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Abstract

We introduce a rigorous mathematical theory for the analysis of local histograms, and

study how they interact with textures that can be modeled as occlusions of simpler

components. We first show how local histograms can be computed as a system of

convolutions and discuss some basic local histogram properties. We then introduce a

probabilistic, occlusion-based model for textures and formally demonstrate that local

histogram transforms are natural tools for analyzing the textures produced by our

model. Next, we characterize all nonlinear transforms which satisfy the three key

properties of local histograms and consider the appropriateness of local histogram

features in the automated classification of textures commonly encountered in histo-

logical images. When classifying tissues, pathologists indicate they focus on simple,

locally-defined features that essentially involve pixel counting, such as the number of

cells in a region of given size, the size of the nuclei within these cells, and the distri-

bution of color within both. We discuss how local histogram transforms can be used

to produce numerical features that, when fed into mainstream classification schemes,

mimic the baser aspects of a pathologist’s thought process.
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LOCAL HISTOGRAMS FOR PER-PIXEL CLASSIFICATION

I. Introduction

Local histograms are a well-studied signal processing tool [6, 7, 9–19, 22–24, 26–

28, 32, 34–36]. They permit one to count the frequency of occurrence of a given feature

over a small neighborhood of any given pixel. They have great potential in image

classification, as they mimic certain visual cues that people use when hand-segmenting

an image. In particular, rather than considering pixels in isolation, they account for

the distribution of colors within the neighborhood of a given location [26, 27]. The

focus of this research is the development of new mathematical theory, specifically

that based upon local color histograms, to be used in the development of image

classification systems, such as those considered in [2, 3].

Our focus is a rigorous mathematical analysis of local histograms. This theory

arose during the development of an automatic classification scheme for histology (Fig-

ure 1(a)) [2, 3, 5, 26–28]. There, we considered the appropriateness of using local his-

tograms as features in the automated classification of textures commonly encountered

in images of hematoxylin and eosin (H&E) stained tissues. Even when a human user

can easily delineate and identify the different tissues present in such multiple-tissue

images (Figure 1(a)), segmenting them by hand (Figure 1(b)) can be time-consuming

and error-prone. As such, there is a pressing need to automate as much of this process

as possible.

One of the main contributions of this dissertation is the realization that local

histograms—though difficult to analyze in general—can be well-understood in the

special case where the images are generated according to random processes. Simple
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(a) (b)

Figure 1. (a) A digital microscope image of a H&E-stained tissue section. (b) The histology image
has been manually segmented and classified by a medical expert, resulting in the per-pixel labels.
From darkest to lightest, the labels indicate cartilage, pseudovascular tissue, connective tissue, bone,
fatty tissue, and background pixels, respectively. Our goal is to automate this segmentation-and-
classification process. One of the purposes of this dissertation is to provide a theoretical justification
for using local histograms to achieve this goal.

examples of the types of random images we consider are given in Figure 2(a), (b), and

(c), denoted fa, fb and fc, respectively. Each of these 128× 128 images is generated

by the following process: at each pixel location, a coin is flipped, resulting in either

a white pixel value (heads) or a black pixel value (tails). The average intensity of

each image depends on the fairness of the coin used to generate it: letting ρ denote

the probability of getting heads, fa, fb and fc were generated with ρ being 1
4
, 1

2

and 3
4
, respectively. By compositing fa, fb and fc according to the values given in

Figure 2(d) we obtain Figure 2(e). Though one can easily synthesize Figure 2(e)

from Figure 2(a), (b), (c), and (d), the real-world goal is to do the opposite: given an

image like Figure 2(e), we want to find the spatial relationships Figure 2(d) between

distinct texture types Figure 2(a), (b), and (c).

The reason we care about randomly generated synthetic images like Figure 2(e)

is because they seem to be a good model for the types of images that often arise

2



(a) (b) (c)

(d) (e)

Figure 2. Three 128×128 black and white images (a), (b) and (c) that were randomly generated by a
sequence of Bernoulli random variables—coin flips—with ρ = 1

4 , 1
2 and 3

4 , respectively. Compositing
these three images together according to (d) produces an image (e) whose image statistics vary by
location. Such images model those commonly found in digital microscopy. We want an algorithm
to segment and classify such images. That is, given (e) and knowing the image statistics of each
individual texture (a), (b) and (c), we want to produce a good approximation of (d). The theory
presented in this dissertation provides theoretical justification for one such algorithm: assign a label
to any given pixel by comparing its local histogram to the three distinct distributions of pixels found
in (a), (b) and (c).

in digital microscopy of biological tissues [1, 3, 28]. Indeed, one way to think about

such real-world images is that they are a mosaic of several distinct textures, each one

being a relatively uniform composite of more basic texture types. For example, the

histology image in Figure 1(a)—thumbnailed in Figure 3(a)—is comprised of more

basic textures such as cartilage (Figure 3(b)), connective tissue (Figure 3(c)), and

pseudovascular tissue (Figure 3(d)). Moreover, each tissue itself is comprised of more

3



basic components, such as the particular combination of dark red, dark purple, and

light pink of typical pseudovascular tissue versus the dark and light purple of cartilage.

To summarize, our goal is to segment and classify real-world images such as Fig-

ure 1(a) according to texture (tissue) type; in order to have a mathematically rigor-

ous analysis of this problem, we model these images as being the result of random

processes (Figure 2(e)). In particular, we focus on a rigorous analysis of how local

histograms can be used to solve this problem. We favor histograms since they are a

natural way of estimating the distribution of a given texture’s pixel values; as seen in

Figure 3(f), (g), and (h), such histograms are a key discriminating feature between

distinct texture types. It is important, however, that these histograms are computed

locally—over a fixed neighborhood of every pixel location—since global histograms,

such as the one depicted in Figure 3(e) derived from Figure 3(a), destroy spatial con-

text by mixing all of the individual distributions together. A similar issue arises in

time-frequency analysis: spectrograms preserve spatial context while Fourier trans-

forms do not. Indeed, local histograms are similar to spectrograms: in a neighborhood

of a given point, the local histogram transform estimates the frequency of occurrence

of a given value while the spectrogram estimates frequency in the traditional sense.

All of our main results are based on the following idea: often the local histograms

of a texture are, in fact, a combination of local histograms of more basic textures. For

example, the local histograms of pseudovascular tissue (Figure 3(d)) are combinations

of three simpler distributions—one pink, another purple and a third reddish-pink—

while those of connective tissue (Figure 3(c)) are mixtures of only the first two. We

formally prove that this intuition is valid, provided we work with randomly generated

textures. This paves the way for a segmentation and classification scheme that assigns

a texture label to any given pixel according to how its local histogram compares

against those learned from training data.

4



(a) Histology image (b) Cartilage (c) Connective (d) Pseudovascular

(e) The red-blue his-
togram of (a).

(f) The red-blue his-
togram of (b).

(g) The red-blue his-
togram of (c).

(h) The red-blue his-
togram of (d).

Figure 3. A 1200 × 1200 histology image exhibiting multiple tissue types (a) and the 256 × 256
histogram of its red-blue (RB) pixel values (e). As is common with H&E staining, the tissues in (a)
are purple-pink and so we ignore the green component of these red-green-blue (RGB) images when
computing (e). This histogram is viewed from above, with red and blue ranging from 0 to 255 on the
horizontal and vertical axes, respectively; here the height of the histogram is proportional to darkness
for the sake of readability. In (b), (c) and (d) we zoom in on three 128× 128 patches extracted from
(a), each of which exhibit a single tissue type, namely cartilage, connective tissue and pseudovascular
tissue, respectively. Each of these three tissue types has a distinct distribution of pixel values, as
evidenced by their corresponding RB histograms (f), (g) and (h). These 256 × 256 histograms are
similar to (e), but are only computed over those points of a given type according to the ground truth
labels in Figure 1(b). In particular, the histogram (f) of cartilage (b) is computed over all points
labeled in black in Figure 1(b). We see that cartilage is darker, on average, than connective: (f) is
distributed more towards the lower left-hand side than (g) is. Moreover, pseudovascular is similar to
connective, but possesses additional reddish-pink structures, as evidenced by the subdiagonal blob
found in (h), but not (g). As such, it is plausible that local histograms can serve as discriminating
features in segmentation-and-classification algorithms.
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1.1 Contributions

In this section, we highlight the main results of this dissertation and discuss the

publications that have arisen from this research. Our research focuses on provid-

ing a rigorous mathematical analysis of local histograms. We first show that they

can be computed as a system of convolutions (Theorem 1). In Theorem 3, we find

a relationship between local histograms and images that are composites of several

distinct textures: the local histograms of an image over a given neighborhood are

approximately, on average, a combination of the local histograms of the tissues that

comprise the image in that neighborhood. In Theorem 4, we show that, under cer-

tain hypotheses, this approximation becomes perfect, on average. Various methods

for constructing probabilistic image models for which these hypotheses hold are given

in Theorems 6, 7, and 8. These results and their proofs, along with a proof-of-concept

segmentation-and-classification algorithm, have been submitted in the journal article

“Local Histograms and Image Occlusion Models” [27].

Having found some nice relationships between local histograms and composite

images, we then characterize all (possibly nonlinear) transforms which satisfy the

three key properties of local histograms. In Theorem 10, we formally show that these

properties are almost unique to local histograms. In particular, we show that local

histograms are essentially the only transforms that distribute over random compos-

ites, on average. Having this understanding of the average behavior of such local

histograms, we then turn to the subject of how closely this average approximates a

typical local histogram. That is, we compute the variance of the local histograms of

a composite image (Theorem 11), showing that the distance of our local histograms

from the average is highly dependent on the scale of the local histogram window. To

compute this variance, we necessarily make several simplifying assumptions on the

nature of the random images in question; in Theorem 13, we provide a method for

6



constructing image models which demonstrates that these assumptions are indeed

realistic. These results and their proofs are presented in the journal article “Local

Histograms and Texture Classification” [29] which is in its final stages of preparation.

In addition to the two main journal articles mentioned above, the main results of

this PhD research are also included in two conference proceedings. The conference

proceeding “Local Histograms for Classifying H&E Stained Tissues” [26] introduces a

rigorous mathematical theory for the analysis of local histograms and discusses its use-

fulness in the automated classification of textures commonly encountered in histologi-

cal images. The conference proceeding “A Domain-Knowledge-Inspired Mathematical

Framework for the Description and Classification of H&E Stained Histopathology Im-

ages” [28] presents an overview of our mathematical framework for the segmentation

and classification of histology images.

In addition to the major contributions arising from this work in image processing,

the journal article “Fast Computation of Spectral Centroids,” [30] which represents a

refinement of the MS research [25], has been published in Advances in Computational

Mathematics. Finally, the book chapter “Finite Frames and Filter Banks” is to appear

in Finite Frames: Theory and Application.
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The following is a list of current publications that have arisen during this research:

Journal Articles

1. Massar, Melody L., Matthew Fickus, Erik Bryan, Douglas T. Petkie, and An-

drew J. Terzuoli, Jr. “Fast Computation of Spectral Centroids,” Advances in

Computational Mathematics, 35: 83–97 (2011).

2. Massar, Melody L., Ramamurthy Bhagavatula, Matthew Fickus, and Jelena

Kovačević. “Local Histograms and Image Occlusion Models,” submitted to:

Applied and Computational Harmonic Analysis, arXiv:1105.4069, 21 pages.

3. Massar, Melody L. and Matthew Fickus. “Local Histograms and Texture Clas-

sification,” in preparation, to be submitted to: Journal of Fourier Analysis and

Applications.

Refereed Book Chapters

5. Fickus, Matthew, Melody L. Massar, and Dustin G. Mixon. “Finite Frames

and Filter Banks,” to appear in: Finite Frames: Theory and Application, Peter

G. Casazza and Gitta Kutyniok eds., Birkhäuser, 40 pages.

Conference Proceedings

6. Massar, Melody L., Ramamurthy Bhagavatula, Matthew Fickus, and Jelena

Kovačević. “Local Histograms for Classifying H&E Stained Tissues,” Proceed-

ings of the 26th Southern Biomedical Engineering Conference, 348–352 (2010).

7. Massar, Melody L., Ramamurthy Bhagavatula, John A. Ozolek, Carlos A. Cas-

tro, Matthew Fickus, Jelena Kovačević. “A Domain-Knowledge-Inspired Math-

ematical Framework for the Description and Classification of H&E Stained

Histopathology Images,” Proceedings of SPIE, 8138: 81380U/1–7 (2011).
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1.2 Outline

We begin in Chapter II with a short review of the background literature of local

histograms, occlusions, and histology image classification. In Chapter III we discuss

local histograms: their basic properties, how to efficiently compute them using con-

volutions, and how they interact with occlusions. In Chapter IV, we characterize

all nonlinear transforms which satisfy the three key properties of local histograms.

In Chapter V, we then extend our theory by computing the variance of the local

histogram transform. In the final chapter, we present a preliminary segmentation-

and-classification algorithm in which local histograms are decomposed using principal

component analysis (PCA).
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II. Literature Review

In this chapter, we discuss the literature relevant to our research. We begin

our review in Section 2.1 with a discussion of the background literature of local

histograms. Local histograms are used in image processing to compute the number

of times a given feature occurs within a neighborhood of a given pixel [6, 7, 9–

19, 22–24, 26–28, 32, 34–36]. In particular, local color histograms [12, 13, 18, 19,

26–28, 32, 35, 36] , local orientation histograms [6, 7, 9–11, 15], and local spectral

histograms [22–24] allow us to compute the number of times a given pixel intensity,

edge orientation, or spatial frequency, respectively, occur within a neighborhood of

a given location. Background literature of each of these three types of histogram

transforms are discussed in detail below.

In Section 2.2, we discuss the background literature of occlusion models [4, 20, 21,

31, 37, 38]. Such models are based on the ideas of representing an image as a collage

of different objects. When a texture can be represented as an occlusion of more basic

components, we expect it to interact well with local histograms, that is, we expect

the local histograms of such textures to be a combination of the local histograms of

the more basic components. The background literature of several occlusion models

and their statistical properties are discussed below.

Section 2.3 provides a review on the literature of per-pixel texture classification,

specifically classification of histology images like the one shown in Figure 1(a). We

consider the appropriateness of applying local histogram features to the classification

problem. Details of classification systems for histology images are given in [1–3, 5];

more properties and details of the mathematical framework of local histograms and

occlusion models are given in [26–28].

10



2.1 Local Histograms

Local histograms are a well-studied signal processing tool. They have applications

in image classification, image registration, computer graphics, computer vision, etc.

They are used to compute the frequency of occurrence of a given feature within a

neighborhood of a given pixel. Though they are often used to compute the distribution

of color within the neighborhood of a given location, they can also be used to compute

local distributions of edge orientations and spatial frequencies. Before we look at

these local histograms and their applications, we first look at some methods used to

compute them.

In [17, 34], a method for computing the local histograms of a grayscale image is

presented. The computation involves convolving level sets of the input image with

a binary kernel. From this, it can be shown that local histograms can be com-

puted by convolving each level curve of a grayscale image with a binary kernel; we

generalize this result in Theorem 1(a). This method of computing smoothed, locally-

weighted histograms as two-dimensional spatial convolutions is also used in [16], where

a means for computing derivatives and integrals of locally-weighted histograms over

large neighborhoods is presented.

In [18, 19], histograms of continuous images are studied. Though this disserta-

tion focuses on histograms of discrete images, such continuous theory can help one

understand the discrete theory at a deeper level. Histograms are usually computed

over discrete images as the number of pixels in a particular bin. In order to obtain

a “density” independent of the bin-width, one can divide the histogram by the bin-

width [18]. In continuous images, it is impossible to simply count the number of

instances a given image obtains a given pixel value, as this will occur an infinite num-

ber of times, in general. Rather, in continuous images, one instead computes areas

of image regions. The result is normalized by dividing by the total available area.

11



In [18], these facts are illustrated by a few one- and two-dimensional examples. This

idea is also applied to local histograms of continuous images. In other words, rather

than looking at the histogram of the whole image, regions of interest are considered

by computing histograms over a windowed portion of an image.

Because the set of points where a continuous image obtains a particular pixel value

will often have measure zero, the integral of this particular indicator function is zero.

In [18, 19], rather than integrating over this indicator function, they first convolve

the image with a Gaussian that has a small standard deviation and then integrate

the image that has value one at a given intensity, but slowly decays to zero for values

close to the given intensity. That is, they replace a level curve, which has measure

zero, with a diffuse ribbon which has a nontrivial integral.

2.1.1 Local Color Histograms.

Local color histograms compute the distribution of color within the neighborhood

of a given location. Such local histograms have been used in [26–28, 32] for seg-

mentation and classification. In [32], the Wasserstein distance is used to compare

the similarity of normalized histograms. This comparison is used in a nonparametric

region-based active contour model for segmenting cluttered scenes. Mathematical

properties of this proposed model, along with their proofs and experimental verifica-

tions, are also presented.

In [18], the idea of locally orderless images is presented. These images discard

order at the fine level and replace it with order at the coarse level. In other words,

the local image structure is replaced with local histograms. They describe how to

construct such images, render them, and use them in several local and global image

processing operations. Meanwhile, in [12], the versatility of locally orderless images

is demonstrated by considering a variety of image processing tasks, such as variations

12



of adaptive histogram equalization, methods for noise and scratch removal, texture

rendering, classification, and segmentation. In [19], a formal framework for locally

orderless images is discussed. It is shown that in image segmentation, locally orderless

images have distinct advantages over blurred images. In particular, when an image

is blurred, the pixels lose their origin and the boundary is not clear. For example, if

we blurred an image that had a uniform green region and a uniform red region, the

boundary between the two regions would be yellow and not belong to the green or

red regions. However, in locally orderless images, the pixels do not change their hue

and a boundary area can be determined by the overlap in regions. In addition to the

applications above, since locally orderless images can be easily rendered, they may

also be used in image compression.

A global mode is the maximizer of a histogram, that is, the value that occurs most

frequently. Similarly, a local mode is the maximizer of a local histogram. In [36], local

mode filtering is used for noise reduction. This method of using the local mode is

preferred over linear filtering and global modes as it preserves edges and details in

the image. Another method that preserves edges is bilateral filtering [35]. Images are

smoothed by means of a nonlinear combination of nearby image values. In particular,

it replaces a pixel value with an average of similar and nearby pixel values. In [13],

filters satisfying certain image measurement requirements of scale and imprecision are

discussed. Among these filters are the mean filter, the median filter, and the mode

filter. In particular, a system based on mode filtering and its behaviour over scale

and imprecision is presented.

