent gliding flight. Three models were considered in

the flight simulations: (1) fixed wings with an elevator as the only actuator, (2) rotat-

ing wings with a quasi-steady aerodynamic model [25], and (3) rotating wings with
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a rate-dependent aerodynamic model. All three models matched the general concept

of acquiring kinetic energy and then exchanging it for potential energy. However, the

profiles between the three varied significantly depending on the penalization weighting

of the actuators. In effect, the rate-dependent simulation predicted more lift genera-

tion by virtue of rotating the wings at a fast rate. The differences in trajectories point

to the importance of considering non-steady wing rotation effects that increase lift

generation capability. Robertson et al. further refined the aerodynamic model used to

generate the trajectories by developing a vortex particle method, which showed good

agreement with a CFD model as well as wind tunnel testing [39].

In this study, the trajectories were optimized to minimize landing velocity, and

again the dynamic aerodynamics predicted a slower landing velocity and impact en-

ergy than did the static aerodynamics. Further transient post-stall aerodynamics are

investigated by Reich et al. [37].

2.5 Problem Statement

Evident in all of the literature previously examined, a need for three-dimensional

finite element modeling was clearly identified, such that the effect of out-of-plane

bending loads on morphing wing structures can be included in design considerations.

Both the multidisciplinary structure, mechanism, and skin optimization problems as

well as the skin design process lacked out-of-plane loading. Thus a finite element

model consisting of continuous elements (i.e. membrane and bending plate elements)

is developed in Chapter 3. The intention of the finite element formulation is to be

able to model the wing structure as a whole, and to be able to model the flexible

skin specifically, once additional finite element models of truss and beam elements

representing the structural layer of the wing are added to form a combined model.

However, the former is the basis for the compliance optimization objective formulated

in Chapter 3, and thus conceptual layout of wing structures are explored in Chapter

4. The out-of-plane loads imposed on the finite element model will be an estimation

of the aerodynamic loads experienced by a MAV during a perching maneuver.
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III. Methodology

This chapter details the theoretical methodology leading to the development of the

MATLAB codes found in Appendix B and Appendix C, as well as the results of

Chapter 4. The initial task was to establish a geometry generation method, and select

a few baseline geometries. Next the development and derivation of the finite element

models needed to solve the equilibirum constraint in the optimization is described. A

perching trajectory with corresponding flight data is then chosen, and the process for

estimating the resulting aerodynamic loads to be applied to the FE model is related.

Finally, the compliance minimization objective using the SIMP model is formulated,

and the OC method used to solve the optimization problem is described.

3.1 Geometry Setup

As previously mentioned in the Problem Description (Section 1.3), the scope

of the current investigation is limited to planform-changing, two-dimensional morph-

ing, akin to NextGen’s Batwing. In order to use simple bilinear shape functions to

describe the geometry of the finite elements, planform shapes are framed by straight

lines. Additionally, the wing is comprised of any number of trapezoidal sections.

This restriction ensures that the leading and trailing edges have the same number of

straight-edged line segments, and that the tip chord is parallel to the root chord. It

is feasible for any geometry that meets this criteria to be discretized by a structured

mesh, though meeting the criteria does not guarantee that the geometry will be con-

ducive to a structured mesh. For instance, a wing with a near-zero taper for its last

section will have very small cells at the tip, which may lead to bad results in both the

finite element analysis and the aerodynamic analysis.

A MATLAB script [6] was developed to generate meshes for such geometries,

and Figure 3.1 displays a three-sectioned, general wing planform in terms of the

script’s input variables. The code provides a graphical user interface (GUI) for easy

creation of a wing in any number of configurations (Figure 3.2). Once the user is

content with his geometry, he can save the geometry into a .mat file format, which
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Figure 3.1: Geometry Layout for Three Section Wing

Figure 3.2: Wing Geometry GUI
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consists of a structure “params” containing the input variables and the mesh. For

each wing configuration, the input variables define a root chord and span for the entire

wing, and then a taper ratio, sweep angle, and percent of the total span for each wing

section. The mesh is created by linear interpolation in two directions with the number

of grid points in both directions specified by the user. After initial development of

the script, the upper profiles of a NACA 4-series airfoil and a reflexed airfoil were

hardcoded into the script to add camber to otherwise flat wings. A script for viewing

the wing mesh is given in Appendix D.1. An example of a two-sectioned wing with

camber generated by the GUI and viewed by the script is shown in Figure 3.3.

Figure 3.3: Example Wing Geometry

In order to capture similar planform configurations as the eagle owl (shown in

Figures 1.1–1.3) is capable of morphing through, a rotating mechanism is envisioned

that can sweep about 5◦ forward during a flare, and then sweep back roughly 55◦–

60◦ during a diving dash. The trapezoidal partitions and generated meshes for four

configurations of this fictitious geometry (dubbed “birdwing”) are shown in Figures

3.4–3.7. Table 3.1 gives the geometry parameters that define the wing configurations.

In later analysis, simple retangular wings with and without sweep are also used for

baseline comparison to the birdwing.
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Figure 3.4: Birdwing in Forward Swept Configuration [m]

Figure 3.5: Birdwing in Zero Sweep Configuration [m]
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Figure 3.6: Birdwing in Back Swept Configuration [m]

Figure 3.7: Birdwing in Dive Configuration [m]
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Table 3.1: Sectioned Geometry for Multiple Configuration Birdwing
Configuration: 5◦ Forward 0◦ Sweep 15◦ Back Dive

P
ar
ti
ti
on

#
1 Chord [m] 0.153 0.153 0.151 0.136

Span (%) [m] 0.069 (22.6) 0.097 (31.8) 0.070 (25.9) 0.013 (9.7)
Taper [—] 0.988 1.000 1.040 1.135
Sweep [◦] -1.56 0 4.90 54.74

QC Sweep* [◦] -1.17 0 3.68 46.69
Panels** [#] 14 19 15 6

P
ar
ti
ti
on

#
2 Chord [m] 0.152 0.153 0.157 0.154

Span (%) [m] 0.039 (12.8) 0.208 (68.2) 0.200 (74.1) 0.023 (16.9)
Taper [—] 1.014 0.501 0.483 1.408
Sweep [◦] 4.97 0 -15.50 54.74

QC Sweep [◦] 4.19 5.24 -9.95 35.63
Panels [#] 8 41 45 10

P
ar
ti
ti
on

#
3 Chord [m] 0.154 — — 0.217

Span (%) [m] 0.197 (64.6) — — 0.009 (6.7)
Taper [—] 0.510 — — 1.081
Sweep [◦] 4.97 — — 30.89

QC Sweep [◦] 10.35 — — 5.97
Panels [#] 38 — — 4

P
ar
ti
ti
on

#
4 Chord [m] — — — 0.234

Span (%) [m] — — — 0.011 (8.0)
Taper [—] — — — 1.063
Sweep [◦] — — — 0

QC Sweep [◦] — — — -18.99
Panels [#] — — — 5

P
ar
ti
ti
on

#
5 Chord [m] — — — 0.249

Span (%) [m] — — — 0.008 (6.2)
Taper [—] — — — 1.027
Sweep [◦] — — — -30.35

QC Sweep [◦] — — — -38.07
Panels [#] — — — 4

P
ar
ti
ti
on

#
6 Chord [m] — — — 0.256

Span (%) [m] — — — 0.070 (52.5)
Taper [—] — — — 0.040
Sweep [◦] — — — -72.65

QC Sweep [◦] — — — -66.73
Panels [#] — — — 31

Total Span 0.305 0.305 0.270 0.133
*QC Sweep is the quarter-chord sweep
**Panels is the number of spanwise panels
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3.2 Finite Element Models

As was brought to attention in the literature review, previous investigations by

Joo et al. [17,18] and Inoyama et al. [14–16] lacked out-of-plane loading capability in

their finite element models. Hence the goal of this section is to develop a six degree-

of-freedom (DOF) model that can support membrane (in-plane) and bending (out-

of-plane) loads and be easily implemented in MATLAB. The approach undertaken

is to first develop membrane (Section 3.2.2.1) and bending (Section 3.2.2.2) stiffness

matrices independently, and then superimpose the two to form the full six DOF model

(Section 3.2.2.3). Section 3.2.2.3 also defines a transformation matrix so that non-

planar geometries can be analyzed. After the element stiffness matrices are derived,

the rest of the finite element method as it relates to the MATLAB coding process is

described in Sections 3.2.3–3.2.5. Section 3.2.6 provides validation and verification of

the MATLAB implementation of the membrane, bending, and combined membrane-

bending elements.

In the following sections, the finite element method will be broken down into

the following eight general steps:

Step 1: Discretize the Geometry

Step 2: Select the Element Types

Step 3: Select a Displacement Function

Step 4: Define the Strain/Displacement and Stress/Strain (or Equivalent) Relations

Step 5: Derive the Element Stiffness Matrix

Step 6: Assemble the Global Stiffness Matrix

Step 7: Apply Boundary Conditions and Solve for the Unknown Degrees of Freedom

Step 8: Solve for the Element Stresses

While Steps 1 and 6–8 are largely the same for the different element types, a stiffness

matrix must be developed for each element type in Steps 2–5 (Section 3.2.2).
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3.2.1 Discretization. Mentioned in the discussion of the geometry, the mesh

type of choice is a structured arrangement of quadrilateral elements rather than an

unstructured collocation of triangular elements, and is therefore easily created by

two-dimensional linear interpolation. Another advantage of a structured mesh over

an unstrucutred mesh is ease of coding. Each quadrilateral element has four definite

neighboring cells and can be mapped to a rectangular computational domain, allowing

a programmer to simply loop through the rows and columns of the mesh. The elements

are ordered such that the upper left corner of the computational domain is the first

element, and successive elements are then counted down through the rows and then

right through the columns (see Figure 3.11). Using general quadrilaterals rather than

rectangular elements allows a complex geometry to be fitted with a structured mesh.

However, the disadvantage is that cells can be skewed and are more likely to have

large aspect ratios, which typically increases the inaccuracy of the solution. The bird

wing in the dive configuration (Figure 3.7) demonstrates this point precisely, where

highly skewed cells dominate the sixth wing section and aspect ratio grows large as

the section tapers nearly to a point.

3.2.2 Element Stiffness Matrix.

3.2.2.1 Quadrilateral Membrane Element. This derivation follows the

nomenclature and methods of Reference [23, pp. 452–460].

Step 2: Select the Element Type

The general quadrilateral membrane element considered here stretches in two

directions and thus has two degrees of freedom for each of its four nodes.

{d} =































d1

d2

d3

d4































; {d1} =







u1

v1







(3.1)
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Writing out the total eight displacements gives

{d} =
{

u1 v1 u2 v2 u3 v3 u4 v4

}T

(3.2)

Since the element shape is an arbitrary quadrilateral, a transformation from the phys-

ical shape to a square element in the computational domain will be required in the

displacement function selection.

Step 3: Select a Displacement Function

In an isoparametric membrane formulation, the same shape functions that are

used to define the element shape are also used to define the displacements within

the element. Thus, the shape functions that map the natural coordinates r and s

of any point in a square element to the global coordinates x and y in the general

quadrilateral are also the shape functions that relate the internal displacements of

the element u and v to its nodal displacements {d}. The transformation between

the natural coordinate system and the global is depicted in Figure 3.8. The natural

coordinates are attached to the element and rotate with the element. They need not

be parallel with the global coordinates or orthogonal to each other. The four corners

and edges of the quadrilateral are bounded by +1 or −1. The displacement of any

point P located at (x, y) in the element is described by u and v.

Figure 3.8: General Quadrilateral Element Mapping to Computational Domain [23]
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The size and shape of the quadrilateral is determined by the eight nodal coor-

dinates x1, y1, x2, y2, x3, y3, x4, and y4. Therefore, any internal coordinate can be

determined by bilinear interpolation of the natural coordinates for first-order shape

functions. The global coordinates can be expressed by eight unknown constants.

x = A1 + A2r + A3s+ A4rs ; y = A5 + A6r + A7s+ A8rs (3.3)

The A coefficients are determined by evaluating x and y at the four nodes—(-1,-1),

(1,-1), (1,1), and (-1,1) in natural coordinates and (x1,y1), (x2,y2), (x3,y3), and (x4,y4)

in global coordinates—and then simultaneously solving for the A’s.
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(3.4)

Solution of these matrix equations for the A’s and substitution of the expressions for

the A’s back into Eqs. (3.3) leads to the following mapping:

x =
1

4
[(1− r)(1− s)x1 + (1 + r)(1− s)x2 + (1 + r)(1 + s)x3 + (1− r)(1 + s)x4] (3.5a)

y =
1

4
[(1− r)(1− s)y1 + (1 + r)(1− s)y2 + (1 + r)(1 + s)y3 + (1− r)(1 + s)y4] (3.5b)

These coordinates can be expressed in matrix form in the following manner:


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



N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4


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(3.6)
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Here the shape functions Ni relate the nodal coordinates (xi, yi) to any (x, y) position

along the membrane. They are functions of the natural coordinates (r, s).

N1 =
1

4
(1− r)(1− s) ; N2 =

1

4
(1 + r)(1− s) (3.7a)

N3 =
1

4
(1 + r)(1 + s) ; N4 =

1

4
(1− r)(1 + s) (3.7b)

The shape function partial derivatives with respect to the natural coordinates are

N1,r =
1

4
(−1 + s); N2,r =

1

4
(1− s); N3,r =

1

4
(1 + s); N4,r =

1

4
(−1− s) (3.8a)

N1,s =
1

4
(−1 + r); N2,s =

1

4
(−1− r); N3,s =

1

4
(1 + r); N4,s =

1

4
(1− r) (3.8b)

The partial derivatives of the global coordinates then become
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(3.9b)

The displacement functions are now defined in the same manner as Eq. (3.6) with

the shape functions defined by Eqs. (3.7):
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(3.10)
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where u and v are displacements parallel to the global x and y coordinates. Eq. (3.10)

can be represented simply as

{ψ} = [N ]{d} (3.11)

Step 4: Define the Strain/Displacement and Stress/Strain Relations

Now that the element has been selected and the displacement functions defined,

the strain/displacement matrix [B] must be established such that

{ε} = [B]{d} (3.12)

The usual relationship between strains and displacements [23, pp. 746-748] for the

two-dimensional case is given as

εx =
∂u

∂x
; εy =

∂v

∂y
; γxy =

∂u

∂y
+
∂v

∂x
(3.13)

Eqs. (3.13) can be combined into the following matrix equation:
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(3.14)

or more succinctly

{ε} = [D′]{ψ} (3.15)

Since the global coordinates are themselves functions of the natural coordinates

(Eqs. (3.6) and (3.7)), the Jacobian is needed to express the partial derivatives of

the global coordinates. This variable transformation process is worked out in Ap-

pendix A.3 and Eqs. (A.38) and (A.39) are repeated here:

∂( )

∂x
=

1

|J |

[

∂( )

∂r
ys −

∂( )

∂s
yr

]

;
∂( )

∂y
=

1

|J |

[

∂( )

∂s
xr −

∂( )

∂r
xs

]

(3.16)

36



where |J | = xrys − xsyr (3.17)

Substituting Eqs. (3.16) into Eq. (3.14) yields an alternate form of [D′]:

[D′] =
1

|J |
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
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(3.18)

Substitution of Eq. (3.11) into Eq. (3.15) leads to the definition of the strain/displace-

ment matrix [B] by Eq. (3.12):

[B] = [D′] [N ]

(3 x 8) (3 x 2) (2 x 8)
(3.19)

Thus [B] is computed by operation of [D′] on [N ]:

[B(r, s)] =
1

|J |
[

B1 B2 B3 B4

]

(3.20)

where the submatrices of [B] are given by

[Bi] =











(Ni,r)ys − (Ni,s)yr 0

0 (Ni,s)xr − (Ni,r)xs

(Ni,s)xr − (Ni,r)xs (Ni,r)ys − (Ni,s)yr











(3.21)

The strains are now related to the nodal displacements (Eq. (3.12)). The stresses are

now related to the strains by the constitutive matrix [D] [23, pp. 748-751]

{σ} = [D]{ε} (3.22)
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where [D] is defined for a state of plane stress as

[D] =
E

1− ν2











1 ν 0

ν 1 0

0 0
1− ν

2











(3.23)

where E is Young’s modulus and ν is Poisson’s ratio. Upon substitution of Eq. (3.12)

into Eq. (3.13), the element stresses are related directly to the nodal displacements.

{σ} = [D][B]{d} (3.24)

Step 5: Derive the Element Stiffness Matrix

To derive an expression for the stiffness matrix [k], the principle of minimum

potential energy is employed, where the strain energy is given by

U =
1

2

∫∫∫

V

{ε}T{σ}dV (3.25)

A derivation following this method is given in Reference [23, pp. 317-320], and results

in the following expression for the stiffness matrix:

[k] =

∫∫∫

V

[B]T [D][B]dV (3.26)

Since [B] does not vary through the thickness of the membrane element, the stiffness

matrix becomes an area integral.

[k] = t

∫∫

A

[B]T [D][B]dxdy (3.27)

However, [B] is a function of the natural coordinates r and s, and not the global

coordinates x and y which define the volume over which the integration is to be

performed. Thus the variables must be transformed by using the determinant of the
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Jacobian matrix J (a proof for a general transformation is given in [43]).

∫∫

A

f(x, y)dxdy =

∫∫

A

f(r, s)|J |drds (3.28)

Since the area is bounded by ±1 in the natural coordinates, [k] becomes

[k] = t

∫ 1

−1

∫ 1

−1

[B]T [D][B]|J |drds (3.29)

Since [B] is a rather complicated expression, the integration determining the element

stiffness matrix is best carried out numerically. The Gaussian quadrature method

used to evaluate the integrals is presented in Appendix A.5.

3.2.2.2 Quadrilateral Bending Element. A general quadrilateral bend-

ing element formulation was not found among the finite element literature. Therefore

a formulation of such a bending element was derived using classic Kirchoff plate the-

ory and using the same shape functions that defined the membrane element shape in

the previous section. The formulation is essentially a synthesis of Chapters 10 and

12 found in Reference [23]. A stand-alone derivation of the bending element stiffness

matrix is provided in Appendix A. The results of Steps 2–5 are repeated here for

completeness.

Step 2: Select the Element Type

A plate element can translate and rotate out-of-plane. This gives the plate

element three degrees of freedom per node—a transverse displacement w and two

rotations θx and θy.

{d} =































di

dj

dm

dn































; {di} =



















wi

θxi

θyi



















(3.30)
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Writing out the 12 displacements gives

{d} =
{

wi θxi θyi wj θxj θyj wm θxm θym wn θxn θyn

}T

(3.31)

As with the membrane element, a transformation from the arbitrary quadrilateral to

a square element in the computational domain is required.

Step 3: Select a Displacement Function

Although the same shape functions that are used to define the membrane ele-

ment shape are also used to define the bending element shape, the formulation is not

technically isoparametric because the nodal displacements are out-of-plane and have

their own shape functions. The same element shape mapping is shown in Figure 3.9

for the bending element, where representative loads are shown at node i.

Figure 3.9: Mapping of General Quadrilateral Element to Computational Domain

As with the membrane element, the size and shape of the quadrilateral is deter-

mined by the eight nodal coordinates by Eqs. (3.6) and (3.7), and obviously have the

same partial derivatives (Eqs. (3.9)). Given that there are 12 degrees of freedom, a

12-term polynomial is selected for the displacement function that enables rigid body
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motion and constant strain.

w = a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2 + a7x
3 + a8x

2y

+ a9xy
2 + a10y

3 + a11x
3y + a12xy

3 (3.32)

The rotations follow from Eq. (3.32) since

θx =
∂w

∂y
; θy = −∂w

∂x
(3.33)

The displacements can be put into the form of Eq. (3.11) by following the process of

Eqs. (A.28)–Eq. (A.33).

Step 4: Define Curvature/Displacement and Moment/Curvature Relations

Rather than relating the displacements to the strains (Eq. (3.12)) which vary

linearly through the thickness of the bending element, displacements are instead re-

lated to the curvatures (Eq. (A.6)):

{κ} = [B]{d} (3.34)

The curvature/displacement matrix [B] is calculated by the process explained in Ap-

pendix A.3. Because the stresses also vary linearly through the thickness of the

bending element, the curvatures are related to the moments instead.

{M} = [D]{κ} (3.35)

where the constitutive matrix [D] is defined as

[D] = D











1 ν 0

ν 1 0

0 0
1− ν

2











(3.36)
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Here D is expressed as

D =
Et3

12(1− ν2)
(3.37)

Combining Eqs. (3.34) and (3.35) relates the moments to the displacements.

{M} = [D][B]{d} (3.38)

Step 5: Derive the Element Stiffness Matrix

Step 5 must be modified slightly from the process followed in the membrane

derivation, since moments are computed rather than stresses. The potential energy

of the plate is given as

U =
1

2

∫∫

(Mxκx +Myκy +Mxyκxy)dA (3.39)

Minimizing the potential energy leads to a slight difference from Eq. (3.27), where

thickness no longer sits in front of the integral.

[k] =

∫∫

A

[B]T [D][B]dxdy (3.40)

The rest of Step 5 is the same for the bending element and results in a [12 x 12]

stiffness matrix.

3.2.2.3 Combined Quadrilateral Membrane-Bending Element. A shell

element is a thin curved surface with six degrees of freedom at each node. When

the radius of curvature approaches infinity, the shell element approaches a flat plate.

When a surface is modeled by many small shell elements, each element may be consid-

ered as a flat plate with a particular orientation in space. A conventional finite plate

bending element, such as discussed in the previous section, does not allow in-plane

membrane deformation. In the analysis of three-dimensional structures, membrane

and bending stiffnesses are uncoupled for small displacements. Thus, a shell ele-
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ment can be formed by superimposing the membrane and bending stiffness matrices

together in the following manner:

[k]
20 x 20

=







[km]
8 x 8

[0]
8 x 12

[0]
12 x 8

[kb]
12 x 12






(3.41)

where subscripts m and b denote membrane and bending deformations of the shell

element. In this formulation, the bending and membrane elements do not share

common degrees of freedom and hence are uncoupled. Note that this results in a

stiffness matrix of order [20 x 20], or five degrees of freedom per node. The element

structure stiffness equations are











{fm}
8 x 1

{fb}
12 x 1











=







[km]
8 x 8

[0]
8 x 12

[0]
12 x 8

[kb]
12 x 12

















{dm}
8 x 1

{db}
12 x 1











(3.42)

For a single shell element, there is no twisting, in-plane rotation θz (referred to as

a “drilling” rotation), but for an assemblage of elements, a bending rotation in one

element may result in a drilling rotation in an adjacent element. To account for this,

the drilling degree of freedom must be added to each node, raising the order of the

stiffness matrix to a [24 x 24].



























{fm}
8 x 1

{fb}
12 x 1

{fθz}
4 x 1



























=















[km]
8 x 8

[0]
8 x 12 [0]

20 x 4
[0]

12 x 8

[kb]
12 x 12

[0]
4 x 20

[0]
4 x 4









































{dm}
8 x 1

{db}
12 x 1

{dθz}
4 x 1



























(3.43)

Since there is no stiffness associated with the drilling degrees of freedom, the stiffness

matrix will be singular if all the elements joining a node are coplanar. If flat geometry

is to be analyzed by superposition, the on-diagonal null matrix is replaced with an

artificial stiffness matrix which causes the twisting rotations to produce corresponding
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moments Mz. One suggested fictitious stiffness matrix [11, p. 352] is the following:































Mz1

Mz2

Mz3

Mz4































= αEV

















1.0 −0.5 −0.5 −0.5

−0.5 1.0 −0.5 −0.5

−0.5 −0.5 1.0 −0.5

−0.5 −0.5 −0.5 1.0















































θz1

θz2

θz3

θz4































(3.44)

where α is a small number such as 0.3, E is Young’s modulus, and V is the elemental

volume. The element volume can be calculated directly from its coordinates by the

following formula:

V =
t

2





∣

∣

∣

∣

∣

∣

x1 x2

y1 y2

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

x2 x3

y2 y3

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

x3 x4

y3 y4

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

x4 x1

y4 y1

∣

∣

∣

∣

∣

∣



 (3.45)

where t is the element thickness.

The current order of the displacement matrix in Eq. (3.43) is

{d} = {ui vi uj vj um vm un vn wi θxi θyi wj θxj θyj

wm θxm θym wn θxn θyn θzi θzj θzm θzn}T (3.46)

Following the degrees-of-freedom indexing scheme that will be described in Section

3.2.3, the displacement vector should be ordered as follows:

{d} = {ui vi wi θxi θyi θzi uj vj wj θxj θyj θzj um

vm wm θxm θym θzm un vn wn θxn θyn θzn}T (3.47)
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Before rearranging the combined stiffness matrix [k], the membrane and bending

stiffness matrices can be further broken down into submatrices.

[km]
8 x 8

=























[k11]m
2 x 2

[k12]m
2 x 2

[k13]m
2 x 2

[k14]m
2 x 2

[k21]m
2 x 2

[k22]m
2 x 2

[k23]m
2 x 2

[k24]m
2 x 2

[k31]m
2 x 2

[k32]m
2 x 2

[k33]m
2 x 2

[k34]m
2 x 2

[k41]m
2 x 2

[k42]m
2 x 2

[k43]m
2 x 2

[k44]m
2 x 2























(3.48)

[kb]
12 x 12

=























[k11]b
3 x 3

[k12]b
3 x 3

[k13]b
3 x 3

[k14]b
3 x 3

[k21]b
3 x 3

[k22]b
3 x 3

[k23]b
3 x 3

[k24]b
3 x 3

[k31]b
3 x 3

[k32]b
3 x 3

[k33]b
3 x 3

[k34]b
3 x 3

[k41]b
3 x 3

[k42]b
3 x 3

[k43]b
3 x 3

[k44]b
3 x 3























(3.49)

The fictitious stiffness matrix of Eq. (3.44) can be rewritten slightly as follows:

[kf ]
4 x 4

=

















kf k′f k′f k′f

k′f kf k′f k′f

k′f k′f kf k′f

k′f k′f k′f kf

















(3.50)

where kf is defined as

kf = αEV (3.51)

and k′f is defined as

k′f = −0.5 αEV (3.52)

Using the notation of Eq. (3.48)–Eq. (3.50), the total membrane and bending stiffness

matrix is combined [36, p. 389] in the following manner:
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[k]
24 x 24

=









































































































































[k11]m
2 x 2

0 0 0 0
[k12]m
2 x 2

0 0 0 0
[k13]m
2 x 2

0 0 0 0
[k14]m
2 x 2

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

[k11]b
3 x 3

0 0 0

[k12]b
3 x 3

0 0 0

[k13]b
3 x 3

0 0 0

[k14]b
3 x 3

0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 kf 0 0 0 0 0 k′
f

0 0 0 0 0 k′
f

0 0 0 0 0 k′
f

[k21]m
2 x 2

0 0 0 0
[k22]m
2 x 2

0 0 0 0
[k23]m
2 x 2

0 0 0 0
[k24]m
2 x 2

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

[k21]b
3 x 3

0 0 0

[k22]b
3 x 3

0 0 0

[k23]b
3 x 3

0 0 0

[k24]b
3 x 3

0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 k′
f

0 0 0 0 0 kf 0 0 0 0 0 k′
f

0 0 0 0 0 k′
f

[k31]m
2 x 2

0 0 0 0
[k32]m
2 x 2

0 0 0 0
[k33]m
2 x 2

0 0 0 0
[k34]m
2 x 2

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

[k31]b
3 x 3

0 0 0

[k32]b
3 x 3

0 0 0

[k33]b
3 x 3

0 0 0

[k34]b
3 x 3

0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 k′
f

0 0 0 0 0 k′
f

0 0 0 0 0 kf 0 0 0 0 0 k′
f

[k41]m
2 x 2

0 0 0 0
[k42]m
2 x 2

0 0 0 0
[k43]m
2 x 2

0 0 0 0
[k44]m
2 x 2

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

[k41]b
3 x 3

0 0 0

[k42]b
3 x 3

0 0 0

[k43]b
3 x 3

0 0 0

[k44]b
3 x 3

0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 k′
f

0 0 0 0 0 k′
f

0 0 0 0 0 k′
f

0 0 0 0 0 kf









































































































































(3.53)

For geometries that are not flat with entirely coplanar elements, each “shell”

element has a unique orientation with a local axis system, indicated by aˆover the

variable. A transformation matrix [T ] can be created to map global displacements

and forces to corresponding local displacements and forces.

