
SBIR N08-116
Phase 2 Final Report

29 February 2012

Prepared by
Object Computing, Inc. (OCI)
12140 Woodcrest Executive Drive, Suite 250

Saint Louis, MO 63141

Michael Martinez
Principal Investigator

Office: (314)579-0066
FAX: (314)579-0065

martinezm@ociweb.com

for

NAVAIR
E-2C Simulation Laboratory

Contract No. N68335-10-C-0043

Approved for public release; distribution is unlimited.

UNCLASSIFIED

Table of Contents

 1 Introduction ... 1
 2 Phase 2 Technical Objectives .. 2
 3 Summary of Development ... 2
 3.1 Development Support .. 2
 3.2 Runtime Support .. 3
 3.3 Software Features .. 3
 3.4 Testing ... 3
 3.5 Plans for Phase 2.5 and Phase 3 .. 3
 4 Project Activities ... 4
 4.1 OpenDDS Software Development Kit (SDK) ... 4
 4.1.1 Meta-model .. 5
 4.1.2 Model Capture ... 10
 4.1.2.1 Main Diagram Editor ... 12
 4.1.2.2 QoS Policy Model Editor .. 14
 4.1.2.3 Data Definition Editor ... 15
 4.1.2.4 DCPS Model Editor ... 16
 4.1.2.5 Annotations .. 17
 4.1.3 Code Generation .. 18
 4.1.3.1 Model Customization .. 20
 4.1.3.2 Build Support ... 20
 4.1.4 Application Integration .. 21
 4.2 Runtime support tools .. 22
 4.2.1 Wireshark Dissector .. 22
 4.2.2 Service Monitor ... 23
 4.3 Implementation Enhancements ... 25
 4.4 Performance Characterization ... 26
 5 Recommendations for Further Development .. 31
 6 References ... 33

Drawing Index

Drawing 1: Metamodel - Core...5
Drawing 2: Metamodel - Domain..6
Drawing 3: Metamodel - DCPS..6
Drawing 4: Metamodel - QoS Policies..7
Drawing 5: Metamodel - Topics..9
Drawing 6: Metamodel - Data Types..8
Drawing 7: Metamodel - Enumerations..9
Drawing 8: Metamodel - Deployment...10
Drawing 9: Eclipse Software Development Kit (SDK) Feature...11
Drawing 10: Model Capture - files..12
Drawing 11: Main Drawing - Package Hierarchy...12
Drawing 12: Main Drawing – Sub-models...13
Drawing 13: Main Diagram - External Reference..13
Drawing 14: Policy Diagram...14
Drawing 15: Policy Diagram -- «partitionQosPolicy» dialog...14
Drawing 16: Policy Diagram - Properties View..14
Drawing 17: Data Definition...15
Drawing 18: Data Definition - structures..15
Drawing 19: Data Definition - validation..15
Drawing 20: DCPS Model Editor..16
Drawing 21: DCPS Model Editor - element relationships..16
Drawing 22: DCPS Model Editor - data type selection..17
Drawing 23: DCPS Model Editor - QoS policy selections...17
Drawing 24: DCPS Model Editor - shared policy values..17
Drawing 25: Note palette selection...18
Drawing 26: Note connection handles..18
Drawing 27: Code Generation - generate tab..18
Drawing 28: Code Generation - Model Customization tab...20
Drawing 29: Code Generation - Build Paths tab...20
Drawing 30: OpenDDS Wireshark Dissector..22
Drawing 31: OpenDDS Monitor - Qt GUI Tree View..23
Drawing 32: OpenDDS Monitor - Qt GUI Node View..23
Drawing 33: OpenDDS Monitor - Qt GUI Graph View...23
Drawing 34: OpenDDS Monitor - Excel Addon...24
Drawing 35: Performance - Measurements...27
Drawing 36: Performance - Latency...28
Drawing 37: Performance - Jitter..29
Drawing 38: Performance - Latency Density..30
Drawing 39: Performance - Latency Quantiles...30

UNCLASSIFIED

 1 Introduction

This document is the final summary report for Phase 2 of the Object Computing, Incorporated

(OCI) research and development activities for SBIR N08-116 for the NAVAIR E-2C Systems Test &

Evaluation Laboratory (ESTEL) (contract number N68335-08-C-0111). This report presents the

technical objectives of OCI's activities during Phase 2, our findings and project activities, results from

our activities and recommendations for further development, including plans for Phase 2.5 and Phase

3. The overall objective of this phase was to extend the feasibility study of Phase 1 and to illustrate the

suitability for commercialization of the OpenDDS product [Ref 13.] for use in the simulation

laboratory as middleware for the distribution of simulation data. During Phase 1 we found that this

standards based Free Open Source Software (FOSS) product is appropriate for use in the laboratory

environment. During Phase 2 we undertook a development process to prove the viability of the

product.