2.1.2 Local Orientation Histograms.

Histograms of oriented gradients have been used for object detection, matching

image features, gesture recognition, and texture classification [6, 7, 9–11, 15]. The

13



local orientations in the image are obtained by calculating the first derivatives in two

orthogonal directions. Because the Gaussian has a smoothing effect and the amount

of noise reduction can be controlled by the scale parameter, the partial derivatives in

the image are often calculated by filtering the image in the x and y directions with

the filters that implement the derivatives of the Gaussian function. Edges and corners

can also be found using image moment transforms; properties of such transforms for

both continuous and digital images are discussed in [8].

Local object appearance and shape can often be characterized by the local his-

tograms of gradient directions or edge orientations. In particular, for better invariance

to illumination and shadow, the local histograms can be contrast-normalized giving us

histograms of oriented gradient (HOG) descriptors. In [7], HOG descriptors are used

as feature sets in a linear support vector machine (SVM) and outperform the existing

feature sets used for object detection. More details on the best spatial sampling,

orientation sampling, and contrast-normalization method are also discussed. In [6],

a method for matching image features is proposed. Rather than using the common

method of scale-invariant-feature-transform-descriptors (SIFT), they propose to use

a new method that will reduce the negative effect of scale error. The method involves

modifying the HOG descriptor’s regular grid to an irregular grid. In [10], a method

using orientation histograms to recognize hand gestures is presented.

Local orientation histograms have also been used in texture classification [9, 11,

15]. In [14], histograms of multiple resolutions of an image are computed to form

a multiresolution histogram. Such histograms directly encode spatial information

while still preserving several desirable properties of the histogram, such as being fast

to compute, achieving significant data reduction, being invariant to rigid motions, and

being robust to noise. In [9, 11, 15], this idea of computing multi-resolution histograms

is applied to local image orientation. Because the dominant orientation depends
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strongly on the observation scale, the macro-texture is evaluated by calculating the

distribution of the dominant orientations for all pixels in the image that sample the

texture at a micro-level.

2.1.3 Local Spectral Histograms.

Local spectral histograms are used for image and texture segmentation and tex-

ture classification [22–24]. The method for computing local spectral histograms is

discussed in [22, 23]. The spectral histogram is defined with respect to a bank of

filters. A filter selection algorithm that maximizes classification performance is pro-

posed in [22]. Filters that have shown to be effective for different kinds of textures

include the intensity filter, difference or gradient filters, Laplacian of Gaussian filters,

and Gabor filters with both sine and cosine components [22].

To compute the local spectral histogram, a sub-band image is computed for each

filter by taking a window in an input image and linearly convolving it with each filter.

Then the histogram of each of the sub-band images is computed. The collection of

these histograms, appropriately scaled, is called the spectral histogram of an image

window. In other words, the spectral histogram of an image window is a vector

consisting of marginal distributions of filter responses.

The distance between two spectral histograms is computed using a χ2-statistic.

Applying this distance measure to spectral histograms provides a means for texture

classification. Several properties of spectral histograms are proved in [22]: it is shown

that the spectral histogram is translation-invariant and a nonlinear operator. Addi-

tionally, with sufficient filters, a spectral histogram can uniquely represent any image

up to a translation. Finally, all of the images sharing a spectral histogram define an

equivalence class.

The process of applying local spectral histograms for image and texture segmen-
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tation in [23, 24] includes three major steps. First, an initial segmentation result is

obtained by classifying local windows. This is done by computing the local spectral

histograms of a subsample of pixels and then using the distance measure to determine

the classification of the pixels. After this first step, an algorithm is used to iteratively

update the segmentation using the derived probability models. The final step involves

reducing the boundary uncertainty. In particular, the large spatial window used for

spectral histograms can cause a large segmentation error to occur on the boundary

of the textures. The region boundaries are localized by building refined probability

models that are sensitive to spatial patterns in segmented regions.

2.2 Occlusions

In this dissertation, we formally study how local histograms interact with tex-

tures that are formed as the occlusion of simpler components. Intuitively, the local

histograms of the texture are related to the local histograms of the components that

comprise the texture. Indeed, if we could break apart the histogram of the texture,

we could gain information about what components are present and to what degree.

We now give an overview of the literature on different occlusion image models and

their applications.

Certain image textures can be thought of as occlusions of more basic components,

that is, images are collages of statistically independent objects [20]. Several statistical

models for occlusions have been presented [4, 20, 21, 31, 37, 38]. The goal of the

models is to simulate images that well-approximate the statistics of natural images.

In [20], a stochastic model that takes occlusions into account and is both translation-

invariant and fully scale-invariant is presented. Comparing the statistics of the simu-

lated images of the occlusion model with statistics of natural images shows that the

single pixel statistics and the derivative statistics agree well if the simulated images
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are block averaged a few times for suitable subpixel resolution. Models of images that

capture the invariance properties of real scenes could be used in image compression

and in the study of sensory processing in biology.

In [21], an occlusion model based on the notion that the three-dimensional world

creates a collage of occluded objects is presented. This model is called the dead

leaves model and resembles images that were formed by randomly adding independent

elementary shapes in layers. A comparison of the statistics of the occlusion model

with the empirical statistics of two large databases of natural images gives excellent

qualitative and good quantitative agreement. Such statistics have applications in

computational and biological vision. The image model comes close to duplicating

several elementary statistics of natural images and, at that time, was the only image

model to do so. A result characterizing the distribution of the boundary between the

shapes generated by the dead leaves model is given in [4].

The apparent scale-invariance exhibited by the statistics of natural images is dis-

cussed in [31]. In particular, there do not exist any scale-invariant probability mea-

sures supported on image functions. In order to construct such probability measures,

their samples must be generalized functions. The basic idea of the paper is to assume

that an image having clutter c1 + c2 can be constructed by adding independent im-

ages with clutter c1 and c2. Image models having this property are studied and a few

axioms for such models are presented. These axioms are shown to be satisfied using

the convergence of random wavelet expansions. The authors of [31] believe that the

axioms present a natural model for images that is closer to the truth than Gaussian

models, but nevertheless do not capture all the basic qualitative properties of such

images.

In [37, 38], a statistical approach for partially occluded object recognition is pre-

sented. This approach is based on matching extracted local features to template
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features. Two different statistical occlusion models are introduced and experiments

illustrating the differences between the two occlusion models are presented. In [38],

model-based statistical algorithms for recognition are used on examples from syn-

thetic aperture radar imagery to evaluate the recognition performance and illustrate

their advantages over other algorithms.

2.3 Per-Pixel Texture Classification

Per-pixel classification is important in many applications. Classification of aerial

images has applications in automatic target recognition (ATR) and image registration.

In particular, one of the long-term goals of this research is to apply local histogram

features to a problem of passive navigation and surveillance, namely the development

of an image-based passive navigation system which performs a real-time, per-pixel

classification of the surrounding terrain, and registers the result to an internally stored

map. Up to this point, our work in this area has focused on a similar biomedical image

processing problem [1–3, 5], and has been performed in conjunction with Professor

Jelena Kovacevic’s group at Carnegie Mellon University. The focus of [26–28] is

to present a rigorous mathematical theory for the analysis of local histograms and

consider the appropriateness of their use in the classification of histology images,

whereas [1–3, 5] focus more on the classification system and the method used to

automatically identify and delineate histology images.

In [26–28], we discuss some of the many image features that pathologists indicate

they use when classifying tissues by hand. We present a probabilistic, occlusion-based

model for textures which shows how tissue-similar textures can be built from simpler

ones; details of this work are given in Chapter III. After proving some properties of

local histograms, we discuss how they relate to our model. We also discuss how local

histogram transforms can be used as numerical features in the classification system
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to mimic the pathologist’s thought process.

In [1–3, 5], a framework and methodology for the automatic identification and de-

lineation of histology images is presented. Although pathologists can accurately and

consistently identify and delineate tissues and their pathologies, it is an expensive

and time-consuming task, therefore presenting the need for an automated algorithm.

In [3], an example of such an algorithm is validated on a clinical and research applica-

tion and experimental results show great promise towards developing an automated

tool for digital histopathology. We now present our work on the analysis of local

histograms.
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III. Local Histograms and Image Occlusion Models

In this chapter, we discuss some of the basic properties of local histograms. In

particular, we show that local histograms can be computed using convolutions. We

also introduce a model for textures that relies on the concept of image occlusions,

and present one of our main results, that is, on average, the local histograms of the

composite of a sequence of images can be approximated by a convex combination—a

linear combination with nonnegative coefficients that sum to one—of the local his-

tograms of each image. We discuss the conditions under which the approximation

becomes perfect, namely, when the expected value of the graph’s characteristic func-

tion is independent of pixel location, a property we call flatness. We also consider

what properties of occlusion models give us flatness and what operations can be used

to build intricate flat occlusion models from more simple examples.

3.1 Local Histograms

In this section, we formally introduce local histograms, discuss an efficient means

of computing them, and discuss several of their basic properties. We regard our

images as functions from a finite abelian group X of pixel locations into a second

finite abelian group Y of pixel values. That is, an image f is a member of the set

YX := {f : X → Y}. For example, the 1200×1200, 8-bit red-green-blue (RGB) image

given in Figure 1(a) has X = Z2
1200 = Z1200 ⊕ Z1200 and Y = Z3

256, where ZN denotes

the cyclic group of integers modulo N . Here, we note that ⊕ denotes the direct sum of

abelian groups. That is, it is the Cartesian product equipped with pointwise addition;

formally, X ⊕ Y := {(x, y) : x ∈ X , y ∈ Y}, where (x, y) + (x′, y′) := (x + x′, y + y′).

For purple-pink H&E-stained images, we often omit the green channel for the sake

of computational efficiency, at which point Y becomes Z2
256. The local histograms of
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an image f are defined in terms of a weighting function w ∈ RX . In practice, this

function is usually chosen to be a discretized Gaussian or some nonnegative-valued

function whose values sum to one. However, for the purpose of generality, we assume

w to be arbitrary unless stated otherwise. Specifically, the local histogram transform

of f with respect to w is the function LHwf : X ⊕ Y → R,

(LHwf)(x, y) :=
∑
x′∈X

w(x′)δy(f(x+ x′)), (1)

where δy(y
′) := 1 if y′ = y and is otherwise zero. For any fixed x ∈ X , the cor-

responding cross-section of this function, namely (LHwf)(x, ·) : Y → R, counts the

number of instances at which f obtains a given value y in a w-neighborhood of x.

Computing local histograms can be time consuming, especially as X and Y become

large. Noting that |X | denotes the cardinality of X , we have that for a general

weighting function w, a direct computation of (1) requires O(|X |2|Y|) operations:

summing the real values w(x′) for all x′ ∈ X such that f(x + x′) = y. A more

efficient method is given in Theorem 1 below: (1) can be computed as a system of

|Y| convolutions over X , which only requires O(|X ||Y| log |X |) operations if discrete

Fourier transforms are used. In particular, we filter the characteristic function of the

graph of f , namely 1f : X ⊕ Y → R,

1f (x, y) := 1f−1{y}(x) = δy(f(x)) =

 1, f(x) = y,

0, f(x) 6= y,
(2)

with the reversal of w ∈ RX , namely w̃(x) := w(−x). Here, we let f−1{y} denote the

preimage of {y} under f , that is, the set of all x ∈ X such that f(x) = y. We note

that the characteristic function does not distribute over addition and is thus nonlinear.

Therefore, we have that local histograms are also nonlinear; a fact which can easily be
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verified. This method for computing local histograms using convolutions is illustrated

in Figure 4. Alternatively, (1) can be computed as a single convolution over X ⊕ Y ;

here, the tensor product of w ∈ RX with ω ∈ RY is defined as w ⊗ ω ∈ RX⊕Y ,

(w ⊗ ω)(x, y) := w(x)ω(y).

Theorem 1. For any w ∈ RX , ω ∈ RY , f ∈ YX , x ∈ X , and y ∈ Y:

(a) Local histograms (1) can be evaluated as a system of |Y| convolutions over X :

(LHwf)(x, y) = (1f−1{y} ∗ w̃)(x).

(b) Alternatively, (1) may be computed as a single convolution over X ⊕ Y:

(δ0 ⊗ ω) ∗ LHwf = 1f ∗ (w̃ ⊗ ω).

In particular, taking ω = δ0 gives LHwf = 1f ∗ (w̃ ⊗ δ0).

Proof. For (a), replacing x′ with −x′, and substituting δy(f(x−x′)) = 1f−1{y}(x−x′),

a relation which follows from (2), into (1) yields:

(LHwf)(x, y) =
∑
x′∈X

w(x′)δy(f(x+ x′))

=
∑
x′∈X

w(−x′)1f−1{y}(x− x′)

=
∑
x′∈X

w̃(x′)1f−1{y}(x− x′)

= (w̃ ∗ 1f−1{y})(x). (3)
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Figure 4. An example of how to compute local histograms using Theorem 1(a). For the sake
of readability, larger numerical values are represented by darker shades throughout. The source
image (far left) f is 6 × 8 and has grayscale values ranging from 0 to 4. That, is f ∈ YX where
X = Z6 ⊕ Z8 and Y = Z5. Its characteristic function (2) is a {0, 1}-valued 6 × 8 × 5 data cube
whose cross-sections (left column) indicate those locations at which f attains any given value. By
Theorem 1(a), the 6 × 8 × 5 data cube that contains the local histograms of f (far right) may be
computed one level at a time (right column) by filtering these binary-valued cross-sections with
a real-scalar-valued weighting function (middle column). In this simple example, the weighting
function is w = 1

2δ0,0 + 1
8 (δ−1,0 + δ1,0 + δ0,−1 + δ0,1), where the origin lies in the upper left-hand

corner of the grid.
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For (b), the definition of δ0 gives:

[(δ0 ⊗ ω) ∗ LHwf ](x, y) =
∑

(x′,y′)∈X⊕Y

(δ0 ⊗ ω)(x′, y′)(LHwf)(x− x′, y − y′)

=
∑
y′∈Y

ω(y′)(LHwf)(x, y − y′). (4)

Substituting (3) into (4) and using (2), gives our result:

[(δ0 ⊗ ω) ∗ LHwf ](x, y) =
∑
y′∈Y

ω(y′)(w̃ ∗ 1f−1{y−y′})(x)

=
∑
y′∈Y

ω(y′)
∑
x′∈X

w̃(x′)1f−1{y−y′}(x− x′)

=
∑

(x′,y′)∈X⊕Y

(w̃ ⊗ ω)(x′, y′)1f (x− x′, y − y′)

= [(w̃ ⊗ ω) ∗ 1f ](x, y).

For the final conclusion, we note that when ω = δ0, it follows from this result that

LHwf = (w̃ ⊗ δ0) ∗ 1f . In other words, the local histogram can be computed by con-

volving the graph’s characteristic function (2) with a filter w̃⊗ δ0 which is completely

supported on one cross-section of X ⊕ Y where y = 0.

In our next result, we make use of the translation operator Tx : ZXN → ZXN ,

Txϕ(x′) := ϕ(x′ − x). Here, we summarize several other basic properties of local

histograms:

Proposition 2. For any w ∈ RX and f ∈ YX :

(a) If the values of w sum to 1, then the levels of a local histogram transform also

sum to 1:

∑
y∈Y

(LHwf)(x, y) = 1, ∀x ∈ X .
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(b) Local histograms commute with spatial translation Tx:

LHwTx = T(x,0)LHw, ∀x ∈ X .

(c) Adding constants to images shifts their local histograms along Y:

LHw(f + y) = T(0,y)LHwf, ∀y ∈ Y .

(d) Quantizing an image will bin its local histograms:

[LHw(q ◦ f)](x, y′) =
∑
y∈Y

q(y)=y′

(LHwf)(x, y), ∀q : Y → Y ′.

Proof. For any w ∈ RX and f ∈ YX :

(a) Let x ∈ X and assume that
∑

x′∈X w(x′) = 1. By interchanging sums and

noting that for some fixed x′ ∈ X , f(x+x′) is equal to one and only one y ∈ Y ,

it follows that:

∑
y∈Y

(LHwf)(x, y) =
∑
y∈Y

∑
x′∈X

w(x′)δy(f(x+ x′)) =
∑
x′∈X

w(x′) = 1.

(b) Let (x′, y) ∈ X ⊕ Y . The result follows directly from the definitions of local

histogram and translation:

(LHwTxf)(x′, y) =
∑
x′′∈X

w(x′′)δy(T
xf(x′ + x′′))

= (LHwf)(x′ − x, y)

= (T(x,0)LHwf)(x′, y).
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(c) Let (x, y′) ∈ X ⊕ Y . First note that

δy′((f + y)(x+ x′)) =

 1, (f + y)(x+ x′) = y′,

0, (f + y)(x+ x′) 6= y′,

=

 1, f(x+ x′) = y′ − y,

0, f(x+ x′) 6= y′ − y,

= δy′−y(f(x+ x′)). (5)

Combining the definition of the local histogram with (5) gives our result:

[LHw(f + y)](x, y′) =
∑
x′∈X

w(x′)δy′−y(f(x+ x′))

= (LHwf)(x, y′ − y)

= (T(0,y)LHwf)(x, y′).

(d) We claim that:

δy′((q ◦ f)(x+ x′)) =
∑
y∈Y

q(y)=y′

δy(f(x+ x′)). (6)

For fixed x, x′, y′, f, and q, the left-hand-side of (6) equals one if and only if

(q ◦ f)(x + x′) = y′, that is, if and only if there exists some y ∈ Y such that

f(x + x′) = y and q(y) = y′, implying the right-hand-side of (6) is also one.

Alternatively, if the left-hand-side of (6) is zero, then f(x + x′) does not equal

any y such that q(y) = y′ and, therefore, the right-hand-side of (6) is also zero.
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This claim, along with (1), gives our result:

[LHw(q ◦ f)](x, y′) =
∑
y∈Y

q(y)=y′

∑
x′∈X

w(x′)δy(f(x+ x′)) =
∑
y∈Y

q(y)=y′

(LHwf)(x, y).