{d̂} = [T ]{d} ; {f̂} = [T ]{f} (3.54)

The local and global stiffness matrix equations are given as

{f̂} = [k̂]{d̂} ; {f} = [k]{d} (3.55)
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Substituting the loacl displacements and forces of Eqs. (3.54) into the local stiffness

matrix equation yields

[T ]{f} = [k̂][T ]{d} (3.56)

which leads to

{f} = [T ]−1[k̂][T ]{d} (3.57)

Thus the global stiffness matrix is computed via the following relation:

[k] = [T ]−1[k̂][T ] (3.58)

Since [T ] is an orthogonal matrix, the transpose of [T ] can be used instead of its

inverse to save computational time.

[k] = [T ]T [k̂][T ] (3.59)

Local forces can also be mapped back to the global forces using the transpose.

{f} = [T ]T [f̂ ] (3.60)

The transformation matrix [21, p. 388] relating global degrees of freedom to local is

expressed as






















































û

v̂

ŵ

θ̂x

θ̂y

θ̂z























































=





























l11 l12 l13 0 0 0

l21 l22 l23 0 0 0

l31 l32 l33 0 0 0

0 0 0 l11 l12 l13

0 0 0 l21 l22 l23

0 0 0 l31 l32 l33



















































































u

v

w

θx

θy

θz























































(3.61)
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where the lij’s are the direction cosines given as

l11 = cos(ex, er) ; l12 = cos(ey, er) ; l13 = cos(ez, er) (3.62a)

l21 = cos(ex, es) ; l22 = cos(ey, er) ; l23 = cos(ez, es) (3.62b)

l31 = cos(ex, et) ; l32 = cos(ey, et) ; l33 = cos(ez, et) (3.62c)

Eq. (3.61) transforms the displacements at a particular node, for example, at node i:

{d̂i} = [Tn]{di} (3.63)

Thus, the transformation for a four node element becomes

[T ]
24 x 24

=























[Tn]
6 x 6

0 0 0

0 [Tn]
6 x 6

0 0

0 0 [Tn]
6 x 6

0

0 0 0 [Tn]
6 x 6























(3.64)

The direction cosines can of course be calculated from the familiar calculus formula

lij =
vi · vj

‖vi‖‖vj‖
(3.65)

However, determining the unit vectors is not as straight forward. The global unit

vectors are simply

ex = [1 0 0] ; ey = [0 1 0] ; ez = [0 0 1] (3.66)

but the unit vectors of the natural coordinates will require some effort to calculate.

The element normal unit vector et can be computed from the cross product of two

vectors lying in the element, for example, vectors extending from node 1 to nodes 2
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and 4 of the element as shown in Figure 3.10.

et =
~v21 × ~v41

‖ ~v21 × ~v41‖
(3.67)

In order to determine the unit vectors er and es, the midpoint of the element and the

midpoints of the sides r = 1 and s = 1 are needed (shown as P5, P6, and P7 in Figure

3.10). The x and y coordinates of these three points are calculated by evaluating

Eqs. (3.6) and (3.7) at (r, s) = (0, 0), (1, 0), and (0, 1). The plane of the element can

be defined by its normal vector and one of its four sets of nodal coordinates:

etx(x− x1) + ety(y − y1) + etz(z − z1) = 0 (3.68)

Figure 3.10: Natural Coordinate Unit Vectors

With the x and y coordinates obtained from the shape function mapping,

Eq. (3.68) can be evaluated to determine the z coordinates.

z = z1 −
1

etz
[etx(x− x1) + ety(y − y1)] (3.69)
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Thus, unit vectors er and es are the normalized vectors calculated with the coordi-

nates of points 5, 6, and 7.

es =
〈P6x − P5x, P6y − P5y, P6z − P5z〉
‖〈P6x − P5x, P6y − P5y, P6z − P5z〉‖

(3.70)

es =
〈P7x − P5x, P7y − P5y, P7z − P5z〉

‖〈P7x − P5x, P7y − P5y, P7z − P5z〉‖
(3.71)

With the unit vectors er, es, and et, Eq. (3.65) can be applied nine times to compute

the direction cosines of Eqs. (3.62).

3.2.3 Global Stiffness Matrix. Step 6 of the finite element method involves

assembling the local stiffness matrices together to form the global stiffness matrix for

the structure. But before the global stiffness matrix can be compiled, the elemental

stiffness matrices must each be evaluated by Eq. (3.29), Eq. (3.40), or Eq. (3.53). A

procedure is constructed to loop through each element in the computational domain.

Mentioned in Section 3.2.1, the elements are indexed by counting down through the

rows and then to the right through the columns. The degrees of freedom are also

numbered in this fashion along the nodes. An example two DOF membrane mesh

is shown in Figure 3.11. The degrees of freedom corresponding to each element are

then ordered in a vector. The arrows in Figure 3.11 indicate that the degrees of

freedom are counted counterclockwise starting with the bottom left hand corner of

the element (see also Figure 3.8). Indices representing the column and row number of

the element’s position within the mesh facilitate selecting the corresponding degrees

of freedom for the element based off its number. Along with the degrees of freedom,

the nodal coordinates corresponding to each element will also need to be assembled to

compute the strain-displacement matrix, and ultimately evaluate the stiffness matrix.

The nodal coordinates define the shape of an element, which alone differentiates one

element’s stiffness over another’s.

Once all of the elemental stiffness matrices [ke] have been evaluated, the direct

stiffness method [23, p. 37] forms the global stiffness matrix [K] by directly assembling
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Figure 3.11: Computational Domain Indexing Example

individual element stiffness matrices. In other words, elemental stiffness matrices are

superimposed to form the total structure stiffness matrix.

[K] =
N
∑

e=1

[ke] (3.72)

3.2.4 Displacement Solution. In Step 7 of the finite element method, the

boundary conditions consisting of the external forces and any constrained degrees of

freedom are applied to the global structure stiffness equation. In a manner similar to

the global stiffness matrix, the global nodal loads are obtained by lumping the body

forces, distributed loads, and concentrated nodal loads at the proper nodes into a

column vector. Section 3.3.2 describes how the aerodynamic load calculated for the

bird wing is divided among the nodes.

{F} =
N
∑

e=1

{fe} (3.73)
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Resolving body and surface forces into concentrated nodal loads usually involves a

single or double integral. An example of integrating a surface load can be found in

Reference [23, pp. 460–462]. The fixed and the free degrees of freedom are specified in

two different vectors. For instance, one boundary condition choice for the bird wing

is to clamp the root chord. In this case, the user would specify the degrees of freedom

along the root to be fixed and all other degrees of freedom as free. A script entitled

“dofview” is included in Appendix D.2 to aid the user in determining which degrees-

of-freedom indices correspond to nodes in a particular area of the geometry. The script

displays a text label at each node specifying the first degree-of-freedom index at that

node. It is called from the command window by “dofview(params,[dof])”, where

“params” is the MATLAB structure associated with a geometry file (pre-loaded in

the workspace) and [dof] is the number of degrees of freedom per node (i.e. two for

a membrane model). An example output of “dofview” is shown in Figure 3.12 for a

two-sectioned, 3-DOF model.

Figure 3.12: Computational Domain Indexing Example
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With the fixed degrees of freedom specified, the corresponding displacements

can be directly set to zero in the total structure displacement matrix {d}. Thus the

global structure stiffness equations can be solved.

{F} = [K]{d} (3.74)

It is important to note that {F} and {d} may represent vectors of moments and rota-

tions rather than forces and translations. With the free degrees of freedom specified,

Eq. (3.74) can be elegantly solved in MATLAB by the following command:

d(freedofs, 1) = K(freedofs, freedofs)\F (freedofs, 1) (3.75)

3.2.5 Element Stresses. The final step of the method consists of visualiz-

ing the results of the displacement solution. After calculating the displacements {d},
the elemental strains and stresses are computed from Eqs. (3.12) and (3.24), respec-

tively. For the two-dimensional state of stress, three independent stresses exist and

are represented by the column vector

{σ} =



















σx

σy

τxy



















(3.76)

The principal stresses are determined from Mohr’s Circle [12, pp. 474–499].

σmax =
σx + σy

2
+

√

(

σx − σy
2

)2

+ τ 2xy (3.77a)

σmin =
σx + σy

2
−

√

(

σx − σy
2

)2

+ τ 2xy (3.77b)

The von Mises effective stress σvm [31, pp. 239–247] is defined as the uniaxial tensile

stress that would create the same distortion energy as is created by the actual com-
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bination of applied stresses, and thus treats multiaxial stresses as if they were due to

pure tensile loading. Von Mises stress for the two-dimensional case can be caluclated

with the principal stress.

σvm =
√

σ2
max − σmaxσmin + σ2

min (3.78)

When plotting a structure’s deformed state, the element patchs can be colored by the

von Mises stress for effective visualization.

3.2.6 Validation. This section provides validation of the membrane and

of the bending models against classical analysis. Comparisons with the individual

membrane and bending models are made for the combined membrane-bending model.

3.2.6.1 Membrane Element. A MATLAB code entitled “FEm” is

included in Appendix B.1 that implements the membrane model. Before running

the model, a geometry with the “params” structure must be loaded into the com-

mand window, and the force vector (Line 92) and fixed degrees of freedom (Line

93) must be set within the script. The function is called from the command line by

“FEm(params)” and outputs four plots, three elemental stresses (Eq. (3.76)) and the

von Mises stress (Eq. (3.78)).

Perhaps unconventional for membrane elements, the membrane model developed

in Appendix B.1 is used to model the deflection of a cantilever beam. The solution

is validated against elementary beam theory and another membrane finite element

solution created by M. Gosz [13, pp. 176–180]. The cantilever beam shown in Figure

3.13 has a concentrated force, P = 10 kN , at the right end, and the following material

properties: Young’s modulus E = 200 GPa and Poisson’s ratio ν = 0.3. The beam

has a length of 3 m, a height of 20 cm, and a thickness of 20 mm. Because the ratio of

the length and height to the thickness of the beam is 15 and 150 respectively (Figure

3.13 not shown proportionately), a membrane model provides an accurate solution

given that the mesh is adequately refined.
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Figure 3.13: Cantilever Beam Mesh

From beam theory [12, p. 906], the deflection profile of a cantilever beam loaded

on the right end by a concentrated force P is given as

δ(x) =
Px2

6EI
(3L− x) (3.79)

where E is Young’s modulus, I is the moment of inertia of the beam’s cross section

about the neutral axis, and L is the length of the beam. The deflection at L is simply

δ(L) =
PL3

3EI
(3.80)

For the beam at hand, the analytical deflection at the end of the beam is

δ(L) =
(−10000 N)(3 m)3

3(200 x 109 N/m2)







(0.02 m)(0.2 m)3

12







= −33.75 mm (3.81)
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The end deflection of the beam predicted by “FEm” is compared with the analytical

solution and Gosz’s finite element solution in Table 3.2, using four different mesh

refinements: 2 x 5 mesh, 2 x 20 mesh, 2 x 40 mesh, and 4 x 40 mesh (which is displayed

on the beam in Figure 3.13). It is evident that with increasing mesh refinement,

“FEm” nears the analytical solution. The “FEm” solution has less than 0.1 percent

error with Gosz’s finite element solutions, and thus can be said to perfectly match

Gosz’s membrane model for all practical purposes.

Table 3.2: End Deflection [mm] of Cantilever Beam

Mesh Size
δL δL % Error % Error

(Gosz) (FEm) (FEm–Analytical) (FEm–Gosz)
2 x 5 -7.5259 -7.5262 -77.7002 0.0037
2 x 20 -27.2109 -27.2057 -19.3905 -0.0191
2 x 40 -31.3006 -31.3251 -7.1850 0.0782
4 x 40 -31.8934 -31.8720 -5.5643 -0.0670

Figure 3.14 displays contour plots of the von Mises stress for the four different

meshes. The 2 x 5 grid has very large aspect ratio cells and under-predicts the

deflection at the end of the beam by a 78 percent error. This implies that there are

not enough cells along the axis of the beam to capture the cubic deflection profile

(Eq. (3.79)). Not as many cells are needed along the height since the bending stress

varies linearly along the height. Hence, the next two refinements add more elements in

the axial direction. The 2 x 40 mesh now only has a 7 percent error with the analytical

solution. Only having two elements along the height of the beam effectively captures

one stress magnitude that is equal and opposite above and below the neutral axis of

the beam. With the 4 x 40 refinement, only a 5 percent error with the analytical

solution remains. To obtain an even more accurate solution, more elements should

be added in both directions, and the ratio of the number of cells in either direction

should be such that the mesh has square cells. A plot of the bending stress σx is also

included in Figure 3.15 which clearly shows the tension and compression of the beam

above and below the neutral axis.
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Figure 3.14: Von Mises Stress [Pa] of Cantilever Beam for Four Meshes

Figure 3.15: Bending Stress [Pa] of Cantilever Beam for 4 x 40 Membrane Mesh
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3.2.6.2 Bending Element. A MATLAB code entitled “FEb” is in-

cluded in Appendix B.2 that implements the bending model. Just like running the

“FEm” code, the “params” structure must be preloaded into the command window,

and the force vector (Line 87) and fixed degrees of freedom (Line 88) must be set

within the script. The function is called from the command line by “FEb(params)”

and outputs four plots, three elemental stresses calculated at z = t/2 (Eqs. (A.11))

and the resulting von Mises stress (Eq. (3.78)).

The bending model developed in Appendix B.2 is used to model the deflection

of a simply-supported square plate with a concentrated load at the center. The

solution is validated against the simply-supported rectangular plate formulation from

Timoshenko’s classic plate solutions [44, pp. 141–143]. The plate shown in Figure

3.16 has a concentrated force, P = 10 kN , at the center, and the following material

properties: Young’s modulus E = 200 GPa and Poisson’s ratio ν = 0.3. It has side

lengths of 2 m and a thickness of 20 cm.

Figure 3.16: Plate Bending Mesh
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Timoshenko’s solution for the central or maximum deflection of a rectangular

plate with side lengths a and b is given by

wmax = α
Pa2

D
(3.82)

where α is a numerical factor that depends on the ratio b/a, and the flexural rigidity

D is calculated by Eq. (3.37). For a square plate (b/a=1), Timoshenko calculates α

to be 0.01160. Thus for a square plate with side length L, the central deflection is

wmax = 0.01160
PL2

D
(3.83)

For the plate at hand, the maximum deflection is

wmax = 0.01160
(−10000 N)(2 m)2





(200 x 109 N/m2)(0.2 m)3

12(1− (0.3)2)





= −3.167 µm (3.84)

The plate was discretized with a 20 x 20 grid, as shown in Figure 3.16. To add simple

supports to the edges of the plate, the transverse displacements around the plate’s

circumference were fixed in MATLAB by the following command:

fixeddofs = [1 : 3 : 63 64 : 63 : 1198 1261 : 3 : 1323 124 : 63 : 1258]

The concentrated force at the center of the plate was added by the command:

F (661, 1) = −10000

With the BCs set, “FEb” calculated a central deflection of −3.180 µm, which

is a 0.42 percent error with Timoshenko’s calculation and demonstrates excellent

agreement of the model with Timoshenko’s plate. Figure 3.17 shows contour plots

of the maximum normal, shear, and von Mises stress of the plate, which occurs at

z = t/2 (Eqs. (A.11)).
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Figure 3.17: Stress Contours for Simply-Supported Bending Plate with Central
Deflection
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3.2.6.3 Membrane/Bending Element. AMATLAB code entitled “FEmb”

is included in Appendix B.3 that implements the superimposed membrane-bending

model. The inputs and outputs are the same as they were for both the membrane

and the bending model. Both the cantilever beam and the simply-supported plate

problems examined in the membrane and bending validations were tested on the com-

bined model. As expected, “FEmb” produced the same deflections for both, accurate

to at least four decimal places. To demonstrate the different effects of membrane and

bending deformation on stress contours, a simple rectangular geometry with an aspect

ratio of 3 is shown in Figures 3.18–3.20. A Young’s modulus of 200 x 109 N/m2, a

Poisson’s ratio of 0.3, and a thickness of 0.1m were used. A load of 10 kN was applied

to the membrane model at the upper right-hand node in the negative y-direction, a

load of 100 N was applied to the bending model at the upper right-hand node in the

negative z-direction, and both of these loads were applied to the combined model.

The membrane loading contours of Figure 3.18 can be seen to match those of

the membrane loading of the cantilever beam in Figure 3.14, though an even better

match would result if Figure 3.14 were more refined in the y-direction. The neutral

axis of the “beam” is easily observable at y = −1. The bending contours of Figure

3.19 match the bending contours a cantilever beam experiences on its upper and lower

surfaces, with a slight “twist” due to non-symmetric loading. In fact, both Figure 3.18

and Figure 3.19 are similar to different cantilever beam contours, where the membrane

model reveals stress contours on the side of the beam and the bending model reveals

stress contours on the top and bottom of the beam. In the combined loading of

Figure 3.20, the applied bending load was scaled down 100 times from the membrane

load in order to obtain stress contours that were a good hybrid between membrane

and bending contours. This scale factor indicates the dominance of bending loads

over membrane loads of the same magnitude. A MATLAB code entitled “FEmb3D”

is included in Appendix B.4 that implements the superimposed membrane-bending

model and accepts non-planar geometry. Nearly identical stress contours are observed

for simple rectangular geometries with the NACA 4-series camber versus flat plate.

61



Figure 3.18: Membrane-Bending Model with Only a Membrane Load

Figure 3.19: Membrane-Bending Model with Only a Bending Load

Figure 3.20: Membrane-Bending Model with Combined Loading
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3.3 Aerodynamics

3.3.1 Perching Maneuvers. Section 2.4 explored some research that esti-

mated perch landing maneuvers of birds. A typical altitude versus range profile was

given in Figure 2.6. In the interest of capturing wing loads on a MAV during a simi-

lar maneuver, perching maneuver data was selected from Reference [38]. Four points

along the maneuver were selected from which the aircraft and aerodynamic data were

extracted. The four selected points are marked on Figure 3.21–Figure 3.24, which

give the data curves of altitude versus range, range versus time, angle of attack ver-

sus range, pitch versus range, and velocity versus range. Table 3.3 provides the data

estimated from the figures at each point.

The four points are intended to represent the more extreme aerodynamic con-

ditions of the manuever. Point 1 is at the beginning of the trajectory when the MAV

is likely in the 15◦ back sweep position (Figure 3.6). The dive can be said to have

begun since the near -100◦/s angle of attack and pitch derivatives indicate the vehicle

is pitching down fast from its cruising or loitering condition. At Point 2, the MAV

is midway through the dive and experiences the peak velocity of the maneuver. The

MAV starts to pitch up again, though the pitch angle is still negative. The wings are

in the dive configuration (Figure 3.7), much like the those of the eagle owl in Figure

1.2. At Point 3, the MAV is at the bottom of the dive and begins ascending. The

Figure 3.21: Perching Maneuver: Altitude vs. Range
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Figure 3.22: Perching Maneuver: Range vs. Time

Figure 3.23: Perching Maneuver: Attitude vs. Range
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Figure 3.24: Perching Maneuver: Velocity vs. Range

pitch rate is at a maximum due to how fast the MAV is still moving. The wings are

transitioning from the dive to forward sweep configuration, and so the configuration

with no sweep (Figure 3.5) is selected at this point. Finally at Point 4, the MAV has

covered 98.5% of the range and is at a low velocity as it is pulls up into a vertical

stance. Consequently the angle of attack is post-stall and the angle of attack rate is

at a very high value of 216◦/s. The wings are fully flared with forward sweep (Figure

3.4) so that they can collect as much drag as possible to bring the vehicle to a halt.

Table 3.3: Data for Selected Points along Perching Maneuver
Selected Location: Point 1 Point 2 Point 3 Point 4
Range [m] -20 -12 -6 -0.31
Altitude [m] 5 3 1.78 4.80
Time [s] 0 0.92 1.46 2.44

Velocity [m/s] 10 10.41 10.11 2.19
AOA [◦] 6 3.75 10 50

AOA Rate [◦/s] -98.92 0 14.6 216.2
Pitch Rate [◦/s] -98.82 0 68.3 26.4
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3.3.2 Force Estimation. With the geometry and flight conditions selected,

a method for estimating the wing loading was established. A vortex lattice program1

developed in MATLAB called “Tornado” [28] was the product of the Master’s thesis

referred to in Reference [29]. Figure 3.25 shows the main menu of Tornado.

The first menu item allows the user to define a new geometry or load one of

the many existing wings. A new geometry is built by defining any number of wing

partitions in the same manner as Figure 3.1 with the parameters given in 3.1. Thus,

the vortex panel meshes and the finite element meshes were created to be identical to

one another. The geometries of the fictitious sweeping mechanism shown in Figure

3.4–Figure 3.7 were created in this manner with “flat plate” airfoils. Next, the flight

conditions of the four points selected in Table 3.3 were created and saved in menu

item 2. The lattice was then generated with menu item 5, where the fixed wake,

standard vortex lattice method was selected. Figure 3.26 shows a sample geometry

output, and Figure 3.27 shows the vortex panels generated for the sample output.

Figure 3.25: Main Menu of Tornado Software

1The code can be downloaded from the website http://www.redhammer.se/tornado/DL.html
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Figure 3.26: Example of Tornado Geometry Output [28]

Figure 3.27: Example of Tornado Vortex Panels Output [28]
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In light of the several processing options given in menu item 6, only static

computations at the specified flight states were performed. Tornado outputs five

different MATLAB structures: geo, state, lattice, ref, and results. The geo and

state structures simply return the geometry and flight conditions defined by the user.

The lattice structure returns the mesh data. The ref structure is not useful, since

the mean aerodynamic chord and center of gravity location are only needed for full

aircraft analysis. The pertinent data is reported in the results structure, which gives

three column vectors of the x, y, and z force components acting on each panel. Since

vortex lattice methods are inherently inviscid, an alternative method for viscous drag

estimation was made. An auxiliary processing option was added to the current version

of Tornado to predict zero-lift, flate-plate drag, which gives an estimate of the skin

friction drag CDo. For the perching maneuver, the form drag due to flow separation

as the MAV exceeds the stall angle of attack has an even bigger impact on the wing

loading, since at 90◦, the loading is almost entirely due to drag. (Although it should

be noted that that drag loading is still a bending load, as is the lift loading at low

angles of attack). Therefore to estimate the form drag as it varies with angle of attack,

the following equation was used:

D = q∞S [CDo + (1− CDo) sinα] (3.85)

where q∞ is the dynamic freestream pressure, S is the planform area, and α is the

angle of attack. The effect of Eq. (3.85) is shown in Figure 3.28. In this fashion, the

drag is exactly equal to the zero-lift drag prediction at 0◦ angle of attack. At 90◦ angle

of attack or when CDo is equal to one, the drag is equal to q∞S, as CD equal to one

implies.

To apply the aerodynamic forces calculated from Tornado to the finite element

model, the single resultant force per each panel calculated by the vortex lattice method

needed to be divided onto the nodes of the given element. Since the locations of the

resultant force acting on each panel were not known, the forces were assumed to

act through the centroid of the element. Following this assumption, one fourth of
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Figure 3.28: Viscous Drag Estimation Curve

each of the three components of the force vector were applied to the four nodes of

the element. Thus at each node, one quarter of the force acting through each of

the adjacent elements to that node were added together. To distribute the estimated

drag force over the nodes, the total estimated drag was first divided among the chords,

weighting the division by the local chord length. Then, the component of the total

drag for a given chord was distributed evenly among the nodes along that chord. In

this manner, the estimated drag force at each node was then added to the lift and

inviscid drag loads calculated by Tornado.

3.4 Optimization

3.4.1 Compliance Objective Using the SIMP Model. In structural topology,

the maximum stiffness or rigidity of a structure is often sought by distributing a

limited amount of material throughout the design domain. In this pursuit, a common

restatement of the maximum stiffness objective is minimization of flexibility. The

basic relationship of flexibility to rigidity can be seen with the fundamental linear

spring in elementary mechanics, where the flexibility is simply the reciprocal of the

spring stiffness.
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In order to minimize the flexibility of a structure, a suitable measure of flexibility

must be selected to formulate the objective of an optimization problem. Though there

are a number of measures of flexibility, the compliance c of a structure will be used

here. Compliance can be thought of as the strain energy [12, p. 116] in a deformed solid

body. Provided no energy is gained or lost in the form of heat, the work required

to deform a body is equivalent to the strain energy of that body in its deformed

state. Work is, of course, the product of force and displacement. Thus, for a discrete

finite element formulation, compliance is simply {F}T{d}, where {d} are the nodal

displacements and {F} are the external forces at the nodes (see References [8, pp. 1–9]
and [10, pp. 179-180] for a continuous formulation of compliance). Using compliance

as a measure of flexibility has the advantage that it is a convex function of the design

variables, whereas a measure such as {d}T{d} is a nonconvex function of the design

variables. Also, a body where compliance has been minimized will have the same

specific strain energy in each element (discussed later).

Though the flexible skin process summarized in Section 2.3 suggested that skin

design should include Young’s modulus, shear modulus, thickness, and possibly Pois-

son’s ratio in the design variables, only element thickness is considered here in the

design variables as a simpler starting point. Thus, for a finite element discretization

with N elements, the design variables are given in the vector

{ρ} =
{

ρ1 ρ2 . . . ρe . . . ρN

}T

(3.86)

where ρe is the thickness of element e. It will be discussed later whether only including

element thickness in the design variables leads to results that can be correlated to skin

design.

With the stated objective and design variables, the design constraints must now

be specified. The nodal displacements {d} in the objective function will be solved

by the finite element method (Eq. (3.75)), and therefore a simultaneous optimization
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formulation includes Eq. (3.74), repeated here, as a constraint.

{F} = [K]{d} (3.87)

Substituting in Eq. (3.72) in for the global stiffness [K] gives

{F} =

(

N
∑

e=1

[ke]

)

{d} (3.88)

As stated in the opening sentence of this section, compliance minimization is only

beneficial if a limit on the material distributed throughout the design domain Ω is

imposed. In the absence of such a constraint, compliance minimization would simply

lead to infinite thickness throughout the entire design domain; but with a limited

volume V of material, the optimization must “economize” the material distribution.

Expressing the material constraint as an inequality gives:

N
∑

e=1

ρeae ≤ V (3.89)

where ae is the area of element e. In matrix form, this constraint is

{ρ}T{a} − V ≤ 0 (3.90)

Additionally, for a physical solution to occur, the design variables must be confined

by an upper and lower bound.

0 < ρmin ≤ ρe ≤ ρmax, e = 1, . . . , N (3.91)

Though ρmin and ρmax can be considered inequality constraints, most optimization

solution methods take into account optimization variable bounds without explicitly

adding them as constraints. Design variable bounds are sometimes referred to as

“box” constraints.
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Putting the objective function and constraints together, a simultaneous compli-

ance minimization with two constraints is given by

min
ρ, d(ρ)

{F}T{d}

s.t.

(

N
∑

e=1

[ke]

)

{d} = {F},

{ρ}T{a} − V ≤ 0, 0 < ρmin ≤ ρe ≤ ρmax, e = 1, . . . , N

(3.92)

A better programmatic formulation of the problem is to nest the equilibrium con-

straint in the compliance objective, thus making the objective statement a function

in the design variables only, and not in d(ρ) as well. This also reduces the number

of constraints down to the single material constraint.

min
ρ

c(ρ)

s.t. {ρ}T{a} − V ≤ 0, 0 < ρmin ≤ ρe ≤ ρmax, e = 1, . . . , N

(3.93)

where the compliance c is given as

c(ρ) = {F}T{d}, where {d} solves:

(

N
∑

e=1

[ke]

)

{d} = {F} (3.94)

While the values of the design variables are allowed to range between ρmin and

ρmax, the optimization problem of Eq. (3.93) is really a sizing problem, as defined

in Section 1.2. In a topology design, the optimal placement of a material within

the design domain Ω is desired such that points in space will either have material

or they will be void. In this case, the structural geometry is rendered as a black

and white image, albeit pixelated due to the finite element discretization. Thus

topology optimization is seeking to determine the optimal subset Ωmat of material

points. Ideally, the element stiffness matrices would be defined piecewise over the
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domain Ω in the following manner:

[k(x)] = 1Ωmat(x)[ke(x)], 1Ωmat(x) =







1 : x ∈ Ωmat

0 : x ∈ Ω\Ωmat
(3.95)

where [ke(x)] indicates that the element stiffness matrix varies over the domain. In

this distributed, discrete 0-1 problem, the material constraint is represented as

∫

Ω

1ΩmatdΩ = V ol(Ωmat) = V (3.96)

Unfortunately, a number of problems arise with the character of a discrete problem.

Allowing finite elements to have zero stiffness leads to singularities in the solution

process. Also, optimization algorithms where design variables take only discrete values

are not efficient for large-scale problems with lots of variables. Thus, a model that

allows intermediate values in the design variables but also penalizes them, the so-

called Solid Isotropic Material with Penalization (SIMP) model, is used.