During Phase 1 we identified areas where the OpenDDS middleware solution capabilities could be

extended to meet perceived needs of the target laboratory as well as other government and non-

government users. This included development and runtime environments as well as addressing stability

during evolution of the middleware and the migration of supporting technologies such as the

computing equipment, operating systems, development and runtime tools used by the solution. The

Phase 2 activities implemented the highest priority extensions identified in Phase 1. Research during

Phase 1 and collaboration with our customer identified the importance of a toolkit to use during

software development as critical to use of this technology. This allows application developers and

domain experts to focus on their problem domain rather than the details of middleware connectivity

and usage. This software development kit (SDK) simplifies definition of the middleware segment of a

system and allows low risk migration to next generation technologies. The Phase 2 activities also

included implementation of features in the OpenDDS product to bring it into specification compliance.

The underlying technology for transporting the data was simplified and improved during these

activities. Some supporting tools for use during development and operation were also developed as

part of this activity.

Contract No. N68335- 10-C-0043 SBIR N08-116 Phase II Final Report

1

UNCLASSIFIED

During the execution of this project, intermediate releases were made to the product's open source

repositories [Ref 14.] and the implementations were tested not only as part of the SBIR but through use

by other commercial projects. Results from this testing and usage were incorporated into the product as

they were acquired. Training material for the SDK toolkit was developed and presented at the

customer's laboratories as well.

 2 Phase 2 Technical Objectives

OCI’s Phase 2 proposal listed the following technical objectives for development:

1. Implement the Software Development Toolkit (SDK) identified during Phase 1.

2. Develop additional runtime support tools for the OpenDDS.

3. Develop implementation enhancements identified during Phase 1.

4. Execute performance characterization tests.

Our activities followed these objectives closely. As Phase 2 activities proceeded, the original

objectives were extended to include additional areas of interest; the runtime support was extended to

include creation of a spreadsheet add-in, and the implementation enhancements were extended to

include implementation of the lower layer RTPS protocol specification [Ref. 9.] as an additional

transport implementation and discovery mechanism.

 3 Summary of Development

In this section, we briefly describe the results of our development activities with respect to each of

the objectives listed in the section 2 (“Phase 2 Technical Objectives”). Specific activities and results

are presented in the section 4 (“Project Activities”).

 3.1 Development Support

The toolkit development included implementation of a UML graphical capture tool using the

Eclipse platform. The specification meta-model was captured using the Eclipse Modeling Framework

[Ref. 3.] Ecore meta-modeling facility, which is aligned with the OMG EMOF [Ref. 8.], using the

OMG Platform Technical Committee UML Profile for DDS [Ref. 10.] as a starting point. During

Phase 1, we identified a potential additional meta-model that was domain specific; but during Phase 2,

Contract No. N68335-10-C-0043 SBIR N08-116 Phase II Final Report

2

UNCLASSIFIED

the code generation portion of the toolkit obviated the need for a separate domain specific profile to be

incorporated into the toolkit. This simplified the middleware model capture and exposed the

specification standard API directly to the applications. A training class including both lecture and

laboratory exercises was developed as well to introduce the modeling toolkit to potential users.

 3.2 Runtime Support

Runtime support included the development of a packet dissector plug-in for the open source

Wireshark [Ref. 17.] network analysis tool. It also extended the ability to monitor ongoing service

operation through the use of meta-data and published monitor topics. This activity was extended to

include the creation of an Excel spreadsheet add-in.

 3.3 Software Features

The implementation of OpenDDS was extended and tuned to bring it into compliance with the

DDS specification [Ref. 7.]. This included implementation of the DCPS layer of the Object Model and

Ownership, and Content-Subscription profiles. Internal tuning included publisher side content filtering,

as well as an extended and improved IDL compiler, and a transport auto-selection mechanism. This

activity was extended to implementation of the the lower layer RTPS protocol specification [Ref. 9.] as

an additional transport implementation and discovery mechanism.