In the following section, we define a model for the occlusion of a sequence of images

and present one of our main results: on average, the local histogram of the occlusion

of a sequence of images can be approximated as a convex combination of the local

histograms of each image.

3.2 A Probabilistic Image Occlusion Model

In this section, we rigorously confirm our intuition regarding local histograms of

textures generated via random occlusions: if a texture, such as that found in the pseu-

dovascular tissue of Figure 3(d), is some sufficiently-spatially-random combination of

50% pink pixels, 25% purple pixels and 25% red pixels, then its local histograms

should, on average, be a mixture of three simpler distributions, namely a convex

combination of 0.5 of a purely pink distribution with 0.25 purely purple and red ones.

We rigorously show that such decompositions of local histograms indeed exist for

textures arising from a certain class of probabilistic image models.

To see how to formalize these ideas, we consider the example given in the intro-

duction (Figure 2) where at each pixel location, a coin is flipped, resulting in either a

white pixel value (heads) or a black pixel value (tails). One expects that, on average,

the local histogram at any point will consist of two peaks: one in the white portion

of Y , and one in the black. Such an image can be regarded as the result of occluding

a solid black image f0 with a solid white one f1: at each pixel, the flip of a coin de-

termines whether f1 lies on top of f0 at that point, or vice versa. More generally, the

occlusion of a set of N images {fn}N−1
n=0 in YX with respect to a given label function
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ϕ ∈ ZXN is: (
occϕ{fn}N−1

n=0

)
(x) := fϕ(x)(x). (7)

That is, at any pixel location x, the label ϕ(x) determines which of the potential

pixel values {fn(x)}N−1
n=0 actually appears in the composite image occϕ{fn}N−1

n=0 at

that point.

The main results of this dissertation are concerned with when the local his-

tograms (1) of a composite image (7) are related to the local histograms of the

individual images fn. Though it is unrealistic to expect a clean relation for any

fixed ϕ, we can show that these quantities are indeed closely related, provided one

averages over all possible label functions ϕ. Indeed, denoting the probability of get-

ting “heads” in the above toy example as ρ ∈ [0, 1], we would expect the volumes

of the white and black peaks of the composite image’s local histograms to be ρ and

1 − ρ, respectively. That is, LHwoccϕ{f0, f1} should be (1 − ρ)LHwf0 + ρLHwf1, on

average. We generalize this idea so as to permit more realistic textures with more

colors and with spatially-correlated pixels.

To be precise, fix a set of source images {fn}N−1
n=0 and consider the set of all possible

composite images {occϕ{fn}N−1
n=0 }ϕ∈ZXN as defined in (7) and obtained by letting ϕ be

any one of the N |X | elements of ZXN . We refer to a random method for choosing one of

these composites as an occlusion model Φ. Formally speaking, Φ is a random variable

version of the label function ϕ. That is, we work in the probability space (Ω,F ,P),

where the sample space Ω is the set ZXN of all functions from X to ZN , the σ-algebra

F is the power set of ZXN , and the probability measure P is defined as:

P({ϕi}i∈I) :=
∑
i∈I

PΦ(ϕi),

where PΦ is the corresponding probability density function on ZXN , that is, it is a
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nonnegatively-valued function such that
∑

ϕ∈ZXN
PΦ(ϕ) = 1. Going back to our coin-

flipping example, the role of the occlusion model is to determine the likelihood of

choosing a particular ϕ : X → Z2. In particular, in a Bernoulli model, we fix ρ1 ∈

[0, 1], let ρ0 := (1 − ρ1) and define the probability of picking any particular ϕ ∈ ZX2

as PΦ(ϕ) =
∏

x∈X ρϕ(x). We emphasize here that though this method of producing

images is random, it is by no means uniform: the role of the model is to emphasize

certain images over others. In particular, when ρ1 = 1
4

the Bernoulli model will often

produce images similar to Figure 2(a), but will almost never produce images like

Figure 2(b) and (c). Indeed, Figure 2(b) and (c) arise from distinct Bernoulli models

in which ρ1 = 1
2

and ρ1 = 3
4
, respectively. Images such as Figure 2(e) are therefore

regarded as composites of images arising from several distinct models. From this

perspective, our segmentation and classification algorithm boils down to using local

histograms to estimate which of these three models is being exhibited at any pixel.

For a more realistic example, imagine three 128× 128 images f0, f1 and f2 which

exhibit nearly constant shades of pink, purple and red, respectively. Given any label

function ϕ : Z2
128 → Z3 we can produce a corresponding 128 × 128 composite image

occϕ{f0, f1, f2} whose pixels are some mixture of pink, purple and red. For some

choices of ϕ the resulting composites will look like the pseudovascular tissue texture

given in Figure 3(d). However, even in this small example, there are an enormous

number of such possible composites—one for each of the 31282
possibilities for ϕ—and

only a few of these will look like pseudovascular tissue; most will appear as pink-

purple-red static. The role of the occlusion model Φ is to assign a probability to

each of these possible ϕ’s in a manner that emphasizes those textures one expects to

appear in a given tissue while de-emphasizing the rest.

To formally confirm our intuition that local histograms, on average, should dis-

tribute over random occlusions, fix any set of N source images {fn}N−1
n=0 and let Φ
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be any occlusion model as defined in (7). That is, let Φ be a random variable ver-

sion of a label function ϕ : X → ZN , as defined by a probability density function

PΦ : ZXN → [0, 1] where
∑

ϕ∈ZXN
PΦ(ϕ) = 1. In the results that follow, a useful quantity

to consider is the expected value—with respect to PΦ—of the characteristic function

1ϕ obtained by letting f = ϕ in (2):

1Φ(x, n) :=
∑
ϕ∈ZXN

PΦ(ϕ)1ϕ(x, n) =
∑
ϕ∈ZXN
ϕ(x)=n

PΦ(ϕ). (8)

Essentially, 1Φ(x, n) is the probability that a random label function ϕ generated by

the occlusion model Φ will assign label n to pixel location x. That is, for any fixed x

and n, 1Φ(x, n) is the expected value of 1ϕ(x, n). More generally, for any real-valued

function β over ZXN , the expected value of β is:

EΦ(β) :=
∑
ϕ∈ZXN

PΦ(ϕ)β(ϕ) (9)

Having these concepts, we present one of our main results:

Theorem 3. For any sequence of images {fn}N−1
n=0 in YX , weighting function w and

any N-image occlusion model Φ, the expected value (9) of the local histogram (1) at

any given (x, y) ∈ X ⊕ Y of the composite image (7) with respect to w is:

EΦ(LHwoccΦ{fn}N−1
n=0 )(x, y) =

N−1∑
n=0

1Φ(x, n)(LHwfn)(x, y) + ε, (10)

where the error term ε is bounded by |ε| ≤
N−1∑
n=0

∑
x′∈X

|w(x′)||1Φ(x+ x′, n)− 1Φ(x, n)|.

Moreover,
N−1∑
n=0

1Φ(x, n) = 1, (11)
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and so (10) states that, the local histograms of the composite image occϕ{fn}N−1
n=0

can, on average, be approximated by convex combinations of local histograms of each

individual image fn.

Proof. The expected value of the local histogram (1) of a composite image (7) is:

EΦ(LHwoccΦ{fn}N−1
n=0 )(x, y) =

∑
ϕ∈ZXN

PΦ(ϕ)
∑
x′∈X

w(x′)δy((occϕ{fn}N−1
n=0 )(x+ x′)). (12)

For any fixed ϕ, x, and x′, we have ϕ(x + x′) = n for exactly one n. For any fixed

x, x′ and y, we can therefore split a sum of 1ϕ(x+ x′, n)δy(fn(x+ x′)) over all n into

one summand where n = ϕ(x + x′) and the remaining N − 1 summands for which

n 6= ϕ(x+ x′):

N−1∑
n=0

1ϕ(x+ x′, n)δy(fn(x+ x′)) = (1)δy(fϕ(x+x′)(x+ x′)) +
∑

n6=ϕ(x+x′)

(0)δy(fn(x+ x′))

= δy((occϕ{fn}N−1
n=0 )(x+ x′)), (13)

where the final equality follows immediately from (7). Substituting (13) into (12) and

using (8) yields:

EΦ(LHwoccΦ{fn}N−1
n=0 )(x, y) =

∑
ϕ∈ZXN

PΦ(ϕ)
∑
x′∈X

w(x′)
N−1∑
n=0

1ϕ(x+ x′, n)δy(fn(x+ x′))

=
N−1∑
n=0

∑
x′∈X

w(x′)δy(fn(x+ x′))
∑
ϕ∈ZXN

PΦ(ϕ)1ϕ(x+ x′, n)

=
N−1∑
n=0

∑
x′∈X

w(x′)δy(fn(x+ x′))1Φ(x+ x′, n). (14)

Rewriting (14) in terms of ε :=
N−1∑
n=0

∑
x′∈X

w(x′)δy(fn(x + x′))[1Φ(x + x′, n) − 1Φ(x, n)]
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gives our first claim (10):

EΦ(LHwoccΦ{fn}N−1
n=0 )(x, y) =

N−1∑
n=0

∑
x′∈X

w(x′)δy(fn(x+ x′))1Φ(x, n) + ε

=
N−1∑
n=0

1Φ(x, n)
∑
x′∈X

w(x′)δy(fn(x+ x′)) + ε

=
N−1∑
n=0

1Φ(x, n)(LHwfn)(x, y) + ε.

For the second claim, we bound ε using the triangle inequality and the fact that

|δy(fn(x+ x′))| ≤ 1:

|ε| =
∣∣∣∣N−1∑
n=0

∑
x′∈X

w(x′)δy(fn(x+ x′))[1Φ(x+ x′, n)− 1Φ(x, n)]

∣∣∣∣
≤

N−1∑
n=0

∑
x′∈X

|w(x′)||1Φ(x+ x′, n)− 1Φ(x, n)|.

Finally, to prove our third claim (11), note that for any fixed x ∈ X , (8) gives:

N−1∑
n=0

1Φ(x, n) =
N−1∑
n=0

∑
ϕ∈ZXN

PΦ(ϕ)1ϕ(x, n) =
∑
ϕ∈ZXN

PΦ(ϕ)
N−1∑
n=0

 1, ϕ(x) = n,

0, ϕ(x) 6= n.
(15)

Since, as previously noted, we have ϕ(x) = n for exactly one n, (15) becomes:

N−1∑
n=0

1Φ(x, n) =
∑
ϕ∈ZXN

PΦ(ϕ) = 1.

An example illustrating the direct computation of the left-hand side of (10) is

given in Figure 5. Note that Theorem 3 implies that the error term ε in (10) will be

small provided the probability 1Φ(x, n) of assigning label n to x changes little as x

varies over regions smaller than the the support of w. In the next section, we discuss
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Figure 5. An example of how to compute the left-hand side of (10) explicitly as a probability-
weighted sum. For the sake of readability, larger numerical values are represented by darker shades
throughout. We consider two 2×2, 3-bit images, namely {fn}N−1

n=0 in YX where N = 2, X = Z2⊕Z2

and Y = Z8. In this particular example, the values of the fn’s are all distinct, with f0 assuming
values {0, 1, 2, 3} and f1 assuming values {4, 5, 6, 7} (far left). There are N |X | = 222

= 16 distinct
label functions ϕ : Z2⊕Z2 → Z2 (left column) each yielding a composite image occϕ{f0, f1} (center
column); in accordance with (7), we take values from f0 in places where ϕ is white and values from f1

where ϕ is black. Each of these composites has a 2×2×8 local histogram transform (1) (right column)
which was computed using the weighting function w = 1

2δ0,0 + 1
4 (δ1,0 + δ0,1). Since occlusion (7)

is nonlinear, there is no clean relationship between the local histograms of any single composite
and the local histograms of the source images f0 and f1. Nevertheless, under certain hypotheses,
we can say something about the average of these local histograms (far right) with respect to some
probability density function PΦ on the set ZZ2⊕Z2

2 of all possible ϕ’s; in this example, we let each
ϕk have equal probability, that is, we let PΦ(ϕk) := pk = 1

16 . In particular, if the occlusion model Φ
is flat (16), meaning in this case that the probability-weighted-sum of all ϕ’s is a constant function
of x, then Theorem 4 states that this average is a convex combination of the local histograms of f0

and f1 as depicted in Figure 6.
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what hypotheses on Φ will make the ε in Theorem 3 vanish completely.

3.3 Constructing Flat Occlusion Models

In this section, we provide a sufficient hypothesis on the occlusion model Φ so

as to ensure that the local histograms (1) of a composite image (7) can, on average

with respect to PΦ, be decomposed in terms of the local histograms of the individual

images. In particular, we focus on the special case where the occlusion model Φ is

flat, meaning that on average, the probability that Φ chooses label n at a given pixel

location x is equal to the probability of choosing n at any other x′; formally, Φ is flat

if there exists scalars {λn}N−1
n=0 such that for each n ∈ ZN :

∑
ϕ∈ZXN
ϕ(x)=n

PΦ(ϕ) = λn, ∀x ∈ X . (16)

Equivalently, Φ is flat if 1Φ(x, n), defined in (8), is constant with respect to x. That is,

Φ is flat if the marginal distributions obtained by fixing any given x ∈ X are identical.

Note that for any fixed x ∈ X , summing (16) over all n yields that
∑N

n=1 λn = 1.

Indeed, at any given pixel location x, the value λn represents the probability that

the random label function Φ will have label n at that x. In our example where the

values of ϕ are determined by |X | spatially-independent coin flips, the probability of

getting any particular ϕ ∈ ZX2 is PΦ(ϕ) = ρ|ϕ
−1{1}|(1− ρ)|X |−|ϕ

−1{1}|; substituting this

expression into (16), we find that this model is indeed flat with λ0 = 1−ρ and λ1 = ρ,

as detailed below. Note that, if ρ > 1
2
, the resulting random image occΦ{f0, f1} will

be more white than black; flatness does not mean that each label is equally likely,

but rather that the chance of being white at any given pixel location is the same as

at any other location. These concepts in hand, we present one of our main results,

which formally claims that, on average, the local histograms of composite images
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produced from flat occlusion models are but mixtures of the local histograms of the

source images:

Theorem 4. If Φ is flat as in (16), then the expected value (9) of the local histogram

transform (1) of a composite image (7) is a convex combination of the local histograms

of each individual image:

∑
ϕ∈ZXN

PΦ(ϕ)(LHwoccϕ{fn}N−1
n=0 )(x, y) =

N−1∑
n=0

λn(LHwfn)(x, y). (17)

Proof. If Φ is flat, 1Φ(x + x′, n) = 1Φ(x, n) for all x, x′ ∈ X . The error bound

in Theorem 3 then gives ε = 0. Denoting 1Φ(x, n) as λn in (10) thus yields our

claim.

Therefore, when Φ is flat, (10) simplifies to (17), and so the in-depth compu-

tation of Figure 5 can be replaced by the much simpler one depicted in Figure 6.

Thus, flatness is indeed an important theoretical assumption for the analysis of local

histograms of textures generated via random occlusions. It nevertheless remains to

be shown that flatness is also a realistic assumption from the point of view of our

motivating application.

We now provide a variety of methods for constructing flat occlusion models. Some

of these models produce textures similar to those encountered in digital microscope

images of histological tissues.

Theorem 5. If Φ is a Bernoulli random variable, then Φ is flat.

Proof. Let K = |X | and claim that for any F : ZXN → R, we have:

∑
ϕ∈ZXN

F (ϕ) =
N−1∑
n1=0

· · ·
N−1∑
nK=0

∑
ϕ∈ZXN

ϕ(xk)=nk,∀k

F (ϕ). (18)
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Figure 6. A continuation of the example of Figure 5. When the occlusion model Φ is flat, Theorem 3
becomes Theorem 4, with (10) simplifying to (17). Though each of the 16 distinct composite images
shown in Figure 5 has a distinct local histogram transform, the average of these 16 local histogram
transforms with respect to PΦ is but a convex combination (right) of the local histograms (center) of
the two source images (left). That is, when Φ is flat, the average-over-all-composites local histogram
computed in Figure 5 is equal to the average-over-all-sources local histogram computed above.

To show this, we enumerate X as X = {xk}Kk=1 and note that for any xk, we have∑N−1
nk=0 1ϕ(xk, nk) = 1 thus giving our claim:

∑
ϕ∈ZXN

F (ϕ) =
∑
ϕ∈ZXN

F (ϕ)
K∏
k=1

N−1∑
nk=0

1ϕ(xk, nk)

=
∑
ϕ∈ZXN

F (ϕ)
N−1∑
n1=0

1ϕ(x1, n1) · · ·
N−1∑
nK=0

1ϕ(xK , nK)

=
N−1∑
n1=0

· · ·
N−1∑
nK=0

∑
ϕ∈ZXN

F (ϕ)
K∏
k=1

1ϕ(xk, nk)

=
N−1∑
n1=0

· · ·
N−1∑
nK=0

∑
ϕ∈ZXN

ϕ(xk)=nk, ∀k

F (ϕ).

To show Φ is flat, fix some xk0 ∈ X and note that enumerating X gives that:

PΦ(ϕ) =
∏
x∈X

ρϕ(x) =
K∏
k=1

ρϕ(xk).
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Using this, and letting F (ϕ) = PΦ(ϕ)1ϕ(xk0 , n) in our claim (18), gives:

∑
ϕ∈ZXN

PΦ(ϕ)1ϕ(xk0 , n) =
N−1∑
n1=0

· · ·
N−1∑
nK=0

∑
ϕ∈ZXN

ϕ(xk)=nk, ∀k

PΦ(ϕ)1ϕ(xk0 , n)

=
N−1∑
n1=0

· · ·
N−1∑
nK=0

∑
ϕ∈ZXN

ϕ(xk)=nk, ∀k

K∏
k=1

ρϕ(xk)1ϕ(xk0 , n).