In the SIMP model, the constitutive matrix is directly penalized. For the mem-

brane element, the constitutive matrix (Eq. (3.23)) takes the form

[D] =
ρqEt

1− ν2











1 ν 0

ν 1 0

0 0
1− ν

2











(3.97)

where the penalty q is some constant (typically ≥ 1). Since the upper bound ρmax is

set to 1, the physical thickness t is still included in the constitutive matrix such that

when an element is fully present (ρ = 1), the actual physical thickness is scaled by t.

The quantity ρq can be thought of as the “effective” thickness. To avoid numerical

problems induced by zero stiffness, the lower bound on the thickness is ρmin = ε ≈ 0

(ε = 0.001 is typical). Figure 3.29 shows the effect the choice of exponent q has on

penalization. When q = 1, the stiffness of an element is proportional to the amount

of material designated to that element, and hence the thicker an element is, the stiffer
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it becomes. This is not the case for q > 1. Putting some values to Figure 3.29, at half

the available material (ρ = 0.5), the effective thickness is only about 0.2 for q = 3. In

this case, the effective thickness does not reach one half until a ρ of about 0.8. What

choice of exponent q performs the best is a matter of numerical experimentation.

Figure 3.29: SIMP Penalization of Element Thickness

However, Bendsøe and Sigmund point out [8, p. 7] that in order for a material to be

realizable from the a 2-D SIMP model, q must satisfy the following relationship with

Poisson’s ratio:

q ≥ max

{

2

1− ν
,

4

1 + ν

}

(3.98)

Thus, for a material with ν = 1/3, the smallest q is 3. In fact, q = 3 has been found

to be a good choice for the exponent, and will be used here unless otherwise stated.

For a plate bending element, the constitutive matrix (Eq. (3.36)) reveals that the

element stiffness already has cubic dependence on the thickness. This implies that

the optimal design naturally prefers to achieve either the upper or lower bound on

thickness, and an additional penalty need not be imposed (consult Reference [8, p. 58]

for more information).

Rather than keep the design variables in the constitutive matrix, the global

stiffness matrix can be more readily seen as a function of the design variables when
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they are placed outside of the element stiffness matrix:

[K] =

(

N
∑

e=1

ρqe[ke]

)

(3.99)

With the amendment to the compliance objective with the SIMP model, the opti-

mization statement is modified slightly.

min
ρ

c(ρ)

s.t. {ρ}T{a} − V ≤ 0, ε ≤ ρe ≤ 1, e = 1, . . . , N

(3.100)

where the compliance c is given as

c(ρ) = {F}T{d}, where {d} solves:

(

N
∑

e=1

ρqe[ke]

)

{d} = {F} (3.101)

Once {d} has been calculated from the finite element method, a substitution can be

made for the global force vector {F} such that

c(ρ) = {d}T
(

N
∑

e=1

ρqe[ke]

)T

{d} (3.102)

The total compliance can be computed by summing up the compliance of each ele-

ment, much in the same way that the direct stiffness method adds element stiffnesses

and forces together to obtain the global stiffness and force vectors. Thus Eq. (3.102)

becomes

c(ρ) =
N
∑

e=1

ce(ρe) =
N
∑

e=1

ρqe{de}T [ke]T{de} (3.103)

The Karush-Kuhn Tucker (KKT) optimality conditions [7, p. 130], which give

the first-order necessary conditions, are now derived for the compliance minimization

of Eq. (3.100). The Lagrangian function is given as

L(ρ, λ) = c(ρ) + λ
(

{ρ}T{a} − V + s2
)

(3.104)
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where λ is the Lagrange multiplier for the single volume constraint, and s is the slack

variable for the inequality constraint. A formal derivation of the compliance gradient

with respect to the design variables is given in Reference [10, pp. 98–99], where both

a direct analytical method and the adjoint analytical method are employed to attain

the following:
∂ce
∂ρe

= 2{de}T
∂{fe}
∂ρe

− {de}T
∂[ke]

T

∂ρe
{de} (3.105)

The first term in Eq. (3.105) is only included when the global force vector is a function

of the design variables, for example, when the weight of the structure is included in

the loading. With the modification of [ke] by the SIMP model and excluding thickness

dependency of the loading, the compliance sensitivity reduces to

∂ce
∂ρe

= −qρq−1
e {de}T [ke]T{de} (3.106)

The gradient condition for the design variables thus becomes

∂L
∂ρe

= −qρq−1
e {de}T [ke]T{de}+ λρeae = 0, e = 1, . . . , N (3.107)

and the volume constraint is recovered from the gradient condition

∂L
∂λ

= {ρ}T{a} − V + s2 = 0 (3.108)

A feasibility check on the inequality requires that

s2 ≥ 0. (3.109)

The switching condition are derived from the derivative of the Lagrangian function

with respect to the slack variable.

λs = 0 (3.110)
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Finally, the lagrange multiplier is required to be nonnegative since it is associated

with an inequality.

λ ≥ 0 (3.111)

The KKT conditions produce enough equations for the unknowns and, in theory, the

equations could be solved simultaneously. However, the nested compliance optimiza-

tion problem has been shown to be convex [10, p. 86] (although the simultaneous

formulation is not) and can therefore take advantage of convex algorithms.

3.4.2 Optimality Criteria Method. Though there are many ways to solve

the compliance optimization problem, a general procedure for solving the nested for-

mulation using first order algorithms is described in the following steps:

1. Start with an initial design ρ0 and set the iteration counter k = 0. A typical

initial design is ρ0 = V ol(Ωmat)/V ol(Ω).

2. Perform a finite element analysis for the current design, solving for the displace-

ment vector d(ρk) from the equilibrium condition K(ρk)d(ρk) = F .

3. For the current iteration, calculate the compliance c(ρk), the constraint function

(ρk)Ta− V , and the corresponding sensitivities.

4. Evaluate an appropriate update scheme (i.e. by solving an explicit, convex ap-

proximation) to give a new design ρk+1.

5. Update the counter k = k + 1 and return to step 2 unless a stopping criteria

has been met.

Step 4 provides leeway in selecting an update scheme for the design variables and

indeed, there are many, such as SLP [7], SQP [7], CONLIN [10], and MMA [42].

However, the Optimality Criteria (OC) method is a historically older, classical ap-

proach that can be seen as a special case of the explicit convex approximation method,

and has turned out to be very efficient at solving topology optimization problems.
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A more descriptive presentation of the OC method is given in Reference [10],

but only a brief description is presented here. The OC method takes advantage of the

fact that the material volume is a monotonically decreasing function of the Lagrange

multiplier λ. Hence, a stationary point is achieved when the volume constraint is

satisfied. The update of the design variables is calculated by

ρk+1
e = min

{

max

[

ρke

(

qρq−1
e (dk

e)
TkT

e d
k
e

λae

)η

, ρmin

]

, ρmax

}

(3.112)

such that the volume constraint

N
∑

e=1

aeρ
k+1
e (λ)− V = 0 (3.113)

is satisfied, where ρk+1
e is now a function of λ. The update scheme can be written

a little more compactly by substituting the compliance sensitivity (Eq. (3.106)) into

Eq. (3.112).

ρk+1
e = min

{

max

[

ρke

(

−∂ce/∂ρe
λae

)η

, ρmin

]

, ρmax

}

(3.114)

In this manner, each thickness is updated independently. The min and max functions

are used so that the box constraints are not violated. The exponent η acts like a

damping knob on the update process and is chosen by experiment (a value of 0.5 is

typical). Note that the design has converged when the quantity in parenthesis is equal

to unity, or if

qρq−1
e (dk

e)
TkT

e d
k
e

ae
= λ = constant, for all e = 1, . . . , N (3.115)

This quantity is twice the specific strain energy of an element. The implication of

Eq. (3.115) is that the OC method is closely related to a fully stressed design, where

all elements have the same strain energy, and therefore the same stress. However,

with the penalization method, the specific strain energy is only constant for elements

with intermediate densities, since it is lower in regions with ρ = ρmin and higher in
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regions with ρ = ρmax. The design update does however add material to elements

with a specific strain energy higher than λ, and it removes material from elements

with a specific strain energy lower than λ, assuming the bounds on ρ are not violated.

A bisectioning routine is used to implement Eqs. (3.114) and (3.113). First,

an upper and a lower bound on the Lagrange multiplier are selected, for example,

λupp = 100, 000 and λlow = 0. Next, the middle point between those bounds is set as

λmid. The update is computed with Eq. (3.114) using λmid. The volume constraint is

then checked with the updated variables. If the constraint is violated with excessive

material, then the lower bound is set to λmid, and if the constraint is violated with

an inadequate amount of material, then the upper bound is set to λmid. This process

continues until the value of λ is found within a certain tolerance which yields a design

update that satisfies the volume constraint.

Included in Appendix C are MATLAB implementations of the compliance op-

timization with the SIMP model, which use the OC method that has been described.

Four variants of the code are provided which are based on the four finite element mod-

els developed in Section 3.2. These “SIMP” codes, as they are named, are structured

in the same fashion as a 99-line topology optimization code for compliance minimiza-

tion2 [8, App. 5.1] written by Ole Sigmund. They receive as inputs the “params”

geometry structure (see Section 3.1), as well as some other outputs from an aerody-

namics program (described in the following section). An example output of “SIMPm”

is shown in Figure 3.30 where the rectangular design domain topology, representing

the right wing of an aircraft, has been optimized for an in-plane load applied at the

upper, right-hand corner of the domain. The boundary conditions are fixed such that

the root chord is clamped.

As a final note, several complications can arise with the formulation given in

this section. A common one that severely inhibits a good solution is that of the

so-called checkerboard pattern. A checkerboard pattern occurs when the design func-

2The MATLAB code can be downloaded from the website http://www.topopt.dtu.dk
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Figure 3.30: Example “SIMP” Output

tion alternates between 0 and 1 and produces a numerically artificial stiffness. This

problem is described in detail in Reference [8, pp. 39–47]. Sigmund devised a mesh-

independency filter in his 99-line code for the compliance sensitivities that also elim-

inates the checkerboard pattern. Only one additional parameter used for specifying

the radius of the filter is added to the method. A radius of less than 1 indicates

the filter is turned off. This filter is included in the “SIMP” codes in Appendix C.

The problem in Figure 3.30 is repeated again in Figure 3.31, displaying the erroneous

results that occur when the checkerboard filter is turned off.

Figure 3.31: Example “SIMPm” Output with No Checkerboard Filter
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3.4.3 Parameter and Convergence Study. Before investigating the real ge-

omtries and loading scenarios of interest, the influence of the SIMP model parameters

on determining structural layout, and the effect of the OC parameters on conver-

gence rate are studied for a simple rectangular domain. This should lead to a good

working knowledge of the parameters, which will help shorten the computation time

for the larger cases of particular interest, and develop a sense of the influence of the

parameters in the solutions. A reference problem is shown in Figure 3.32, where a

60 x 30 discretization of a rectangular geometry with an aspect ratio of 2 has been

selected. The reference boundary conditions consist of a single point load in the

negative y-direction and clamped nodes along the root chord.

Figure 3.32: Reference Problem with a 60 x 30 Mesh

3.4.3.1 Varying the SIMP Parameters. As was shown in Figure 3.29,

the penalization of the SIMP model is entirely controlled by the exponent q, which

is some number greater than 1. Selecting a higher value of q penalizes the element

thicknesses to a greater extent, and thus a “sharper” solution with fewer intermediate

thickness values results. However, selecting an excessively high value for q leads

to singularity in the finite element solution. In Figure 3.33, the reference problem

of Figure 3.32 is solved six different times within a convergence of 10%, each with
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(a) q = 1 (b) q = 2 (c) q = 3

(d) q = 3.5 (e) q = 4 (f) q = 5

Figure 3.33: Membrane Structures for Reference Problem with Varying Penaliza-
tions (V olf = 0.5, rfilter = 1.5)

different penalizations. Figure 3.33(a) demonstrates the inability of q = 1 to drive

the domain to a discrete structure. For penalties of 2 and 3, the reference problem

converged to the same structure, although the latter converged in half the iterations

that the former did. Unlike Figures 3.33(b) and (c), Figures 3.33(d)–(f) reveal a

structure with fewer and bulkier members. As the penalization increases from 3 to

3.5, the upper two smaller internal members vanish and their material is added to the

remaining internal members. This process occurs as the solution progresses. Hence,

there is a penalty (about 3.5) at which the basic layout of the structure crosses over

from that of Figure 3.33(b) to that of Figure 3.33(d). With this new layout, the

solution of Figure 3.33(e) begins to split a main internal member into two members,

but this gap is ultimately not maintained as the penalty increases to 5. Thus, it

can be concluded from Figure 3.33 that there may be a penalization value (about 3

to 4) at which the basic layout of a truss-like structure reduces the total number of

members and uses the material to thicken fewer members. Also, a penalty less than

three will likely require significant additional iterations to reach the same point of

convergence.
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Equally important as the penalization parameter is the volume fraction V olf ,

which refers to the fraction of the design domain to be filled with material. Figure

3.34 shows the evolution of the reference problem structure with increasing volume

fractions, for a penalty of q = 3. With increasing material at the disposal of the

structure, two types of changes can occur—the current members can thicken, or new

members can be added. For the problem of Figure 3.34, increasing the volume fraction

from 30 to 40 percent does not add any new members, whereas the progression of the

other volume fractions both thickens current members and adds new members. The

similarity between Figure 3.34(c) and Figure 3.33(f) indicate that the same structural

configuration (though not necessarily thickness of members) may be approached by

increasing the penalization parameter, or by decreasing the volume fraction. Volume

fractions greater than 0.5, while interesting, probably lead to an inefficient structure,

whereas volume fractions as low as 0.2 may certainly be worthy of investigation.

A designer will likely select the lowest volume fraction that still yields satisfactory

compliance or maximum displacement of the structure.

(a) V olf = 0.2 (b) V olf = 0.3 (c) V olf = 0.4

(d) V olf = 0.5 (e) V olf = 0.6 (f) V olf = 0.7

Figure 3.34: Membrane Structures for Reference Problem with Varying Volume
Fraction (q = 3, rfilter = 1.5)
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One other parameter of the SIMP model warrants investigation, namely the

radius of the checkerboard filter rfilter, mentioned briefly at the end of 3.4.2. The filter

removes the numerically stiff checkerboard pattern that can artificially appear (Figure

3.31), but the filter also has the effect of eroding the number of members in a structure

and ultimately “blurring” the image when the radius is overextended. Figure 3.35

repeats the reference problem for six different filter radii, where q = 3 and a volume

fraction of 0.5 have been used. Aside from blurring the structure, increasing the filter

radius seems to produce a similar effect as increasing the penalization. Whereas the

filter is clearly overextended when the radius exceeds a value of 2, the structure is also

rather coarse when the radius is less than a value of 1.25. Therefore a filter radius

ranging from about 1.25 to 2 seems to result in the best structural image.

(a) rfilter = 1.1 (b) rfilter = 1.25 (c) rfilter = 1.5

(d) rfilter = 2 (e) rfilter = 3 (f) rfilter = 4

Figure 3.35: Membrane Structures of Reference Problem with Varying Filter Radii

3.4.3.2 Varying the Convergence Parameters. The goal of conceptual

wing structure design is to qualitatively determine the topology or anatomy assumed

within a design domain under specified boundary conditions. Once the optimization

has ended, the resulting structure must still be post-processed to transfer the structure

to the next design level. Post-processing will require an interpretation scheme which
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may modify the geometry of the structure. Thus, a topology need not meet a tight

convergence criteria, but may be considered sufficiently converged within a 0.01 or

even 0.02 change between iterations. The change from one iteration to the next is a

measure of the maximum difference of the thickness between any one element.

To avoid an unnecessary degree of convergence, the change in the objective value

and in the structural layout of the reference problem through a number of iterations is

studied. Figure 3.36 shows the reference problem initially at five iteration increments,

and then at iteration 50 and 298, at which point the thicknesses have converged within

a 0.01 change. After 20 iterations, the same general layout has emerged as the final

layout of iteration 298. The only change after an additional 278 iterations is a slight

shift of the two smaller internal members to the left and the consequent minor bending

of the right perimeter member. Table 3.4 provides the convergence data for iteration

(a) After 5 Iterations (b) After 10 Iterations (c) After 15 Iterations

(d) After 20 Iterations (e) After 50 Iterations (f) After 298 Iterations

Figure 3.36: Membrane Structure of Reference Problem at Progressing Iterations

0 (where the thickness of the elements is uniformly distributed throughout the design

domain), the six iterations of Figure 3.36, and for iteration 996, where the change

reaches a value of 0.001. Clearly, the additional 698 iterations needed to bring the

change from 0.010 to 0.001 is needless, since the objective value actually increases. The

extreme convergence requirement of 0.001 drives the objective value slightly higher
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Table 3.4: Convergence Data for Figure 3.36
Iteration Objective % Diff. (Obj.) Change

0 360.8092 — —
5 117.1957 101.9 0.200
10 89.3646 26.9 0.195
15 77.7898 13.8 0.196
20 74.4566 4.4 0.066
50 73.9472 0.7 0.011
298 72.9587 1.3 0.010
996 73.0748 -0.2 0.001

just to find a solution that changes so minutely. Although a change of 0.011 is achieved

as early as 50 iterations, a change of 0.010 is not attained for another 248 iterations,

during which the objective function value is reduced an additional 1.3%.

Table 3.4 is not intended to give the impression that the change from one itera-

tion to the next is always decreasing, because the change typically rises and decreases

several times throughout the optimization, as members early on in the process are

removed. Converging within a change of 0.01 is generally acceptable for purposes

of rendering the basic structural concept, and even converging within a change of

as high as 0.030 or 0.040 may likewise bring the objective function value to a low

percent difference of 1–2%. The structural layout generally changes very little after

30–50 iterations. A good change criterion may be said to be met when the solution

consistently lingers (about 10–20 iterations) at a change value of about 0.01.

The rate of convergence can be influenced through two different parameters—

the move limit and the damping η. Although both parameters affect the update

of the design variables, only the damping parameter is present in Eq. (3.114). The

update scheme of Eq. (3.114) identifies the upper and lower bounds on the design

variables with the use of the min and max functions, but the design variables can be

further bounded by imposing another set of bounds. The so-called move limit is the

maximum amount that a thickness can change between iterations. Both additional

move limits and the damping parameter can be assets to the convergence rate, and

thus the effect of varying them is explored in Table 3.5 and Table 3.6.
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Table 3.5 shows the effect of varying the move limit from a value of 0.05 to 0.8

and for η = 0.5 (recommended value in Reference [8]). Each solution converges to

within a change of 0.01, and minimizes the objective function to an average value of

72.98 with a standard deviation of 0.01%. The resulting topologies were all virtu-

ally indistinguishable from those of Figures 3.36(d)–3.36(f), and the move limit had

negligible affect on the topology solution. However a few observations regarding the

Table 3.5: Variation of Move Limit for Figure 3.36
Move Limit Eta Iterations Objective Change

0.05 0.5 105 72.9910 0.01
0.1 0.5 52 72.9875 0.01
0.2 0.5 298 72.9587 0.01
0.3 0.5 156 72.9577 0.009
0.4 0.5 94 72.9838 0.009
0.5 0.5 79 72.9927 0.009
0.6 0.5 77 72.9897 0.01
0.7 0.5 77 72.9897 0.01
0.8 0.5 77 72.9897 0.01

general iteration count versus move limit trend can be inferred. Obviously, overly

restricting the design variable updates severely hinders progress and thus the move

limit should not be too small. This is the case for a move limit of 0.05. Increasing the

move limit to 0.1—which is still a conservative bound, but not overly restrictive—

halves the iteration count to 52. The increase in iteration count corresponding to

move limits of 0.2–0.4 can be accounted for by the slightly decreased objective value.

That is, imposing even less restriction on the design variables effected a lot more

iterations for very little reduction of the objective value. The relatively identical iter-

ation count and objective value once the move limit increases past 0.4 indicates that

the update scheme does not naturally change any of the design variables more than

about 0.4, and thus the move limit is no longer of any effect. In this case, imposing

a conservative move limit of 0.1 on the design variables led to the fewest iterations

for convergence within a change of 0.01, albeit the objective value was slightly higher

than for less restrictive move limits.
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Using a move limit of 0.1, the affect of the damping parameter as it varies from

0.1 to 0.8 is explored in Table 3.6. As evident by η of 0.1 and 0.2, overdamping

the variable update hinders the progress of the solution. However, η’s of 0.3 and 0.4

show a great increase in iteration count. With these transitional damping values,

the topology is slightly changing, much like it did from iteration 50 to 298 in Table

3.4, and a similar compliance decrease of about 1% transpires in the process. With

a damping of 0.5, that same slightly modified topology is achieved much quicker in

only 52 iterations. After this point, the update scheme is underdamped and rather

unstable, hence the solution is still at a maximum change of 0.1 after 300 iterations. A

few other cases were run where the move limit value was increased, but the solutions

still did not converge when the damping was above 0.5. Unlike the move limit, the

damping may alter the topology a little. It is not entirely clear what the standard

value of η should be, but an η between 0.2 and 0.5 is deemed suitable.

Table 3.6: Variation of Damping for Figure 3.36
Move Limit Eta Iterations Objective Change

0.1 0.1 106 73.6303 0.01
0.1 0.2 72 73.7818 0.01
0.1 0.3 210 73.0599 0.01
0.1 0.4 104 72.9903 0.01
0.1 0.5 52 72.9875 0.01
0.1 0.6 300 73.0446 0.1
0.1 0.7 300 73.4234 0.1
0.1 0.8 300 73.2698 0.1

In conclusion, a penalty of about 3, a filter radius of about 1.5, a change of

0.01, a damping of 0.5, and a move limit of 0.1 are all generally considered to be good

values and are the values used for the first attempt of any run. A range of volume

fractions will however be considered, because each different volume fraction represents

a physically different problem.
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IV. Results

This chapter explores wing structure layouts on a conceptual level for several wing

shapes under various loading conditions. First, the aerodynamic results from Tornado

of the birdwing geometry (Figure 3.4–Figure 3.7) at the four points in the perching

trajectory are presented. Then, the compliance minimization runs for each birdwing

layout are compared. Finally, a brief grid independence check is provided.

4.1 Aerodynamic Results

The birdwing of Figures 3.4–3.7 with zero camber (i.e flat plate) maneuvering

through the perching trajectory of Figure 3.21 is considered here. The wing is in the

back swept position at Point 1, the dive position at Point 2, the zero sweep position

at Point 3, and the forward swept position at Point 4.

The Tornado calculations of the birdwing at the four points along the perching

trajectory are summarized in Table 4.1. The velocity and angle of attack have been

included for reference.

Table 4.1: Aerodynamic Data for Birdwing Along Perching Trajectory
Point 1 Point 2 Point 3 Point 4

Vel. [m/s] 10 10.41 10.11 2.19
AOA [◦] 6 3.75 10 50
Drag [N] 0.0176 0.0033 0.0796 0.0456
Side [N] 0.0061 0.0075 -0.0007 -0.0087
Lift [N] 0.459 0.112 1.241 0.196
Fx [N] -0.0304 -0.0040 -0.1371 -0.1208
Fy [N] 0.00610 0.00749 -0.00066 -0.00871
Fz [N] 0.458 0.112 1.236 0.161
CL [—] 0.220 0.076 0.512 1.701
CD [—] 0.0085 0.0022 0.0328 0.3958
CY [—] 0.0029 0.0051 -0.0003 -0.0757
Re [—] 90054 137712 91412 19987
CDo [—] 0.0101 0.0082 0.0101 0.0113
Swet [m2] 0.0681 0.0444 0.0775 0.0785
Dvis [N] 0.2368 0.1077 0.4410 0.0885

Normal [N] 0.0248 0.0070 0.0766 0.0678
Axial [N] 0.2355 0.1075 0.4343 0.0569
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The lift forces at first glance seem to be inordinately small, as they are on the

order of 1 N . However, since the wing is a flat plate, an estimate of the lift can be

made assuming a lift slope of 2π. For the back swept configuration at Point 1, the

lift coefficient is then

cl = 2πα = 2π(6π/180) = 0.6580 (4.1)

The lift per unit span becomes

L′ = clq∞c = 0.6580

[

1

2
(1.2244 kg/m3)(10 m/s)

]

(0.153 m) = 6.1630 N (4.2)

If the wing were rectangular with uniform lift per unit span across the span, the total

lift force for the wing would be

L = L′ ∗ b = (6.1630 N)(0.270 m) = 1.664 N (4.3)

The lift is in fact on the order of 1 N for such a small wing at a very low speed (about

23 mph). Since the wing is tapered and the lift distribution is certainly not uniform

across the span, the resulting lift values are necessarily lower than predicted by the

simple preceeding equations. As expected, the highest lift occurs at Point 3 as the

birdwing begins its ascent, and the lift at Point 2 is the lowest, about a tenth of the

value at Point 3.

The drag calculated by Tornado is solely the induced drag, and therefore is

related to the square of the lift coefficient. The higher drag values occur in the

ascending portion of the trajectory, when the lift coefficient is highest. The fact that

the drag at Point 4 is lower than at Point 3 is due to the very low velocity of 2.19

m/s. In retrospect, selecting a point along the trajectory between Points 3 and 4

where the velocity is only somewhat reduced and the angle of attack is relatively high

would have produced a higher drag load. The drag at Point 2 is smaller than the drag

at Point 3 by a factor of 24, due to the reduced wing area and the smaller angle of

attack.
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The distributions of the pressure coefficient differences between the upper and

lower surfaces of the wing are shown in Figure 4.1. The pressure coefficient differences

are much greater for the forward swept configuration at the end of the maneuver,

where the angle of attack is very high. Contrariwise, the pressure coefficient differences

are very low for the birdwing as it dives, because it is slicing through the air at a low

angle of attack. In each of the four plots, the pressure coefficient difference is about

four times that of the general distribution (the yellow areas) over the wing.

(a) Flight Condition at Point 1 (b) Flight Condition at Point 2

(c) Flight Condition at Point 3 (d) Flight Condition at Point 4

Figure 4.1: ∆Cp for Birdwing Geometries Along Perching Trajectory
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The distribution of the force components and magnitudes is shown for each

configuration of the birdwing in Figures 4.2–4.5. The forces shown include the addition

of the viscous drag estimates to the body forces. The viscous drag is split into a normal

and axial component due to the angle of attack. The positive x-axis extends towards

the tip of the wing in the spanwise direction, and the y-axis extends towards the

leading edge in the chordwise direction.

(a) Fx (b) Fy

(c) Fz (d) Fmag

Figure 4.2: Force [N ] for Birdwing in Swept Back Configuration at Point 1

At each point in the maneuver, the side forces (Fx) are relatively negligible and

not expected to influence the structural layout much. The axial forces stimulate in-

terest because, at the leading edge, the forces act in the positive y-direction, whereas

everywhere else on the wing, the axial forces act in the negative y-direction (as in-
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tuition suggests). The fact that the leading edge is seemingly being pulled forward

is due to the domination of the axial component of the lift over the axial component

of the drag. The lift calculated by Tornado at each panel over the surface of the

whole wing dominated the drag in the axial direction; however, the added viscous

drag reversed the net force over the all of the wing except the leading edge. Hence

the structure is being stretched in both axial directions.

(a) Fx (b) Fy

(c) Fz (d) Fmag

Figure 4.3: Force [N ] for Birdwing in Dive Configuration at Point 2
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The loads for the dive configuration are the on the order of 10−4, whereas the

loads for the other cases are on the order of 10−3, thus the dive configuration is

probably not a good design point since ultimately the loads at each configuration will

have to be withstood by a single structure.

(a) Fx (b) Fy

(c) Fz (d) Fmag

Figure 4.4: Force [N ] for Birdwing in Zero Sweep Configuration at Point 3

Clearly the loads on each of the configurations is leading edge dominated. Thus

a good baseline comparison for resulting structures could be constructed by simply

distributing a load over the leading edge of a similar geometry. Also, resultant magni-

tude contours of each point in the maneuver—except the last—match the contours of

the normal component Fz, indicating that the bending loads are the dominant loads.

The flaring of the wings at the end of the maneuver should be bending dominated as
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well, but Point 4 that was selected occurs when only a fraction of the peak velocity

remains. Hence the corresponding drag loads are low, and the bending dominance is

not captured. In all cases (except perhaps in the case of the dive), the trailing edge

of the tip of the wing experiences essentially no load and suggests that corresponding

structures may clip the lower tip of the wing.

