New trends, technologies and tools in Modeling and Simulation

Dr. David A. Cook
Department of Computer Science
Stephen F. Austin State University
Nacogdoches, TX 75962

cookda@sfasu.edu
<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 MAY 2011</td>
<td></td>
<td>00-00-2011 to 00-00-2011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>New trends, technologies and tools in Modeling and Simulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stephen F. Austin State University, Department of Computer Science, Nacogdoches, TX, 75962</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presented at the 23rd Systems and Software Technology Conference (SSTC), 16-19 May 2011, Salt Lake City, UT. Sponsored in part by the USAF. U.S. Government or Federal Rights License</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
What is Simulation?

• *Simulation* – very broad term – methods and applications to imitate or mimic real systems, usually via computer

• Applies in many fields, industries

• Very popular, powerful way to save time and money.

• When used effectively, speeds up “model to reality” by allowing visualization and validity testing of the model
Where is simulation used?

- Manufacturing facility
- Banks
- Airport operations (passengers, security, crews, baggage)
- Transportation/logistics/distribution operation
- Hospital facilities (ERs, operating room, admissions)
- Computer networks
- Freeways
- Medical and Surgical Training
- Fast-food restaurants, supermarkets
- Theme park
- Emergency-response system
- Shipping ports, berths
- Military combat, logistics
Why use simulation?

• Study system – measure, improve, design, control
 – Maybe just investigate changes to actual system
 • Advantage — unquestionably looking at the right thing
 – But often impossible in reality with actual system
 • System doesn’t exist
 • Would be disruptive, expensive, dangerous
 • Would result in loss of lives
Using Computers to Simulate

• General-purpose languages (C, C++, C#, Java, Matlab, FORTRAN, others)
 – Tedious, low-level, error-prone
 – But, almost complete flexibility
• Support packages for general-purpose languages
 – Subroutines for list processing, bookkeeping, time advance
 – Widely distributed, widely modified
• Spreadsheets
 – Usually static models (only *very* simple dynamic models)
 – Financial scenarios, distribution sampling, SQC
 – Examples in Chapter 2 (one static, one dynamic)
 – Add-ins are available (@RISK, Crystal Ball)
• Simulation languages
 – GPSS, SLX,
 – Popular, some still in use
 – Learning curve for features, effective use, syntax

• High-level simulators
 – Very easy, graphical interface
 – Domain-restricted (manufacturing, communications)
 – Limited flexibility — need to make sure model is valid
When Simulations are Used

- Use of simulation has evolved with hardware, software
- Early years (1950s – 1960s)
 - Very expensive, specialized tool
 - Required big computers, special training
 - Mostly in FORTRAN (or even Assembler)
 - Processing cost as high as $1000/hour for a sub-PC level machine
When Simulations are Used (cont’d.)

• Formative years (1970s – early 1980s)
 – Computers got faster, cheaper
 – Value of simulation more widely recognized
 – Simulation software improved, but still languages to be learned, typed, batch processed
 – Often used to clean up “disasters” in auto, aerospace industries
 • Car plant; heavy demand for certain model
 • Line underperforming
 • Simulated, problem identified
 • But demand had dried up — simulation was too late
When Simulations are Used (cont’d.)

- Recent past (late 1980s – mid 2000s)
 - Microcomputer power
 - Software expanded into GUIs, animation
 - Wider acceptance across more areas
 - Traditional manufacturing applications
 - Services
 - Health care
 - “Business processes”
 - Still mostly in large firms
 - Simulation is often part of “specs”
• 1955 – 1960: Fortran was King, General Simulation Program was envisioned. Fortran based (with reusable functions)

• 1960s: GPSS (IBM, queueing models). Also SIMSCRIPT and SIMSCRIPT II (Rand Corp. and USAF). GASP (Algol and Fortran), and SIMULA (mostly Europe).

• 1970s – GPSS/H, GASP IV, SIMULA
 – Attempt to simplify the modeling process
 – Program generators – severe limitations
Next Leap Forward – the 1980s

- Movement to mini and PC computers
- SLAM II (descendant of GASP)
 - 3 world views
 - Event, Network, Continuous
- SIMAN (descendant of GASP)
 - General Modeling + Block Diagrams
 - 1st first major language - PC & MS-DOS
 - Fortran functions w/ Fortran programming
1980s – Present Integrated Environments

- Growth on PC’s
- Simulation Environments
 - GUI
 - Animation
 - Data analyzers
The Future (NOW)

• Virtual Reality
• Improved Interfaces
• Better Animation
• Agent-based Modeling
How do you know the model is correct?

• Simulation Validity
 – Structural Simulation
 – Behavioral Simulation
 – Predictive Simulation

• Simulation Verification
 – How the simulation is built
 – What estimates are used
 – What are the unknowns
 – How accurate and of what fidelity are the results
Types of Simulation

- The System
 - Continuous or Differential Equations System Specifications (DESS)
 - Discrete Event System Specification (DEVS)
 - Discrete Time System Specification (DTSS)
Dynamic Simulations

• Can be
 – Continuous – changes constantly over time. For any exact time (i.e. \(t = 1 \text{ hour, 2 minutes, 13.9987665 seconds} \)) there is a (potentially) exact value
 – Discrete – changes occur at specific and separated points in time. For example, a customer can arrive at a bank at 3:14:15, but not again until 3:14:16. It is “impossible” (i.e. a non-event) for a customer to arrive halfway between two time steps.