Note that since ϕ(xk) = nk for all k, we have ρϕ(xk) = ρnk for all k, thus giving:

∑
ϕ∈ZXN

PΦ(ϕ)1ϕ(xk0 , n) =
N−1∑
n1=0

· · ·
N−1∑
nK=0

∑
ϕ∈ZXN

ϕ(xk)=nk,∀k

K∏
k=1

ρnk1ϕ(xk0 , n)

=
N−1∑
n1=0

ρn1 · · ·
N−1∑
nK=0

ρnK
∑
ϕ∈ZXN

ϕ(xk)=nk,∀k

1ϕ(xk0 , n).

Here, we note that for the sum over ϕ ∈ ZXN , the constraints that ϕ(xk) = nk for all

k uniquely define a single ϕ. Therefore, this sum is one if n = nk0 :

∑
ϕ∈ZXN

PΦ(ϕ)1ϕ(xk0 , n) =
N−1∑
n1=0

ρn1 · · ·
N−1∑
nK=0

ρnKδn(nk0)

=

( N−1∑
nk0

=0

ρnk0
δn(nk0)

) ∏
k 6=k0

( N−1∑
nk=0

ρnk

)
= ρn.

Next, we show that an occlusion model Φ is flat if it is translation-invariant,

meaning that its probability density function PΦ satisfies:

PΦ(Txϕ) = PΦ(ϕ), ∀ϕ ∈ ZXN , x ∈ X . (19)
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Note that, if we consider the value of ϕ at each given x ∈ X as a ZN -valued random

variable, translation-invariance corresponds to the associated stochastic process being

stationary.

Theorem 6. If Φ is translation-invariant (19), then Φ is flat (16).

Proof. To show that Φ is flat (16), we must show that for any n ∈ ZN , 1(x, n) is

constant with respect to x. Using (8), and noting that the definition of the translation

operator gives that ϕ(x) = Tx0−xϕ(x0) for any x0 ∈ X , we have:

1(x, n) =
∑
ϕ∈ZXN
ϕ(x)=n

PΦ(ϕ) =
∑
ϕ∈ZXN

Tx0−xϕ(x0)=n

PΦ(ϕ).

Now, making a change of variables by letting ψ = Tx0−xϕ, and using our assumption

that Φ is translation-invariant (19) gives:

1Φ(x, n) =
∑

Tx−x0ψ∈ZXN
ψ(x0)=n

PΦ(Tx−x0ψ) =
∑
ψ∈ZXN
ψ(x0)=n

PΦ(ψ) = 1Φ(x0, n).

Theorem 6 indicates that flatness is not too strong of an assumption. Indeed, one

method for producing a flat model Φ is to generalize the coin-flipping example given

in the introduction: given any random method for picking a number from ZN—a

probability spinner—produce ϕ by conducting |X | independent spins. The resulting

model Φ is translation-invariant, and therefore flat, since PΦ(ϕ) is solely determined

by the number of times that ϕ achieves each given value n. Note this implies that

the Bernoulli model is flat, a fact we independently observed in Theorem 5. Other

translation-invariant examples abound. For instance, for any fixed ϕ0, we can assign

equal probability 1
|X | to ϕ0 and each of its translations, and assign probability 0 to all

others; if the source images {fn}N−1
n=0 are constant, the composite images (7) produced
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by such a model are all translates of a single image. More generally, we can always

partition the N |X | elements of ZXN into translation-invariant equivalence classes and

assign any fixed probability to the members of each class, provided we ensure that

in the end they all sum to one. For example, for the case N = 2 and X = Z2 ⊕ Z2

depicted in Figure 5, we may partition the 16 possible ϕ’s into 7 such classes, and pick

any probabilities {pk}15
k=0 such that p1 = p2 = p3 = p4, p5 = p6, p7 = p8, p9 = p10,

p11 = p12 = p13 = p14. Armed with one general method—translation-invariance—for

producing flat models Φ, we now turn to ways of combining known models to produce

more complicated and realistic ones.

3.3.1 Expansion.

Digital microscope images of histological tissues often contain randomly distributed

blobs. These blobs correspond to biological structures: cells, nuclei, etc. The nature

of these processes guarantees that the distribution of such structures is roughly uni-

form, both spatially and in terms of color: two cells cannot occupy the same space;

cells will usually grow and reproduce so as to occupy any empty space; cells in a

given tissue all have approximately the same size and color patterns. We want to

construct flat occlusion models that emulate such textures, since in light of Theo-

rem 4, doing so would formally justify the decomposition of local histograms as part

of a segmentation-and-classification algorithm. Note that there is a natural method

for randomly generating a set of roughly uniformly-distributed points: flip a coin at

each point x. Here, we explore the idea of expanding each of these randomly generated

points into a given blob.

To be precise, let ϕ ∈ ZX2 indicate a set of randomly generated points. For each

of the points x ∈ X for which ϕ(x) = 1, we will replace it with a blob whose shape

is indicated by some ψx ∈ ZX2 . The new texture will be the union of all such blobs.
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Formally, given any ϕ ∈ ZX2 and {ψx}x∈X ∈ [ZX2 ]X , we define the expansion of ϕ by

{ψx}x∈X to be ϕ ? {ψx}x∈X ∈ ZX2 ,

(ϕ ? {ψx′}x′∈X )(x) :=

 1, x = x′ + x′′, ϕ(x′) = 1, ψx′(x
′′) = 1,

0, else.
(20)

Two examples of this expansion operation are given in Figure 7. Note that expansion

itself (20) is not an occlusion model. Indeed, (20) is but a way of combining functions

in ZX2 to produce other ones, whereas an occlusion model is a random variable Φ

defined by a probability density function PΦ over ZX2 . This fact notwithstanding,

the expansion operation (20) on label functions ϕ and {ψx}x∈X does in fact induce a

parallel operation on their random variable cousins Φ and Ψ. To be precise, given two

occlusion models Φ and Ψ from X into Z2, we define the expansion of Φ by Ψ to be

the occlusion model Φ ?Ψ whose probability density function is PΦ?Ψ : ZX2 → [0, 1],

PΦ?Ψ(σ) :=
∑
ϕ∈ZX2

{ψx}x∈X∈[ZX2 ]X

ϕ?{ψx}x∈X=σ

PΦ(ϕ)
∏
x∈X

PΨ(ψx). (21)

Note that the probability that Φ ? Ψ will produce a given label function σ depends

on the ways in which σ can be written as ϕ ? {ψx}x∈X and, moreover, the probability

that Φ and Ψ will produce those particular ϕ’s and ψx’s, respectively. In the next

result, we verify that (21) indeed defines a probability density function on ZX2 . We

further show that if Φ is translation-invariant (19), then Φ?Ψ is translation-invariant

which implies that Φ ? Ψ is flat by Theorem 6. In particular, image models which

produce collections of blobs similar to those found in biological tissues will indeed be

flat provided the distribution that produces the “centers” of these blobs is translation-

invariant. Moreover, if the flatness of Φ ?Ψ is all that is desired, we can weaken the
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(a) ϕ (b) Some examples of ψx. (c) ϕ ? {ψx}x∈X

(d) ϕ′ (e) Some examples of ψ′x. (f) ϕ′ ? {ψ′x}x∈X

Figure 7. Examples of the expansion operation (20), where black denotes the value of 1, and the
lighter shade denotes the value of 0. A function ϕ : X → {0, 1} is given in (a), and can be chosen,
for example, via a sequence of |X | independent coin flips. Meanwhile, for each x ∈ X , we pick a
corresponding function ψx : X → {0, 1}. Cropped versions of a few examples of such ψx’s are given
in (b).The expansion ϕ ? {ψx}x∈X of ϕ by {ψx}x∈X is given in (c). Essentially, each point x for
which ϕ(x) = 1 is replaced with the corresponding blob ψx, with the origin of the ψx coordinates
being translated to x. In the second row, (f) shows the expansion of a second set of points ϕ′ by
a second set of blobs {ψ′x}x∈X . These examples notwithstanding, note that (20) does not require
these blobs to be disjoint. We could have, for instance, produced a texture by expanding the points
in (d) by the blobs in (b). Nevertheless, stronger conclusions can be made if such disjointness is
enforced; see Theorem 7.

41



requirement that Φ be translation-invariant so as to only require that Φ is itself flat,

provided Φ and Ψ are effectively disjoint :

If PΦ(ϕ) > 0 and PΨ(ψx) > 0 for all x ∈ X , then ϕ ? {ψx}x∈X =
∑
x∈X
ϕ(x)=1

Txψx. (22)

Put another way, (22) means that there is only at most one way, with nontrivial

probability, in which the x in (20) can be written as x = x′+x′′ where both ϕ(x′) = 1

and ψx′(x
′′) = 1.

Theorem 7. If Φ and Ψ are occlusion models from X into Z2, then their expansion

Φ?Ψ, with probability density function (21), is as well. Moreover, if Φ is translation-

invariant (19), then Φ ? Ψ is translation-invariant. Furthermore, if Φ and Ψ are

effectively disjoint (22) and either Φ or Ψ is flat (16), then Φ ?Ψ is flat.

Proof. We first show that (21) defines a probability density function, namely that

values of PΦ?Ψ(σ) over all σ in ZX2 sum to 1. Since PΦ is a probability density

function by assumption, we have:

1 =
∑
ϕ∈ZX2

PΦ(ϕ). (23)

Similarly, for any fixed x ∈ X , we have:

1 =
∑
ψx∈ZX2

PΨ(ψx), (24)

where the subscript “x” on ψ indicates that this particular ψ is intended to expand

ϕ at the particular point x as opposed to at some other point. Taking the product
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of (23) with the product of (24) over all x yields:

1 = 1(1)|X | =
∑
ϕ∈ZX2

PΦ(ϕ)
∏
x∈X

∑
ψx∈ZX2

PΨ(ψx) =
∑
ϕ∈ZX2

{ψx}x∈X∈[ZX2 ]X

PΦ(ϕ)
∏
x∈X

PΨ(ψx), (25)

where the final quantity in (25) contains all of the cross terms resulting from dis-

tributing the product over all sums of the form (24). Now, since for each choice of ϕ

and {ψx}x∈X there is exactly one resulting σ = ϕ ? {ψx}x∈X , we can rewrite (25) in

terms of the definition (21) of PΦ?Ψ, obtaining our claim:

1 =
∑
σ∈ZX2

∑
ϕ∈ZX2

{ψx}x∈X∈[ZX2 ]X

ϕ?{ψx}x∈X=σ

PΦ(ϕ)
∏
x∈X

PΨ(ψx) =
∑
σ∈ZX2

PΦ?Ψ(σ).

Thus, (21) indeed defines a probability density function, as claimed.

We next show that the occlusion model Φ ? Ψ is translation-invariant, if Φ is

translation-invariant. To do this, we first claim that if Tx̃σ = ϕ ? {ψx}x∈X , then

σ = (T−x̃ϕ) ? {ψx+x̃}x∈X . To see this claim, note that

σ(x− x̃) = (Tx̃σ)(x) = (ϕ ? {ψx′}x′∈X )(x) = 1

if and only if there exists some x′, x′′ in X such that x = x′ + x′′, ϕ(x′) = 1,

and ψx′(x
′′) = 1. Letting x̂ = x − x̃, we thus have that σ(x̂) = 1 if and only

if x̂ = (x′ − x̃) + x′′, where (T−x̃ϕ)(x′ − x̃) = ϕ(x′ − x̃ + x̃) = ϕ(x′) = 1 and

ψ(x′−x̃)+x̃(x
′′) = ψx′(x

′′) = 1, implying σ = (T−x̃ϕ) ? {ψx+x̃}x∈X , as claimed. Having
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the claim, (21) implies:

PΦ?Ψ(Tx̃σ) =
∑
ϕ∈ZX2

{ψx}x∈X∈[ZX2 ]X

ϕ?{ψx}x∈X=Tx̃σ

PΦ(ϕ)
∏
x∈X

PΨ(ψx) =
∑
ϕ∈ZX2

{ψx}x∈X∈[ZX2 ]X

(T−x̃ϕ)?{ψx+x̃}x∈X=σ

PΦ(ϕ)
∏
x∈X

PΨ(ψx).

To continue, we make the change of variables ϕ′ := T−x̃ϕ and ψ′x := ψx+x̃:

PΦ?Ψ(Tx̃σ) =
∑
ϕ′∈ZX2

{ψ′x}x∈X∈[ZX2 ]X

(ϕ′)?{ψ′x}x∈X=σ

PΦ(Tx̃ϕ′)
∏
x∈X

PΨ(ψ′x−x̃).

Since Φ is translation-invariant and
∏
x∈X

PΨ(ψ′x−x̃) =
∏
x∈X

PΨ(ψ′x), we have:

PΦ?Ψ(Tx̃σ) =
∑
ϕ′∈ZX2

{ψ′x}x∈X∈[ZX2 ]X

(ϕ′)?{ψ′x}x∈X=σ

PΦ(ϕ′)
∏
x∈X

PΨ(ψ′x) = PΦ?Ψ(σ),

and so Φ ?Ψ is indeed translation-invariant (19), as claimed.

For our final claim, we assume that Φ and Ψ are effectively disjoint (22) and

that either Φ or Ψ is flat. To do so, it is helpful to characterize the flatness of an

arbitrary occlusion model Φ from X to Z2 in terms of the corresponding function

Φ :=
∑

ϕ∈ZX2
PΦ(ϕ)ϕ. Indeed, for any ϕ from X to Z2, (2) may be rewritten as

1ϕ(x, 1) = ϕ(x) and so:

1Φ(x, 1) =
∑
ϕ∈ZX2

PΦ(ϕ)1ϕ(x, 1) =
∑
ϕ∈ZX2

PΦ(ϕ)ϕ(x) = Φ(x). (26)

In light of (26), we claim that Φ is flat if and only if Φ is constant. Indeed, if Φ is

flat, then there exists λ1 such that Φ(x) = 1Φ(x, 1) = λ1 for all x ∈ X . Conversely, if

Φ(x) is constant, then there exists λ1 such that 1Φ(x, 1) = Φ(x) = λ1 for all x ∈ X ;
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by (11), this further implies that 1Φ(x, 0) = 1 − 1Φ(x, 1) = 1 − λ1 for all x ∈ X and

so Φ is flat.

Having this claim, we show that Φ ? Ψ is flat by showing that Φ ?Ψ is constant.

To do this, we show that if Φ and Ψ are effectively disjoint then Φ ?Ψ = Φ ∗Ψ where

“∗” denotes standard convolution over X . According to the definition of Φ ? Ψ (21)

we have:

Φ ?Ψ =
∑
σ∈ZX2

PΦ?Ψ(σ)σ =
∑
σ∈ZX2

∑
ϕ∈ZX2

{ψx}x∈X∈[ZX2 ]X

ϕ?{ψx}x∈X=σ

PΦ(ϕ)

(∏
x∈X

PΨ(ψx)

)
(ϕ ? {ψx}x∈X ). (27)

Since any particular choice of ϕ and {ψx}x∈X produces a unique σ via ? we can

simplify (27) to

Φ ?Ψ =
∑
ϕ∈ZX2

{ψx}x∈X∈[ZX2 ]X

PΦ(ϕ)

(∏
x∈X

PΨ(ψx)

)
(ϕ ? {ψx}x∈X ). (28)

Moreover, since Φ and Ψ are effectively disjoint (22) we have ϕ?{ψx}x∈X =
∑
x′∈X
ϕ(x′)=1

Tx′ψx′

meaning (28) becomes:

Φ ?Ψ =
∑
ϕ∈ZX2

{ψx}x∈X∈[ZX2 ]X

PΦ(ϕ)

(∏
x∈X

PΨ(ψx)

)( ∑
x′∈X
ϕ(x′)=1

Tx′ψx′

)

=
∑
ϕ∈ZX2

PΦ(ϕ)
∑
x′∈X
ϕ(x′)=1

Tx′

[ ∑
{ψx}x∈X∈[ZX2 ]X

(∏
x∈X

PΨ(ψx)

)
ψx′

]
. (29)

Now, for any fixed x′ ∈ X such that ϕ(x′) = 1, we factor the corresponding innermost
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sum in (29) into a product of |X | distinct sums—one for each x ∈ X—to obtain:

∑
{ψx}x∈X∈[ZX2 ]X

(∏
x∈X

PΨ(ψx)

)
ψx′ =

[∏
x6=x′

( ∑
ψx∈ZX2

PΨ(ψx)

)] ∑
ψx′∈ZX2

PΨ(ψx′)ψx′

=

(∏
x6=x′

1

)
Ψ

= Ψ. (30)

Substituting (30) into (29) then gives:

Φ ?Ψ =
∑
ϕ∈ZX2

PΦ(ϕ)
∑
x′∈X
ϕ(x′)=1

Tx′Ψ

=
∑
ϕ∈ZX2

PΦ(ϕ)

( ∑
x′∈X
ϕ(x′)=1

δx′

)
∗Ψ

=

(∑
ϕ∈ZX2

PΦ(ϕ)ϕ

)
∗Ψ

= Φ ∗Ψ.

Thus, the effective disjointness of Φ and Ψ indeed implies Φ ?Ψ = Φ ∗Ψ. As such, if

we further assume that either Φ or Ψ is flat, then either Φ or Ψ is constant, implying,

in either case, that Φ ?Ψ is constant and so Φ ?Ψ is flat.

3.3.2 Overlay.

Above, we discussed how the expansion (21) of a binary-valued occlusion model

Φ with another such model Ψ is a new model Φ ? Ψ that randomly generates label

functions of the form σ = ϕ ? {ψx}x∈X as defined in (20). Under certain hypotheses,

Theorem 7 gives that such models Φ?Ψ are flat, meaning their local histograms can be

understood in terms of Theorem 4. Moreover, some examples of these models produce
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textures that resemble those encountered in histological tissues: if f0 and f1 are

roughly constant light purple and dark purple fields, respectively, then the composite

image occϕ{f0, f1} obtained by picking ϕ as in Figure 7(f) bears some similarity to

an actual image of cartilage, such as the one given in Figure 3(b). Taken together,

these facts provide some theoretical justification for the use of local histograms for

the analysis of such tissues.