(a) Fx (b) Fy

(c) Fz (d) Fmag

Figure 4.5: Force [N ] for Birdwing in Forward Swept Configuration at Point 4

Though the magnitudes of the body forces of the birdwing in the perching trajec-

tory is very low, the relative magnitudes are of greater importance to the optimization

process. The majority of the relative magnitudes of lift and drag seem acceptable,

but the most unreasonably captured aerodynamic extreme is the drag at the end of
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the maneuver which should be a bending-dominated load. The beginning of the ma-

neuver is also dominated by bending loads, but due to the lift and not the drag. If

the optimization process determines any hybrid membrane-bending structures, it is

anticipated that the Point 3 flight condition would produce this effect.

4.2 Structural Layouts

For each point along the perching maneuver, three sets of loading scenarios

were performed. The first set consisted of only the membrane forces (Fx and Fy), the

second set considered the bending forces (Fz) only, and the third set was the combined

membrane-bending loading scenarios. Each set consisted of four cases with volume

fractions ranging from 0.2 to 0.5. Unless convergence issues arose, each case had a

penalization of 3, a filter radius of 1.5, and was run with a move limit of 0.2 and a

damping of 0.5. All the runs were minimized until the solution converged within a

0.01 maximum thickness change.

The results of the compliance minimization for the birdwing at Point 1 in the

perching maneuver is shown in Figures 4.6–4.8. Considering first the purely mem-

brane solution of Figure 4.6, the predominate structural features are the two members

extending from the root of the wing in the form of a wishbone, and at the tip of the

wing, a second wishbone forms. Even though the predominate membrane forces occur

along the leading edge, the leading edge is not built up across the whole span like it is

for the topologies of Section 4.1. This is due to the force along the remainder of the

wing pulling the wing in the opposing negative chordwise direction. The “wishbone”

is a natural structure to resist a spreading motion (the converse motion of squeezing

a pair of pliers). It can be thought of as antipodal to two joined buttresses. Had all

of the force in the chordwise direction been directed towards the trailing edge, the

structures would be expected to look similar to Figure 3.34, where the leading edge is

fully supported. The second main members are those along the leading and trailing

edges. As evidence that the two wishbones and the leading and trailing edge mem-

bers comprise the main structure, each time material is added to the wing domain,
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(a) V olf = 0.2 (b) V olf = 0.3

(c) V olf = 0.4 (d) V olf = 0.5

Figure 4.6: Membrane Structure for Birdwing at Point 1

these members are thickened. The wishbone structure and the intermediate members

form a scissor-like structure, and consequently the voided areas are predominately

quadrilateral in shape. This is in contrast to the usual triangular voids in trusses.

Another striking feature of the structure is the straight protrusions of interme-

diate thickness. These battens or rods point towards the center of a voided area, and

towards the unsupported perimeter of the wing domain. Thus they are comparable

to spokes on a wheel. This feature is a result of a distributed load covering the en-

tire surface of the wing, and is absent in an over-simplifed point load model. At a

fifty percent volume fraction, the topology finally adds new members in the form of

another smaller wishbone inscribed within the main wishbone.
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(a) V olf = 0.2 (b) V olf = 0.3

(c) V olf = 0.4 (d) V olf = 0.5

Figure 4.7: Bending Structure for Birdwing at Point 1

The bending structures of Figure 4.7 reveal that the basic form of the bending-

resistant structure is not a truss, but rather a conglomeration in the form of a beam.

The importance of exploring a range of volume fractions for a given wing shape and

loading scenario is evident in the progression from Figure 4.7(a) to Figure 4.7(d).

The impression of the fifty percent volume fraction case is that the bending structure

primarily supports the leading edge, where the bending forces are highest. But Figure

4.7(a) shows this is clearly not the case. The most basic or crucial structure is a

beam that is situated near the quarter chord of the wing. For the flat plate birdwing,

the quarter chord is also approximately the center of pressure and the aerodynamic

center of the wing, where the aerodynamic moment is zero. As the volume fraction

increases, material is added along the sides of the original beam of Figure 4.7(a). The
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developing shape of the beam is similar to the shape of a wishbone (i.e. like A-arms

in a suspension system), or in a more crude sense, the shape of a delta.

Like the rods or battens in the membrane structure, the bending structure

also develops a secondary feature captured by the intermediate thicknesses. Rather

than straight rods with a regular arrangement, branches stem from the central beam

structure in arbitrary directions, and then further divide into smaller networks that

attempt to cover as extensive a region as possible. This branches resemble veins in the

wings of insects, and as the high density of nerves in bats attest, are a very effective

method of stiffening a membrane skin.

The combined membrane and bending structure for the first point in the ma-

neuver is shown in Figure 4.8, revealing an identical structure to the membrane case.

However, when the viscous drag is removed, the result is that of Figure 4.9, which

(a) V olf = 0.2 (b) V olf = 0.3

(c) V olf = 0.4 (d) V olf = 0.5

Figure 4.8: Combined Structure for Birdwing at Point 1
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(a) V olf = 0.2 (b) V olf = 0.3

(c) V olf = 0.4 (d) V olf = 0.5

Figure 4.9: Combined Structure for Birdwing at Point 1 without Viscous Drag

reveals a hybrid solution of the two isolated membrane and bending cases. This is

not immediately evident in Figure 4.9(a), but the higher volume fraction solutions all

have a delta-shaped “beam” on the front half of the wing. All of the solutions have

supporting truss structure along the trailing edge of the wing that then connects to

the leading edge near the tip of the wing. As material is added, the general topology

remains unchanged, however the beam portion of the structure shifts in the chordwise

direction, such that at fifty percent volume fraction, it is centered mid-chord. Both

the scissor pattern from the membrane solution and the beam extending most of the

way in the spanwise direction are attenuated, and the emerging structure better re-

sembles a perimetric truss structure with spokes protruding inward to a hub covering

the upper left corner of the wing. The vein-like stiffeners are absent, and only a few

rods are present. While the hybrid solution is interesting, in actuality a completely
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membrane structure supports the combined loading according to the compliance re-

sults. The larger lifting loads and smaller drag loads at the relatively small angle of

attack of Point 1 would suggest a more bending-dominated solution, but the effect of

the distributed viscous drag load drives the solution towards a membrane structure.

As previously mentioned, the diving portion of the perching maneuver is perhaps

not a good design point when the magnitude of the loads experienced throughout the

entire maneuver is considered. However, the wing shape is quite distinct from the

other three configurations and thus yields unique structures worthy of investigation.

The resulting structures are presented in Figures 4.10–4.12.

(a) V olf = 0.2 (b) V olf = 0.3

(c) V olf = 0.4 (d) V olf = 0.5

Figure 4.10: Membrane Structure for Birdwing at Point 2
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If obscured by other truss members in the back swept wing configuration, there

is no overlooking the prominent wishbone of Figure 4.10. In fact, it is the only

truss structure present in Figures 4.10(a) and 4.10(b). In Figure 4.10(c), a smaller

wishbone facing opposite of the main wishbone is inscribed within the main wishbone

again producing a quadrilateral void and a scissor-like structure. Aside from this small

amount of “truss” structure, the remainder of the structure consists of very long and

definitive battens, in comparison with those in the back swept wing structure. In fact,

the battens are not of intermediate value, but are maximum thickness. As shown in

Figure 4.3(b), the maximum axial load occurs at the leading edge near the tip of the

wing, and accordingly a batten extends to the tip of the wing. The region is not just

darkened because of the overly refined mesh. In light of the poor finite element mesh

of the dive wing shape, an instructive structure develops.

The compliance minimization of the bending structures shown in Figure 4.11

was troublesome, and only the forty and fifty percent volume fraction runs yielded

results that were not explicitly erroneous. The twenty and thirty percent volume

fraction cases were never close to converging, even for a number of different damping

and move limit settings. Instead, they repeatedly violated the volume constraint, and

(a) V olf = 0.4 (b) V olf = 0.5

Figure 4.11: Bending Structure for Birdwing at Point 2
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the maximum thickness change diverged as the iterations progressed. The maximum

thickness change between iterations of the two solutions that were obtained oscillated

in very high increments and eventually did drop beneath the 0.01 threshold. However,

such unsteadiness in the tracking data is indicative of results that can hardly be said

to have converged. In light of the poor solution, Figure 4.11 reveals two separate

beam structures at the leading and trailing edge of the wing. The proportion and

location of the “stiffeners” at the end of the beam extending towards the tip of the

wing, when viewed as a whole, perhaps resemble feather-like protrusions.

As in the combined loading case of Point 1, the distributed viscous drag again

leads to combined structures identical to the isolated membrane structures, and is

shown in Figure 4.12. When the viscous drag is again removed, the combined

loading case for Point 2 results in Figure 4.13. In this case, Point 2 elicits a clearly

bending-dominated structure. Even though the lifting load is significantly diminished,

the induced drag loads are extremely low and hence show virtually no influence in

the structure, save a few faint battens. Instead the structure is mainly comprised of

relatively equally sized and spaced branches extending from the root chord to the tip

chord, like tines on a fork. The structure bypasses the trailing edge entirely.

As the birdwing in the perching maneuver begins its ascent, it is transitioning

from bending loads due to lift to bending loads due to drag. At this transitional stage,

axial and normal body forces are the same order of magnitude, and, more so than at

the other points, a hybrid membrane-bending solution is anticipated. The results of

the compliance minimization for Point 3 are shown in Figures 4.14–4.16.

The layout and features of the membrane solution in Figure 4.14 are very similar

to that of Figure 4.6, with one major distinction. The trailing edge is better supported

than the leading edge. This could in part be due to the forward sweep of the trailing

edge (unlike the relatively symmetrical planform of the swept back configuration).

However, Figure 4.14(a) is particularly perplexing, as the leading edge is very faintly

supported by a very long leg of a wishbone. One explanation may lie in the fact that
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(a) V olf = 0.2 (b) V olf = 0.3

(c) V olf = 0.4 (d) V olf = 0.5

Figure 4.12: Combined Structure for Birdwing at Point 2
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(a) V olf = 0.2 (b) V olf = 0.3

(c) V olf = 0.4 (d) V olf = 0.5

Figure 4.13: Combined Structure for Birdwing at Point 2 without Viscous Drag
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(a) V olf = 0.2 (b) V olf = 0.3

(c) V olf = 0.4 (d) V olf = 0.5

Figure 4.14: Membrane Structure for Birdwing at Point 3

there is less positive axial force than that of the back swept configuration, and hence

the trailing half of the wing is being pushed relatively more in the negative axial

direction compared to how much the leading edge is being pushed in the positive

axial direction. At any rate, the disparity between the support along the leading and

trailing edges vanishes with higher volume fractions.

The bending structures are very similar to those of the back swept configuration

at Point 1. A single beam extends from the root chord most of the way to the tip

of the wing. Also, the same type of stiffeners appear. However, the beam in this

instance is clearly building up the leading edge, and is not centered near the quarter

chord.

Figure 4.16 does not reveal a hybridization of membrane and bending elements

as anticipated. The solution again favors a membrane structure, both with and with-

out the presence of the viscous drag. However, in the absence of viscous drag (Figure

4.17) a thicker leading edge emerges, and mass starts to cluster around the upper
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(a) V olf = 0.2 (b) V olf = 0.3

(c) V olf = 0.4 (d) V olf = 0.5

Figure 4.15: Bending Structure for Birdwing at Point 3

left corner of the wing, as it does slightly in Figure 4.16(d). When this happens, the

cluster assumes the role of a hub, where separate chains of truss members revolve

around the hub and are connected to the hub by “spokes”. The structure essentially

forms a polar grid, and consequently little material is left to form battens. The fact

that both the induced drag and viscous drag are at peak values accounts for greater

membrane influence and dominance over bending.

The forward swept flaring configuration of the wing is shown in Figures 4.18–4.20

for the final point in the perching maneuver. As mentioned in the previous section,

the intent of Point 4 was to capture the high braking drag loads that ultimately deflect

the wings out-of-plane, but the point was selected when only twenty percent of the

velocity remained. Therefore the drag that should have produced a highly bending-

dominated structure was lacking, and instead, the selected Point 4 is actually the only

point where the axial forces (in this case, due to lift) exceed the normal body forces.
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(a) V olf = 0.2 (b) V olf = 0.3

(c) V olf = 0.4 (d) V olf = 0.5

Figure 4.16: Combined Structure for Birdwing at Point 3

(a) V olf = 0.2 (b) V olf = 0.3

(c) V olf = 0.4 (d) V olf = 0.5

Figure 4.17: Combined Structure for Birdwing at Point 3 without Viscous Drag
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(a) V olf = 0.2 (b) V olf = 0.3

(c) V olf = 0.4 (d) V olf = 0.5

Figure 4.18: Membrane Structure for Birdwing at Point 4

In the membrane solution at Point 4, the fundamental wishbone structure, while

not completely absent, does not best describe the layout. Rather, three main fingers

(for volume fractions of 0.4 and 0.5) and one thinner finger emanating from the trailing

edge support the leading edge. The three fingers have the appearance of three arms

branching out on a candelabra. They could alternatively be likened to the three fingers

found in bat wings. Many battens are again present. Additionally, some intermediate

thicknesses are hanged like tinsel, covering the bottom half of the wing, in the twenty

and thirty percent volume fractions.

The bending topologies do not present any new features and are very similar to

those occuring at Point 1 and Point 3.

In the absence of significant drag loading, the combined structure is completely

membrane-dominated. The combined structure is again virtually indistinguishable
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(a) V olf = 0.2 (b) V olf = 0.3

(c) V olf = 0.4 (d) V olf = 0.5

Figure 4.19: Bending Structure for Birdwing at Point 4

from the membrane case, and thus the combined structure with no viscous drag is

shown in Figure 4.20. In the absence of viscous drag, a slightly different membrane

structure emerges. Though there is no “hub” resulting from a beam, the members are

again arranged in the fashion of a web. This is fundamentally distinct from a typical

truss structure which uses the inherent stiffness in triangulation. The solution is very

clean and virtually no battens or stiffeners are present.

In this section, both the structural layout due to membrane loads and bending

loads were studied independently, such that in the actual combined loading, one could

identify whether the structure assumed an arrangement in the membrane or bending

fashion. In Chapter 3, Figures 3.18–3.20 demonstrated the extent to which bending

loads can produce significantly more stress in a structure than membrane loads of

the same magnitude do. Yet, the combined loading optimization continually yielded
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(a) V olf = 0.2 (b) V olf = 0.3

(c) V olf = 0.4 (d) V olf = 0.5

Figure 4.20: Combined Structure for Birdwing at Point 4 without Viscous Drag

membrane layouts. When the viscous drag was removed, the effect was a structure

that was a hybrid between the truss-like membrane structures and the beam-like

bending structures. Thus, the viscous drag forces drove the solutions. Of course, the

normal loads are still supported, albeit they were greater in magnitude than the axial

loads. So the implication is that the membrane structure with discrete elements is

also adequate to support out-of-plane loads. Thus the discrete members function like

spars in resisting bending, but, rather than being arranged parallel to the leading edge

and evenly spaced, they are aligned in a manner that also resists in-plane stretching.

The implication of using a structure with discrete members for wing design is that

the mechanism designed to achieve a planform shape change should be suitable to

support out-of-plane loads provided that the members have bending stiffness. In
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this case, the actual layout of the members would be determined by a mechanism

design and not by compliance minimization. However, if compliance minimization is

used to suggest structural configurations, the general layout of Points 1 and 3 (which

are very similar to each other) would probably be the best design point, since the

MAV would spend the majority of its flight time in those configurations, and because

these points experience the highest loads. Whether a shape-changing mechanism or

a compliance minimization is used to design wing structure, the topologies explored

here demonstrate that the leading edge must be predominately supported. Having a

larger member extend across the leading edge may integrate well with a mechanism

design where the leading edge is simply swept during a planform area change.

4.3 Grid Independence

In Section 1.2, it was mentioned that the discretization scheme for a distributed

parameter system will affect the solution, and thus grid quality may be a concern. To

briefly address this concern, a quick grid-independence study is undertaken here. In

a first attempt, the mesh of the 0◦ sweep wing configuration was refined by a factor

of 1.5 and then 1.25, but both refinements failed in Tornado. It may be that the cor-

responding cells were physically too small for successful computation by the vortex

lattice method. However, a coarse 40 x 20 mesh was created and the compliance op-

timization was performed for the combined loading case without viscous drag, shown

in Figure 4.17 for the 60 x 30 mesh. The results are shown in Figure 4.21.

For the twenty percent volume fraction, little to no difference is observed. The

thirty percent volume fraction case produced the same basic layout, but the coarse

mesh lacked one of the “spoke-like” members present in the finer mesh. In the forty

percent volume fraction case, the entire outer radius of truss members is missing, and

is not present until the fifty percent volume fraction case. Though the overall layouts

are of the same essence, a finer mesh allows material to divide into smaller members,

which is a similar effect as simply increasing the volume fraction. Convergence data

is also provided in Figure 4.22.
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(a) V olf = 0.2 (b) V olf = 0.3

(c) V olf = 0.4 (d) V olf = 0.5

Figure 4.21: Combined Structure for Birdwing at Point 3 with Coarse Mesh

Figure 4.22: Convergence Data for Figure 4.21
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V. Conclusions

5.1 Summary

In 2003, DARPA began the MAS program with the aim of developing morphing

aircraft structures that can substantially change shape to adapt to changing mission

environments. Morphing wings with planform capabilities of telescoping, chord ex-

tension, and variable sweep will enable a multi-role platform far superior to both that

of conventional fixed-wing aircraft, and even to aircraft with the capacity to modify

their airfoil shape. Achieving radical shape change will require design that integrates

innovative technology, including advanced flexible skin materials, efficient actuators

and power systems, and mechanisms and structures with the facility to execute shape

change.

Because morphing wing design is a multidisciplinary challenge, new design meth-

ods and processes must be synthesized that consider the wholistic problem. The

developing field of topology optimization promises to be an effective tool that can

simultaneously optimize the arrangement and connectivity of the load-bearing struc-

ture, target shape-matching mechanism, and flexible skin elements, for any number

of design objectives. To this end, the literature reviewed in Chapter 2 highlighted

a number of efforts undertaken that decompose a two-dimensional wing into a layer

of structure, a layer of mechanism, and a layer representative of flexible skin. This

model successfully demonstrated the ability to design a structure capable of achieving

multiple wing configurations with an efficient distribution of actuators. Other studies

developed design processes and topologies for flexible skin. In one of these efforts, a

wing skin was designed by discretizing a wing planform into a number of patches with

its own unique material requirements, and then engineering a material for each patch

with a distinct microstructure. However, lacking throughout the different design pro-

cesses reviewed was the modeling of realistic, three-dimensional loading conditions an

air vehicle might experience during a morphing maneuver.

Therefore, two objectives were established to advance the previous efforts. The

first objective was to develop a six degree-of-freedom finite element model comprised
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of continuous elements. This model would then be capable of supporting out-of-plane

loading and could be used to represent the flexible skin of the wing. However, a six

degree-of-freedom model with continuous elements would also be able to represent the

entire structure of the wing. It was important to implement the model in MATLAB

to be able to easily integrate it with optimization routines. The second objective was

to consider realistic aerodynamic loading that MAV wings might experience through a

changing mission environment. The perching maneuver common to birds was selected

as an interesting miniature of a multi-role mission in which a bird undergoes several

planform transformations.

By constructing a compliance minimization optimization objective (equivalent

to a stiffness maximization objective), conceptual wing structure layouts of a MAV at

various points throughout a perching maneuver were investigated. Both the structure

corresponding to the isolated cases of membrane and bending loading, as well as the

combined loading, were optimized. The results revealed some distinctive features of

wing structure when only membrane loads or when only bending loads were consid-

ered. The structures formed by membrane loads were comprised of many discrete

truss-like members that generally supported the leading edge of the wing. Rather

than predominantly relying on triangulation for inherent strength, the members were

typically arranged in cobweb formations with quadrilateral voids. Straight rods or

battens protruded from the truss members pointing towards the center of a voided

region or towards the outskirts of the wing. Contrary to the membrane structures,

the bending loads elicited a principal beam-like structure situated anywhere between

the leading edge and the quarter-chord, and extending from the root chord to the tip

of the wing. With additional material, the shape of the beam evolved into a wishbone

or delta conglomeration. Contrary to the battens that formed in the membrane case,

chutes with endings that branched in arbitrary directions emanated from the central

beam. These chutes act like stiffeners similar to the neural structures found in the flat

wings of insects. The full three-dimensional loading typically favored the membrane

structural formation over that of the bending. However, in the absence of the viscous
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drag distributed over the surface of the wing, a structure formed that is a hybrid of

the typical membrane and bending structures. Thus the truss-like structure corre-

sponding to the combined loading is thought to be driven by the distributed viscous

forces. However, the discrete members must also behave like spars that can resist the

bending loads, which ultimately contribute the most to the total magnitude of the

forces on the wing.

5.2 Recommendations

Though the resulting structures studied in Chapter 4 revealed distinctive fea-

tures that parallel many formations with inherent strength found in nature, the

methodology developed in Chapter 3 can certainly undergo improvements. First of

all, the discretization scheme of the geometry for the finite element model was chosen

to be structured meshing. Though the structured mesh was much easier to imple-

ment and also allowed a common mesh to be used for both the finite element method

and the aerodynamic vortex lattice method, an unstructured mesh is more versatile

in accurately modeling complex geometries. The inability of the structured mesh to

model highly non-rectangular geometries was observed with the dive configuration,

and merits greater consideration of using an unstructured mesh. However, if an un-

structured mesh is to be employed, the advantage of easily discretizing a geometry

with triangles is lost, since the element geometries derived were quadrilaterals.

The finite element itself could, of course, be selected differently. For exam-

ple, rather than using Kirchhoff plate theory, Mindlin-Reissner plate theory could

be used to couple the in-plane and out-of-plane effects. This would result in a five

degree-of-freedom element that would avoid the need for superimposing two separate

membrane and bending elements together. Such an element should also avoid the

small displacement assumption of the combined membrane-bending element. Also,

higher-order, nonlinear shape functions could be used, rather than the simple bilinear

shape functions used here. Higher-order shape functions should increase the accuracy

of the finite element model, particularly for cambered geometry.
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The MATLAB implementations were very simple and the routines ran very

efficiently. Both the membrane and bending models were validated with classical

solutions, and their accuracy was verified. The superimposed membrane and bending

element, while not validated with an analytical solution, did match the individual

solutions of the membrane and bending models. The three dimensional six degree-

of-freedom model, however, still lacks validation and successful integration with the

SIMP model of the compliance optimization. If a full three dimensional analysis is not

easily obtainable for comparison and validation of the model, the three dimensional

FE model can be validated with a commercial finite element code, such as NASTRAN.

The aerodynamic force estimations can afford much improvement, though the

extent to which improvement would influence the optimized thickness distributions

may not be substantial. Effort should be spent to ensure that the outputted forces

from Tornado do in fact act through the centroid of each panel. Post-stall aerodynamic

models can also be employed to improve the aerodynamic calculations at the end of

the maneuver. Also, a more ideal selection of Point 4 in the perching maneuver would

capture the high angle of attack, and high angle-of-attack and pitch rates, while the

aircraft still has most of its velocity. This should in turn capture the high bending

loads that the drag exerts on the aircraft as it begins to slow down into a vertical

landing.

In general, the Optimality Criteria method performed very efficiently, usually

completing a minimization in less than five minutes with a couple seconds at most

between iterations. The Method of Moving Asymptotes (MMA) is often employed

for large scale optimization problems and may reduce computation time. If larger

problems are undertaken, such as would be produced from mesh refinement, the

MMA solver may be worthy of investigation. However, for the problem sizes explored

in Chapter 4, the OC method executed very well.
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5.3 Future Work

Though minor improvements can be made to the overall method used to deter-

mine wing structure layouts, the study of wing structures was of a purely conceptual

nature. Thus, further elaborating the compliance minimization model will not lead

to detailed design in the future. Rather, the work reviewed in Chapter 2 can be re-

visited with the finite element model, such that full three-dimensional loading can be

applied to the simultaneous, multidisciplinary wing design, and to the flexible skin

design process. The membrane structures observed in Chapter 4 may be similar to

the arrangement of the kinematic members needed to achieve shape change.

With the insight gleaned from structural layouts, some experimentation is prob-

ably in order to test the stiffness of the structures. For instance, a study could be done

to determine how much rigidity battens add to a structure in two-dimensional stress,

or how much rigidity veins or branches add to a beam undergoing bending stress.

Also, the inherent strength of a wishbone structure to resist being spread apart could

be explored. A final pattern observed in the results had a layout similar to a cobweb.

To aid the investigation, these structural formations could be more directly correlated

to the wings of birds and insects.
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Appendix A. Derivation of General Quadrilateral Plate Bending

Element Stiffness Matrix

In order to discretize any general wing planform shape, given that all sides are straight

lines and the tip does not have zero length, a general quadrilateral plate element for-

mulation with a transformation mapping is necessary to model out-of-plane bending

loads. In order to formulate the stiffness matrix of such an element, the momen-

t/curvature relations will be developed for a plate element following the Kirchhoff

assumptions and resulting in the constitutive relation

{M} = [D]{κ} (A.1)

Next, a general quadrilateral element with 12 degrees of freedom will be selected and

its displacement functions will be defined. Then, the curvature/displacement matrix

will be developed such that

{κ} = [B]{d} (A.2)

Thus the moments will be related to the displacements through substitution of Eq.

(A.2) into Eq. (A.1) so that

{M} = [D][B]{d} (A.3)

From the principle of minimum potential energy, the stiffness matrix becomes

[k] =

∫∫

A

[B]T [D][B]dxdy (A.4)

Finally, a method for evaulating the stiffness matrix using Gaussian quadrature will

be established. In addition to developing the theory, Section A.6 describes the process

for actually computing the stiffness matrix.
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A.1 Definition of Moment/Curvature Relationship

For the sake of simplicity, this derivation follows classical Kirchhoff plate theory (2D

extension of Euler-Bernoulli beam theory). When minimizing a structure’s compli-

ance, which is the intended purpose of this model, the actual magnitudes of nodal

displacements are not as important as the relative magnitude of nodal displacements

all throughout the structure. Therefore additional accuracy in deformation is not

needed. Proceeding then with a Kirchhoff plate element, the following assumptions

are made:

1. Transverse shear strains are neglected.

2. Normal strain is neglected.

3. Normal stress is considered negligible.

4. Membrane forces are neglected.

Following Kirchhoff assumptions, a point on the plate undergoes displacements in the

x and y directions due to small rotations α and β, respectively:

u = −zα = −z∂w
∂x

; v = −zβ = −z∂w
∂y

(A.5)

As expected, the displacements are proportional to how far the point is from the

middle of the plate (z = 0). The curvatures of the plate are defined by the rates of

change of the angular displacements (α and β) of the normal lines:

κx = −∂
2w

∂x2
; κy = −∂

2w

∂y2
; κxy = −2

∂2w

∂x∂y
(A.6)

From elasticity theory, the in-plane strains are defined as

εx =
∂u

∂x
; εy =

∂v

∂y
; γxy =

∂u

∂y
+
∂v

∂x
(A.7)
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Operating on Eq. (A.5) with Eq. (A.7) gives the in-plane strain/displacement rela-

tions

εx = −z∂
2w

∂x2
; εy = −z∂

2w

∂y2
; γxy = −2z

∂2w

∂x∂y
(A.8)

which can also be expressed (using Eq. (A.6)) as

εx = zκx ; εy = zκy ; γxy = zκxy (A.9)

As can be seen by Eq. (A.9), the strains vary through the thickness of the plate,

and so the stresses also must; but the curvatures do not. By neglecting the normal

stress in the z direction, the plane stress equations for an isotropic material relate

membrane stresses to membrane strains in the following manner:

σx =
E

1− ν2
(εx + νεy) (A.10a)

σy =
E

1− ν2
(εy + νεx) (A.10b)

τxy =
E

2(1 + ν)
γxy (A.10c)

Substitution of the strains (Eqs. (A.9)) into the stresses (Eqs. (A.10)) gives

σx =
zE

1− ν2
(κx + νκy) (A.11a)

σy =
zE

1− ν2
(κy + νκx) (A.11b)

τxy =
zE

2(1 + ν)
κxy (A.11c)

In order to obtain a quantity related to stress that does not vary through the thickness,

the bending moments are computed by integrating the stresses multiplied by the

moment arm z over the thickness of the plate. This yields the moment/curvature
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relations:

Mx =

∫ t/2

−t/2

zσxdz =
E

1− ν2
(κx + νκy)

∫ t/2

−t/2

z2dz =
Et3

12(1− ν2)
(κx + νκy) (A.12a)

My =

∫ t/2

−t/2

zσydz =
E

1− ν2
(κy + νκx)

∫ t/2

−t/2

z2dz =
Et3

12(1− ν2)
(κy + νκx) (A.12b)

Mxy =

∫ t/2

−t/2

zτxydz =
E

2(1 + ν)
κxy

∫ t/2

−t/2

z2dz =
Et3

12(1− ν2)

1− ν

2
κxy (A.12c)

Defining the bending rigidity of the plate as

D =
Et3

12(1− ν2)
(A.13)

the moment/curvature relations are simply expressed as

Mx = D(κx + νκy) (A.14a)

My = D(κy + νκx) (A.14b)

Mxy =
1

2
D(1− ν)κxy (A.14c)

In matrix form, the constitutive equation is

{M} =



















Mx

My

Mxy



















= D











1 ν 0

ν 1 0

0 0
1− ν

2





























κx

κy

κxy



















= [D]{κ} (A.15)

In light of the normal finite element relations of strains to stresses, the bending mo-

ments are analagous to stresses and the curvatures are analagous to the strains. With

Eq. (A.15), Eq. (A.1) has been established.