 3.4 Testing

Performance tests developed during Phase 1 were executed on the updated releases of the

OpenDDS middleware code base to ensure that Phase 2 development did not adversely impact

performance.

 3.5 Plans for Phase 2.5 and Phase 3

We have developed a plan for Phase 2.5 to continue extending the capabilities of the OpenDDS

middleware solution. These plans include integrating OpenDDS with the FACE architecture interfaces

[Ref 4.] and adding capabilities to implement the lower layer RTPS interoperability wire protocol. It

Contract No. N68335- 10-C-0043 SBIR N08-116 Phase II Final Report

3

UNCLASSIFIED

also includes implementing the higher layer DLRL abstraction layer from the DDS specification. The

plans are described in section 5 (“Recommendations for Further Development”).

 4 Project Activities

In this section, we describe the specific activities and results of our research and development with

respect to each of the objectives listed in section 2 (“Phase 2 Technical Objectives”).

 4.1 OpenDDS Software Development Kit (SDK)

The OpenDDS software development kit (SDK) is a graphical modeling toolkit that was identified

during the Phase 1 research. During Phase 2, we implemented this toolkit [Ref 12.] to allow software

developers to simply capture the middleware aspects of their applications. These models are stored in a

way that can easily be used to migrate the middleware from current to future processing and

development environments. The models are based on a meta-model that abstracts the important

features of the middleware for an application. The meta-model is then mapped onto graphical

components that allows models to be captured using a graphical rather than textual editor. The

captured middleware models can then be used to generate code for the target development platform.

The current target development platform is C++ language source code, along with supporting data

definition files in OMG IDL format and build support files that can be used to specialize the build

process for most commonly used development environments, including the GNU toolchain, Eclipse

CDT, and Microsoft Visual Studio.

The meta-model and graphical capture toolkit are based on the Eclipse Modeling Framework

(EMF) [Ref. 3.] and Graphical Modeling Project (GMP) [Ref. 2.] modeling frameworks. The code

generation portions were developed using XSLT stylesheets to define transformations from the model

content to the desired target formats. These transformations were then encapsulated for the user as an

additional form based Eclipse plug-in that integrates with the graphical model capture portion of the

toolkit. The toolkit was developed initially using the Eclipse 3.5 platform, and has been successfully

executed for model definition and code generation using the 3.6 platform as well.

Contract No. N68335-10-C-0043 SBIR N08-116 Phase II Final Report

4

UNCLASSIFIED

A training course was developed for the modeling toolkit. The training material recommends a

work flow for capturing middleware models, tailoring the models for deployment, and generating the

source code for compilation and linking with applications. The modeling toolkit can support other

work flows tailored to specific projects as well, but initially we recommend use of the work flow

defined by the training materials.

 4.1.1 Meta-model

The elements of a middleware model were captured as a collection of coupled meta-models using

the Eclipse EMF [Ref 3.] Ecore meta-model facility. This modeling approach is similar to the OMG

eMOF [Ref. 8.] meta-model facility but is tailored specifically to the Eclipse environment. The initial

meta-model was based on the draft OMG platform technology committee DDS Profile for DDS [Ref.

10.]. This meta-model was not sufficient to define the entire set of elements required in order to

generate target middleware code. We extended and modified this profile to accommodate all of the

known requirements for code generation. The meta-model consists of several distinct loosely coupled

sections. These include the core, domain, DCPS, QoS, types, and topics meta-models. Each of these

defines the relationship between various aspects of the middleware being described. Each of the leaf

meta-classes in these meta-models will appear as element instances in the final middleware model

captured by users. We publish these models in XML Schema Definition format to allow their use in

validating XML instance documents for models. The

schemas are located in the 'xsd' folder of the

org.opendds.modeling.validation plug-in provided as

part of the modeling toolkit feature bundle.

The core meta-model section, shown in Drawing 1,

defines “Specification” and “TypedEntity” classes that

are used in other meta-models to distinguish between

entities that have types associated with them and those

that specify other information. The “TypedEntity”

elements can have any number of properties and one or

Contract No. N68335- 10-C-0043 SBIR N08-116 Phase II Final Report

5

Drawing 1: Metamodel - Core

UNCLASSIFIED

no specifications bound to them. These elements are extended by others in the subsequent meta-models

and are not present in actual model documents themselves.

The Domain meta-model, shown in Drawing 2, defines

the DDS “DomainEntity” and “QosProperty” elements that

are used to define the actual Entities used by the

middleware. These elements also are abstractions that are

extended by other meta-models and do not appear directly in model instance documents.