There is however a deficit with this theory: due to the nature of the construc-

tion (20), models produced by expansion (21) can only be binary-valued, and as such

are insufficient to emulate textures that exhibit three or more distinct color modes,

such as the pseudovascular tissue depicted in Figure 3(d). In this subsection, we

discuss a method for laying one occlusion model over another which, amongst other

things, permits us to build multivalued models out of binary-valued ones. To be pre-

cise, for any ϕ ∈ ZXN1
, ψ ∈ ZXN2

and σ ∈ ZX2 , we define the overlay of ϕ over ψ with

respect to σ to be ϕ#σψ ∈ ZXN1+N2
,

(ϕ#σψ)(x) :=

 ϕ(x), σ(x) = 0,

ψ(x) +N1, σ(x) = 1.
(31)

Essentially, an overlay (31) is the result of cutting holes out of an image of ϕ and

laying it on top of an image of ψ; the location of these holes is indicated by σ and

the values of ψ are increased by a factor of N1 so that they cannot be confused with

those of ϕ. Examples of this overlay operation are given in Figure 8.

In a manner similar to the relationship between (20) and (21), we have that (31)

naturally induces a parallel operation on occlusion models: given probability density

functions PΦ, PΨ and PΣ on ZXNΦ
, ZXNΨ

and ZX2 , respectively, we define the overlay

of the occlusion model Φ over Ψ with respect to Σ to be the new occlusion model
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(a) σ (b) 0#σσ
′

(c) σ′ (d) σ#σ′0

Figure 8. Two examples of the overlay operation (31). Recall the two {0, 1}-valued label functions
σ = ϕ ? {ψx}x∈X and σ′ = ϕ′ ? {ψ′x}x∈X of Figure 7(c) and (f) reshown here in (a) and (c),
respectively. Further consider a constant function 0 : X → Z1 that assigns label 0 to every point
in X . The overlay (31) of 0 over σ′ is given in (b); essentially, σ-shaped holes are cut from 0 and
the result is laid over σ′, resulting in a new texture. A distinct texture can be produced by cutting
σ′-shaped holes out from σ and laying the result over the constant function 0 (d). Overlaying the
resulting textures with each other can produce even more complicated textures.
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Φ#ΣΨ whose probability density function is PΦ#ΣΨ : ZXNΦ+NΨ
→ [0, 1],

PΦ#ΣΨ(υ) :=
∑

ϕ∈ZXNΦ

ψ∈ZXNΨ

σ∈ZX2
ϕ#σψ=υ

PΦ(ϕ)PΨ(ψ)PΣ(σ). (32)

In the next result, we verify that (32) indeed defines a probability density function,

and moreover that the corresponding model Φ#ΣΨ is flat provided Φ, Ψ and Σ are

flat, meaning that the local histograms (1) of composite images (7) produced by such

a model will behave according to Theorem 4.

Theorem 8. If Φ, Ψ and Σ are occlusion models on ZXNΦ
, ZXNΨ

and ZX2 , respectively,

then (32) defines a probability density function on ZXNΦ+NΨ
. Moreover, if Φ, Ψ, and

Σ are flat, then Φ#ΣΨ is flat.

Proof. To show that (32) defines a probability density function on ZXNΦ+NΨ
, note that:

1 = (1)(1)(1) =
∑

ϕ∈ZXNΦ

PΦ(ϕ)
∑

ψ∈ZXNΨ

PΨ(ψ)
∑
σ∈ZX2

PΣ(σ) =
∑

ϕ∈ZXNΦ

ψ∈ZXNΨ

σ∈ZX2

PΦ(ϕ)PΨ(ψ)PΣ(σ). (33)

Noting that for each fixed ϕ, ψ, and σ, there exists exactly one υ ∈ ZXNΦ+NΨ
such

that ϕ#σψ = υ, (33) becomes:

1 =
∑

υ∈ZXNΦ+NΨ

∑
ϕ∈ZXNΦ

ψ∈ZXNΨ

σ∈ZX2
ϕ#σψ=υ

PΦ(ϕ)PΨ(ψ)PΣ(σ) =
∑

υ∈ZXNΦ+NΨ

PΦ#ΣΨ(υ),

as claimed. For the second conclusion, assume that Φ, Ψ, and Σ are flat. Our goal is

to show that Φ#ΣΨ is flat (16), meaning that for any n ∈ ZNΦ+NΨ
, we want to show
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that there exists a scalar λn such that:

∑
υ∈ZXNΦ+NΨ
υ(x)=n

PΦ#ΣΨ(υ) = λn (34)

for all x ∈ X . To see this, note that for any such x and n, we have:

∑
υ∈ZXNΦ+NΨ
υ(x)=n

PΦ#ΣΨ(υ) =
∑

υ∈ZXNΦ+NΨ
υ(x)=n

∑
ϕ∈ZXNΦ

ψ∈ZXNΨ

σ∈ZX2
ϕ#σψ=υ

PΦ(ϕ)PΨ(ψ)PΣ(σ)

=
∑

ϕ∈ZXNΦ

ψ∈ZXNΨ

σ∈ZX2
(ϕ#σψ)(x)=n

PΦ(ϕ)PΨ(ψ)PΣ(σ). (35)

Now, in the special case where n = 0, . . . , NΦ − 1, (31) gives that (ϕ#σψ)(x) = n if

and only if ϕ(x) = n and σ(x) = 0. As such, in this case (35) becomes:

∑
υ∈ZXNΦ+NΨ
υ(x)=n

PΦ#ΣΨ(υ) =
∑

ϕ∈ZXNΦ
,ϕ(x)=n

ψ∈ZXNΨ

σ∈ZX2 ,σ(x)=0

PΦ(ϕ)PΨ(ψ)PΣ(σ)

=
∑

ϕ∈ZXNΦ
ϕ(x)=n

PΦ(ϕ)
∑

ψ∈ZXNΨ

PΨ(ψ)
∑
σ∈ZX2
σ(x)=0

PΣ(σ)

= λΦ,nλΣ,0. (36)

If, on the other hand n = NΦ, . . . , NΦ +NΨ − 1 then (31) gives that (ϕ#σψ)(x) = n
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if and only if ψ(x) = n−NΦ and σ(x) = 1. In this case, (35) becomes:

∑
υ∈ZXNΦ+NΨ
υ(x)=n

PΦ#ΣΨ(υ) =
∑

ϕ∈ZXNΦ

ψ∈ZXNΨ
,ψ(x)=n−NΦ

σ∈ZX2 ,σ(x)=1

PΦ(ϕ)PΨ(ψ)PΣ(σ)

=
∑

ϕ∈ZXNΦ

PΦ(ϕ)
∑

ψ∈ZXNΨ
ψ(x)=n−NΦ

PΨ(ψ)
∑
σ∈ZX2
σ(x)=1

PΣ(σ)

= λΨ,n−NΦ
λΣ,1. (37)

Thus, for any x ∈ X we either have (36) or (37) meaning Φ#ΣΨ is flat (34), as

claimed.

Up to this point, we have considered the appropriateness of using local histograms

to segment and classifiy histology images like the one in Figure 1(a). In particular, we

have shown that local histograms have several useful properties: they commute with

translations on X and Y , and they distribute, on average, over occlusions provided

that our occlusion model is flat. In the next chapter, we characterize all transforms

which satisfy these three key properties of local histograms. In doing so, we demon-

strate the significance that local histograms have in analyzing textures commonly

found in histology images.
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IV. Characterizing Local Histogram Transforms

In this chapter, we characterize all (possibly nonlinear) transforms which possess

the nice occlusion-handling properties of local histograms. Our main result here is

Theorem 10, which formally shows that these properties are almost unique to local

histograms. In particular, Theorem 4 gives that the local histogram transform of

a random composite image (7) produced by a flat occlusion model Φ is, on aver-

age, a convex combination of the local histogram transforms of the source images

{fn}N−1
n=0 . Here, the coefficients in this convex combination are the values {λn}N−1

n=0

defined in (16). In the next result, we show that this is not an accident, namely that

if any transform distributes on average over occlusions in this manner, the resulting

coefficients are necessarily these particular values:

Theorem 9. Let Θ be any (possibly nonlinear) transformation from YX into any real

vector space. If Θ(δx) 6= Θ(0) for some x ∈ X and if, for some flat occlusion model

Φ, there exists scalars {cn}N−1
n=0 such that:

EΦ[Θ(occΦ{fn}N−1
n=0 )] =

N−1∑
n=0

cnΘ(fn), (38)

for all {fn}N−1
n=0 in YX , then these scalars are necessarily:

cn = λn =
∑
ϕ∈ZXN
ϕ(x)=n

PΦ(ϕ) ∀ n = 0, . . . , N − 1. (39)

Proof. Fixing any such flat Φ, our assumption (38) states:

∑
ϕ∈ZXN

PΦ(ϕ)Θ(occϕ{fn}N−1
n=0 ) =

N−1∑
n=0

cnΘ(fn) (40)
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for all {fn}N−1
n=0 in YX . Note that Θ(f) 6= 0 for some f ∈ YX : since Θ(δx) 6= Θ(0) for

some x ∈ X , at least one of the selections f = 0 or f = δx will suffice. Letting fn = f

for all n gives that occϕ{fn}N−1
n=0 = f for all ϕ ∈ ZXN . Noting that the values PΦ(ϕ)

sum to one, (40) in this special case becomes:

Θ(f) =
∑
ϕ∈ZXN

PΦ(ϕ)Θ(f) =
N−1∑
n=0

cnΘ(f) =

(N−1∑
n=0

cn

)
Θ(f),

which, since Θ(f) 6= 0, necessarily implies
∑N−1

n=0 cn = 1. Having this fact, we again

let the fn’s be arbitrary, and subtract Θ(0) from (40):

∑
ϕ∈ZXN

PΦ(ϕ)[Θ(occϕ{fn}N−1
n=0 )−Θ(0)] =

N−1∑
n=0

cn[Θ(fn)−Θ(0)]. (41)

Now, fix x0 ∈ X such that Θ(δx0) 6= Θ(0), that is, Θ(δx0) − Θ(0) 6= 0. Also, fix any

n0 = 0, . . . , N − 1, and let

fn =

 δx0 , n = n0,

0, n 6= n0.
(42)

That is, for any x ∈ X :

fn(x) =

 1, n = n0, x = x0,

0, else.
(43)

We claim that:

occϕ{fn}N−1
n=0 =

 δx0 , ϕ(x0) = n0,

0, ϕ(x0) 6= n0.
(44)
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Note this is equivalent to showing that for any x ∈ X ,

fϕ(x)(x) = (occϕ{fn}N−1
n=0 )(x)

=

 δx0(x), ϕ(x0) = n0,

0, ϕ(x0) 6= n0,

=

 1, x = x0, ϕ(x0) = n0,

0, else.
(45)

For x 6= x0, the left-hand-side of (45) is fϕ(x)(x) = 0 by (43), while the right-hand-side

of (45) is clearly zero. Meanwhile for x = x0, evaluating (43) at x = x0 and n = ϕ(x0)

gives the left-hand-side of (45) to be:

fϕ(x0)(x0) =

 1, ϕ(x0) = n0,

0, else,

which equals the right-hand-side of (45) at x = x0.

Having (44), we can decompose the left-hand-sum of (41) as:

∑
ϕ∈ZXN

PΦ(ϕ)[Θ(occϕ{fn}N−1
n=0 )−Θ(0)]

=
∑
ϕ∈ZXN

ϕ(x0)=n0

PΦ(ϕ)[Θ(δx0)−Θ(0)] +
∑
ϕ∈ZXN

ϕ(x0)6=n0

PΦ(ϕ)[Θ(0)−Θ(0)]

=
∑
ϕ∈ZXN

ϕ(x0)=n0

PΦ(ϕ)[Θ(δx0)−Θ(0)].

Meanwhile, in light of (42), the right-hand-sum of (41) can be decomposed as:

N−1∑
n=0

cn[Θ(fn)−Θ(0)] = cn0 [Θ(δx0)−Θ(0)]+
∑
n6=n0

cn[Θ(0)−Θ(0)] = cn0 [Θ(δx0)−Θ(0)].
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That is, in the special case (42), the relation (41) becomes:

∑
ϕ∈ZXN

ϕ(x0)=n0

PΦ(ϕ)[Θ(δx0)−Θ(0)] = cn0 [Θ(δx0)−Θ(0)]. (46)

Dividing both sides of (46) by Θ(δx0)−Θ(0) 6= 0 gives our claim (39).

In light of Theorem 9, we therefore only seek to characterize those transforms Θ

which satisfy EΦ[Θ(occΦ{fn}N−1
n=0 )] =

∑N−1
n=0 λnΘ(fn). Though a complete character-

ization of such transforms remains elusive, we are able to characterize them in the

special case where the codomain of Θ is RX⊕Y and Θ is further assumed to commute

with translations in X and Y ; see Theorem 10 below for a precise statement. That is,

we show that if Θ transforms images f : X → Y into data cubes Θ(f) : X ⊕ Y → R

in a way that distributes over occlusions and commutes with translation, then Θ is

necessarily a filtering operation on the graph (2) of f . The proof of this fact uses

discrete Fourier transforms (DFTs) over the finite abelian groups X and Y of pixel

locations and pixel values, respectively.

To be precise, the Fundamental Theorem of Finite Abelian Groups gives that Y

can be written as a direct sum of cyclic groups:

Y :=
K⊕
k=1

ZMk
=
{
⊕Kk=1y(k) : y(k) ∈ ZMk

∀ k = 1, . . . , K
}
, (47)

that is, y := (y(1), . . . , y(K)). In 8-bit red-green-blue (RGB) images for example, we

have Y = Z256 ⊕ Z256 ⊕ Z256, that is, K = 3 and M1 = M2 = M3 = 256. The DFT

over Y is FY : CY → CY ,

(FYg)(y) :=
∑
y′∈Y

g(y′)e−2πi(y·y′),

55



where the (nonstandard) dot product of y, y′ ∈ Y is defined as:

y · y′ :=
K∑
k=1

y(k)y′(k)

Mk

. (48)

Note since each value y(k) is only unique modulo Mk, the value of the dot product (48)

is only unique modulo Z. That is, this dot product is not a unique real number, but

is rather an equivalence class of all integer translations of that number. We define

the DFT over X similarly. Taking the tensor product of these two DFT’s yields the

DFT over X ⊕ Y , namely the operator:

(FX⊕YW )(x, y) =
∑
x′∈X

∑
y′∈Y

W (x′, y′)e−2πi[(x·x′)+(y·y′)]. (49)

These facts in hand, we present the main result of this chapter.

Theorem 10. Let Θ be any (possibly nonlinear) transformation from YX into RX⊕Y .

Then Θ is of the form Θ(f) = 1f ∗W for some W ∈ RX⊕Y if and only if Θ satisfies

the following three properties:

(i) Θ commutes with translation on X : Θ(Txf) = T(x,0)Θ(f),

(ii) Θ commutes with translation on Y: Θ(f + y1) = T(0,y)Θ(f),

(iii) on average, Θ distributes over all flat occlusion models Φ:

EΦ[Θ(occΦ{fn}N−1
n=0 )] =

N−1∑
n=0

λnΘ(fn). (50)

Moreover, W is not unique: we have 1f ∗W1 = 1f ∗W2 for all f ∈ YX precisely when

(FX⊕YW1)(x, y) = (FX⊕YW2)(x, y) whenever y 6= 0 or (x, y) = (0, 0).

Proof. We begin by noting that Θ is a generalization of the local histogram transform.

Indeed, in Theorem 1(b) we showed that the local histogram transform (1) can be
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computed as LHwf = 1f ∗ (w̃ ⊗ δ0) for any w ∈ RX . We generalize this by letting

Θ(f) = 1f ∗W where W is any function from X ⊕Y into R; here, we note that when

W = w̃⊗δ0 this transformation is equal to the local histogram transform. (⇒) Before

showing that (i), (ii), and (iii) hold, we begin by noting that they are generalizations

of Proposition 2(b) and (c) and Theorem 4, respectively; although the proofs of these

facts are straightforward generalizations of the proofs of Proposition 2(b) and (c) and

Theorem 4, we present them here for the sake of completeness. To show (i), we note

that 1Txf = T(x,0)1f , implying:

Θ(Txf) = 1Txf ∗W = (T(x,0)1f ) ∗W = T(x,0)(1f ∗W ) = T(x,0)Θ(f).

Similarly, the fact that T(0,y)1f = 1f+y1 implies (ii):

T(0,y)Θ(f) = T(0,y)(1f ∗W ) = (T(0,y)1f ) ∗W = 1f+y1 ∗W = Θ(f + y1).

For (iii), let (x, y) ∈ X ⊕ Y and let Φ be any flat occlusion model. We have:

EΦ[Θ(occΦ{fn}N−1
n=0 )](x, y) =

∑
ϕ∈ZXN

PΦ(ϕ)[Θ(occϕ{fn}N−1
n=0 )](x, y)

=
∑
ϕ∈ZXN

PΦ(ϕ)(1occϕ{fn}N−1
n=0
∗W )(x, y)

=
∑
ϕ∈ZXN

PΦ(ϕ)
∑

(x′,y′)∈X⊕Y

1occϕ{fn}N−1
n=0

(x′, y′)W (x− x′, y − y′).
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Noting that (13) gives
N−1∑
n=0

1ϕ(x′, n)1fn(x′, y′) = 1occϕ{fn}N−1
n=0

(x′, y′), this becomes:

EΦ[Θ(occΦ{fn}N−1
n=0 )](x, y)

=
∑
ϕ∈ZXN

PΦ(ϕ)
∑

(x′,y′)∈X⊕Y

N−1∑
n=0

1ϕ(x′, n)1fn(x′, y′)W (x− x′, y − y′)

=
N−1∑
n=0

∑
(x′,y′)∈X⊕Y

∑
ϕ∈ZXN

PΦ(ϕ)1ϕ(x′, n)1fn(x′, y′)W (x− x′, y − y′).

Since Φ is flat, (16) simplifies this to:

EΦ[Θ(occΦ{fn}N−1
n=0 )](x, y) =

N−1∑
n=0

λn
∑

(x′,y′)∈X⊕Y

1fn(x′, y′)W (x− x′, y − y′)

=
N−1∑
n=0

λn(1fn ∗W )(x, y)

=
N−1∑
n=0

λnΘ(fn)(x, y).