A.2 Element Selection and Displacement Definitions

As indicated by Eq. (A.5), the plate element is free to translate out-of-plane, as well

as to rotate out-of-plane. There will therefore be three degrees of freedom at each
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node—a transverse displacement w and two rotations θx and θy. The element must

also be transformed to a square computational domain. This mapping is depicted

below in Figure A.1, where representative loads are shown at node i. The natural

Figure A.1: Mapping of General Quadrilateral Element to Computational Domain

coordinate axes r and s need not be parallel to the x and y axes or orthogonal to

each other. The edges of the element are bounded by ±1. The element has a total of

12 degrees of freedom—three at each of the 4 nodes.

{d} =































di

dj

dm

dn































; {di} =



















wi

θxi

θyi



















(A.16)

Writing out the 12 displacements gives

{d} =
{

wi θxi θyi wj θxj θyj wm θxm θym wn θxn θyn

}T

(A.17)

Before defining a displacement function w(x, y), a mapping between the natural and

physical coordinates of the quadrilateral defined by its four corners must be set up.

For a first-order scheme with eight knowns (8 nodal coordinates), bilinear shapes are
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assumed for both x and y:

x = A1 + A2r + A3s+ A4rs (A.18a)

y = A5 + A6r + A7s+ A8rs (A.18b)

The A coefficients are then determined by evaluating x and y at the four nodes (-1,-1),

(1,-1), (1,1), and (-1,1), and then simultaneously solving for the A’s.































x1

x2

x3

x4































=

















1 −1 −1 1

1 1 −1 −1

1 1 1 1

1 −1 1 −1















































A1

A2

A3

A4































(A.19a)































y1

y2

y3

y4































=

















1 −1 −1 1

1 1 −1 −1

1 1 1 1

1 −1 1 −1















































A5

A6

A7

A8































(A.19b)

Inverting the 4 x 4 matrices leads to the solution of the coefficients:































A1

A2

A3

A4































=
1

4

















x1 x2 x3 x4

−x1 x2 x3 −x4
−x1 −x2 x3 x4

x1 −x2 x3 −x4

















(A.20a)































A5

A6

A7

A8































=
1

4

















y1 y2 y3 y4

−y1 y2 y3 −y4
−y1 −y2 y3 y4

y1 −y2 y3 −y4

















(A.20b)
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Substituting these expressions for the A’s back into Eq. (A.18) and regrouping leads

to the following mapping:

x =
1

4
[(1− r)(1− s)x1 + (1 + r)(1− s)x2 + (1 + r)(1 + s)x3 + (1− r)(1 + s)x4] (A.21a)

y =
1

4
[(1− r)(1− s)y1 + (1 + r)(1− s)y2 + (1 + r)(1 + s)y3 + (1− r)(1 + s)y4] (A.21b)

These coordinates can be expressed in matrix form in the following manner:







x

y







=





N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4



















































































x1

y1

x2

y2

x3

y3

x4

y4















































































(A.22)

where the shape functions Ni relating the nodal coordinates (xi, yi) to any (x, y)

position along the plate are expressed by the natural coordinates (r, s):

N1 =
1

4
(1− r)(1− s) ; N2 =

1

4
(1 + r)(1− s) (A.23a)

N3 =
1

4
(1 + r)(1 + s) ; N4 =

1

4
(1− r)(1 + s) (A.23b)

Since they will be needed later, the shape function partial derivatives with respect to

the natural coordinates are

∂N1

∂r
=

1

4
(−1 + s);

∂N2

∂r
=

1

4
(1− s);

∂N3

∂r
=

1

4
(1 + s);

∂N4

∂r
=

1

4
(−1− s) (A.24a)

∂N1

∂s
=

1

4
(−1 + r);

∂N2

∂s
=

1

4
(−1− r);

∂N3

∂s
=

1

4
(1 + r);

∂N4

∂s
=

1

4
(1− r) (A.24b)
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The partial derivatives of the x and y coordinates with respect to the natural coordi-

nates are then







xr

xs







=
1

4





−1 + s 1− s 1 + s −1− s

−1 + r −1− r 1 + r 1− r



































x1

x2

x3

x4































(A.25a)







yr

ys







=
1

4





−1 + s 1− s 1 + s −1− s

−1 + r −1− r 1 + r 1− r



































y1

y2

y3

y4































(A.25b)

Given that there are 12 degrees of freedom, a 12-term polynomial is selected for the

displacement function w(x, y) that allows for rigid body motion and constant strain:

w = a1 + a2x+ a3y + a4x
2 + a5xy + a6y

2 + a7x
3 + a8x

2y

+ a9xy
2 + a10y

3 + a11x
3y + a12xy

3 (A.26)

The rotations related to the transverse displacements, used in Eqs. (A.5), are

θx =
∂w

∂y
; θy = −∂w

∂x
(A.27)

Operating on Eqs. (A.26) with Eqs. (A.27), the expressions for the rotation degrees

of freedom are

θx = a3 + a5x+ 2a6y + a8x
2 + 2a9xy + 3a10y

2 + a11x
3 + 3a12xy

2 (A.28a)

θy = −a2 − 2a4x− a5y − 3a7x
2 − 2a8xy − a9y

2 − 3a11x
2y − a12y

3 (A.28b)
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In matrix form, the displacements are expressed as



















w

θx

θy



















=











1 x y x2 xy y2 x3 x2y xy2 y3 x3y xy3

0 0 1 0 x 2y 0 x2 2xy 3y2 x3 3xy2

0 −1 0 −2x −y 0 −3x2
−2xy −y2 0 −3x2y −y3





































































































































a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12



























































































































(A.29)

or more succinctly by the notation

{ψ} = [P ]{a} (A.30)

To determine the a coefficients, {ψ} is evaluated at the 4 nodal points:
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(A.31)

This matrix equation is denoted by

{d} = [C]{a} (A.32)

The inverse of [C] is used to solve the equation for the a’s. These coefficients can then

be substituted back into Eq. (A.30) to obtain the following:

{ψ} = [P ]{a} = [P ][C]−1{d} = [N ]{d}, where [N ] = [P ][C]−1 (A.33)
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A.3 Definition of Curvature/Displacement Relationship

The next step is to build the curvature/displacement relationship. The curvatures

(Eq. (A.6)) can be resolved into a [3 x 3] matrix, denoted as [D′], that operates on

the displacement matrix {ψ}:
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(A.34)

Since {ψ} is actually {ψ(x(r, s), y(r, s))} the chain rule will need to be employed in

order to obtain the partial derivatives of {ψ} with respect to x and y:
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(A.35)

Using Cramer’s rule to simultaneously solve for the partial derivatives with respect

to x and y leads to the Jacobian matrix [J ]:
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where [J ] =
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Expanding the determinants, the expressions (Eq. (A.36)) reduce to:
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(A.38)

where |J | = xrys − xsyr (A.39)
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Substituting these relations into Eq. (A.34) yields

{κ} =
1
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or in compact matrix form: {κ} = [D′]{ψ}. Substituting Eq. (A.33) in for {ψ}
reveals that [D′] actually operates on [P ]:

{κ} = [D′][P ][C]−1{d} (A.41)

Since [P ] (expressed in Eq. (A.29)) is comprised of x and y coordinates and [D′]

computes the partial derivatives with respect to the natural coordinates, the chain

rule is employed to perform the operation. The first column of [D′] is [0] such that

the derivatives only need to be determined for rows 2 and 3 of [P ] (i.e. P2j and P3j).

∂P2j

∂r
= [0 0 0 0 xr 2yr 0 2xxr 2(xry + xyr)

6yyr 3x2xr 3(xry
2 + 2xyyr)

]

(A.42)

∂P3j

∂r
= − [0 0 0 2xr yr 0 6xxr 2(xry + xyr) 2yyr

0 3(2xxry + x2yr) 3y2yr
]

(A.43)

∂P2j

∂s
= [0 0 0 0 xs 2ys 0 2xxs 2(xsy + xys)

6yys 3x2xs 3(xsy
2 + 2xyys)

]

(A.44)

∂P3j

∂s
= − [0 0 0 2xs ys 0 6xxs 2(xsy + xys) 2yys

0 3(2xxsy + x2ys) 3y2ys
]

(A.45)
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After computing these partial derivatives, the product or operation of [D′] onto [P ]

results in [Q], whose columns are computed as follows:

[Q] = [D′][P ] =
1

|J |
[

[Q1] . . . [Q12]
]

(A.46)

where

[Qi] =
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(A.47)

With [Q], the curvature/displacement matrix [B] can now be computed from Eq.

(A.41):

{κ} = [D′][P ][C]−1{d} = [Q][C]−1{d} = [B]{d}

where [B] = [Q][C]−1 (A.48)

Thus the curvature/displacement equation (Eq. (A.2)) has been established, and by

Eq. (A.3), the moments are now directly related to the displacements:

{M} = [D][B]{d} (A.49)

A.4 Stiffness Matrix Formulation

To derive the stiffness matrix, the principle of minimum potential energy is typically

employed. The total potential energy of the plate is the integral over the volume of

the product of the stress and strain terms:

U =
1

2

∫∫∫

(σxεx + σyεy + τxyγxy)dV (A.50)

Substituting Eqs. (A.9) and (A.12) into Eq. (A.50) yields

U =
1

2

∫∫

(Mxκx +Myκy +Mxyκxy)dA (A.51)
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After appying the principle of minimum potential energy, the stiffness matrix is then

computed via a double integral over the area of the element:

[k] =

∫∫

[B]T [D][B]dxdy (A.52)

A general derivation of this form of the stiffness matrix using the principle of minimum

potential energy is given in [23, pgs. 317-319], but is omitted here. Since [B] is a

function of r and s, the integration must be performed with respect to r and s. The

transformation of the variables, as well as the region from x and y to r and s, involves

the determinant of the Jacobian matrix:

∫∫

A

f(x, y)dxdy =

∫∫

A

f(r, s)|J |drds (A.53)

Thus [k] becomes

[k] =

∫ 1

−1

∫ 1

−1

[B]T [D][B]|J |drds (A.54)

The order of the stiffness matrix is [12 x 12]. Since [B] is a rather complicated

expression, the integration determining the element stiffness matrix is best carried

out numerically. This derivation uses the Gaussian quadrature method to evaluate

the integration.

A.5 Gaussian Quadrature Method of Integration

A more complete explanation of the Gaussian quadrature method is given in Section

10.4 of [23]. The basic idea of the method is to approximate an integral by summing

some weighted sampling points within the interval of integration:

I =

∫ b

a

f(r)dr =
n
∑

i=1

Wifi (A.55)

This basic notion can be extended in multiple dimensions. The integration of concern

here consists of two integrals over the interval [−1, 1] (Figure A.2). Using Gaussian
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Figure A.2: 2 x 2 Gaussian Quadrature Evaluation of Stiffness Integral

quadrature results in a double summation:

I =

∫ 1

−1

∫ 1

−1

f(r, s)drds =

∫ 1

−1

[

n
∑

i=1

Wif(ri, s)
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=
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Wj

[

n
∑

i=1

Wif(ri, si)

]

=
n
∑

i=1

m
∑

j=1

WiWjf(ri, si) (A.56)

A 2 x 2 Gaussian rule is considered sufficient accuracy for the purposes of this model.

If more accuracy is desired, more points can be sampled. With n = m = 2, the double

summation can be written out as follows:

I = W1W1f(r1, s1) +W1W2f(r1, s2) +W2W1f(r2, s1) +W2W2f(r2, s2) (A.57)

The associated weights determined by a 2 x 2 Gaussian rule are all equal to 1, and the

point locations are ri, si = ±1/
√
3 for integration over the interval [-1,1]. Evaluating
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the stiffness integrand (Eq. (A.52)) at these points results in the following:
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(A.58)

A.6 Computation of Stiffness Matrix

A summary of the steps necessary to compute the stiffness matrix is enumerated here.

1. Obtain the four nodal coordinates and the three constitutive properties Young’s

modulus E, Poisson’s ratio ν, and the element thickness t. These are the only

inputs needed to determine the element stiffness.

2. Build the constitutive matrix [D] using Eqs. (A.13) and (A.15).

3. Compute the [C] matrix from Eq. (A.31).

4. Set-up a summation scheme to sum the remaining steps over the Gaussian points

given by Eq. (A.58) (steps 5-9).

5. Calculate the bilinear shape functions (Eqs. (A.23)), the corresponding physical

coordinates x and y (Eqs. (A.22)), and the partial derivatives of the physical

coordinates with respect to the natural coordinates (Eqs. (A.25)).

6. Calculate the partial derivatives of the [P ] matrix using Eq. (A.42) through Eq.

(A.45).

7. Build the [Q] matrix using Eqs. (A.47) and (A.46). The determinant |J | can
be calculated from Eq. (A.39).

8. Calculate the [B] matrix from Eq. (A.48).

9. Finally, [k] is calculated by summing the terms in Eq. (A.58).
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Appendix B. Finite Element MATLAB Codes

Listing B.1: Membrane Finite Element Model
1 %% FINITE ELEMENT MEMBRANE ANALYSIS

function FEm(params ,varargin)

%Setup Parameters

if isempty(varargin)==1

6 config =1;

elseif isempty(varargin)==0

config=varargin {1};

end

params=params{config };

11 if isfield(params ,’points ’)==0

mh=params.mesh;

elseif isfield(params ,’points ’)==1

mh=params.points;

end

16 nelxp=params.n;

[~,n]=size(nelxp);

nelx=zeros(n);

for i=1:n

nelx(i)=nelxp{i}-1;

21 end

nelx=sum(nelx);

nely=params.m{1}-1;

nel=nelx*nely;

26 %Evaluate Element Stiffness Matrices

edof=zeros(8,nel);KE=zeros (8*nel ,8);

X=zeros(4,nel);Y=zeros(4,nel);

for el=1: nel

m=floor ((el -1)/nely);

31 n=rem(el -1,nely)+1;

edof(:,el)=[2*m*(nely +1) +2*n+1;2*m*(nely +1) +2*n+2;

2*(m+1)*(nely +1) +2*n+1;2*(m+1)*(nely +1) +2*n+2;

2*(m+1)*(nely +1) +2*n -1;2*(m+1)*(nely +1) +2*n;

2*m*(nely +1) +2*n-1;2*m*(nely +1) +2*n];

36 mhi= [m*(nely +1)+n+1;(m+1)*(nely +1)+n+1;

(m+1)*(nely +1)+n;m*(nely +1)+n];

X(:,el)=[mh(mhi (1) ,1);mh(mhi (2) ,1);mh(mhi (3) ,1);mh(mhi (4) ,1)];

Y(:,el)=[mh(mhi (1) ,2);mh(mhi (2) ,2);mh(mhi (3) ,2);mh(mhi (4) ,2)];

[KE(8*(el -1) +1:8*el ,1:8),B0(3*(el -1) +1:3*el ,1:8),D]=...

41 Ke(X(:,el),Y(:,el));

end

%Calculate Global Displacements

[U]=FE(nelx ,nely ,edof ,KE);

46

%Visualize Results

u=U(1:2:2*( nelx +1)*(nely +1) ,1);

v=U(2:2:2*( nelx +1)*(nely +1) ,1);

Xa=mh(:,1)+u;
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51 Ya=mh(:,2)+v;

X=zeros(4,nel); Y=zeros(4,nel);

color=zeros(4,nel);

for el=1: nel

m=floor ((el -1)/nely);

56 n=rem(el -1,nely)+1;

mhi=[m*(nely +1)+n;(m+1)*(nely +1)+n;

(m+1)*(nely +1)+n+1;m*(nely +1)+n+1];

X(:,el)=[Xa(mhi (1) ,1);Xa(mhi (2) ,1);Xa(mhi (3) ,1);Xa(mhi (4) ,1)];

Y(:,el)=[Ya(mhi (1) ,1);Ya(mhi (2) ,1);Ya(mhi (3) ,1);Ya(mhi (4) ,1)];

61 d=U(edof(:,el) ,1);

sig=(D*B0(3*(el -1) +1:3*el ,1:8)*d);

prin1 =(sig (1)+sig (2))/2+ sqrt ((( sig (1)-sig (2))/2) ^2+ sig (3) ^2);

prin2 =(sig (1)+sig (2))/2-sqrt ((( sig (1)-sig (2))/2) ^2+ sig (3) ^2);

sig (4)=sqrt (((prin1 -prin2)^2+ prin1 ^2+ prin2 ^2) /2);

66 color(:,el)=sig;

end

figure;patch(X,Y,color (1,:));

title(’\sigma_x ’);axis equal;grid;colorbar

figure;patch(X,Y,color (2,:));

71 title(’\sigma_y ’);axis equal;grid;colorbar

figure;patch(X,Y,color (3,:));

title(’\tau_{xy}’);axis equal;grid;colorbar

figure;patch(X,Y,color (4,:));

title(’Von Mises Stress ’);axis equal;grid;colorbar

76

end

%% SOLVE DISPLACEMENTS

81 function [U]=FE(nelx ,nely ,edof ,KE)

%Compile Global Stiffness Matrix

K=zeros (2*( nelx +1)*(nely +1) ,2*(nelx +1)*(nely +1));

F=zeros (2*( nely +1)*(nelx +1) ,1);U=zeros (2*( nely +1)*(nelx +1) ,1);

86 for el=1: nelx*nely

K(edof(:,el),edof(:,el))=...

K(edof(:,el),edof(:,el))+KE(8*(el -1) +1:8*el ,1:8);

end

91 %Define Loads and Supports

F(100 ,1) = -1000; %INPUT: Apply external forces

fixeddofs =1:2*( nely +1); %INPUT: Constrain degrees of freedom

alldofs =1:2*( nely +1)*(nelx +1);

freedofs=setdiff(alldofs ,fixeddofs);

96 U(freedofs ,1)=K(freedofs ,freedofs)\F(freedofs ,1);

U(fixeddofs ,:) =0;

end

101

%% ELEMENT STIFFNESS MATRIX

135



function [KE ,B0 ,D]=Ke(X,Y)

%Constitutive Matrix

106 E=200e9; %INPUT: Young ’s modulus

nu =0.3; %INPUT: Poisson ’s ratio

th=1; %INPUT: thickness of element

D=E*th/(1-nu^2) *[1 nu 0;nu 1 0;0 0 (1-nu)/2];

111 %Gaussian Quadrature Integration

R=[0 -sqrt (1/3) -sqrt (1/3) sqrt (1/3) sqrt (1/3)];

S=[0 -sqrt (1/3) sqrt (1/3) -sqrt (1/3) sqrt (1/3)];

k=zeros (8,8);

for i=1:5

116 r=R(i); s=S(i);

xr =(1/4) *[-1+s 1-s 1+s -1-s]*X;

xs =(1/4) *[-1+r -1-r 1+r 1-r]*X;

yr =(1/4) *[-1+s 1-s 1+s -1-s]*Y;

ys =(1/4) *[-1+r -1-r 1+r 1-r]*Y;

121 detJ=xr*ys -xs*yr;

N1r =(1/4) *(s-1); N1s =(1/4) *(r-1);

N2r =(1/4) *(1-s); N2s =(1/4)*(-r-1);

N3r =(1/4) *(1+s); N3s =(1/4) *(1+r);

N4r =(1/4)*(-1-s); N4s =(1/4) *(1-r);

126 B1=[ys*N1r -yr*N1s 0;0 xr*N1s -xs*N1r;

xr*N1s -xs*N1r ys*N1r -yr*N1s];

B2=[ys*N2r -yr*N2s 0;0 xr*N2s -xs*N2r;

xr*N2s -xs*N2r ys*N2r -yr*N2s];

B3=[ys*N3r -yr*N3s 0;0 xr*N3s -xs*N3r;

131 xr*N3s -xs*N3r ys*N3r -yr*N3s];

B4=[ys*N4r -yr*N4s 0;0 xr*N4s -xs*N4r;

xr*N4s -xs*N4r ys*N4r -yr*N4s];

B=(1/ detJ)*[B1 B2 B3 B4];

if i==1

136 B0=B;

else

k=k+B’*D*B*detJ;

end

end

141 KE=k;

end

Listing B.2: Bending Finite Element Model
%% FINITE ELEMENT BENDING ANALYSIS

2 function FEb(params ,varargin)

%Setup Parameters

if isempty(varargin)==1

config =1;

7 elseif isempty(varargin)==0

config=varargin {1};

end
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params=params{config };

if isfield(params ,’points ’)==0

12 mh=params.mesh;

elseif isfield(params ,’points ’)==1

mh=params.points;

end

nelxp=params.n;

17 [~,n]=size(nelxp);

nelx=zeros(n);

for i=1:n

nelx(i)=nelxp{i}-1;

end

22 nelx=sum(nelx);

nely=params.m{1}-1;

nel=nelx*nely;

%Elemental Stiffness Matrices

27 edof=zeros (12,nel);KE=zeros (12*nel ,12);

Xc=zeros(4,nel);Yc=zeros(4,nel);

for el=1: nel

m=floor ((el -1)/nely);

n=rem(el -1,nely)+1;

32 edofi =[3*m*(nely +1) +3*n+1 3*(m+1)*(nely +1) +3*n+1 ...

3*(m+1)*(nely +1) +3*n-2 3*m*(nely +1) +3*n-2];

edof(:,el)=[ edofi (1);edofi (1) +1; edofi (1) +2;

edofi (2);edofi (2) +1; edofi (2) +2;

edofi (3);edofi (3) +1; edofi (3) +2;

37 edofi (4);edofi (4) +1; edofi (4) +2];

mhi=[m*(nely +1)+n+1;(m+1)*(nely +1)+n+1;

(m+1)*(nely +1)+n;m*(nely +1)+n];

Xc(:,el)=[mh(mhi (1) ,1);mh(mhi (2) ,1);

mh(mhi (3) ,1);mh(mhi (4) ,1)];

42 Yc(:,el)=[mh(mhi (1) ,2);mh(mhi (2) ,2);

mh(mhi (3) ,2);mh(mhi (4) ,2)];

[KE (12*(el -1) +1:12*el ,1:12) ,B0(3*(el -1) +1:3*el ,1:12) ,D]=...

Ke(Xc(:,el),Yc(:,el));

end

47

%Calculate Global Displacements

[U]=FE(nelx ,nely ,edof ,KE);

%Visualize Results

52 Zc=zeros(4,nel);

color=zeros(4,el);

for el=1: nel

Zc(:,el)=U(edof ([1 4 7 10],el) ,1);

d=U(edof(:,el) ,1);

57 sig=D*B0(3*(el -1) +1:3*el ,1:12)*d;

prin1 =(sig (1)+sig (2))/2+ sqrt ((( sig (1)-sig (2))/2) ^2+ sig (3) ^2);

prin2 =(sig (1)+sig (2))/2-sqrt ((( sig (1)-sig (2))/2) ^2+ sig (3) ^2);

sig (4)=sqrt (((prin1 -prin2)^2+ prin1 ^2+ prin2 ^2) /2);

color (1:4,el)=sig;
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62 end

figure;patch(Xc ,Yc ,Zc ,color (1,:));

title(’\sigma_x ’);axis equal;grid;colorbar

figure;patch(Xc ,Yc ,Zc ,color (2,:));

title(’\sigma_y ’);axis equal;grid;colorbar

67 figure;patch(Xc ,Yc ,Zc ,color (3,:));

title(’\tau_{xy}’);axis equal;grid;colorbar

figure;patch(Xc ,Yc ,Zc ,color (4,:));

title(’\sigma_{vm}’);axis equal;grid;colorbar

72 end

%% SOLVE DISPLACEMENTS

function [U]=FE(nelx ,nely ,edof ,KE)

77

%Compile Global Stiffness Matrix

K=zeros (3*( nelx +1)*(nely +1) ,3*(nelx +1)*(nely +1));

F=zeros (3*( nely +1)*(nelx +1) ,1);U=zeros (3*( nely +1)*(nelx +1) ,1);

for el=1: nelx*nely

82 K(edof(:,el),edof(:,el))=...

K(edof(:,el),edof(:,el))+KE (12*(el -1) +1:12*el ,1:12);

end

%Define Loads and Supports

87 F(100 ,1) = -1000; %INPUT: Apply external forces

fixeddofs =1:3*( nely +1); %INPUT: Constrain degrees of freedom

alldofs =1:3*( nely +1)*(nelx +1);

freedofs=setdiff(alldofs ,fixeddofs);

U(freedofs ,:)=K(freedofs ,freedofs)\F(freedofs ,:);

92 U(fixeddofs ,:) =0;

end

97 %% ELEMENT STIFFNESS MATRIX

function [KE ,B0 ,Dz]=Ke(X,Y)

%Constitutive Matrix

E=200e9; %INPUT: Young ’s modulus

102 nu =0.3; %INPUT: Poisson ’s ratio

th=1; %INPUT: thickness of element

z=th/2;

D=(E*th ^3/(12*(1 -nu^2)))*[1 nu 0;nu 1 0;0 0 (1-nu)/2];

Dz=z*E/(1-nu^2) *[1 nu 0;nu 1 0;0 0 (1-nu)/2];

107

%Gaussian Quadrature Integration

x1=X(1); x2=X(2); x3=X(3); x4=X(4);

y1=Y(1); y2=Y(2); y3=Y(3); y4=Y(4);

C=[1 x1 y1 x1^2 x1*y1 y1^2 x1^3 x1^2*y1 x1*y1^2 y1^3 x1^3*y1 x1*y1...

^3

112 0 0 1 0 x1 2*y1 0 x1^2 2*x1*y1 3*y1^2 x1^3 3*x1*y1^2
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0 -1 0 -2*x1 -y1 0 -3*x1^2 -2*x1*y1 -y1^2 0 -3*x1^2*y1 -y1^3

1 x2 y2 x2^2 x2*y2 y2^2 x2^3 x2^2*y2 x2*y2^2 y2^3 x2^3*y2 x2*y2...

^3

0 0 1 0 x2 2*y2 0 x2^2 2*x2*y2 3*y2^2 x2^3 3*x2*y2^2

0 -1 0 -2*x2 -y2 0 -3*x2^2 -2*x2*y2 -y2^2 0 -3*x2^2*y2 -y2^3

117 1 x3 y3 x3^2 x3*y3 y3^2 x3^3 x3^2*y3 x3*y3^2 y3^3 x3^3*y3 x3*y3...

^3

0 0 1 0 x3 2*y3 0 x3^2 2*x3*y3 3*y3^2 x3^3 3*x3*y3^2

0 -1 0 -2*x3 -y3 0 -3*x3^2 -2*x3*y3 -y3^2 0 -3*x3^2*y3 -y3^3

1 x4 y4 x4^2 x4*y4 y4^2 x4^3 x4^2*y4 x4*y4^2 y4^3 x4^3*y4 x4*y4...