The DCPS meta-model, shown in Drawing 3, includes the major API Entities. This meta-model

defines the elements that are most often used by applications to interact with the middleware. This

meta-model includes external (references to other meta-model elements), abstract, and concrete

elements. The elements corresponding to actual DDS Entities, such as “Publisher”, “Subscriber”,

“DataWriter”, “DataReader”, “Domain”, and

“DomainParticipant” will be present in model

instance documents.

Quality of Service (QoS) Policies defined and

used by the middleware are defined in the QoS

meta-model, shown in Drawing 4, which simply

instantiates each possible policy available to the

middleware. The individual policy elements may be

included in model instance documents.

Topics, which describe what data is transported

in DDS applications, are defined in the Topic meta-

model, shown in Drawing 6, where the different

types of Topics are shown. The concrete model elements include basic “Topic”, “MultiTopic”, and

“ContentFilteredTopics” as well as the “TopicDescription” used by receive side processing. The

binding to data descriptions is included by referencing the “Struct” from the Types Meta-model.

Contract No. N68335-10-C-0043 SBIR N08-116 Phase II Final Report

6

Drawing 2: Metamodel - Domain

Drawing 3: Metamodel - DCPS

Drawing 4: Metamodel - QoS Policies

Drawing 5: Metamodel - Data Types

UNCLASSIFIED

The data type definition meta-model is in two parts. The data structures themselves are shown in

Drawing 5, with an additional meta-model defining information for enumerations included in Drawing

7.

The types include the possible simple

and complex types that can be transported

over DDS. This includes structures (the only

type that can be bound to a “Topic” for

transporting data) and collections. The

ability to alias type names using the OMG

Interface Definition Language (IDL)

typedef mechanism is allowed as well. The

enumerations meta-model includes specific

enumerations and values that are used by

the DDS middleware.

The Application meta-model defined by the proposed UML Profile for DDS [Ref 10.] was omitted

from this collection of meta-models since the binding of the middleware model with specific

application features is considered to be part of deployment and not of middleware definition. This

allows the resulting toolkit to defer inclusion of the middleware into applications until the actual

applications have been better defined.

This also allows the same middleware

model to be used in more than one

context or to be shared or used more than

once within the same system. It also

facilitates the model being migrated,

along with an application, by modifying

only the deployment information rather

than the model contents. It also facilitates

migration of the model and application

Contract No. N68335- 10-C-0043 SBIR N08-116 Phase II Final Report

9

Drawing 7: Metamodel - Enumerations

Drawing 6: Metamodel - Topics

UNCLASSIFIED

through the modification of only the deployment information, without any changes to the model

contents.

Additional elements to help in

code generation and deployment are

defined in the generator meta-

model. This meta-model defines

elements for one or more instances

of the model to be bound to

applications. Additional elements

are then included that define the

build environment, target

application and location, and

transport configuration parameters.

A subset of this model is shown in

Drawing 8.

The model contains additional

detail for transport configuration as well. Each transport includes several specific elements.

 4.1.2 Model Capture

Middleware information is captured using the graphical model capture facility provided by the

Eclipse GMP [Ref. 2.] as well as using form based information capture. Various diagrams and forms

are combined to form the modeling toolkit. These include a top level package diagram, structural

diagrams defining the service topology, policy diagrams defining Quality of Service policy values,

data definition diagrams, build environment configuration form, deployment definition form, and a

code generation specification form that also includes controls to manage the code generation process.

The GMP diagrams are bound to the EMF meta-model to define the model elements.

The data, structure, and policy diagrams can be shared by multiple resources within the model or

across models. This provides flexibility in the creation and management of models for a given system

Contract No. N68335-10-C-0043 SBIR N08-116 Phase II Final Report

10

Drawing 8: Metamodel - Deployment

UNCLASSIFIED

or group of systems. Data can be defined across single or multiple systems. Policies can be defined

with a broader scope than just a single application. Models of the middleware structure can be factored

into reusable pieces that can be combined at system definition time to provide a quick middleware

solution to application requirements.

The modeling toolkit is implemented as a feature bundle, or collection of plug-ins, for the Eclipse

software development platform. The feature is made available via the standard installation and update

mechanisms provided by Eclipse [Ref. 12.]. When started, the overall application and its perspective

appears as in Drawing 9.