(⇐) This direction of the proof is substantially more involved than its converse. We

first show how (iii) implies that Θ(f)−Θ(0) distributes additively over the standard

coordinate vectors:

Θ(f)−Θ(0) =
∑
x∈X

[Θ(f(x)δx)−Θ(0)]. (51)

Here, for any y ∈ Y , yδx denotes the function from X to Y that has value y at x and

is otherwise zero. To prove that (51) holds, we first show that:

Θ(f)−Θ((1− δx)f) = Θ(f(x)δx)−Θ(0). (52)

Note, we assume (50) holds for all flat Φ and all {fn}N−1
n=0 in YX . In particular, (50)
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holds for the specific image occlusion model Φ whose probability density function is:

PΦ(ϕ) =


1
|X | , ϕ = δx for some x ∈ X ,

0, else.
(53)

We claim this Φ is flat with λ0 = 1− 1
|X | , λ1 = 1

|X | , and λn = 0 for all n ≥ 2. To see

this, let ∆ = {δx′ : x′ ∈ X}, and note:

λn =
∑
ϕ∈ZXN
ϕ(x)=n

PΦ(ϕ) =
∑
ϕ∈∆
ϕ(x)=n

PΦ(ϕ) +
∑
ϕ/∈∆
ϕ(x)=n

PΦ(ϕ) =
∑
x′∈X

δx′ (x)=n

PΦ(δx′).

The λn’s may then be computed as:

λn =



∑
x′∈X
x′ 6=x

PΦ(δx′), n = 0,

PΦ(δx), n = 1,

0, n > 1,

=


1− 1

|X | , n = 0,

1
|X | , n = 1,

0, n > 1.

Having that the Φ defined in (53) is flat, we apply our assumption (50) to it in a

special case. Specifically, fixing any f in YX and any x ∈ X , y ∈ Y , letting f0 = f

and f1 = yδx, the right-hand-side of (50) is:

N−1∑
n=0

λnΘ(fn) =
(

1− 1
|X |

)
Θ(f) + 1

|X |Θ(yδx). (54)
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Meanwhile, it follows from (53) that the left-hand-side of (50) is:

EΦ[Θ(occΦ{fn}N−1
n=0 )] =

∑
ϕ∈ZXN

PΦ(ϕ)Θ(occϕ{fn}N−1
n=0 )

=
∑
ϕ∈∆

PΦ(ϕ)Θ(occϕ{fn}N−1
n=0 ) +

∑
ϕ/∈∆

PΦ(ϕ)Θ(occϕ{fn}N−1
n=0 )

= 1
|X |

∑
x′∈X

Θ(occδx′{fn}
N−1
n=0 ).

Using the easily verified fact that occδx′{fn}
N−1
n=0 = (1− δx′)f0 + δx′f1 gives:

EΦ[Θ(occΦ{fn}N−1
n=0 )] = 1

|X |

∑
x′∈X

Θ((1− δx′)f + δx′(yδx))

= 1
|X |

[
Θ((1− δx)f + yδx) +

∑
x′ 6=x

Θ((1− δx′)f)

]
. (55)

Substituting (54) and (55) into (50), and multiplying by |X | gives:

Θ((1− δx)f + yδx) +
∑
x′ 6=x

Θ((1− δx′)f) = (|X | − 1)Θ(f) + Θ(yδx). (56)

Rearranging (56) so that all “y” terms lie on the left-hand-side yields:

Θ((1− δx)f + yδx)−Θ(yδx) = (|X | − 1)Θ(f)−
∑
x′ 6=x

Θ((1− δx′)f). (57)

As the right-hand-side of (57) is obviously constant with respect to y, then the left-

hand-side is implicitly so. In particular, the left-hand-side of (57) is equal to itself at

y = 0:

Θ((1− δx)f + yδx)−Θ(yδx) = Θ((1− δx)f)−Θ(0). (58)
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Now, letting y = f(x) in (58) gives:

Θ(f)−Θ(f(x)δx) = Θ((1− δx)f)−Θ(0),

which rearranged, gives our claim (52). Now, using (52) to prove (51), we enumerate

X as X = {xk}|X |k=1, and write the left-hand-side of (51) as a telescoping sum:

Θ(f)−Θ(0) =

|X |∑
j=1

[
Θ

(
f

j−1∏
k=1

(1− δxk)
)
−Θ

(
f

j∏
k=1

(1− δxk)
)]

=

|X |∑
j=1

[
Θ

(
f

j−1∏
k=1

(1− δxk)
)
−Θ

(
(1− δxj)f

j−1∏
k=1

(1− δxk)
)]
. (59)

Applying (52) to (59) where “f” is f
∏j−1

k=1(1− δxk) and “x” is xj then yields (51):

Θ(f)−Θ(0) =

|X |∑
j=1

[
Θ

((
f

j−1∏
k=1

(1− δxk)
)

(xj)δxj

)
−Θ(0)

]

=

|X |∑
j=1

[Θ(f(xj)δxj)−Θ(0)]

=
∑
x∈X

[Θ(f(x)δx)−Θ(0)].

Having (51), we now use it, along with our assumptions (i) and (ii), to show that

there exists W ∈ RX⊕Y such that Θ(f) = 1f ∗W for all f ∈ YX . Indeed, we have:

Θ(f)−Θ(0) =
∑
x∈X

[Θ(f(x)δx)−Θ(0)]

=
∑
x∈X

[Θ(Txf(x)δ0)−Θ(Tx0)]

=
∑
x∈X

T(x,0)[Θ(f(x)δ0)−Θ(0)].

For any fixed f , writing our sum over X as a sum over Y and X subject to the
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constraint that f(x) = y gives:

Θ(f)−Θ(0) =
∑
y∈Y

∑
x∈X
f(x)=y

T(x,0)[Θ(yδ0)−Θ(0)]

=
∑
y∈Y

∑
x∈X

1f (x, y)T(x,0)[Θ(yδ0)−Θ(0)]. (60)

We now claim that there exists a W ∈ RX⊕Y such that:

Θ(yδ0)−Θ(0) =
(
T(0,y) − I

)
W, ∀ y ∈ Y . (61)

To be precise, we define W in the frequency domain as:

(FX⊕YW )(x′, y′) =



{
FX⊕Y [Θ(yδ0)−Θ(0)]

}
(x′, y′)

e−2πi(y·y′) − 1
, y′ 6= 0,

∑
y∈Y

[Θ(0)](0, y), (x′, y′) = (0, 0),

0, x′ 6= 0, y′ = 0,

(62)

where, for any y′ 6= 0, y is chosen such that y ·y′ /∈ Z, where this dot product is defined

in (48) according to the factorization (47) of Y as a direct sum of cyclic groups. To

see that W is well-defined, we first note that for any y′ 6= 0 there always exists at

least one such y. Indeed, since y′ 6= 0, there exists at least one index k0 such that

y′(k0) 6= 0 ∈ ZMk0
. Picking y such that y(k) is 1 when k = k0 and is otherwise zero,

we have:

y · y′ =
K∑
k=1

y(k)y′(k)

Mk

=
y′(k0)

Mk0

/∈ Z.

To show that W is well-defined, we must further show that for y′ 6= 0, the value of

(FX⊕YW )(x′, y′) does not depend on the particular y one chooses such that y · y′ /∈ Z.
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To do this, take any y, ỹ, y′ ∈ Y such that y · y′, ỹ · y′ /∈ Z. We need to show that:

{
FX⊕Y [Θ(yδ0)−Θ(0)]

}
(x′, y′)

e−2πi(y·y′) − 1
=

{
FX⊕Y [Θ(ỹδ0)−Θ(0)]

}
(x′, y′)

e−2πi(ỹ·y′) − 1
. (63)

To prove that (63) holds, we first show that:

Θ(yδ0 + ỹ1)−Θ(ỹ1)−Θ(yδ0) = Θ(ỹδ0 + y1)−Θ(y1)−Θ(ỹδ0). (64)

To prove (64) holds, note (51) gives:

Θ(yδ0 + ỹ1)−Θ(ỹ1) = [Θ(yδ0 + ỹ1)−Θ(0)]− [Θ(ỹ1)−Θ(0)]

=
∑
x∈X

[Θ((yδ0 + ỹ1)(x)δx)−Θ(0)]−
∑
x∈X

[Θ(ỹδx)−Θ(0)].

Noting that (yδ0 + ỹ1)(x) equals y+ ỹ when x is zero and is ỹ otherwise, this becomes:

Θ(yδ0 + ỹ1)−Θ(ỹ1)

= [Θ((y + ỹ)δ0)−Θ(0)] +
∑
x6=0

[Θ(ỹδx)−Θ(0)]−
∑
x∈X

[Θ(ỹδx)−Θ(0)]

= Θ((y + ỹ)δ0)−Θ(0)− [Θ(ỹδ0)−Θ(0)]

= Θ((y + ỹ)δ0)−Θ(ỹδ0). (65)

Interchanging the roles of y and ỹ in (65) gives:

Θ(ỹδ0 + y1)−Θ(y1) = Θ((ỹ + y)δ0)−Θ(yδ0). (66)

Solving for Θ((ỹ + y)δ0) in (65) and (66) gives:

Θ(yδ0 + ỹ1)−Θ(ỹ1) + Θ(ỹδ0) = Θ(ỹδ0 + y1)−Θ(y1) + Θ(yδ0).
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Subtracting Θ(ỹδ0)+Θ(yδ0) from this yields our claim (64). Next, by adding Θ(0) to

both sides of (64), and using the assumption (ii) that Θ commutes with translation

on Y , we can write (64) as:

T(0,ỹ)Θ(yδ0)− T(0,ỹ)Θ(0)−Θ(yδ0) + Θ(0)

= T(0,y)Θ(ỹδ0)− T(0,y)Θ(0)−Θ(ỹδ0) + Θ(0),

or more concisely, as:

(
T(0,ỹ) − I

)
[Θ(yδ0)−Θ(0)] =

(
T(0,y) − I

)
[Θ(ỹδ0)−Θ(0)].

Taking Fourier transforms then gives:

(e−2πi(ỹ·y′) − 1)
{

FX⊕Y [Θ(yδ0)−Θ(0)]
}

(x′, y′)

= (e−2πi(y·y′) − 1)
{

FX⊕Y [Θ(ỹδ0)−Θ(0)]
}

(x′, y′),

for any (x′, y′) ∈ X ⊕ Y . Since y · y′ /∈ Z and y · ỹ /∈ Z, dividing gives (63). This

concludes the argument showing that W is well-defined by (62).

We now note that W—implicitly defined in (62)—is real-valued, as claimed in the

statement of the result. Since W ∈ CX⊕Y is real-valued precisely when its Fourier

transform is skew-symmetric about the origin, it suffices to show that:

(
FX⊕YW

)
(−x′,−y′) = [(FX⊕YW )(x′, y′)]∗, ∀ (x′, y′) ∈ X ⊕ Y . (67)

We recall our assumption that Θ is any transformation from YX into RX⊕Y . As such,

Θ(0) is real-valued, and so (62) gives (FX⊕YW )(0, 0) is real, meaning (67) holds at

(x′, y′) = (0, 0). Moreover, for y′ = 0, (62) gives both sides of (67) to be 0. Meanwhile,
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for y′ 6= 0, since Θ(yδ0)−Θ(0) is real-valued, its Fourier transform satisfies:

{
FX⊕Y [Θ(yδ)−Θ(0)]

}
(−x′,−y′) =

({
FX⊕Y [Θ(yδ)−Θ(0)]

}
(x′, y′)

)∗
.

Taking any y such that y · y′ /∈ Z, note we also have y · (−y′) /∈ Z and so this fact,

along with (67), gives:

(FX⊕YW )(−x′,−y′) =

{
FX⊕Y [Θ(yδ)−Θ(0)]

}
(−x′,−y′)

e−2πi(y·(−y′)) − 1

=

({
FX⊕Y [Θ(yδ)−Θ(0)]

}
(x′, y′)

)∗
(e−2πi(y·y′) − 1)∗

= [(FX⊕YW )(x′, y′)]∗.

Having that the W defined (62) is real-valued, we next claim that W indeed

satisfies (61). In the frequency domain, (61) is equivalent to having:

{
FX⊕Y [Θ(yδ0)−Θ(0)]

}
(x′, y′) = (e−2πi(y·y′) − 1)(FX⊕YW )(x′, y′), (68)

for all x′ ∈ X , y, y′ ∈ Y . For y′ ∈ Y such that y · y′ /∈ Z, note that (62) immediately

gives (68). Meanwhile, for y′ ∈ Y such that y · y′ ∈ Z, the right-hand-side of (68) is

necessarily 0, meaning we must show that:

{
FX⊕Y [Θ(yδ0)−Θ(0)]

}
(x′, y′) = 0, ∀ (x′, y)′ ∈ X ⊕ Y s.t. y · y′ ∈ Z. (69)

To do this, note that for any y · y′ ∈ Z, we have:

{
FX⊕Y [Θ(yδ0)−Θ(0)]

}
(x′, y′) =

∑
x̃∈X

∑
ỹ∈Y

[Θ(yδ0)−Θ(0)](x̃, ỹ)e−2πi(x̃·x′)e−2πi(ỹ·y′)

=
∑
x̃∈X

e−2πi(x̃·x′)
∑
ỹ∈Y

[Θ(yδ0)−Θ(0)](x̃, ỹ).
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It thus suffices to prove that for any fixed x̃ ∈ X ,

∑
ỹ∈Y

[Θ(yδ0)−Θ(0)](x̃, ỹ) = 0. (70)

Note that a change of variables, along with our assumption (ii), gives:

∑
ỹ∈Y

[Θ(yδ0)−Θ(0)](x̃, ỹ) =
∑

(ỹ−y′)∈Y

[Θ(yδ0)−Θ(0)](x̃, ỹ − y′)

=
∑
y′∈Y

{
T(0,y′)[Θ(yδ0)−Θ(0)]

}
(x̃, ỹ)

=
∑
y′∈Y

[Θ(yδ0 + y′1)−Θ(y′1)](x̃, ỹ). (71)

We now recall (65) which gives the telescoping sum:

∑
y′∈Y

[Θ(yδ0 + y′1)−Θ(y′1)] =
∑
y′∈Y

[Θ((y + y′)δ0)−Θ(y′δ0)] = 0. (72)

Substituting (72) into (71) gives (70), which in turn implies (69). Having that (68)

holds in all cases, we obtain (61).

Having the claim (61), we substitute it into (60):

Θ(f)−Θ(0) =
∑
y∈Y

∑
x∈X

1f (x, y)T(x,0)(T(0,y) − I)W

=
∑
y∈Y

∑
x∈X

1f (x, y)(T(x,y)W − T(x,0)W ). (73)

Since for any fixed x ∈ X , we have that
∑

y∈Y 1f (x, y) = 1, evaluating (73) at some
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(x′, y′) ∈ X ⊕ Y gives:

[Θ(f)−Θ(0)](x′, y′) =
∑
y∈Y

∑
x∈X

1f (x, y)[(T(x,y)W )(x′, y′)− (T(x,0)W )(x′, y′)]

= (1f ∗W )(x′, y′)−
∑
y∈Y

∑
x∈X

1f (x, y)W (x′ − x, y′)

= (1f ∗W )(x′, y′)−
∑
x∈X

W (x′ − x, y′)

= (1f ∗W )(x′, y′)−
∑
x∈X

(T(x,0)W )(x′, y′). (74)

We now claim that

Θ(0) =
∑
x∈X

T(x,0)W. (75)

To see this, note that both (
∑

x∈X T(x,0)W )(x′, y′) and [Θ(0)](x′, y′) are constant with

respect to x′: for the former, note (
∑

x∈X T(x,0)W )(x′, y′) =
∑

x∈X W (x, y′); for the

latter, note that for any x ∈ X , assumption (i) gives:

[Θ(0)](x′, y′) = [Θ(Tx′−x0)](x′, y′) =
{

T(x′−x,0)[Θ(0)]
}

(x′, y′) = [Θ(0)](x, y′).

We therefore treat both of these functions as functions solely of y′. In particular, in

order to prove (75), it suffices to show that it holds in the frequency domain of Y :

[FYΘ(0)](y′) =

[
FY

(∑
x∈X

T(x,0)W

)]
(y′), ∀ y′ ∈ Y . (76)

To show that (76) holds for any y′ 6= 0, pick y such that y · y′ /∈ Z and let f = y1

in (74):

(Ty − I)Θ(0) = Θ(y1)−Θ(0) = 1y1 ∗W −
∑
x∈X

T(x,0)W.
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Using the easily verified fact that 1y1 ∗W =
∑

x∈X T(x,y)W , this becomes:

(Ty − I)Θ(0) =
∑
x∈X

T(x,y)W −
∑
x∈X

T(x,0)W = (Ty − I)
∑
x∈X

T(x,0)W.

Taking Fourier transforms of this over Y gives that:

(e−2πiy·y′ − 1)[FYΘ(0)](y′) = (e−2πiy·y′ − 1)

[
FY

(∑
x∈X

T(x,0)W

)]
(y′). (77)

Since y · y′ /∈ Z, we may divide by (e−2πiy·y′ − 1) to obtain (76) in this case. In the

remaining case where y′ = 0, the right-hand-side of (76) becomes:

[
FY

(∑
x∈X

T(x,0)W

)]
(0) =

∑
y∈Y

∑
x∈X

(T(x,0)W )(y) =
∑

(x,y)∈X⊕Y

W (x, y) = (FX⊕YW )(0, 0).

From the definition (62) of W , this becomes:

[
FY

(∑
x∈X

T(x,0)W

)]
(0) =

∑
y∈Y

[Θ(0)](y) = [FYΘ(0)](0),

namely (76) where y′ = 0. Therefore, (76) is satisfied giving (75). Substituting (75)

into (74) gives our result that Θ(f) = 1f ∗W .

All that remains to be shown is that our choice of W is not unique. To be precise,

the argument up to this point has only made use of the values of (62) where either

y′ 6= 0 or (x′, y′) = (0, 0). This suggests the values of (FX⊕YW )(x′, 0) where x′ 6= 0

are, in fact, arbitrary, even though they were chosen to be 0 in (62). This is indeed

the case: if 1f ∗W1 = 1f ∗W2, then 0 = 1f ∗ (W1 −W2) for all f . Taking the Fourier

transform over X ⊕ Y gives:

0 = (FX⊕Y1f )[FX⊕Y(W1 −W2)], (78)
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where:

(FX⊕Y1f )(x
′, 0) =

∑
(x,y)∈X⊕Y

1f (x, y)e−2πi(x′·x) =
∑
x∈X

e−2πi(x′·x)
∑
y∈Y

1f (x, y).