^3

0 0 1 0 x4 2*y4 0 x4^2 2*x4*y4 3*y4^2 x4^3 3*x4*y4^2

122 0 -1 0 -2*x4 -y4 0 -3*x4^2 -2*x4*y4 -y4^2 0 -3*x4^2*y4 -y4^3];

R=[0 -sqrt (1/3) -sqrt (1/3) sqrt (1/3) sqrt (1/3)];

S=[0 -sqrt (1/3) sqrt (1/3) -sqrt (1/3) sqrt (1/3)];

k=zeros (12 ,12);

for i=1:5

127 r=R(i); s=S(i);

N1 =(1/4) *(1-r)*(1-s);

N2 =(1/4) *(1+r)*(1-s);

N3 =(1/4) *(1+r)*(1+s);

N4 =(1/4) *(1-r)*(1+s);

132 N=[N1 N2 N3 N4];

x=N*X; y=N*Y;

xr =(1/4) *[-1+s 1-s 1+s -1-s]*X;

xs =(1/4) *[-1+r -1-r 1+r 1-r]*X;

yr =(1/4) *[-1+s 1-s 1+s -1-s]*Y;

137 ys =(1/4) *[-1+r -1-r 1+r 1-r]*Y;

detJ=xr*ys -xs*yr;

P21r =0; P21s =0;

P22r =0; P22s =0;

P23r =0; P23s =0;

142 P24r =0; P24s =0;

P25r=xr; P25s=xs;

P26r =2*yr; P26s =2*ys;

P27r =0; P27s =0;

P28r =2*x*xr; P28s =2*x*xs;

147 P29r =2*(xr*y+x*yr); P29s =2*(xs*y+x*ys);

P210r =6*y*yr; P210s =6*y*ys;

P211r =3*x^2*xr; P211s =3*x^2*xs;

P212r =3*(xr*y^2+2*x*y*yr); P212s =3*(xs*y^2+2*x*y*ys);

P31r =0; P31s =0;

152 P32r =0; P32s =0;

P33r =0; P33s =0;

P34r=-2*xr; P34s=-2*xs;

P35r=-yr; P35s=-ys;

P36r =0; P36s =0;

157 P37r=-6*x*xr; P37s=-6*x*xs;

P38r =-2*(xr*y+x*yr); P38s =-2*(xs*y+x*ys);

P39r=-2*y*yr; P39s=-2*y*ys;

P310r =0; P310s =0;

P311r = -3*(2*x*xr*y+x^2*yr); P311s = -3*(2*x*xs*y+x^2*ys);
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162 P312r=-3*y^2*yr; P312s=-3*y^2*ys;

Q1=[ys*P31r -yr*P31s ys*P32r -yr*P32s ys*P33r -yr*P33s

-xr*P21s+xs*P21r -xr*P22s+xs*P22s -xr*P23s+xs*P23r

-ys*P21r+yr*P21s+xr*P31s -xs*P31r -ys*P22r+yr*P22s ...

+xr*P32s -xs*P32r -ys*P23r+yr*P23s+xr*P33s -xs*P33r];

167 Q2=[ys*P34r -yr*P34s ys*P35r -yr*P35s ys*P36r -yr*P36s

-xr*P24s+xs*P24r -xr*P25s+xs*P25r -xr*P26s+xs*P26r

-ys*P24r+yr*P24s+xr*P34s -xs*P34r -ys*P25r+yr*P25s ...

+xr*P35s -xs*P35r -ys*P26r+yr*P26s+xr*P36s -xs*P36r];

Q3=[ys*P37r -yr*P37s ys*P38r -yr*P38s ys*P39r -yr*P39s

172 -xr*P27s+xs*P27r -xr*P28s+xs*P28r -xr*P29s+xs*P29r

-ys*P27r+yr*P27s+xr*P37s -xs*P37r -ys*P28r+yr*P28s ...

+xr*P38s -xs*P38r -ys*P29r+yr*P29s+xr*P39s -xs*P39r];

Q4=[ys*P310r -yr*P310s ys*P311r -yr*P311s ys*P312r -yr*P312s

-xr*P210s+xs*P210r -xr*P211s+xs*P211r -xr*P212s+xs*P212r

177 -ys*P210r+yr*P210s+xr*P310s -xs*P310r ...

-ys*P211r+yr*P211s+xr*P311s -xs*P311r ...

-ys*P212r+yr*P212s+xr*P312s -xs*P312r ];

Q=(1/ detJ)*[Q1 Q2 Q3 Q4];

B=Q/C;

182 if i==1

B0=B;

else

k=k+B’*D*B*detJ;

end

187 end

KE=k;

end

Listing B.3: Combined Membrane-Bending Finite Element Model
%% FINITE ELEMENT MEMBRANE & BENDING SUPERPOSITION ANALYSIS

function FEmb(params ,varargin)

%Setup Parameters

5 if isempty(varargin)==1

config =1;

elseif isempty(varargin)==0

config=varargin {1};

end

10 params=params{config };

mh=params.mesh;

[~,n]=size(params.n);

nelx =0;

for i=1:n

15 nelx=nelx+params.n{1}-1;

end

nely=params.m{1}-1;

nel=nelx*nely;

20 %Elemental Stiffness Matrices

edof=zeros (24,nel);KE=zeros (24*nel ,24);
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X=zeros(4,nel);Y=zeros(4,nel);

for el=1: nel

m=floor ((el -1)/nely);

25 n=rem(el -1,nely)+1;

e=[6*m*(nely +1) +6*n+1 6*(m+1)*(nely +1) +6*n+1 ...

6*(m+1)*(nely +1) +6*n-5 6*m*(nely +1) +6*n-5];

edof(:,el)=[e(1);e(1) +1;e(1) +2;e(1) +3;e(1) +4;e(1) +5;

e(2);e(2) +1;e(2) +2;e(2) +3;e(2) +4;e(2) +5;

30 e(3);e(3) +1;e(3) +2;e(3) +3;e(3) +4;e(3) +5;

e(4);e(4) +1;e(4) +2;e(4) +3;e(4) +4;e(4) +5];

mhi=[m*(nely +1)+n+1;(m+1)*(nely +1)+n+1;

(m+1)*(nely +1)+n;m*(nely +1)+n];

X(:,el)=[mh(mhi (1) ,1);mh(mhi (2) ,1);mh(mhi (3) ,1);mh(mhi (4) ,1)];

35 Y(:,el)=[mh(mhi (1) ,2);mh(mhi (2) ,2);mh(mhi (3) ,2);mh(mhi (4) ,2)];

[KE (24*(el -1) +1:24*el ,1:24) ,B0m (3*(el -1) +1:3*el ,1:8) ,...

B0b (3*(el -1) +1:3*el ,1:12) ,Dm ,Db]...

=Ke(X(:,el),Y(:,el));

end

40

%Calculate Global Displacements

[U]=FE(nelx ,nely ,edof ,KE);

%Visualize Results

45 u=U(1:6:6*( nelx +1)*(nely +1) ,1);

v=U(2:6:6*( nelx +1)*(nely +1) ,1);

Xa=mh(:,1)+u; Ya=mh(:,2)+v;

Z=zeros(4,nel); color=zeros(nel ,1);

for el=1: nel

50 m=floor ((el -1)/nely);

n=rem(el -1,nely)+1;

mhi=[m*(nely +1)+n+1;(m+1)*(nely +1)+n+1;

(m+1)*(nely +1)+n;m*(nely +1)+n];

X(:,el)=[Xa(mhi (1) ,1);Xa(mhi (2) ,1);Xa(mhi (3) ,1);Xa(mhi (4) ,1)];

55 Y(:,el)=[Ya(mhi (1) ,1);Ya(mhi (2) ,1);Ya(mhi (3) ,1);Ya(mhi (4) ,1)];

Z(:,el)=U(edof ([3 9 15 21],el) ,1);

d=U(edof(:,el));

dm=d([1:2 7:8 13:14 19:20]);

db=d([3:5 9:11 15:17 21:23]);

60 sigm=(Dm*B0m (3*(el -1) +1:3*el ,1:8)*dm);

sigb=(Db*B0b (3*(el -1) +1:3*el ,1:12)*db);

sig=sigm+sigb;

prin1 =(sig (1)+sig (2))/2+ sqrt ((( sig (1)-sig (2))/2) ^2+ sig (3) ^2);

prin2 =(sig (1)+sig (2))/2-sqrt ((( sig (1)-sig (2))/2) ^2+ sig (3) ^2);

65 sig (4)=sqrt (((prin1 -prin2)^2+ prin1 ^2+ prin2 ^2) /2);

color (1:4,el)=sig;

end

figure;patch(X,Y,Z,color (1,:));

title(’\sigma_x ’);axis equal;grid;colorbar

70 figure;patch(X,Y,Z,color (2,:));

title(’\sigma_y ’);axis equal;grid;colorbar

figure;patch(X,Y,Z,color (3,:));

title(’\tau_{xy}’);axis equal;grid;colorbar
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figure;patch(X,Y,Z,color (4,:));

75 title(’\sigma_{vm}’);axis equal;grid;colorbar

end

80 %% SOLVE DISPLACEMENTS

function [U]=FE(nelx ,nely ,edof ,KE)

%Compile Stiffness Matrix

K=zeros (6*( nelx +1)*(nely +1) ,6*(nelx +1)*(nely +1));

85 F=zeros (6*( nely +1)*(nelx +1) ,2);U=zeros (6*( nely +1)*(nelx +1) ,2);

for el=1: nelx*nely

K(edof(:,el),edof(:,el))=...

K(edof(:,el),edof(:,el))+KE (24*(el -1) +1:24*el ,1:24);

end

90

%Define Loads and Supports

F(1000 ,1) = -1000; %INPUT: Apply external forces

fixeddofs =1:100; %INPUT: Constrain degrees of freedom

alldofs =1:6*( nely +1)*(nelx +1);

95 freedofs=setdiff(alldofs ,fixeddofs);

U(freedofs ,:)=K(freedofs ,freedofs)\F(freedofs ,:);

U(fixeddofs ,:) =0;

end

100

%% ELEMENT STIFFNESS MATRIX

function [KE ,B0m ,B0b ,Dm ,Dbz]=Ke(X,Y)

105 %Constitutive Matrix

E=200e9; %INPUT: Young ’s modulus

nu =0.3; %INPUT: Poisson ’s ratio

th =0.1; %INPUT: element thickness

z=th/2;

110 D=[1 nu 0;nu 1 0;0 0 (1-nu)/2];

Dm=(E*th/(1-nu^2))*D;

Db=E*th ^3/(12*(1 -nu^2))*D;

Dbz=z*E/(1-nu^2)*D;

115 %Formulation of Bending [C] Matrix

x1=X(1); x2=X(2); x3=X(3); x4=X(4);

y1=Y(1); y2=Y(2); y3=Y(3); y4=Y(4);

C=[1 x1 y1 x1^2 x1*y1 y1^2 x1^3 x1^2*y1 x1*y1^2 y1^3 x1^3*y1 x1*y1...

^3

0 0 1 0 x1 2*y1 0 x1^2 2*x1*y1 3*y1^2 x1^3 3*x1*y1^2

120 0 -1 0 -2*x1 -y1 0 -3*x1^2 -2*x1*y1 -y1^2 0 -3*x1^2*y1 -y1^3

1 x2 y2 x2^2 x2*y2 y2^2 x2^3 x2^2*y2 x2*y2^2 y2^3 x2^3*y2 x2*y2...

^3

0 0 1 0 x2 2*y2 0 x2^2 2*x2*y2 3*y2^2 x2^3 3*x2*y2^2

0 -1 0 -2*x2 -y2 0 -3*x2^2 -2*x2*y2 -y2^2 0 -3*x2^2*y2 -y2^3
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1 x3 y3 x3^2 x3*y3 y3^2 x3^3 x3^2*y3 x3*y3^2 y3^3 x3^3*y3 x3*y3...

^3

125 0 0 1 0 x3 2*y3 0 x3^2 2*x3*y3 3*y3^2 x3^3 3*x3*y3^2

0 -1 0 -2*x3 -y3 0 -3*x3^2 -2*x3*y3 -y3^2 0 -3*x3^2*y3 -y3^3

1 x4 y4 x4^2 x4*y4 y4^2 x4^3 x4^2*y4 x4*y4^2 y4^3 x4^3*y4 x4*y4...

^3

0 0 1 0 x4 2*y4 0 x4^2 2*x4*y4 3*y4^2 x4^3 3*x4*y4^2

0 -1 0 -2*x4 -y4 0 -3*x4^2 -2*x4*y4 -y4^2 0 -3*x4^2*y4 -y4^3];

130

%Membrane & Bending Gaussian Quadrature Integration

R=[0 -sqrt (1/3) -sqrt (1/3) sqrt (1/3) sqrt (1/3)];

S=[0 -sqrt (1/3) sqrt (1/3) -sqrt (1/3) sqrt (1/3)];

km=zeros (8,8); kb=zeros (12 ,12);

135 for i=1:5

r=R(i); s=S(i);

%Geometry Shape Functions; x-y Coordinates and Derivatives; det(...

J)

N1 =(1/4) *(1-r)*(1-s);

140 N2 =(1/4) *(1+r)*(1-s);

N3 =(1/4) *(1+r)*(1+s);

N4 =(1/4) *(1-r)*(1+s);

N=[N1 N2 N3 N4];

x=N*X; y=N*Y;

145 xr =(1/4) *[s-1 1-s 1+s -1-s]*X;

xs =(1/4) *[r-1 -1-r 1+r 1-r]*X;

ys =(1/4) *[r-1 -1-r 1+r 1-r]*Y;

yr =(1/4) *[s-1 1-s 1+s -1-s]*Y;

detJ=xr*ys -xs*yr;

150

%Membrane Formulation

N1r =(1/4) *(s-1); N1s =(1/4) *(r-1);

N2r =(1/4) *(1-s); N2s =(1/4)*(-r-1);

N3r =(1/4) *(1+s); N3s =(1/4) *(1+r);

155 N4r =(1/4)*(-1-s); N4s =(1/4) *(1-r);

B1=[ys*N1r -yr*N1s 0;0 xr*N1s -xs*N1r;

xr*N1s -xs*N1r ys*N1r -yr*N1s];

B2=[ys*N2r -yr*N2s 0;0 xr*N2s -xs*N2r;

xr*N2s -xs*N2r ys*N2r -yr*N2s];

160 B3=[ys*N3r -yr*N3s 0;0 xr*N3s -xs*N3r;

xr*N3s -xs*N3r ys*N3r -yr*N3s];

B4=[ys*N4r -yr*N4s 0;0 xr*N4s -xs*N4r;

xr*N4s -xs*N4r ys*N4r -yr*N4s];

Bm=(1/ detJ)*[B1 B2 B3 B4];

165 if i==1

B0m=Bm;

else

km=km+Bm ’*Dm*Bm*detJ;

end

170

%Bending Formulation

P21r =0; P21s =0;
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P22r =0; P22s =0;

P23r =0; P23s =0;

175 P24r =0; P24s =0;

P25r=xr; P25s=xs;

P26r =2*yr; P26s =2*ys;

P27r =0; P27s =0;

P28r =2*x*xr; P28s =2*x*xs;

180 P29r =2*(xr*y+x*yr); P29s =2*(xs*y+x*ys);

P210r =6*y*yr; P210s =6*y*ys;

P211r =3*x^2*xr; P211s =3*x^2*xs;

P212r =3*(xr*y^2+2*x*y*yr); P212s =3*(xs*y^2+2*x*y*ys);

P31r =0; P31s =0;

185 P32r =0; P32s =0;

P33r =0; P33s =0;

P34r=-2*xr; P34s=-2*xs;

P35r=-yr; P35s=-ys;

P36r =0; P36s =0;

190 P37r=-6*x*xr; P37s=-6*x*xs;

P38r =-2*(xr*y+x*yr); P38s =-2*(xs*y+x*ys);

P39r=-2*y*yr; P39s=-2*y*ys;

P310r =0; P310s =0;

P311r = -3*(2*x*xr*y+x^2*yr); P311s = -3*(2*x*xs*y+x^2*ys);

195 P312r=-3*y^2*yr; P312s=-3*y^2*ys;

Q1=[ys*P31r -yr*P31s ys*P32r -yr*P32s ys*P33r -yr*P33s

-xr*P21s+xs*P21r -xr*P22s+xs*P22s -xr*P23s+xs*P23r

-ys*P21r+yr*P21s+xr*P31s -xs*P31r -ys*P22r+yr*P22s ...

+xr*P32s -xs*P32r -ys*P23r+yr*P23s+xr*P33s -xs*P33r];

200 Q2=[ys*P34r -yr*P34s ys*P35r -yr*P35s ys*P36r -yr*P36s

-xr*P24s+xs*P24r -xr*P25s+xs*P25r -xr*P26s+xs*P26r

-ys*P24r+yr*P24s+xr*P34s -xs*P34r -ys*P25r+yr*P25s ...

+xr*P35s -xs*P35r -ys*P26r+yr*P26s+xr*P36s -xs*P36r];

Q3=[ys*P37r -yr*P37s ys*P38r -yr*P38s ys*P39r -yr*P39s

205 -xr*P27s+xs*P27r -xr*P28s+xs*P28r -xr*P29s+xs*P29r

-ys*P27r+yr*P27s+xr*P37s -xs*P37r -ys*P28r+yr*P28s ...

+xr*P38s -xs*P38r -ys*P29r+yr*P29s+xr*P39s -xs*P39r];

Q4=[ys*P310r -yr*P310s ys*P311r -yr*P311s ys*P312r -yr*P312s

-xr*P210s+xs*P210r -xr*P211s+xs*P211r -xr*P212s+xs*P212r

210 -ys*P210r+yr*P210s+xr*P310s -xs*P310r ...

-ys*P211r+yr*P211s+xr*P311s -xs*P311r ...

-ys*P212r+yr*P212s+xr*P312s -xs*P312r ];

Q=(1/ detJ)*[Q1 Q2 Q3 Q4];

Bb=Q/C;

215 if i==1

B0b=Bb;

else

kb=kb+Bb ’*Db*Bb*detJ;

end

220 end

%Superposition of Membrane and Bending Stiffness Matrices

k11m=km(1:2 ,1:2);k12m=km(1:2 ,3:4);

k13m=km(1:2 ,5:6);k14m=km(1:2 ,7:8);
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225 k21m=km(3:4 ,1:2);k22m=km(3:4 ,3:4);

k23m=km(3:4 ,5:6);k24m=km(3:4 ,7:8);

k31m=km(5:6 ,1:2);k32m=km(5:6 ,3:4);

k33m=km(5:6 ,5:6);k34m=km(5:6 ,7:8);

k41m=km(7:8 ,1:2);k42m=km(7:8 ,3:4);

230 k43m=km(7:8 ,5:6);k44m=km(7:8 ,7:8);

k11b=kb(1:3 ,1:3);k12b=kb(1:3 ,4:6);

k13b=kb(1:3 ,7:9);k14b=kb (1:3 ,10:12);

k21b=kb(4:6 ,1:3);k22b=kb(4:6 ,4:6);

k23b=kb(4:6 ,7:9);k24b=kb (4:6 ,10:12);

235 k31b=kb(7:9 ,1:3);k32b=kb(7:9 ,4:6);

k33b=kb(7:9 ,7:9);k34b=kb (7:9 ,10:12);

k41b=kb (10:12 ,1:3);k42b=kb (10:12 ,4:6);

k43b=kb (10:12 ,7:9);k44b=kb (10:12 ,10:12);

A=areaP(X,Y);k=0.3*E*th*A;k5=-0.5*k;

240 z21=zeros (2,1);z23=zeros (2,3);z31=zeros (3,1);

KE=[k11m z23 z21 k12m z23 z21 k13m z23 z21 k14m z23 z21

z23 ’ k11b z31 z23 ’ k12b z31 z23 ’ k13b z31 z23 ’ k14b z31

z21 ’ z31 ’ k z21 ’ z31 ’ k5 z21 ’ z31 ’ k5 z21 ’ z31 ’ k5

k21m z23 z21 k22m z23 z21 k23m z23 z21 k24m z23 z21

245 z23 ’ k21b z31 z23 ’ k22b z31 z23 ’ k23b z31 z23 ’ k24b z31

z21 ’ z31 ’ k5 z21 ’ z31 ’ k z21 ’ z31 ’ k5 z21 ’ z31 ’ k5

k31m z23 z21 k32m z23 z21 k33m z23 z21 k34m z23 z21

z23 ’ k31b z31 z23 ’ k32b z31 z23 ’ k33b z31 z23 ’ k34b z31

z21 ’ z31 ’ k5 z21 ’ z31 ’ k5 z21 ’ z31 ’ k z21 ’ z31 ’ k5

250 k41m z23 z21 k42m z23 z21 k43m z23 z21 k44m z23 z21

z23 ’ k41b z31 z23 ’ k42b z31 z23 ’ k43b z31 z23 ’ k44b z31

z21 ’ z31 ’ k5 z21 ’ z31 ’ k5 z21 ’ z31 ’ k5 z21 ’ z31 ’ k ];

end

255

%% AREA OF A POLYGON

function [A]= areaP(x,y)

260 x(end +1)=x(1);y(end +1)=y(1);sum =0;

for i=1: length(x) -1

sum=sum+det([x(i) x(i+1);y(i) y(i+1)]);

end

A=0.5* sum;

265

end

Listing B.4: 3D Membrane-Bending Finite Element Model
%% FINITE ELEMENT MEMBRANE & BENDING ANALYSIS FOR 3-D GEOMETRIES

function FEmb3D(params)

3

%Setup Parameters

params=params {1};

mh=params.mesh;

[~,n]=size(params.n);

8 nelx =0;
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for i=1:n

nelx=nelx+params.n{1}-1;

end

nely=params.m{1}-1;

13 nel=nelx*nely;

%Elemental Stiffness Matrices

edof=zeros (24,nel);KE=zeros (24*nel ,24);T=zeros (24*nel ,24);

X=zeros(4,nel);Y=zeros(4,nel);Z=zeros(4,nel);

18 for el=1: nel

m=floor ((el -1)/nely);

n=rem(el -1,nely)+1;

e=[6*m*(nely +1) +6*n+1 6*(m+1)*(nely +1) +6*n+1 ...

6*(m+1)*(nely +1) +6*n-5 6*m*(nely +1) +6*n-5];

23 edof(:,el) = [e(1);e(1) +1;e(1) +2;e(1) +3;e(1) +4;e(1) +5;

e(2);e(2) +1;e(2) +2;e(2) +3;(2) +4;e(2) +5;

e(3);e(3) +1;e(3) +2;e(3) +3;e(3) +4;e(3) +5;

e(4);e(4) +1;e(4) +2;e(4) +3;e(4) +4;e(4) +5];

mhi=[m*(nely +1)+n+1;(m+1)*(nely +1)+n+1;

28 (m+1)*(nely +1)+n;m*(nely +1)+n];

X(:,el)=[mh(mhi (1) ,1);mh(mhi (2) ,1);mh(mhi (3) ,1);mh(mhi (4) ,1)];

Y(:,el)=[mh(mhi (1) ,2);mh(mhi (2) ,2);mh(mhi (3) ,2);mh(mhi (4) ,2)];

Z(:,el)=[mh(mhi (1) ,3);mh(mhi (2) ,3);mh(mhi (3) ,3);mh(mhi (4) ,3)];

[KE (24*(el -1) +1:24*el ,1:24) ,T(24*(el -1) +1:24*el ,1:24) ,...

33 B0m (3*(el -1) +1:3*el ,1:8) ,B0b (3*(el -1) +1:3*el ,1:12) ,...

Dm ,Db]...

=Ke(X(:,el),Y(:,el),Z(:,el));

end

38 %Calculate Global Displacements

[U]=FE(nelx ,nely ,edof ,KE);

%Visualize Results

u=U(1:6:6*( nelx +1)*(nely +1) ,1);

43 v=U(2:6:6*( nelx +1)*(nely +1) ,1);

w=U(3:6:6*( nelx +1)*(nely +1) ,1);

Xa=mh(:,1)+u; Ya=mh(:,2)+v; Za=mh(:,3)+w;

color=zeros(nel ,1);

for el=1: nel

48 m=floor ((el -1)/nely);

n=rem(el -1,nely)+1;

mhi=[m*(nely +1)+n+1;(m+1)*(nely +1)+n+1;

(m+1)*(nely +1)+n;m*(nely +1)+n];

X(:,el)=[Xa(mhi (1) ,1);Xa(mhi (2) ,1);Xa(mhi (3) ,1);Xa(mhi (4) ,1)];

53 Y(:,el)=[Ya(mhi (1) ,1);Ya(mhi (2) ,1);Ya(mhi (3) ,1);Ya(mhi (4) ,1)];

Z(:,el)=[Za(mhi (1) ,1);Za(mhi (2) ,1);Za(mhi (3) ,1);Za(mhi (4) ,1)];

d=U(edof(:,el));

dm=d([1:2 7:8 13:14 19:20]);

db=d([3:5 9:11 15:17 21:23]);

58 sigm=(Dm*B0m (3*(el -1) +1:3*el ,1:8)*dm);

sigb=(Db*B0b (3*(el -1) +1:3*el ,1:12)*db);

sig=sigm+sigb;
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prin1 =(sig (1)+sig (2))/2+ sqrt ((( sig (1)-sig (2))/2) ^2+ sig (3) ^2);

prin2 =(sig (1)+sig (2))/2-sqrt ((( sig (1)-sig (2))/2) ^2+ sig (3) ^2);

63 sig (4)=sqrt (((prin1 -prin2)^2+ prin1 ^2+ prin2 ^2) /2);

color (1:4,el)=sig;

end

figure;patch(X,Y,Z,color (1,:));

title(’\sigma_x ’);axis equal;grid;colorbar

68 figure;patch(X,Y,Z,color (2,:));

title(’\sigma_y ’);axis equal;grid;colorbar

figure;patch(X,Y,Z,color (3,:));

title(’\tau_{xy}’);axis equal;grid;colorbar

figure;patch(X,Y,Z,color (4,:));

73 title(’\sigma_{vm}’);axis equal;grid;colorbar

end

78 %% SOLVE DISPLACEMENTS

function [U]=FE(nelx ,nely ,edof ,KE)

%Compile Stiffness Matrix

K=zeros (6*( nelx +1)*(nely +1) ,6*(nelx +1)*(nely +1));

83 F=zeros (6*( nely +1)*(nelx +1) ,1);U=zeros (6*( nely +1)*(nelx +1) ,1);

for el=1: nelx*nely

K(edof(:,el),edof(:,el))=...

K(edof(:,el),edof(:,el)) + KE (24*(el -1) +1:24*el ,1:24);

end

88

% Define Loads and Supports

F(1000 ,1) = -1000; %INPUT: Apply external forces

fixeddofs =1:100; %INPUT: Constrain degrees of freedom

alldofs =1:6*( nely +1)*(nelx +1);

93 freedofs=setdiff(alldofs ,fixeddofs);

U(freedofs ,:)=K(freedofs ,freedofs)\F(freedofs ,:);

U(fixeddofs ,:) =0;

end

98

%% ELEMENT STIFFNESS MATRIX

function [KE ,T,B0m ,B0b ,Dm ,Dbz]=Ke(X,Y,Z)

103 %Constitutive Matrix

E=200e9; %INPUT: Young ’s modulus

nu =0.3; %INPUT: Poisson ’s ratio

th =0.1; %INPUT: element thickness

z=th/2;

108 D=[1 nu 0;nu 1 0;0 0 (1-nu)/2];

Dm=(E*th/(1-nu^2))*D;

Db=E*th ^3/(12*(1 -nu^2))*D;

Dbz=z*E/(1-nu^2)*D;
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113 %Local Shape and Transformation

[T,xf ,yf]= trans(X,Y,Z);

%Formulation of Bending [C] Matrix

x1=X(1); x2=X(2); x3=X(3); x4=X(4);

118 y1=Y(1); y2=Y(2); y3=Y(3); y4=Y(4);

C=[1 x1 y1 x1^2 x1*y1 y1^2 x1^3 x1^2*y1 x1*y1^2 y1^3 x1^3*y1 x1*y1...

^3

0 0 1 0 x1 2*y1 0 x1^2 2*x1*y1 3*y1^2 x1^3 3*x1*y1^2

0 -1 0 -2*x1 -y1 0 -3*x1^2 -2*x1*y1 -y1^2 0 -3*x1^2*y1 -y1^3

1 x2 y2 x2^2 x2*y2 y2^2 x2^3 x2^2*y2 x2*y2^2 y2^3 x2^3*y2 x2*y2...

^3

123 0 0 1 0 x2 2*y2 0 x2^2 2*x2*y2 3*y2^2 x2^3 3*x2*y2^2

0 -1 0 -2*x2 -y2 0 -3*x2^2 -2*x2*y2 -y2^2 0 -3*x2^2*y2 -y2^3

1 x3 y3 x3^2 x3*y3 y3^2 x3^3 x3^2*y3 x3*y3^2 y3^3 x3^3*y3 x3*y3...

^3

0 0 1 0 x3 2*y3 0 x3^2 2*x3*y3 3*y3^2 x3^3 3*x3*y3^2

0 -1 0 -2*x3 -y3 0 -3*x3^2 -2*x3*y3 -y3^2 0 -3*x3^2*y3 -y3^3

128 1 x4 y4 x4^2 x4*y4 y4^2 x4^3 x4^2*y4 x4*y4^2 y4^3 x4^3*y4 x4*y4...