• Continuous and Dynamic simulations (mixed models) are possible
Discrete Event Simulations

• Discrete – changes occur at specific and separated points in time.

• For example, a customer can arrive at a bank at 3:14:15, but not again until 3:14:16. It is “impossible” (i.e. a non-event) for a customer to arrive halfway between two time steps.
Deterministic vs. Stochastic

• Deterministic – there is no element of randomness in the simulation.

• Stochastic – some part of the simulation is based on randomness. Randomness can be event-based (customer entrance time) or probability-based (the odds of an event, like a structural failure) occurring.
And the difference...

• DESS – specific time \(dq/dt = a*x + b \) for all \(t \)
 – Every time \(t \) has a specific value, not necessarily dependent upon any other time \(t \)

• DTSS – \(q (t + 1) = \text{some function of } q(t) \)
 – Every time has value (state) based on previous time

• DEVS – there is a time \(t_n \) of the next event.
 – The state at the next event is a function of all events that have preceded the event.
All good simulations based on a model

• A simulation must be designed to either

 – Model a real system. The system can then be used for comparisons and verification and validation

 – Model an imaginary system (that might or might not be built in the future). Verification and validation much harder.
How do you know the model is correct?

• Validity
 – Structural Simulation
 – Behavioral Simulation
 – Predictive Simulation

• Verification
 – How the simulation is built
 – What estimates are used
 – What are the unknowns
 – How accurate and of what fidelity are the results
What’s new in Simulation today?

- Graphical simulation languages can be used to create the model, run the simulation, and explore the outputs.

- GUIs of varying levels of detail and specificity can be used to build complex graphical models.
How to build a M&S

• Hierarchical structure
 – Multiple levels of modeling
 – Mix different modeling levels together in same model
 – Often, start high then go lower as needed

• Get ease-of-use advantage of simulators without sacrificing modeling flexibility
I'LL NEED TO KNOW YOUR REQUIREMENTS BEFORE I START TO DESIGN THE SIMULATION.

FIRST OF ALL, WHAT ARE YOU TRYING TO ACCOMPLISH?

I'M TRYING TO MAKE YOU DESIGN MY SIMULATION.

I MEAN WHAT ARE YOU TRYING TO ACCOMPLISH WITH THE SIMULATION.

I WON'T KNOW WHAT I CAN ACCOMPLISH UNTIL YOU TELL ME WHAT THE SIMULATION CAN DO.

TRY TO GET THIS CONCEPT THROUGH YOUR THICK SKULL: THE SIMULATION CAN DO WHATEVER I DESIGNED IT TO DO!

CAN YOU DESIGN IT TO TELL YOU MY REQUIREMENTS?
User-Created Templates

Commonly used constructs
Company-specific processes
Company-specific templates

A single graphical user interface consistent at any level of modeling

Lower Level of Modeling

- User-Written Visual Basic, C/C++ Code
 - The ultimate in flexibility
- VBA is built in C/C++ requires compiler

- Blocks, Elements Panels
 - All the flexibility of the SIMAN simulation language

- Advanced Process, Advanced Transfer Panels
 - Access to more detailed modeling for greater flexibility

- Basic Process Panel
 - Many common modeling constructs
 - Very accessible, easy to use

Reasonable flexibility

Higher Level of Modeling

- Application Solution Templates
 - Contact centers
 - Health care
 - Packaging lines
 - Airports etc.

- User-Written Visual Basic, C/C++ Code
 - The ultimate in flexibility
- VBA is built in C/C++ requires compiler

- Blocks, Elements Panels
 - All the flexibility of the SIMAN simulation language

- Advanced Process, Advanced Transfer Panels
 - Access to more detailed modeling for greater flexibility

- Basic Process Panel
 - Many common modeling constructs
 - Very accessible, easy to use

Reasonable flexibility
• Highly realistic training scenarios
• Training realistic than games designed for entertainment
• Focus on end-user experience that matches real life (virtual reality)
However = lots of $$s NOT needed!

• Simple languages and available tools let you transform models and simulations into easy to visualize products that can be used for
 – Proof of concept
 – Ease of user understanding
 – Graphical display of formerly table-driven data

• This speeds up the “model to reality” timeline
One Example - Arena
Mission Status:

- Missions Cancelled:
 - SQ1: 3
 - SQ2: 2
- Availability (%):
 - SQ1: 75
 - SQ2: 80

Helicopter Status:

- Mission Critical Failures: 10
- Battle Damages: 3
- Attrition: 0

Total System Failures:

- Avionics: 0
- Weapons: 0
- Engine: 1
- Transm: 2
- Landing: 2
- Air Borne: 3
- Electrical: 1
- Hydraulics: 0

Rear Headquarters (RHQ) Repair Statistics:

- Average Repair Time: 2.82

Replacement Part Inventory Levels:

- Avionics: 10
- Transm: 4
- Weapons: 8
- Engine: 7
- Air Borne: 9
- Air Frame: 5
Questions or comments??

Dr. David A. Cook
Department of Computer Science
Stephen F. Austin State University
Nacogdoches, TX 75962

cookda@sfasu.edu