Since for any fixed x,
∑

y∈Y 1f (x, y) = 1, we have:

(FX⊕Y1f )(x
′, 0) =

∑
x∈X

e−2πi(x′·x) = (FX1)(x′) = |X |δ0(x′),

which equals 0 for any x′ 6= 0. In light of (78), we thus have that (FX⊕YW1)(x, 0) need

not be equal to (FX⊕YW2)(x, 0) for x 6= 0, thus giving our result: 1f ∗W1 = 1f ∗W2

for all f ∈ YX precisely when (FX⊕YW1)(x, y) = (FX⊕YW2)(x, y) whenever y 6= 0 or

(x, y) = (0, 0).

In summary, in this chapter, we showed that local histograms have unique capa-

bilities with regards to the analysis of composite images. To be precise, we let Θ be

any (possibly nonlinear) function that transforms images in YX into “joint distribu-

tions” of pixel location and value in RX⊕Y . We showed that if such a Θ commutes

with translations on X and Y and, like local histograms, distributes on average over

occlusions (7), then Θ is necessarily of local histogram type, that is, is of the form

Θ(f) = 1f ∗ W for some W ∈ RX⊕Y . In short, Theorem 10 establishes that such

operators—ones that filter the graph of an image as opposed to the image itself—are

uniquely well-suited to analyze composite images of a certain type.
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V. Variance of Local Histogram Transforms

5.1 Variance and Two-Flatness

In the previous two chapters, we discussed how local histograms distribute, on

average, over flat occlusion models. Having this understanding of the average behavior

of local histograms, in this chapter, we focus on the subject of how closely this average

approximates a typical local histogram. That is, we compute the variance of the local

histograms of a composite image (Theorem 11), and demonstrate that the distance

of our local histograms from the average is highly dependent on the scale of the local

histogram window.

To compute this variance, we necessarily make several simplifying assumptions

on the nature of the random images in question. In particular, we assume that our

occlusion model Φ is two-flat, meaning that on average, the probability that Φ chooses

labels n′ and n′′ at two separate pixel locations is equal to the probability of choosing

n′ and n′′ at any other two separate pixel locations; formally, Φ is two-flat if there

exists nonnegative scalars {λn}N−1
n=0 such that for any n′, n′′ and x′, x′′ ∈ X , x′ 6= x′′:

∑
ϕ∈ZXN

PΦ(ϕ)1ϕ(x′, n′)1ϕ(x′′, n′′) = λn′λn′′ . (79)

Note that two-flatness is a stronger form of flatness, that is, if Φ is two-flat (79), then

Φ is flat (16). To show this, we begin by summing up (79) over all n′′:

λn′
N−1∑
n′′=0

λn′′ =
∑
ϕ∈ZXN

PΦ(ϕ)1ϕ(x′, n′)
N−1∑
n′′=0

1ϕ(x′′, n′′) =
∑
ϕ∈ZXN

PΦ(ϕ)1ϕ(x′, n′), (80)

where the last equality follows directly from the fact that for any fixed ϕ, we have
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that
∑N−1

n′′=0 1ϕ(x′′, n′′) = 1. Now, summing over all n′ gives:

( N−1∑
n′=0

λn′

)2

=
N−1∑
n′=0

λn′
N−1∑
n′′=0

λn′′ =
∑
ϕ∈ZXN

PΦ(ϕ)
N−1∑
n′=0

1ϕ(x′, n′) = 1,

which, since the λn′ ’s are nonnegative, gives that
∑N−1

n′=0 λn′ = 1. Note that in light

of this fact, (80) reduces to (16), namely that Φ is flat.

Having this property of two-flatness, we can express the variance of the local

histograms of a composite image as a combination of the local histograms of each

image with respect to the square of the weighting function:

Theorem 11. Let {fn}N−1
n=0 be any sequence of images in YX which exhibits unique

pixel values, that is, fn′(x) = fn′′(x) implies n′ = n′′. Then for any two-flat N-image

occlusion model Φ, and any function w in RX , the variance of the local histogram

transform (1) of a composite image (7) is

VΦ(LHwoccΦ{fn}N−1
n=0 )(x, y) =

N−1∑
n=0

λn(1− λn)(LHw2fn)(x, y). (81)

Proof. We assume that Φ is two-flat, which, as noted above, implies that Φ is also

flat. As shown in Theorem 4 and generalized in Theorem 10, since Φ is flat, we have:

EΦ(LHwoccΦ{fn}N−1
n=0 )(x, y) =

N−1∑
n=0

λn(LHwfn)(x, y). (82)

Therefore, we can compute the variance as:

VΦ(LHwoccΦ{fn}N−1
n=0 ) = EΦ[(LHwoccΦ{fn}N−1

n=0 )2]− [EΦ(LHwoccΦ{fn}N−1
n=0 )]2

= EΦ[(LHwoccΦ{fn}N−1
n=0 )2]−

[N−1∑
n=0

λn(LHwfn)(x, y)

]2

. (83)
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To compute EΦ[(LHwoccΦ{fn}N−1
n=0 )2], it follows from (1) that:

EΦ[(LHwoccΦ{fn}N−1
n=0 )2](x, y)

=
∑
ϕ∈ZXN

PΦ(ϕ)(LHwoccϕ{fn}N−1
n=0 )2(x, y)

=
∑
ϕ∈ZXN

PΦ(ϕ)

[∑
x′∈X

w(x′)δy((occϕ{fn}N−1
n=0 )(x+ x′))

]2

=
∑
ϕ∈ZXN

PΦ(ϕ)

[∑
x′∈X

w(x′ − x)δy((occϕ{fn}N−1
n=0 )(x′))

]2

. (84)

Recalling (13), we have that:

δy((occϕ{fn}N−1
n=0 )(x′)) =

N−1∑
n=0

1ϕ(x′, n)δy(fn(x′)),

and so (84) becomes:

EΦ[(LHwoccΦ{fn}N−1
n=0 )2](x, y)

=
∑
ϕ∈ZXN

PΦ(ϕ)

[∑
x′∈X

w(x′ − x)
N−1∑
n′=0

1ϕ(x′, n′)δy(fn′(x
′))

]2

=
∑
x′∈X

∑
x′′∈X

w(x′ − x)w(x′′ − x)
N−1∑
n′=0

N−1∑
n′′=0

δy(fn′(x
′))δy(fn′′(x

′′))

×
∑
ϕ∈ZXN

PΦ(ϕ)1ϕ(x′, n′)1ϕ(x′′, n′′).

We now break up the sums over x′, x′′ ∈ X into a sum where x′ = x′′ and a sum

where x′ 6= x′′, and note that for x′ 6= x′′ the sum over ϕ ∈ ZXN reduces to (79) since
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Φ is two-flat:

EΦ[(LHwoccΦ{fn}N−1
n=0 )2](x, y)

=
∑
x′∈X

[w(x′ − x)]2
N−1∑
n′=0

N−1∑
n′′=0

δy(fn′(x
′))δy(fn′′(x

′))
∑
ϕ∈ZXN

PΦ(ϕ)1ϕ(x′, n′)1ϕ(x′, n′′)

+
∑
x′ 6=x′′

w(x′ − x)w(x′′ − x)
N−1∑
n′=0

N−1∑
n′′=0

δy(fn′(x
′))δy(fn′′(x

′′))λn′λn′′ . (85)

For the first summand in (85), we have that 1ϕ(x′, n′)1ϕ(x′, n′′) is zero when n′ 6= n′′

and is 1ϕ(x′, n′) when n′ = n′′. This, along with the fact that Φ is flat, reduces the

first term in (85) to:

∑
x′∈X

[w(x′ − x)]2
N−1∑
n′=0

N−1∑
n′′=0

δy(fn′(x
′))δy(fn′′(x

′))
∑
ϕ∈ZXN

PΦ(ϕ)1ϕ(x′, n′)1ϕ(x′, n′′)

=
∑
x′∈X

[w(x′ − x)]2
N−1∑
n′=0

δy(fn′(x
′))
∑
ϕ∈ZXN

PΦ(ϕ)1ϕ(x′, n′)

=
N−1∑
n′=0

λn′
∑
x′∈X

[w(x′ − x)]2δy(fn′(x
′))

=
N−1∑
n′=0

λn′(LHw2fn′)(x, y). (86)

Meanwhile, we write the second term in (85) as the sums over all x′, x′′ ∈ X minus

the sum over x′ = x′′:

∑
x′ 6=x′′

w(x′ − x)w(x′′ − x)
N−1∑
n′=0

N−1∑
n′′=0

δy(fn′(x
′))δy(fn′′(x

′′))λn′λn′′

=
∑
x′∈X

∑
x′′∈X

w(x′ − x)w(x′′ − x)
N−1∑
n′=0

N−1∑
n′′=0

δy(fn′(x
′))δy(fn′′(x

′′))λn′λn′′

−
∑
x′∈X

[w(x′ − x)]2
N−1∑
n′=0

N−1∑
n′′=0

δy(fn′(x
′))δy(fn′′(x

′))λn′λn′′ . (87)
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Here, the last term in (87) is zero unless fn′(x
′) = fn′′(x

′) which, from our assump-

tions, implies that n′ = n′′. As such, (87) becomes:

∑
x′ 6=x′′

w(x′ − x)w(x′′ − x)
N−1∑
n′=0

N−1∑
n′′=0

δy(fn′(x
′))δy(fn′′(x

′′))λn′λn′′

=

[ N−1∑
n′=0

λn′
∑
x′∈X

w(x′ − x)δy(fn′(x
′))

]2

−
∑
x′∈X

[w(x′ − x)]2
N−1∑
n′=0

δy(fn′(x
′))λ2

n′

=

[ N−1∑
n′=0

λn′(LHwfn′)(x, y)

]2

−
N−1∑
n′=0

λ2
n′(LHw2fn′)(x, y). (88)

Substituting (86) and (88) into (85), and combining like terms gives:

EΦ[(LHwoccΦ{fn}N−1
n=0 )2](x, y)

=
N−1∑
n′=0

λn′(1− λn′)(LHw2fn′)(x, y) +

[ N−1∑
n′=0

λn′(LHwfn′)(x, y)

]2

.

Substituting this into (83) gives our result (81).

Theorem 11 shows that the variance of the local histogram transform of a com-

posite image depends on the scale of the support of w, a fact which is demonstrated

in Figure 9. To see this more clearly, consider an example where Y = ZM and

X = ZL ⊕ ZL. In particular, let the fn’s be distinct, constant functions, that is,

fn = mn1 where mn ∈ ZM and mn′ = mn′′ if and only if n′ = n′′. Let w ∈ RX be the

square weighting function defined by:

w(l1, l2) =


1

(2J+1)2 , l1, l2 ∈ [−J, J ],

0, else,
(89)

where J < L. Let ρn denote the probability of choosing label n ∈ ZN . Noting that
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Figure 9. An example demonstrating the importance of the scale of the local histogram window.
Recall the example given in Figure 2. The theory presented in this dissertation has provided the
theoretical justification for a certain type of segmentation-and-classification algorithm. That is, we
assign a label to any given pixel in Figure 2(e) by comparing its local histogram to the three distinct
distributions of pixels found in Figure 2(a), (b) and (c). In doing so, we hope to obtain results that
compare well against the ground truth image (a). In (b), we see that the support of the window plays
an important role in how accurately our algorithm segments-and-labels our image Figure 2(e)—a
fact which is justified in Theorem 11. In this example, our window is defined as a box filter (89) of
“radius” J . That is, the box has sides of length 2J + 1; (b) gives the accuracy for this classification
for windows of length 2J + 1 = 1, . . . , 31, that is, J = 0, . . . , 15. When our window is too small,
we get a “noisy” segmented-and-labeled image, such as the one given in (c) where 2J + 1 = 3. In
(b), we see that our classification accuracy is highest when 2J + 1 = 7. Indeed, using this window
in our “nearest histogram” classification scheme results in (d) which compares well against ground
truth (a). Finally, if we choose our window to be too large, our classification accuracy suffers from
oversmoothing as seen in (e) which was obtained by letting 2J + 1 = 29.
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w = w̃, it follows from Theorem 1(a) that:

(LHw2fn)(x, y) = (w2 ∗ 1f−1
n {y})(x) =

∑
x′∈X

w2(x′)1f−1
n {y}(x− x

′).

Noting that our definition of fn gives that fn(x − x′) = y if and only if mn = y, it

follows from (2) that:

(LHw2fn)(x, y) =
∑
x′∈X

w2(x′)δy(mn) = δy(mn)
∑

x′∈supp(w)

1

(2J + 1)4
=

δy(mn)

(2J + 1)2
,

where the last equality follows from the fact that |supp(w)| = (2J + 1)2. This then

gives that (81) becomes:

VΦ(LHwoccΦ{fn}N−1
n=0 )(x, y) =

1

(2J + 1)2

N−1∑
n=0

ρn(1− ρn)δy(mn).

Here, we indeed see that as the support of the window increases, our variance becomes

smaller.

We note, however, that this is under the assumption that the window lies com-

pletely within a region for which the two-flat hypothesis holds. Indeed, as the scale of

the window grows large, we expect this result to not hold when applied to images that

are composites of several distinct textures, each arising from its own unique image

model, such as Figure 2(e). In particular, when the scale of the window is large, the

local histogram at a pixel will likely mix in the histograms of the neighboring tex-

tures. Therefore, the local histogram at that particular pixel will not compare well

against the histogram of any one given texture, causing the accuracy of our “nearest

histogram” classification scheme to decrease. This intuition is confirmed by the de-

creased performance of our classification algorithm as the scale of the window grows

large, see Figure 9(b) and (e). Having seen that two-flatness is important in under-
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standing the variance of the local histograms of a composite image, we, in the next

section, consider if two-flatness is a realistic assumption in terms of our motivating

application.

5.2 Constructing Two-Flat Occlusion Models

In this section, we demonstrate that two-flatness is a reasonable assumption by

providing a couple methods for constructing two-flat occlusion models. Recall that

in a Bernoulli model, we define the probability of picking any particular ϕ ∈ ZX2 as

PΦ(ϕ) =
∏

x∈X ρϕ(x). Not only is the Bernoulli random variable Φ flat as shown in

Theorem 5, but it is also two-flat:

Theorem 12. If Φ is a Bernoulli random variable, then Φ is two-flat.

Proof. To show this, first fix some xk′0 , xk′′0 ∈ X , xk′0 6= xk′′0 . Paralleling the proof of

Φ being flat (Theorem 5), it follows that:

∑
ϕ∈ZXN

PΦ(ϕ)1ϕ(xk′0 , n
′)1ϕ(xk′′0 , n

′′) =
N−1∑
n1=0

ρn1 · · ·
N−1∑
nK=0

ρnK
∑
ϕ∈ZXN

ϕ(xk)=nk, ∀k

1ϕ(xk′0 , n
′)1ϕ(xk′′0 , n

′′).

As the constraints on the sum over ϕ ∈ ZXN uniquely define a single ϕ, we have that

the sum is one if n′ = nk′0 and n′′ = nk′′0 thus giving:

∑
ϕ∈ZXN

PΦ(ϕ)1ϕ(xk′0 , n
′)1ϕ(xk′′0 , n

′′)

=
N−1∑
n1=0

ρn1 · · ·
N−1∑
nK=0

ρnKδn′(nk′0)δn′′(nk′′0 )

=

( N−1∑
nk′0

=0

ρnk′0
δn′(nk′0)

)( N−1∑
nk′′0

=0

ρnk′′0
δn′′(nk′′0 )

) ∏
k 6=k′0,k′′0

(N−1∑
nk=0

ρnk

)

= ρn′ρn′′ .
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Having shown that Bernoulli random variables are two-flat, we now consider an-

other method for constructing two-flat occlusion models which uses the overlay oper-

ator (31). In Theorem 8, we showed that if Φ, Ψ, and Σ were flat, then Φ#ΣΨ is also

flat. Here, we show a similar result holds when flatness is replaced with two-flatness:

Theorem 13. If Φ, Ψ, and Σ are two-flat (79), then Φ#ΣΨ is two-flat.

Proof. We begin by noting that since Φ, Ψ, and Σ are two-flat, they are also flat.