^3

0 0 1 0 x4 2*y4 0 x4^2 2*x4*y4 3*y4^2 x4^3 3*x4*y4^2

0 -1 0 -2*x4 -y4 0 -3*x4^2 -2*x4*y4 -y4^2 0 -3*x4^2*y4 -y4^3];

%Membrane & Bending Gaussian Quadrature Integration

133 R=[0 -sqrt (1/3) -sqrt (1/3) sqrt (1/3) sqrt (1/3)];

S=[0 -sqrt (1/3) sqrt (1/3) -sqrt (1/3) sqrt (1/3)];

km=zeros (8,8); kb=zeros (12 ,12);

for i=1:5

r=R(i); s=S(i);

138

%Bilinear Shape Functions; x-y Coordinates and Derivatives; det(...

J)

N1 =(1/4) *(1-r)*(1-s);

N2 =(1/4) *(1+r)*(1-s);

N3 =(1/4) *(1+r)*(1+s);

143 N4 =(1/4) *(1-r)*(1+s);

N=[N1 N2 N3 N4];

x=N*X; y=N*Y;

xr =(1/4) *[s-1 1-s 1+s -1-s]*X;

xs =(1/4) *[r-1 -1-r 1+r 1-r]*X;

148 ys =(1/4) *[r-1 -1-r 1+r 1-r]*Y;

yr =(1/4) *[s-1 1-s 1+s -1-s]*Y;

detJ=xr*ys -xs*yr;

%Membrane Formulation

153 N1r =(1/4) *(s-1); N1s =(1/4) *(r-1);

N2r =(1/4) *(1-s); N2s =(1/4)*(-r-1);

N3r =(1/4) *(1+s); N3s =(1/4) *(1+r);

N4r =(1/4)*(-1-s); N4s =(1/4) *(1-r);

B1=[ys*N1r -yr*N1s 0;0 xr*N1s -xs*N1r;

158 xr*N1s -xs*N1r ys*N1r -yr*N1s];

B2=[ys*N2r -yr*N2s 0;0 xr*N2s -xs*N2r;
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xr*N2s -xs*N2r ys*N2r -yr*N2s];

B3=[ys*N3r -yr*N3s 0;0 xr*N3s -xs*N3r;

xr*N3s -xs*N3r ys*N3r -yr*N3s];

163 B4=[ys*N4r -yr*N4s 0;0 xr*N4s -xs*N4r;

xr*N4s -xs*N4r ys*N4r -yr*N4s];

Bm=(1/ detJ)*[B1 B2 B3 B4];

if i==1

B0m=Bm;

168 else

km=km+Bm ’*Dm*Bm*detJ;

end

%Bending Formulation

173 P21r =0; P21s =0;

P22r =0; P22s =0;

P23r =0; P23s =0;

P24r =0; P24s =0;

P25r=xr; P25s=xs;

178 P26r =2*yr; P26s =2*ys;

P27r =0; P27s =0;

P28r =2*x*xr; P28s =2*x*xs;

P29r =2*(xr*y+x*yr); P29s =2*(xs*y+x*ys);

P210r =6*y*yr; P210s =6*y*ys;

183 P211r =3*x^2*xr; P211s =3*x^2*xs;

P212r =3*(xr*y^2+2*x*y*yr); P212s =3*(xs*y^2+2*x*y*ys);

P31r =0; P31s =0;

P32r =0; P32s =0;

P33r =0; P33s =0;

188 P34r=-2*xr; P34s=-2*xs;

P35r=-yr; P35s=-ys;

P36r =0; P36s =0;

P37r=-6*x*xr; P37s=-6*x*xs;

P38r =-2*(xr*y+x*yr); P38s =-2*(xs*y+x*ys);

193 P39r=-2*y*yr; P39s=-2*y*ys;

P310r =0; P310s =0;

P311r = -3*(2*x*xr*y+x^2*yr); P311s = -3*(2*x*xs*y+x^2*ys);

P312r=-3*y^2*yr; P312s=-3*y^2*ys;

Q1=[ys*P31r -yr*P31s ys*P32r -yr*P32s ys*P33r -yr*P33s

198 -xr*P21s+xs*P21r -xr*P22s+xs*P22s -xr*P23s+xs*P23r

-ys*P21r+yr*P21s+xr*P31s -xs*P31r -ys*P22r+yr*P22s ...

+xr*P32s -xs*P32r -ys*P23r+yr*P23s+xr*P33s -xs*P33r];

Q2=[ys*P34r -yr*P34s ys*P35r -yr*P35s ys*P36r -yr*P36s

-xr*P24s+xs*P24r -xr*P25s+xs*P25r -xr*P26s+xs*P26r

203 -ys*P24r+yr*P24s+xr*P34s -xs*P34r -ys*P25r+yr*P25s ...

+xr*P35s -xs*P35r -ys*P26r+yr*P26s+xr*P36s -xs*P36r];

Q3=[ys*P37r -yr*P37s ys*P38r -yr*P38s ys*P39r -yr*P39s

-xr*P27s+xs*P27r -xr*P28s+xs*P28r -xr*P29s+xs*P29r

-ys*P27r+yr*P27s+xr*P37s -xs*P37r -ys*P28r+yr*P28s ...

208 +xr*P38s -xs*P38r -ys*P29r+yr*P29s+xr*P39s -xs*P39r];

Q4=[ys*P310r -yr*P310s ys*P311r -yr*P311s ys*P312r -yr*P312s

-xr*P210s+xs*P210r -xr*P211s+xs*P211r -xr*P212s+xs*P212r

-ys*P210r+yr*P210s+xr*P310s -xs*P310r ...
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-ys*P211r+yr*P211s+xr*P311s -xs*P311r ...

213 -ys*P212r+yr*P212s+xr*P312s -xs*P312r ];

Q=(1/ detJ)*[Q1 Q2 Q3 Q4];

Bb=Q/C;

if i==1

B0b=Bb;

218 else

kb=kb+Bb ’*Db*Bb*detJ;

end

end

223 %Superposition of Membrane and Bending Stiffness Matrices

k11m=km(1:2 ,1:2);k12m=km(1:2 ,3:4);

k13m=km(1:2 ,5:6);k14m=km(1:2 ,7:8);

k21m=km(3:4 ,1:2);k22m=km(3:4 ,3:4);

k23m=km(3:4 ,5:6);k24m=km(3:4 ,7:8);

228 k31m=km(5:6 ,1:2);k32m=km(5:6 ,3:4);

k33m=km(5:6 ,5:6);k34m=km(5:6 ,7:8);

k41m=km(7:8 ,1:2);k42m=km(7:8 ,3:4);

k43m=km(7:8 ,5:6);k44m=km(7:8 ,7:8);

k11b=kb(1:3 ,1:3);k12b=kb(1:3 ,4:6);

233 k13b=kb(1:3 ,7:9);k14b=kb (1:3 ,10:12);

k21b=kb(4:6 ,1:3);k22b=kb(4:6 ,4:6);

k23b=kb(4:6 ,7:9);k24b=kb (4:6 ,10:12);

k31b=kb(7:9 ,1:3);k32b=kb(7:9 ,4:6);

k33b=kb(7:9 ,7:9);k34b=kb (7:9 ,10:12);

238 k41b=kb (10:12 ,1:3);k42b=kb (10:12 ,4:6);

k43b=kb (10:12 ,7:9);k44b=kb (10:12 ,10:12);

A=areaP(xf ,yf);k=0.3*E*th*A;k5=-0.5*k;

z21=zeros (2,1); z23=zeros (2,3);z31=zeros (3,1);

Ke=[k11m z23 z21 k12m z23 z21 k13m z23 z21 k14m z23 z21

243 z23 ’ k11b z31 z23 ’ k12b z31 z23 ’ k13b z31 z23 ’ k14b z31

z21 ’ z31 ’ k z21 ’ z31 ’ k5 z21 ’ z31 ’ k5 z21 ’ z31 ’ k5

k21m z23 z21 k22m z23 z21 k23m z23 z21 k24m z23 z21

z23 ’ k21b z31 z23 ’ k22b z31 z23 ’ k23b z31 z23 ’ k24b z31

z21 ’ z31 ’ k5 z21 ’ z31 ’ k z21 ’ z31 ’ k5 z21 ’ z31 ’ k5

248 k31m z23 z21 k32m z23 z21 k33m z23 z21 k34m z23 z21

z23 ’ k31b z31 z23 ’ k32b z31 z23 ’ k33b z31 z23 ’ k34b z31

z21 ’ z31 ’ k5 z21 ’ z31 ’ k5 z21 ’ z31 ’ k z21 ’ z31 ’ k5

k41m z23 z21 k42m z23 z21 k43m z23 z21 k44m z23 z21

z23 ’ k41b z31 z23 ’ k42b z31 z23 ’ k43b z31 z23 ’ k44b z31

253 z21 ’ z31 ’ k5 z21 ’ z31 ’ k5 z21 ’ z31 ’ k5 z21 ’ z31 ’ k ];

KE=(Ke/T)*T;

end

258

%% TRANSFORMATION MATRIX

function [T,xf ,yf]= trans(X,Y,Z)

p1=[X(1) Y(1) Z(1)];p2=[X(2) Y(2) Z(2)];

p3=[X(3) Y(3) Z(3)];p4=[X(4) Y(4) Z(4)];

263 v21=p2-p1; v32=p3 -p2; v41=p4 -p1;
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d21=norm(v21 ,2); d32=norm(v32 ,2); d41=norm(v41 ,2);

ang1=acos(dot(v21 ,v32)/(d21*d32));

ang2=acos(dot(v21 ,v41)/(d21*d41));

xf=[0 d21 d21+d32*cos(ang1) d41*cos(ang2)];

268 yf=[0 0 d32*sin(ang1) d41*sin(ang2)];

et=cross(v21 ,v41)/norm(cross(v21 ,v41) ,2);

nx=et(1); ny=et(2); nz=et(3);

r=[0 1 0]; s=[0 0 1];

N1 =(1/4) *(1-r).*(1-s);

273 N2 =(1/4) *(1+r).*(1-s);

N3 =(1/4) *(1+r).*(1+s);

N4 =(1/4) *(1-r).*(1+s);

N=[N1 ’ N2 ’ N3 ’ N4 ’];

x=N*X; y=N*Y;

278 z=Z(1) -(1/nz)*(nx*(x-X(1))+ny*(y-Y(1)));

r=[x(2)-x(1) y(2)-y(1) z(2)-z(1)];

s=[x(3)-x(1) y(3)-y(1) z(3)-z(1)];

er=r/norm(r,2);es=s/norm(s,2);

ex=[1 0 0]; ey=[0 1 0]; ez=[0 0 1];

283 l1=cosV(ex ,er); l2=cosV(ex ,es); l3=cosV(ex ,et);

m1=cosV(ey ,er); m2=cosV(ey ,es); m3=cosV(ey ,et);

n1=cosV(ez ,er); n2=cosV(ez ,es); n3=cosV(ez ,et);

Tn=[l1 l2 l3 0 0 0

m1 m2 m3 0 0 0

288 n1 n2 n3 0 0 0

0 0 0 l1 l2 l3

0 0 0 m1 m2 m3

0 0 0 n1 n2 n3];

T=blkdiag(Tn ,Tn ,Tn ,Tn);

293

end

%% COSINE BETWEEN VECTORS

298 function [ang]=cosV(e1 ,e2)

ang=dot(e1 ,e2)/(norm(e1 ,2)*norm(e2 ,2));

end

303

%% AREA OF A POLYGON

function [A]= areaP(x,y)

x(end +1)=x(1);y(end +1)=y(1);sum =0;

308 for i=1: length(x) -1

sum=sum+det([x(i) x(i+1);y(i) y(i+1)]);

end

A=0.5* sum;

313 end
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Appendix C. SIMP MATLAB Codes

Listing C.1: Membrane SIMP Model
1 %% SIMP METHOD FOR MEMBRANE ELEMENT

function [el ,nel ,X,Y,x]= SIMPm(params ,tor ,varargin)

%Setup Parameters

if isempty(varargin)==1

6 config =1;

elseif isempty(varargin)==0

config=varargin {1};

end

params=params{config };

11 if isfield(params ,’points ’)==0

mh=params.mesh;

elseif isfield(params ,’points ’)==1

mh=params.points;

end

16 nelxp=params.n;

[~,n]=size(nelxp);

nelx=zeros(n);

for i=1:n

nelx(i)=nelxp{i}-1;

21 end

nelxp=nelx;

nelx=sum(nelx);

nely=params.m{1}-1;

nel=nelx*nely;

26

%Input Parameters

volfrac =0.5; %INPUT: Volume fraction

penal =3; %INPUT: Penalty

rmin =1.5; %INPUT: Radius of filter

31 conv =0.01; %INPUT: Change convergence

xmin =0.001; %INPUT: Minimum element thickness

fdofs=union (1:2:2*( nely +1) ,2); %INPUT: Constrain DOFs

[F]= Faero(tor ,nelx ,nelxp ,nely ,2,1);

disp(’Aerodynamic Forces Computed ’)

36

%Elemental Stiffness

edof=zeros(8,nel);KE=zeros (8*nel ,8);

X=zeros(4,nel);Y=zeros(4,nel);

A=zeros(nel ,1);

41 for el=1: nel

m=floor ((el -1)/nely);

n=rem(el -1,nely)+1;

edof(:,el)=[2*m*(nely +1) +2*n+1;2*m*(nely +1) +2*n+2;

2*(m+1)*(nely +1) +2*n+1;2*(m+1)*(nely +1) +2*n+2;

46 2*(m+1)*(nely +1) +2*n -1;2*(m+1)*(nely +1) +2*n;

2*m*(nely +1) +2*n-1;2*m*(nely +1) +2*n];

mhi= [m*(nely +1)+n+1;(m+1)*(nely +1)+n+1;

(m+1)*(nely +1)+n;m*(nely +1)+n];

X(:,el)=[mh(mhi (1) ,1);mh(mhi (2) ,1);mh(mhi (3) ,1);mh(mhi (4) ,1)];
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51 Y(:,el)=[mh(mhi (1) ,2);mh(mhi (2) ,2);mh(mhi (3) ,2);mh(mhi (4) ,2)];

A(el)=areaP(X(:,el),Y(:,el));

[KE(8*(el -1) +1:8*el ,1:8)]=Ke(X(:,el),Y(:,el));

end

disp(’Elemental Stiffness Matrices Computed ’)

56

%Start Iteration

vol=volfrac*sum(A);

x(1:nel ,1)=volfrac;

loop =0; change =1;

61 while change >conv

loop=loop +1;

xold=x;

%Calculate Global Displacements

66 [U]=FE(nelx ,nely ,edof ,KE ,x,penal ,F,fdofs);

%Objective Function and Sensitivity Analysis

c=0;dc=zeros(nel ,1);

for el=1: nel

71 Ue=U(edof(:,el) ,1);

c=c+x(el)^penal*Ue ’*KE(8*(el -1) +1:8*el ,1:8) ’*Ue;

dc(el)=-penal*x(el)^(penal -1)*Ue ’*KE(8*(el -1) +1:8*el ,1:8) ’*...

Ue;

end

76 %Filtering of Sensitivities

[dc]= check(nelx ,nely ,rmin ,x,dc);

%Design Update by the Optimality Criteria

[x]=OC(x,xmin ,vol ,dc ,A);

81

%Print Results

change=max(abs(x-xold));

disp([’ It.: ’ sprintf(’%4i’,loop) ...

’ Obj.: ’ sprintf(’%10.4f’,c) ...

86 ’ Vol.: ’ sprintf(’%6.3f’,(x’*A)/sum(A)) ...

’ ch.: ’ sprintf(’%6.3f’,change )])

end

%Plot Densities

91 h=figure;set(h,’color ’ ,[1 1 1]);colormap(bone);patch(X,Y,-x’);

axis equal;axis tight;axis off

end

96

%% OPTIMALITY CRITERIA UPDATE

function [xnew]=OC(x,xmin ,vol ,dc,A)

l1=0;l2 =100000; move =0.2; eta =0.5;

while (l2 -l1 >1e-4)

101 lmid =0.5*( l2+l1);
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xnew=max(xmin ,max(x-move ,min(1.,min(x+move ,x.*(-dc./( lmid*A)).^...

eta))));

if xnew ’*A-vol >0;

l1=lmid;

else

106 l2=lmid;

end

end

end

111

%% MESH -INDEPENDENCY FILTER

function [dcn]= check(nelx ,nely ,rmin ,x,dc)

xmap=reshape(x,nely ,nelx);

116 dcmap=reshape(dc,nely ,nelx);

dcnmap=zeros(nely ,nelx);

for i=1: nelx

for j=1: nely

sum =0.0;

121 for k=max(i-floor(rmin) ,1):min(i+floor(rmin),nelx);

for l=max(j-floor(rmin) ,1):min(j+floor(rmin),nely)

fac=rmin -sqrt((i-k)^2+(j-l)^2);

sum=sum+max(0,fac);

dcnmap(j,i)=dcnmap(j,i)+max(0,fac)*xmap(l,k)*dcmap(l,k);

126 end

end

dcnmap(j,i)=dcnmap(j,i)/(xmap(j,i)*sum);

end

end

131 dcn=reshape(dcnmap ,nelx*nely ,1);

end

136 %% FE -ANALYSIS

function [U]=FE(nelx ,nely ,edof ,KE ,x,penal ,F,fdofs)

%Compile Global Stiffness Matrix

K=zeros (2*( nelx +1)*(nely +1) ,2*(nelx +1)*(nely +1));

141 U=zeros (2*( nely +1)*(nelx +1) ,1);

for el=1: nelx*nely

K(edof(:,el),edof(:,el))=...

K(edof(:,el),edof(:,el))+x(el)^penal*KE(8*(el -1) +1:8*el ,1:8)...

;

end

146

%Calculate Displacement

fixeddofs=fdofs;

alldofs =1:2*( nely +1)*(nelx +1);

freedofs=setdiff(alldofs ,fixeddofs);

151 F(fixeddofs ,:) =0;
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U(freedofs ,:)=K(freedofs ,freedofs)\F(freedofs ,:);

U(fixeddofs ,:) =0;

end

156

%% ELEMENT STIFFNESS MATRIX

function [KE ,B0 ,D]=Ke(X,Y)

161 %Constitutive Matrix

E=200e9; %INPUT: Young ’s modulus

nu =0.3; %INPUT: Poisson ’s ratio

th=1; %INPUT: thickness of element

D=E*th/(1-nu^2) *[1 nu 0;nu 1 0;0 0 (1-nu)/2];

166

%Gaussian Quadrature Integration

R=[0 -sqrt (1/3) -sqrt (1/3) sqrt (1/3) sqrt (1/3)];

S=[0 -sqrt (1/3) sqrt (1/3) -sqrt (1/3) sqrt (1/3)];

k=zeros (8,8);

171 for i=1: length(R)

r=R(i); s=S(i);

xr =(1/4) *[-1+s 1-s 1+s -1-s]*X;

xs =(1/4) *[-1+r -1-r 1+r 1-r]*X;

yr =(1/4) *[-1+s 1-s 1+s -1-s]*Y;

176 ys =(1/4) *[-1+r -1-r 1+r 1-r]*Y;

detJ=xr*ys -xs*yr;

N1r =(1/4) *(s-1); N1s =(1/4) *(r-1);

N2r =(1/4) *(1-s); N2s =(1/4)*(-r-1);

N3r =(1/4) *(1+s); N3s =(1/4) *(1+r);

181 N4r =(1/4)*(-1-s); N4s =(1/4) *(1-r);

B1=[ys*N1r -yr*N1s 0;0 xr*N1s -xs*N1r;

xr*N1s -xs*N1r ys*N1r -yr*N1s];

B2=[ys*N2r -yr*N2s 0;0 xr*N2s -xs*N2r;

xr*N2s -xs*N2r ys*N2r -yr*N2s];

186 B3=[ys*N3r -yr*N3s 0;0 xr*N3s -xs*N3r;

xr*N3s -xs*N3r ys*N3r -yr*N3s];

B4=[ys*N4r -yr*N4s 0;0 xr*N4s -xs*N4r;

xr*N4s -xs*N4r ys*N4r -yr*N4s];

B=(1/ detJ)*[B1 B2 B3 B4];

191 if i==1

B0=B;

else

k=k+B’*D*B*detJ;

end

196 end

KE=k;

end

Listing C.2: Bending SIMP Model
%% SIMP METHOD: Bending

2 function [el ,nel ,X,Y,x]= SIMPb(params ,tor ,varargin)
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%Setup Parameters

if isempty(varargin)==1

config =1;

7 elseif isempty(varargin)==0

config=varargin {1};

end

params=params{config };

if isfield(params ,’points ’)==0

12 mh=params.mesh;

elseif isfield(params ,’points ’)==1

mh=params.points;

end

nelxp=params.n;

17 [~,n]=size(nelxp);

nelx=zeros(n);

for i=1:n

nelx(i)=nelxp{i}-1;

end

22 nelx=sum(nelx);

nely=params.m{1}-1;

nel=nelx*nely;

%Input Parameters

27 volfrac =0.5; %INPUT: Volume fraction

penal =3; %INPUT: Penalty

rmin =1.5; %INPUT: Radius of filter

conv =0.01; %INPUT: Change convergence

xmin =0.001; %INPUT: Minimum element thickness

32 fdofs =1:3*( nely +1); %INPUT: Constrain DOFs

[F]= Faero(tor ,nelx ,nelxp ,nely ,3,1);

disp(’Aerodynamic Forces Computed ’)

%Elemental Stiffness Matrices

37 edof=zeros (12,nel);KE=zeros (12*nel ,12);

X=zeros(4,nel);Y=zeros(4,nel);

A=zeros(nel ,1);

for el=1: nel

m=floor ((el -1)/nely);

42 n=rem(el -1,nely)+1;

edofi =[3*m*(nely +1) +3*n+1 3*(m+1)*(nely +1) +3*n+1 ...

3*(m+1)*(nely +1) +3*n-2 3*m*(nely +1) +3*n-2];

edof(:,el)=[ edofi (1);edofi (1) +1; edofi (1) +2;

edofi (2);edofi (2) +1; edofi (2) +2;

47 edofi (3);edofi (3) +1; edofi (3) +2;

edofi (4);edofi (4) +1; edofi (4) +2];

mhi=[m*(nely +1)+n+1;(m+1)*(nely +1)+n+1;

(m+1)*(nely +1)+n;m*(nely +1)+n];

X(:,el)=[mh(mhi (1) ,1);mh(mhi (2) ,1);mh(mhi (3) ,1);mh(mhi (4) ,1)];

52 Y(:,el)=[mh(mhi (1) ,2);mh(mhi (2) ,2);mh(mhi (3) ,2);mh(mhi (4) ,2)];

A(el)=areaP(X(:,el),Y(:,el));

[KE (12*(el -1) +1:12*el ,1:12) ]=Ke(X(:,el),Y(:,el));

end
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disp(’Elemental Stiffness Matrices Computed ’)

57

%Start Iteration

vol=volfrac*sum(A);

x(1:nel ,1)=volfrac;

loop =0; change =1;

62 while change >conv

loop=loop +1;

xold=x;

%Calculate Global Displacements

67 [U]=FE(nelx ,nely ,edof ,KE ,x,penal ,F,fdofs);

%Objective Function and Sensitivity Analysis

c=0;dc=zeros(nel ,1);

for el=1: nel

72 Ue=U(edof(:,el) ,1);

c=c+x(el)^( penal)*Ue ’*KE (12*(el -1) +1:12*el ,1:12) ’*Ue;

dc(el)=-(penal)*x(el)^(penal -1)*Ue ’*KE (12*(el -1) +1:12*el...

,1:12) ’*Ue;

end

77 %Filtering of Sensitivities

[dc]= check(nelx ,nely ,rmin ,x,dc);

%Design Update by the Optimality Criteria

[x]=OC(x,xmin ,vol ,dc ,A);

82

%Print Results

change=max(abs(x-xold));

disp([’ It.: ’ sprintf(’%4i’,loop) ...

’ Obj.: ’ sprintf(’%10.6f’,c) ...

87 ’ Vol.: ’ sprintf(’%6.3f’,(x’*A)/sum(A)) ...

’ ch.: ’ sprintf(’%6.3f’,change )])

end

%Plot Densities

92 h=figure;set(h,’color ’ ,[1 1 1]);colormap(bone);patch(X,Y,-x’);

axis equal;axis tight;axis off

end

97

%% OPTIMALITY CRITERIA UPDATE

function [xnew]=OC(x,xmin ,vol ,dc,A)

l1=0;l2 =100000; move =.2; eta =0.3;

while (l2 -l1 >1e-4)

102 lmid =0.5*( l2+l1);

xnew=max(xmin ,max(x-move ,min(1.,min(x+move ,x.*(-dc./( lmid*A)).^...

eta))));

if xnew ’*A-vol >0;

l1=lmid;
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else

107 l2=lmid;

end

end

end

112

%% MESH -INDEPENDENCY FILTER

function [dcn]= check(nelx ,nely ,rmin ,x,dc)

xmap=reshape(x,nely ,nelx);

117 dcmap=reshape(dc,nely ,nelx);

dcnmap=zeros(nely ,nelx);

for i=1: nelx

for j=1: nely

sum =0.0;

122 for k=max(i-floor(rmin) ,1):min(i+floor(rmin),nelx);

for l=max(j-floor(rmin) ,1):min(j+floor(rmin),nely)

fac=rmin -sqrt((i-k)^2+(j-l)^2);

sum=sum+max(0,fac);

dcnmap(j,i)=dcnmap(j,i)+max(0,fac)*xmap(l,k)*dcmap(l,k);

127 end

end

dcnmap(j,i)=dcnmap(j,i)/(xmap(j,i)*sum);

end

end

132 dcn=reshape(dcnmap ,nelx*nely ,1);

end

137 %% FE -ANALYSIS

function [U]=FE(nelx ,nely ,edof ,KE ,x,penal ,F,fdofs)

%Compile Global Stiffness Matrix

K=zeros (3*( nelx +1)*(nely +1) ,3*(nelx +1)*(nely +1));

142 U=zeros (3*( nely +1)*(nelx +1) ,1);

for el=1: nelx*nely

K(edof(:,el),edof(:,el))=...

K(edof(:,el),edof(:,el))+x(el)^penal*KE (12*(el -1) +1:12*el...

,1:12);

end

147

%Define Loads and Supports

fixeddofs=fdofs;

alldofs =1:3*( nely +1)*(nelx +1);

freedofs=setdiff(alldofs ,fixeddofs);

152 F(fixeddofs ,:) =0;

U(freedofs ,:)=K(freedofs ,freedofs)\F(freedofs ,:);

U(fixeddofs ,:) =0;

end
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157

%% ELEMENT STIFFNESS MATRIX

function [KE]=Ke(X,Y)

162 %Constitutive Matrix

E=200e9; %INPUT: Young ’s modulus

nu =0.3; %INPUT: Poisson ’s ratio

th=1; %INPUT: thickness of element

D=(E*th ^3/(12*(1 -nu^2)))*[1 nu 0;nu 1 0;0 0 (1-nu)/2];

167

%Gaussian Quadrature Integration

x1=X(1); x2=X(2); x3=X(3); x4=X(4);

y1=Y(1); y2=Y(2); y3=Y(3); y4=Y(4);

C=[1 x1 y1 x1^2 x1*y1 y1^2 x1^3 x1^2*y1 x1*y1^2 y1^3 x1^3*y1 x1*y1...

^3

172 0 0 1 0 x1 2*y1 0 x1^2 2*x1*y1 3*y1^2 x1^3 3*x1*y1^2

0 -1 0 -2*x1 -y1 0 -3*x1^2 -2*x1*y1 -y1^2 0 -3*x1^2*y1 -y1^3

1 x2 y2 x2^2 x2*y2 y2^2 x2^3 x2^2*y2 x2*y2^2 y2^3 x2^3*y2 x2*y2...

^3

0 0 1 0 x2 2*y2 0 x2^2 2*x2*y2 3*y2^2 x2^3 3*x2*y2^2

0 -1 0 -2*x2 -y2 0 -3*x2^2 -2*x2*y2 -y2^2 0 -3*x2^2*y2 -y2^3

177 1 x3 y3 x3^2 x3*y3 y3^2 x3^3 x3^2*y3 x3*y3^2 y3^3 x3^3*y3 x3*y3...

^3

0 0 1 0 x3 2*y3 0 x3^2 2*x3*y3 3*y3^2 x3^3 3*x3*y3^2

0 -1 0 -2*x3 -y3 0 -3*x3^2 -2*x3*y3 -y3^2 0 -3*x3^2*y3 -y3^3

1 x4 y4 x4^2 x4*y4 y4^2 x4^3 x4^2*y4 x4*y4^2 y4^3 x4^3*y4 x4*y4...

^3

0 0 1 0 x4 2*y4 0 x4^2 2*x4*y4 3*y4^2 x4^3 3*x4*y4^2

182 0 -1 0 -2*x4 -y4 0 -3*x4^2 -2*x4*y4 -y4^2 0 -3*x4^2*y4 -y4^3];

R=[-sqrt (1/3) -sqrt (1/3) sqrt (1/3) sqrt (1/3)];

S=[-sqrt (1/3) sqrt (1/3) -sqrt (1/3) sqrt (1/3)];

k=zeros (12 ,12);

187 for i=1: length(R)

r=R(i); s=S(i);

N1 =(1/4) *(1-r)*(1-s);

N2 =(1/4) *(1+r)*(1-s);

N3 =(1/4) *(1+r)*(1+s);

192 N4 =(1/4) *(1-r)*(1+s);

N=[N1 N2 N3 N4];

x=N*X; y=N*Y;

xr =(1/4) *[-1+s 1-s 1+s -1-s]*X;

xs =(1/4) *[-1+r -1-r 1+r 1-r]*X;

197 yr =(1/4) *[-1+s 1-s 1+s -1-s]*Y;

ys =(1/4) *[-1+r -1-r 1+r 1-r]*Y;

P21r =0; P21s =0;

P22r =0; P22s =0;

P23r =0; P23s =0;

202 P24r =0; P24s =0;

P25r=xr; P25s=xs;

P26r =2*yr; P26s =2*ys;

159



P27r =0; P27s =0;

P28r =2*x*xr; P28s =2*x*xs;

207 P29r =2*(xr*y+x*yr); P29s =2*(xs*y+x*ys);

P210r =6*y*yr; P210s =6*y*ys;

P211r =3*x^2*xr; P211s =3*x^2*xs;

P212r =3*(xr*y^2+2*x*y*yr); P212s =3*(xs*y^2+2*x*y*ys);

P31r =0; P31s =0;

212 P32r =0; P32s =0;

P33r =0; P33s =0;

P34r=-2*xr; P34s=-2*xs;

P35r=-yr; P35s=-ys;

P36r =0; P36s =0;

217 P37r=-6*x*xr; P37s=-6*x*xs;

P38r =-2*(xr*y+x*yr); P38s =-2*(xs*y+x*ys);

P39r=-2*y*yr; P39s=-2*y*ys;

P310r =0; P310s =0;

P311r = -3*(2*x*xr*y+x^2*yr); P311s = -3*(2*x*xs*y+x^2*ys);

222 P312r=-3*y^2*yr; P312s=-3*y^2*ys;

Q1=[ys*P31r -yr*P31s ys*P32r -yr*P32s ys*P33r -yr*P33s

-xr*P21s+xs*P21r -xr*P22s+xs*P22s -xr*P23s+xs*P23r

-ys*P21r+yr*P21s+xr*P31s -xs*P31r -ys*P22r+yr*P22s ...

+xr*P32s -xs*P32r -ys*P23r+yr*P23s+xr*P33s -xs*P33r];

227 Q2=[ys*P34r -yr*P34s ys*P35r -yr*P35s ys*P36r -yr*P36s

-xr*P24s+xs*P24r -xr*P25s+xs*P25r -xr*P26s+xs*P26r

-ys*P24r+yr*P24s+xr*P34s -xs*P34r -ys*P25r+yr*P25s ...

+xr*P35s -xs*P35r -ys*P26r+yr*P26s+xr*P36s -xs*P36r];

Q3=[ys*P37r -yr*P37s ys*P38r -yr*P38s ys*P39r -yr*P39s

232 -xr*P27s+xs*P27r -xr*P28s+xs*P28r -xr*P29s+xs*P29r

-ys*P27r+yr*P27s+xr*P37s -xs*P37r -ys*P28r+yr*P28s ...

+xr*P38s -xs*P38r -ys*P29r+yr*P29s+xr*P39s -xs*P39r];

Q4=[ys*P310r -yr*P310s ys*P311r -yr*P311s ys*P312r -yr*P312s

-xr*P210s+xs*P210r -xr*P211s+xs*P211r -xr*P212s+xs*P212r

237 -ys*P210r+yr*P210s+xr*P310s -xs*P310r ...

-ys*P211r+yr*P211s+xr*P311s -xs*P311r ...

-ys*P212r+yr*P212s+xr*P312s -xs*P312r ];

detJ=xr*ys -xs*yr;

Q=(1/ detJ)*[Q1 Q2 Q3 Q4];

242 B=Q/C;

k=k+B’*D*B*detJ;

end

KE=k;

247 end

Listing C.3: Combined Membrane-Bending SIMP Model
%% SIMP METHOD: Membrane & Bending

function [el ,nel ,X,Y,x]= SIMPmb(params ,tor ,varargin)

3

%Setup Parameters

if isempty(varargin)==1

config =1;

elseif isempty(varargin)==0
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8 config=varargin {1};

end

params=params{config };

if isfield(params ,’points ’)==0

mh=params.mesh;

13 elseif isfield(params ,’points ’)==1

mh=params.points;

end

nelxp=params.n;

[~,n]=size(nelxp);

18 nelx=zeros(n);

for i=1:n

nelx(i)=nelxp{i}-1;

end

nelx=sum(nelx);

23 nely=params.m{1}-1;

nel=nelx*nely;

%Input Parameters

volfrac =0.5; %INPUT: Volume fraction

28 penal =3; %INPUT: Penalty

rmin =1.5; %INPUT: Radius of filter

conv =0.01; %INPUT: Change convergence

xmin =0.001; %INPUT: Minimum element thickness

fdofs =1:6*( nely +1); %INPUT: Constrain DOFs

33 [F]= Faero(tor ,nelx ,nelxp ,nely ,6,1);

disp(’Aerodynamic Forces Computed ’)

%Elemental Stiffness Matrices

edof=zeros (24,nel);KE=zeros (24*nel ,24);

38 X=zeros(4,nel);Y=zeros(4,nel);

A=zeros(nel ,1);

for el=1: nel

m=floor ((el -1)/nely);

n=rem(el -1,nely)+1;

43 e=[6*m*(nely +1) +6*n+1 6*(m+1)*(nely +1) +6*n+1 ...

6*(m+1)*(nely +1) +6*n-5 6*m*(nely +1) +6*n-5];

edof(:,el) = [e(1);e(1) +1;e(1) +2;e(1) +3;e(1) +4;e(1) +5;

e(2);e(2) +1;e(2) +2;e(2) +3;e(2) +4;e(2) +5;

e(3);e(3) +1;e(3) +2;e(3) +3;e(3) +4;e(3) +5;

48 e(4);e(4) +1;e(4) +2;e(4) +3;e(4) +4;e(4) +5];

mhi= [m*(nely +1)+n+1;(m+1)*(nely +1)+n+1;

(m+1)*(nely +1)+n;m*(nely +1)+n];

X(:,el)=[mh(mhi (1) ,1);mh(mhi (2) ,1);mh(mhi (3) ,1);mh(mhi (4) ,1)];

Y(:,el)=[mh(mhi (1) ,2);mh(mhi (2) ,2);mh(mhi (3) ,2);mh(mhi (4) ,2)];

53 A(el)=areaP(X(:,el),Y(:,el));

[KE (24*(el -1) +1:24*el ,1:24) ]=Ke(X(:,el),Y(:,el));

end

disp(’Elemental Stiffness Matrices Computed ’)

58 %Start Iteration

vol=volfrac*sum(A);
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x(1:nel ,1)=volfrac;

loop =0; change =1;

while change >conv

63 loop=loop +1;

xold=x;

%Calculate Global Displacements

[U]=FE(nelx ,nely ,edof ,KE ,x,penal ,F,fdofs);

68

%Objective Function and Sensitivity Analysis

c=0;dc=zeros(nel ,1);

for el=1: nel

Ue=U(edof(:,el) ,1);

73 c=c+x(el)^penal*Ue ’*KE (24*(el -1) +1:24*el ,1:24) ’*Ue;

dc(el)=-penal*x(el)^(penal -1)*Ue ’*KE (24*(el -1) +1:24*el ,1:24)...

’*Ue;

end

%Filtering of Sensitivities

78 [dc]= check(nelx ,nely ,rmin ,x,dc);

%Design Update by the Optimality Criteria

[x]=OC(x,xmin ,vol ,dc ,A);

83 %Print Results

change=max(abs(x-xold));

disp([’ It.: ’ sprintf(’%4i’,loop) ...

’ Obj.: ’ sprintf(’%10.6f’,c) ...

’ Vol.: ’ sprintf(’%6.3f’,(x’*A)/sum(A)) ...

88 ’ ch.: ’ sprintf(’%6.3f’,change )])

end

toc

%Plot Densities

93 h=figure;set(h,’color ’ ,[1 1 1]);colormap(bone);patch(X,Y,-x’);

axis equal;axis tight;axis off

end

98

%% OPTIMALITY CRITERIA UPDATE

function [xnew]=OC(x,xmin ,vol ,dc,A)

l1=0;l2 =100000; move =0.1; eta =0.5;

while (l2 -l1 >1e-4)

103 lmid =0.5*( l2+l1);

xnew=max(xmin ,max(x-move ,min(1.,min(x+move ,x.*(-dc./( lmid*A)).^...

eta))));

if xnew ’*A-vol >0;

l1=lmid;

else

108 l2=lmid;

end
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end

end

113

%% MESH -INDEPENDENCY FILTER

function [dcn]= check(nelx ,nely ,rmin ,x,dc)

xmap=reshape(x,nely ,nelx);

118 dcmap=reshape(dc,nely ,nelx);

dcnmap=zeros(nely ,nelx);

for i=1: nelx

for j=1: nely

sum =0.0;

123 for k=max(i-floor(rmin) ,1):min(i+floor(rmin),nelx);

for l=max(j-floor(rmin) ,1):min(j+floor(rmin),nely)

fac=rmin -sqrt((i-k)^2+(j-l)^2);

sum=sum+max(0,fac);

dcnmap(j,i)=dcnmap(j,i)+max(0,fac)*xmap(l,k)*dcmap(l,k);

128 end

end

dcnmap(j,i)=dcnmap(j,i)/(xmap(j,i)*sum);

end

end

133 dcn=reshape(dcnmap ,nelx*nely ,1);

end

138 %% FE -ANALYSIS

function [U]=FE(nelx ,nely ,edof ,KE ,x,penal ,F,fdofs)

%Compile Stiffness Matrix

K=zeros (6*( nelx +1)*(nely +1) ,6*(nelx +1)*(nely +1));

143 U=zeros (6*( nely +1)*(nelx +1) ,1);

for el=1: nelx*nely

K(edof(:,el),edof(:,el))=...

K(edof(:,el),edof(:,el))+x(el)^penal*KE (24*(el -1) +1:24*el...

,1:24);

end

148

% Define Loads and Supports

fixeddofs=fdofs;

alldofs =1:6*( nely +1)*(nelx +1);

freedofs=setdiff(alldofs ,fixeddofs);

153 U(freedofs ,:)=K(freedofs ,freedofs)\F(freedofs ,:);

U(fixeddofs ,:)= 0;

end

158

%% ELEMENT STIFFNESS MATRIX

function [KE]=Ke(X,Y)
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%Constitutive Matrix

E=200e9; %INPUT: Young ’s modulus

163 nu =0.3; %INPUT: Poisson ’s ratio

th=1; %INPUT: thickness of element

Dm=(E*th/(1-nu^2))*[1 nu 0;nu 1 0;0 0 (1-nu)/2];

Db=Dm*th ^2/12;

168 %Formulation of Bending [C] Matrix

x1=X(1); x2=X(2); x3=X(3); x4=X(4);

y1=Y(1); y2=Y(2); y3=Y(3); y4=Y(4);

C=[1 x1 y1 x1^2 x1*y1 y1^2 x1^3 x1^2*y1 x1*y1^2 y1^3 x1^3*y1 x1*y1...

^3

0 0 1 0 x1 2*y1 0 x1^2 2*x1*y1 3*y1^2 x1^3 3*x1*y1^2

173 0 -1 0 -2*x1 -y1 0 -3*x1^2 -2*x1*y1 -y1^2 0 -3*x1^2*y1 -y1^3

1 x2 y2 x2^2 x2*y2 y2^2 x2^3 x2^2*y2 x2*y2^2 y2^3 x2^3*y2 x2*y2...

^3

0 0 1 0 x2 2*y2 0 x2^2 2*x2*y2 3*y2^2 x2^3 3*x2*y2^2

0 -1 0 -2*x2 -y2 0 -3*x2^2 -2*x2*y2 -y2^2 0 -3*x2^2*y2 -y2^3

1 x3 y3 x3^2 x3*y3 y3^2 x3^3 x3^2*y3 x3*y3^2 y3^3 x3^3*y3 x3*y3...

^3

178 0 0 1 0 x3 2*y3 0 x3^2 2*x3*y3 3*y3^2 x3^3 3*x3*y3^2

0 -1 0 -2*x3 -y3 0 -3*x3^2 -2*x3*y3 -y3^2 0 -3*x3^2*y3 -y3^3

1 x4 y4 x4^2 x4*y4 y4^2 x4^3 x4^2*y4 x4*y4^2 y4^3 x4^3*y4 x4*y4...

^3

0 0 1 0 x4 2*y4 0 x4^2 2*x4*y4 3*y4^2 x4^3 3*x4*y4^2

0 -1 0 -2*x4 -y4 0 -3*x4^2 -2*x4*y4 -y4^2 0 -3*x4^2*y4 -y4^3];

183

%Membrane & Bending Gaussian Quadrature Integration

R=[-sqrt (1/3) -sqrt (1/3) sqrt (1/3) sqrt (1/3)];

S=[-sqrt (1/3) sqrt (1/3) -sqrt (1/3) sqrt (1/3)];

km=zeros (8,8); kb=zeros (12 ,12);

188 for i=1: length(R)

r=R(i); s=S(i);

%Bilinear Shape Functions;x-y Coordinates and Derivatives;det(J)

N1 =(1/4) *(1-r)*(1-s);

193 N2 =(1/4) *(1+r)*(1-s);

N3 =(1/4) *(1+r)*(1+s);

N4 =(1/4) *(1-r)*(1+s);

N=[N1 N2 N3 N4];

x=N*X; y=N*Y;

198 xr =(1/4) *[s-1 1-s 1+s -1-s]*X;

xs =(1/4) *[r-1 -1-r 1+r 1-r]*X;

ys =(1/4) *[r-1 -1-r 1+r 1-r]*Y;

yr =(1/4) *[s-1 1-s 1+s -1-s]*Y;

detJ=xr*ys -xs*yr;

203

%Membrane Formulation

N1r =(1/4) *(s-1); N1s =(1/4) *(r-1);

N2r =(1/4) *(1-s); N2s =(1/4)*(-r-1);

N3r =(1/4) *(1+s); N3s =(1/4) *(1+r);

208 N4r =(1/4)*(-1-s); N4s =(1/4) *(1-r);
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B1=[ys*N1r -yr*N1s 0;0 xr*N1s -xs*N1r;

xr*N1s -xs*N1r ys*N1r -yr*N1s];

B2=[ys*N2r -yr*N2s 0;0 xr*N2s -xs*N2r;

xr*N2s -xs*N2r ys*N2r -yr*N2s];

213 B3=[ys*N3r -yr*N3s 0;0 xr*N3s -xs*N3r;

xr*N3s -xs*N3r ys*N3r -yr*N3s];

B4=[ys*N4r -yr*N4s 0;0 xr*N4s -xs*N4r;

xr*N4s -xs*N4r ys*N4r -yr*N4s];

Bm=(1/ detJ)*[B1 B2 B3 B4];

218 km=km+Bm ’*Dm*Bm*detJ;

%Bending Formulation

P21r =0; P21s =0;

P22r =0; P22s =0;

223 P23r =0; P23s =0;

P24r =0; P24s =0;

P25r=xr; P25s=xs;

P26r =2*yr; P26s =2*ys;

P27r =0; P27s =0;

228 P28r =2*x*xr; P28s =2*x*xs;

P29r =2*(xr*y+x*yr); P29s =2*(xs*y+x*ys);

P210r =6*y*yr; P210s =6*y*ys;

P211r =3*x^2*xr; P211s =3*x^2*xs;

P212r =3*(xr*y^2+2*x*y*yr); P212s =3*(xs*y^2+2*x*y*ys);

233 P31r =0; P31s =0;

P32r =0; P32s =0;

P33r =0; P33s =0;

P34r=-2*xr; P34s=-2*xs;

P35r=-yr; P35s=-ys;

238 P36r =0; P36s =0;

P37r=-6*x*xr; P37s=-6*x*xs;

P38r =-2*(xr*y+x*yr); P38s =-2*(xs*y+x*ys);

P39r=-2*y*yr; P39s=-2*y*ys;

P310r =0; P310s =0;

243 P311r = -3*(2*x*xr*y+x^2*yr); P311s = -3*(2*x*xs*y+x^2*ys);

P312r=-3*y^2*yr; P312s=-3*y^2*ys;

Q1=[ys*P31r -yr*P31s ys*P32r -yr*P32s ys*P33r -yr*P33s

-xr*P21s+xs*P21r -xr*P22s+xs*P22s -xr*P23s+xs*P23r

-ys*P21r+yr*P21s+xr*P31s -xs*P31r -ys*P22r+yr*P22s ...

248 +xr*P32s -xs*P32r -ys*P23r+yr*P23s+xr*P33s -xs*P33r];

Q2=[ys*P34r -yr*P34s ys*P35r -yr*P35s ys*P36r -yr*P36s

-xr*P24s+xs*P24r -xr*P25s+xs*P25r -xr*P26s+xs*P26r

-ys*P24r+yr*P24s+xr*P34s -xs*P34r -ys*P25r+yr*P25s ...

+xr*P35s -xs*P35r -ys*P26r+yr*P26s+xr*P36s -xs*P36r];

253 Q3=[ys*P37r -yr*P37s ys*P38r -yr*P38s ys*P39r -yr*P39s

-xr*P27s+xs*P27r -xr*P28s+xs*P28r -xr*P29s+xs*P29r

-ys*P27r+yr*P27s+xr*P37s -xs*P37r -ys*P28r+yr*P28s ...

+xr*P38s -xs*P38r -ys*P29r+yr*P29s+xr*P39s -xs*P39r];

Q4=[ys*P310r -yr*P310s ys*P311r -yr*P311s ys*P312r -yr*P312s

258 -xr*P210s+xs*P210r -xr*P211s+xs*P211r -xr*P212s+xs*P212r

-ys*P210r+yr*P210s+xr*P310s -xs*P310r ...

-ys*P211r+yr*P211s+xr*P311s -xs*P311r ...
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-ys*P212r+yr*P212s+xr*P312s -xs*P312r ];

Q=(1/ detJ)*[Q1 Q2 Q3 Q4];

263 Bb=Q/C;

kb=kb+Bb ’*Db*Bb*detJ;

end

%Superposition of Membrane and Bending Stiffness Matrices

268 k11m=km(1:2 ,1:2);k12m=km(1:2 ,3:4);

k13m=km(1:2 ,5:6);k14m=km(1:2 ,7:8);

k21m=km(3:4 ,1:2);k22m=km(3:4 ,3:4);

k23m=km(3:4 ,5:6);k24m=km(3:4 ,7:8);

k31m=km(5:6 ,1:2);k32m=km(5:6 ,3:4);

273 k33m=km(5:6 ,5:6);k34m=km(5:6 ,7:8);

k41m=km(7:8 ,1:2);k42m=km(7:8 ,3:4);

k43m=km(7:8 ,5:6);k44m=km(7:8 ,7:8);

k11b=kb(1:3 ,1:3);k12b=kb(1:3 ,4:6);

k13b=kb(1:3 ,7:9);k14b=kb (1:3 ,10:12);

278 k21b=kb(4:6 ,1:3);k22b=kb(4:6 ,4:6);

k23b=kb(4:6 ,7:9);k24b=kb (4:6 ,10:12);

k31b=kb(7:9 ,1:3);k32b=kb(7:9 ,4:6);

k33b=kb(7:9 ,7:9);k34b=kb (7:9 ,10:12);

k41b=kb (10:12 ,1:3);k42b=kb (10:12 ,4:6);

283 k43b=kb (10:12 ,7:9);k44b=kb (10:12 ,10:12);

A=areaP(X,Y);

k=0.3*E*th*A;

k5=-0.5*k;

z21=zeros (2,1); z23=zeros (2,3);z31=zeros (3,1);

288 KE=[k11m z23 z21 k12m z23 z21 k13m z23 z21 k14m z23 z21

z23 ’ k11b z31 z23 ’ k12b z31 z23 ’ k13b z31 z23 ’ k14b z31

z21 ’ z31 ’ k z21 ’ z31 ’ k5 z21 ’ z31 ’ k5 z21 ’ z31 ’ k5

k21m z23 z21 k22m z23 z21 k23m z23 z21 k24m z23 z21

z23 ’ k21b z31 z23 ’ k22b z31 z23 ’ k23b z31 z23 ’ k24b z31

293 z21 ’ z31 ’ k5 z21 ’ z31 ’ k z21 ’ z31 ’ k5 z21 ’ z31 ’ k5

k31m z23 z21 k32m z23 z21 k33m z23 z21 k34m z23 z21

z23 ’ k31b z31 z23 ’ k32b z31 z23 ’ k33b z31 z23 ’ k34b z31

z21 ’ z31 ’ k5 z21 ’ z31 ’ k5 z21 ’ z31 ’ k z21 ’ z31 ’ k5

k41m z23 z21 k42m z23 z21 k43m z23 z21 k44m z23 z21

298 z23 ’ k41b z31 z23 ’ k42b z31 z23 ’ k43b z31 z23 ’ k44b z31

z21 ’ z31 ’ k5 z21 ’ z31 ’ k5 z21 ’ z31 ’ k5 z21 ’ z31 ’ k ];

end
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Appendix D. Miscellanious MATLAB Codes

Listing D.1: View Geometry of “params” Structure
function geomview(params ,type ,varargin)

if isempty(varargin)==1

config =1;

4 elseif isempty(varargin)==0

config=varargin {1};

end

params=params{config };

if isfield(params ,’points ’)==0

9 mh=params.mesh;

elseif isfield(params ,’points ’)==1

mh=params.points;

end

[~,n]=size(params.n);

14 ngpx =1;

for i=1:n

ngpx=ngpx+params.n{i}-1;

end

ngpy=params.m{1};

19 x=mh(:,1); y=mh(:,2);

[ngp ,dim]=size(mh);

if dim ==2

z=zeros(ngp ,1);

else

24 z=mh(:,3);

end

figure

if strcmp(type ,’points ’)

plot3(x,y,z,’x’); axis equal; grid

29 else

x=reshape(x,ngpy ,ngpx);

y=reshape(y,ngpy ,ngpx);

z=reshape(z,ngpy ,ngpx);

if strcmp(type ,’mesh’)

34 m=mesh(x,y,z); axis equal

set(m,’facecolor ’,’none’)

set(m,’EdgeColor ’ ,[1 0 0])

elseif strcmp(type ,’surf’)

surf(x,y,z); axis equal

39 end

end

Listing D.2: View Degrees of Freedom for a Geometry
function dofview(params ,dof ,varargin)

if isempty(varargin)==1

config =1;

elseif isempty(varargin)==0

5 config=varargin {1};

end

params=params{config };
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if isfield(params ,’points ’)==0

mesh=params.mesh;

10 elseif isfield(params ,’points ’)==1

mesh=params.points;

end

xcoor=mesh (:,1);

ycoor=mesh (:,2);

15 n=length(xcoor);

for i=1:n

num(i)=dof*(i-1) +1;

end

numlbl=num2str(num ’);

20 fig = figure;

text(xcoor ,ycoor ,numlbl)

axis([min(xcoor) max(xcoor) min(ycoor) max(ycoor)])

set (fig , ’Units ’, ’normalized ’, ’Position ’, [0,0,1,1]);

25 end

Listing D.3: Transfer Aerodynamic Loads from VLM to FEM
function [F,Fpx ,Fpy ,Fpz]= Faero(tor ,nelx ,nelxp ,nely ,dof ,Dest)

d=tor.drag;

g=tor.geo;

l=tor.lattice;

5 r=tor.ref;

res=tor.results;

s=tor.state;

dofn=dof;dofe =4* dofn;

10 nelp=nely*nelxp;

nel=nelx*nely;

tdof=dof*(nely +1)*(nelx +1);

F=res.F;

xlat=l.XYZ(:,:,1);

15 alpha=s.alpha;

rhoinf=s.rho;

Vinf=s.AS;

S=r.S_ref;

CDo=sum(d.CD0);

20 CDmax =1;

%Split Panel Force into Nodal Forces

Fpx=F(:,2);

Fpy=-F(:,1);

25 Fpz=F(:,3);

Fn=zeros(tdof ,1);

edof=zeros(dofe ,nel);

for el=1: nel

n1=floor ((el -1)/nely);

30 n2=rem(el -1,nely);

ni=[n1 n2+1;n1+1 n2+1;n1+1 n2;n1 n2];

for node =1:4

168



n1i=ni(node ,1); n2i=ni(node ,2);

for dof =1: dofn

35 edof((node -1)*dofn+dof ,el)=...

dofn*n1i*(nely +1)+dofn*n2i+dof;

end

end

switch dof

40 case 2

Fn(edof (1:2:7 ,el) ,1)=...

Fn(edof (1:2:7 ,el) ,1)+0.25* Fpx(el);

Fn(edof (2:2:8 ,el) ,1)=...

Fn(edof (2:2:8 ,el) ,1)+0.25* Fpy(el);

45 case 3

Fn(edof (1:3:10 ,el) ,1)=...

Fn(edof (1:3:10 ,el) ,1)+0.25* Fpz(el);

case 6

Fn(edof (1:6:19 ,el) ,1)=...

50 Fn(edof (1:6:19 ,el) ,1)+0.25* Fpx(el);

Fn(edof (2:6:20 ,el) ,1)=...

Fn(edof (2:6:20 ,el) ,1)+0.25* Fpy(el);

Fn(edof (3:6:21 ,el) ,1)=...

Fn(edof (3:6:21 ,el) ,1)+0.25* Fpz(el);

55 otherwise

error(’Unknown DOF model choice (@Faero: Line 56)’)

end

end

60 %Transfer Root Chord Loads to 2nd Chord

Fn(dof*(nely +1) +1:2* dof*(nely +1))=Fn(dof*(nely +1) ...

+1:2* dof*(nely +1))+Fn(1: dof*(nely +1));

if Dest ==1

65 %Calculate Skin Friction Drag

qinf =0.5* rhoinf*Vinf ^2;

Drag=qinf*S*(CDo+(CDmax -CDo)*sin(alpha));

Dragbody =[cos(alpha) sin(alpha);

-sin(alpha) cos(alpha)]*[0; Drag];

70 Normal=Dragbody (1); Axial=Dragbody (2);

chord=zeros(nelx ,1);LE=zeros(nelx ,1);TE=zeros(nelx ,1);

le=zeros(nelx ,1);te=zeros(nelx ,1);

for ch=1: nelx

LE(ch)=(ch -1)*nely +1;

75 le(ch)=ch*(nely +1) +1;

TE(ch)=(ch)*nely;

te(ch)=(ch+1)*(nely +1);

chord(ch)=xlat(TE(ch) ,3)-xlat(LE(ch) ,2);

end

80 chtot=sum(chord);

for ch=1: nelx

Nch=Normal *( chord(ch)/chtot);

Ach=Axial*( chord(ch)/chtot);

N=Nch/(nely +1);
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85 A=Ach/(nely +1);

switch dof

case 2

Fn(2*le(ch):2:2* te(ch) ,1)=...

Fn(2*le(ch):2:2*te(ch) ,1)-A;

90 Fpy(LE(ch):TE(ch))=Fpy(LE(ch):TE(ch))-A;

case 3

Fn(3*le(ch) -2:3:3*te(ch) -2,1)=...

Fn(3*le(ch) -2:3:3*te(ch) -2,1)+N;

Fpz(LE(ch):TE(ch))=Fpz(LE(ch):TE(ch))+N;

95 case 6

Fn(6*le(ch) -4:6:6*te(ch) -4,1)=...

Fn(6*le(ch) -4:6:6*te(ch) -4,1)-A;

Fn(6*le(ch) -3:6:6*te(ch) -3,1)=...

Fn(6*le(ch) -3:6:6*te(ch) -3,1)+N;

100 Fpy(LE(ch):TE(ch))=Fpy(LE(ch):TE(ch))-A;

Fpz(LE(ch):TE(ch))=Fpz(LE(ch):TE(ch))+N;

otherwise

end

end

105 end

F=Fn;

end
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