We want to show that Φ#ΣΨ is two-flat (79), meaning that for any n′, n′′ ∈ ZNΦ+NΨ

and x′, x′′ ∈ X such that x′ 6= x′′, our goal is to show that there exists scalars

{λΦ#ΣΨ,n}NΦ+NΨ−1
n=0 such that:

∑
υ∈ZXNΦ+NΨ
υ(x′)=n′

υ(x′′)=n′′

PΦ#ΣΨ(υ) = λΦ#ΣΨ,n′λΦ#ΣΨ,n′′ . (90)

To see this, note that for any n′, n′′ = 0, · · · , NΦ + NΨ − 1 and x′, x′′ ∈ X such that

x′ 6= x′′, it follows from the ideas used in (35) that:

∑
υ∈ZXNΦ+NΨ
υ(x′)=n′

υ(x′′)=n′′

PΦ#ΣΨ(υ) =
∑

ϕ∈ZXNΦ

ψ∈ZXNΨ

σ∈ZX2
(ϕ#σψ)(x′)=n′

(ϕ#σψ)(x′′)=n′′

PΦ(ϕ)PΨ(ψ)PΣ(σ). (91)

Note that if n = 0, . . . , NΦ−1, (31) gives that (ϕ#σψ)(x) = n if and only if ϕ(x) = n

and σ(x) = 0. Meanwhile, if n = NΦ, . . . , NΦ +NΨ−1, (31) gives that (ϕ#σψ)(x) = n

if and only if ψ(x) = n−NΦ and σ(x) = 1. We now use these facts to compute (91)

for any n′, n′′ ∈ ZNΦ+NΨ
. In the case where n′, n′′ = 0, . . . , NΦ − 1, since Φ and Σ are
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two-flat, (91) becomes:

∑
υ∈ZXNΦ+NΨ
υ(x′)=n′

υ(x′′)=n′′

PΦ#ΣΨ(υ) =
∑

ϕ∈ZXNΦ
ϕ(x′)=n′

ϕ(x′′)=n′′

PΦ(ϕ)
∑

ψ∈ZXNΨ

PΨ(ψ)
∑
σ∈ZX2
σ(x′)=0
σ(x′′)=0

PΣ(σ)

= λΦ,n′λΦ,n′′λ
2
Σ,0. (92)

Meanwhile, when n′ = 0, · · · , NΦ − 1 and n′′ = NΦ, · · · , NΦ +NΨ − 1, since Φ and Ψ

are flat and Σ is two-flat, we have that (91) becomes:

∑
υ∈ZXNΦ+NΨ
υ(x′)=n′

υ(x′′)=n′′

PΦ#ΣΨ(υ) =
∑

ϕ∈ZXNΦ
ϕ(x′)=n′

PΦ(ϕ)
∑

ψ∈ZXNΨ
ψ(x′′)=n′′−NΦ

PΨ(ψ)
∑
σ∈ZX2
σ(x′)=0
σ(x′′)=1

PΣ(σ)

= λΦ,n′λΨ,n′′−NΦ
λΣ,0λΣ,1. (93)

Similarly, for n′ = NΦ, · · · , NΦ +NΨ − 1 and n′′ = 0, · · · , NΦ − 1, (91) becomes:

∑
υ∈ZXNΦ+NΨ
υ(x′)=n′

υ(x′′)=n′′

PΦ#ΣΨ(υ) =
∑

ϕ∈ZXNΦ
ϕ(x′′)=n′′

PΦ(ϕ)
∑

ψ∈ZXNΨ
ψ(x′)=n′−NΦ

PΨ(ψ)
∑
σ∈ZX2
σ(x′)=1
σ(x′′)=0

PΣ(σ)

= λΦ,n′′λΨ,n′−NΦ
λΣ,0λΣ,1. (94)

Finally, for n′, n′′ = NΦ, · · · , NΦ +NΨ − 1, since Ψ and Σ are two-flat, (91) becomes:

∑
υ∈ZXNΦ+NΨ
υ(x′)=n′

υ(x′′)=n′′

PΦ#ΣΨ(υ) =
∑

ϕ∈ZXNΦ

PΦ(ϕ)
∑

ψ∈ZXNΨ
ψ(x′)=n′−NΦ

ψ(x′′)=n′′−NΦ

PΨ(ψ)
∑
σ∈ZX2
σ(x′)=1
σ(x′′)=1

PΣ(σ)

= λΨ,n′−NΦ
λΨ,n′′−NΦ

λ2
Σ,1. (95)

Thus, for any x′, x′′ ∈ X such that x′ 6= x′′, we have (92), (93), (94), or (95) meaning
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Φ#ΣΨ is two-flat (90), as claimed.

Having demonstrated the potential usefulness of local histograms in the analy-

sis of images composed of distinct texture types, we now turn to using them in a

segmentation-and-classification algorithm.
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VI. A Proof-of-Concept Classification Algorithm

In this chapter, we discuss a preliminary segmentation-and-classification algorithm

inspired by Theorem 4 in which local histograms are decomposed using principal

component analysis (PCA). In particular, the work presented in this dissertation

was motivated by the need to identify and delineate the various tissues exhibited

in images of histological sections of teratoma tumors derived from embryonic stem

cells, such as the one given in Figure 1(a). This image was provided by Dr. Carlos

Castro of the University of Pittsburgh and Dr. John A. Ozolek of the Children’s

Hospital of Pittsburgh, who grow and image such teratomas to gain greater insight

into tissue development. These tumors begin as masses of undifferentiated cells that

are implanted in laboratory animals. Over time, these tumors grow and their cells

differentiate into many various types—bone, cartilage, skin, etc.—until a point at

which they are excised, sectioned, stained and viewed under a microscope, resulting

in images such as the one in Figure 1(a). As such, these images exhibit a wide variety

of tissue types, arranged in a seemingly random fashion. Indeed, to a casual observer

such images can appear as a jumbled mess. In truth however, the arrangement of these

tissues is not completely random, and is rather the result of not yet well-understood

biological mechanisms. Drs. Castro and Ozolek believe that by looking at many such

images—many sections of many teratomas—they can gain greater insight into these

mechanisms.

Up to this point, we have presented a theoretical justification for using local

histograms to segment and label images like Figure 1(a). In this chapter, we discuss

a preliminary segmentation-and-classification algorithm inspired by Theorem 4. We

emphasize that for the algorithm presented here, local histograms are the only image

features that are computed. That is, the decision of which label to assign to a given

pixel is based purely on the distribution of color in its surrounding neighborhood. We

81



do this to demonstrate the validity of the concept embodied by Theorem 4 as an image

processing tool. For algorithms intended for real-world use, such color information

should be combined with morphological data—size, local and global shape, orientation

and organization—in order to obtain better classification accuracies. An example of

such an algorithm, accompanied by thorough testing and comparisons against other

state-of-the-art methods, is given in [3]; these facts are not reprinted here.

From the point of view of our motivating application, the significance of The-

orems 4 and 11 is that they give credence to a certain type of segmentation-and-

classification algorithm. To be precise, given a set of training images which are man-

ually segmented and labeled by medical experts, we, for any given tissue type, can

compute local histograms over regions which are labeled as that type. In light of The-

orem 4, it is reasonable to demix—decompose into convex combinations—the local

histograms of that type into a set of more basic distributions. Indeed, it is reasonable

to expect a local histogram computed over a region of cartilage (Figure 3(b)) to be

a mixture of 0.8 of a “light purple” distribution—a distribution mostly supported in

portions of Y that correspond to light purple—with 0.2 of a darker reddish-purple

one. Meanwhile, local histograms of other tissues will correspond to distinct mixtures

of other distributions. For example, local histograms computed over a region of pseu-

dovascular tissue (Figure 3(d)) might be a mixture of 0.5 of a light pink distribution,

with 0.25 of a dark purple one and 0.25 of a reddish-pink one. Once sparse demixings

of each tissue type have been found, we then use them to segment and classify: given

a new image, we assign a label at any given point by determining which particular

set of learned distributions its local histogram is most consistent with.

The algorithm we present in this chapter exploits this concept. The first step is

to train our classifier. To do so, let K be the number of distinct tissue types found

in a training image such as Figure 10(a) or (d). For any tissue type k = 1, . . . , K, we
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compute local histograms {hk;m}Mk
m=1 about pixel locations {xk;m}Mk

m=1 that have been

labeled as being of that type by medical experts. We note here that the computation

of the variance of the local histogram transform, which was given in the previous

chapter, demonstrated the importance of the scale of the local histogram window. In

our algorithm, we use a Gaussian window and have chosen the scale experimentally

to have a standard deviation of 16
√

2. Each hk;m is a nonnegatively-valued function

over Y that sums to one. There are several ways to pick the xk;m’s. One approach

is to have the expert choose each point individually. Alternatively, if the expert has

manually segmented and labeled the entire image (Figure 10(b)), then the xk;m’s can

be chosen at random from regions of type k. The number Mk of local histograms that

we compute for type k is somewhat arbitrary; we used repeated experimentation to

find a sample size large enough to guarantee reliably-decent performance.

In light of Theorem 4, it would be nice to demix the training local histograms

{hk;m}Mk
m=1 in terms of a type-dependent class of more basic distributions {gk;n}Nkn=1.

That is, we would like to find nonnegatively-valued functions gk;n over Y that sum

to one and have the property that for each training local histogram hk;m there exists

nonnegative scalars {λk;m,n}Nkn=1 that themselves sum to one and such that:

hk;m ≈
Nk∑
n=1

λk;m,ngk;n, ∀m = 1, . . . ,Mk. (96)

Unfortunately, computing the gk;n’s that minimize the approximation error in (96) is

a nontrivial optimization problem. As such, we leave this approach for future work,

and instead consider a mathematically-simpler problem in which the λk;m,n’s and

gk;n’s are permitted to be arbitrary real scalars and vectors, respectively. That is, we

perform PCA for each tissue type k. PCA is a technique from linear algebra that

takes a set of correlated local histograms, such as those computed at pixels of the

same tissue type, and converts the set into distributions that are uncorrelated; these
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(a) (b) (c)

(d) (e)

Figure 10. An example of using PCA of local histograms to perform segmentation and classification
of the image given in (a), which is a 3-bit quantized version of Figure 1(a). A manually segmented and
labeled version of (a) is shown in (b) where black represents cartilage, light gray represents connective
tissue, dark gray represents pseudovascular tissue, and white represents other tissues that have been
ignored in this proof-of-concept experimentation. That is, the (ignored) white pixels in (c) and (e) are
copied directly from (b), while the black and gray pixels are the result of our classification algorithm.
Using (a) as both the training and testing image in a PCA-based classification scheme (99), we obtain
the labels shown in (c). A similar, but less-accurate classification of (a) can still be obtained if we
instead train on (d), resulting in the labels given in (e).
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distributions are called the principal components. The first principal component has

the highest possible variance overall while the other components have the highest

possible variance with respect to the restriction that they must also be orthogonal to

each other.

To be precise, for each type, we form a |Y| ×Mk matrix Hk whose columns are

the (vectorized) local histograms hk;m less their average hk:

Hk(:,m) = hk;m − hk where hk =
1

Mk

Mk∑
m=1

hk;m. (97)

We then compute the singular value decompositions Hk = UkΣkV
T
k and identify those

left-singular vectors {uk;n}Nkn=1 that correspond to some experimentally-determined

number Nk of dominant singular values {σk;n}Nkn=1. In this setting, the approxima-

tion (96) is replaced by:

hk;m ≈ hk +

Nk∑
n=1

〈hk;m − hk, uk;n〉uk;n, ∀m = 1, . . . ,Mk. (98)

The classical theory of PCA states that the approximation error in (98) is opti-

mally small in the sense that these specific uk;n’s span the particular Nk-dimensional

subspace of RY whose orthogonal projection operator Pk minimizes the total squared-

error
∑Mk

m=1 ‖hk;m − hk − Pk(hk;m − hk)‖2. The vectors hk and {uk;n}Nkn=1 in hand, we

store them in memory, completing the training phase of our classification algorithm.

To segment and label a given image f , we compute its local histograms (1), ob-

taining local distributions of color hx : Y → R, hx(y) = (LHwf)(x, y) about every

pixel location x ∈ X . At any given x, we then assign a tissue label k(x) by finding the

tissue type k whose shifted subspace hk + span{uk;n}Nkn=1 is nearest to hx. Specifically,
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we let:

k(x) = argmin
k=1,...,K

∥∥∥hx − hk − Nk∑
n=1

〈hx − hk, uk;n〉uk;n

∥∥∥2

= argmin
k=1,...,K

(
‖hx − hk‖2 −

Nk∑
n=1

|〈hx − hk, uk;n〉|2
)

= argmin
k=1,...,K

(∑
y∈Y

|hx(y)− hk(y)|2 −
Nk∑
n=1

∣∣∣∣∑
y∈Y

(
hx(y)− hk(y)

)
uk;n(y)

∣∣∣∣2
)
. (99)

In implementation, we compute the summations over Y in (99) as running sums,

looping over all y ∈ Y . This computational trick greatly reduces our memory re-

quirements: at any given time, we only store a single level of LHwf . By Theorem 1,

such a level can be obtained by filtering an indicator function; in the following exper-

imental results, we avoided edge artifacts by using a weighted noncyclic method of

filtering, namely the ?-convolution of [33]. Without such a trick, one must store the

entire local histogram transform in memory, a daunting task for even modestly-sized

images: the full local histogram transform of the 1200×1200, 8-bit RGB image given

in Figure 1(a) is a 1200× 1200× 256× 256× 256 array.

Further computational advantages may be gained by quantizing the image and

reducing the dimension of the color space. For our particular set of histology images,

we experimentally found that we could still obtain good accuracies even if we discard

the green channel of our purple-pink images, and moreover quantize the 8-bit red and

blue channels down to 3-bits apiece. That is, we quantize Y from Z3
256 to Z2

8. By

Proposition 2, this is equivalent to binning the original 1200×1200×256×256×256

local histogram array down to a new one of size 1200× 1200× 8× 8. The quantized

version of Figure 1(a) is given in Figure 10(a); for the sake of readability, a 3-bit

quanitized version of the unused green channel was included in this rendering. As

a result of this quantization, it only takes a few seconds to assign per-pixel labels
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to a 1200 × 1200 histology image using a MATLAB-based implementation of (99),

running on standard desktop hardware. For this particular set of images, further color

quantization, such as using 2-bit colors (Y = Z2
2) or converting the original image to

grayscale (Y = Z256), results in an unacceptable loss in classification accuracy, as do

attempts at spatial quantization (X = Z2
600).

Two runs of this classification algorithm are depicted in Figure 10. In the first run,

we train the classifier on the 3-bit 1200× 1200 red-blue image given in Figure 10(a).

For the sake of simplicity, we restrict ourselves to K = 3 tissue types: cartilage,

connective tissue and pseudovascular tissue; all other tissue types are ignored in

the confusion matrices given below. For each type k = 1, 2, 3, we randomly choose

Mk = 64 points of that type, making use of a small number of the 12002 ground

truth labels given in Figure 10(b); edge artifacts are avoided by not picking points

near the border. For each type, we then perform PCA on the 64 local histograms

hk;m of that type, computing an average local histogram hk as well as the dominant

left-singular vectors of Hk (97). For the sake of simplicity, in a given experiment we

will use the same number of principal components for each of the three types, that

is, Nk = N for k = 1, 2, 3. At the same time, we experiment with this number itself,

letting N be either 1, 2, 3 or 4. With the training complete, we then segment and

classify Figure 10(a) using the decision rule (99), resulting in per-pixel labels such as

the ones given in Figure 10(c) for N = 4. Comparing Figure 10(c) and the ground

truth of Figure 10(b), we see both the power and limitations of local histograms:

color is a big factor in determining tissue type, but by ignoring shape, we suffer from

oversmoothing. The accuracy percentages for various choices of N are given by a
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confusion matrix:

N = 1 N = 2 N = 3 N = 4

Ca Co Ps Ca Co Ps Ca Co Ps Ca Co Ps

Ca 77 22 1 87 11 2 96 3 1 96 3 1

Co 0 95 5 0 91 9 3 94 3 3 92 5

Ps 2 11 87 2 8 90 6 7 87 5 5 90

Here each row of the matrix tells us the percentage a certain tissue was labeled as

cartilage (Ca), connective tissue (Co), and pseudovascular tissue (Ps). In particular,

the first three entries of the first row of this table tell us that when using a single prin-

cipal component, those points labeled as cartilage by a medical expert in Figure 10(b)

are correctly labeled as such by our algorithm 77% of the time, while 22% of it is

mislabeled as connective tissue and 1% of it is mislabeled as pseudovascular tissue.

Note here that we have trained and tested on the same image; such experiments

indicate the feasibility of our approach in a semi-automated classification scheme in

which a medical expert handpicks 64 points of each given type and lets the algorithm

automatically assign labels to the rest.

The second run of this algorithm is almost identical to the first, with the exception

that we use a distinct image in the training phase. To be precise, for each of the three

tissue types, we perform PCA on the local histograms of 64 randomly-chosen points

of that type in Figure 10(d), making use of its ground truth labels (not pictured). We

then apply the principal components obtained from Figure 10(d) to generate labels

(Figure 10(e)) for Figure 10(a) using the decision rule (99). Compared to the first

run, the algorithm’s performance here is a better indication of its feasibility as a

fully automated classification scheme, and is summarized by the following confusion
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matrix:

N = 1 N = 2 N = 3 N = 4

Ca Co Ps Ca Co Ps Ca Co Ps Ca Co Ps

Ca 90 9 1 91 4 5 90 5 5 83 11 6

Co 25 61 14 10 62 28 7 79 14 8 70 22

Ps 30 12 58 4 10 86 4 50 46 2 17 81

Though the performance in the second run is understandably worse than that of the

first, it nevertheless demonstrates the real-world potential of the idea exemplified by

Theorem 4: the local histograms of certain types of textures can be decomposed into

more basic distributions, and this decomposition can serve as an image processing

tool.
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VII. Conclusions

In this dissertation, we provided a rigorous mathematical analysis of local his-

tograms to be used in the segmentation and classification of histology images. In

particular, we found a nice relationship between local histograms and images that

are composites of several distinct textures: local histograms distribute, on average,

over flat occlusion models. Additionally, we showed that the distance of our local

histograms from the average is highly dependent on the scale of the local histogram

window. We also characterized all transforms which satisfy the three key properties

of local histograms thus showing that local histograms are essentially the only trans-

forms that distribute over random composites, on average. These results demonstrate

the usefulness of local histograms in analyzing textures commonly found in histology

images and give credence to certain types of segmentation-and-classification algo-

rithms. We demonstrated the real-world potential of these ideas by using them to

segment and classify tissues in a histology image.

We now discuss several ideas for future work. The first idea arises from the fact

that storing local histograms of an image requires a significant amount of memory.

Suppose we want to compare the local histogram against a library of ground truth

histograms and assign a label based on the closest match in the library. Not only

does computing the local histograms require a significant amount of memory, but

the size of our library is limited because of memory. In order to reduce this cost,

one could study sparse representations of local histograms, that is, see when they

can be written as combinations of a few essential fundamental distributions. One

could also investigate how classification accuracy suffers, if at all, as a result of such

sparse approximation. Second, we note that up to this point, we have focused on

local histograms in the case where the images in question are discrete. By extending

this theory to the continuous case, one could apply local histograms not just to the
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pixel values themselves, but also to real-valued quantities derived from them, such as

image orientations. In particular, one could study how the local histogram transform

interacts with multiscale moment transforms and incorporate orientation information

into the segmentation-and-classification algorithm. Such geometrical context is vital

when color alone is insufficient for proper classification. One could also exploit the

theory of frames and filter banks to generalize the local histogram transform in a way

that allows it to incorporate both high and low spatial frequency information. Next,

one could use information theory metrics to compare the information content of the

RGB and RB images. One could study how the distinct red-blue pairs are related to

the possible green values and study when the green channel may be disregarded in the

classification scheme. Finally, one could also apply this algorithm to a broader class

of images, such as aerial and satellite images. Indeed, being able to automatically

classify the terrain in such images has applications in image registration and visual

navigation systems.
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