The project explorer window shows a tree view of the workspace that will contain both the model

and the generated code. The editor window will display the currently active diagram as a canvas and

Contract No. N68335- 10-C-0043 SBIR N08-116 Phase II Final Report

11

Drawing 9: Eclipse Software Development Kit (SDK) Feature

UNCLASSIFIED

palette that allow the user to capture the model. It will also display the code generation forms that are

used to tailor the build process and perform the generation steps. The outline, properties, problems, and

error log views are used consistently with standard use of the Eclipse IDE.

Diagrams are stored in the Eclipse workspace as two linked XML files. Drawing 10 shows the two

files in the project explorer view that store a single model. The file with the '.opendds' extension

contains the model elements stored in XML format using a

schema defined by the toolkit meta-model described in section

4.1.1 (“Meta-model”). The file with the '.opendds_diagram'

extension contains XMI (XML Metadata Interchange) format

[Ref. 11.] data that represents the graphical diagram

information, with external references to the XML file with the

model data. Opening this file will invoke the main diagram

editor for the model.

The toolkit has the capability to generate a default graphical model file by reading a model

definition XML file. This can be used to import external models, such as legacy applications, that can

be translated to the XSD schema for the meta-model. Imported models can then inter-operate with

other models within the toolkit.

 4.1.2.1 Main Diagram Editor

After a model has been created, the first diagram used to capture the middleware is the top level

main diagram. This is a UML package diagram and

will contain both organizational as well as

functional model element packages. Drawing 11

shows the package diagram palette, which includes

the leaf node stereotype elements as well as basic

packages which can be used for containment. It also

shows a hierarchy of basic packages illustrating

containment. Containment in this diagram will

Contract No. N68335-10-C-0043 SBIR N08-116 Phase II Final Report

12

Drawing 11: Main Drawing - Package Hierarchy

Drawing 10: Model Capture - files

UNCLASSIFIED

translate into C++ classes in the generated code, which allows models to match and integrate with

existing legacy code.

A model will contain library package types

corresponding to sub-models that can be DCPS model

elements, data definitions, and QoS policy definitions.

These sub-models, which are leaf packages in the

diagram, are indicated by guillemots («·») with the

model stereotype indicated. An example of these leaf

packages is shown in Drawing 12.

The «dataLib» stereotype is used for data definition model elements, the «dcpslib» stereotype is

used for DCPS middleware model elements, and the «policyLib» stereotype is used to define common

Quality of Service (QoS) policy values for use in the model. Each of these leaf packages will open a

separate editor when selected.

Packages can be imported from external model definitions as well. Imported packages will have a

reference decorator (a boxed arrow at the lower left corner) to visually indicate to the modeler that this

is an external reference. This is shown in Drawing 13.

External model references allow models to be

composed of previously defined models and to share

common definitions across a project. Typically the

data definitions or common policy values would be

defined once and used throughout a project to ensure

common definitions are consistent throughout the

project and all constituent models.

Selecting a local leaf package and activating it in the main diagram will open another editor session

with an editor specific for the type of elements of that leaf package. Each of the DCPS, data, and

policy definition models have a dedicated editor for that diagram type. This simplifies model capture

by restricting the available palette for adding elements to a diagram to those appropriate for that

diagram.

Contract No. N68335- 10-C-0043 SBIR N08-116 Phase II Final Report

13

Drawing 12: Main Drawing – Sub-models

Drawing 13: Main Diagram - External Reference

UNCLASSIFIED

 4.1.2.2 QoS Policy Model Editor

The QoS policy model editor allows the capture of

policy values that can be shared across any model that

contains the definitions, either directly or by reference. The

QoS policy editor has a palette containing all allowed

policies that can be added to the editor canvas to make them

available to other model elements. The editor is shown in

Drawing 14. The defined policy elements are named in the

model and then incorporated into other model elements by

referring to the qualified name of the policy.

Most policy values can be entered directly into the

drawing elements in the model. Some are more complex and will activate a dialog to edit the values.

The PARTITION policy has a dialog for entering and modifying the values as shown in Drawing 15.

The dialog can be activated by selecting the corresponding value in a «partitionQosPolicy» model

element Properties View as shown in Drawing 16.

There are no additional relationships that can be defined in this editor; it simply contains an

element for each policy that can be shared. The policy values defined in these elements are

incorporated into the generated code by value. That means that there is no separate code artifact

generated corresponding to these elements.

Contract No. N68335-10-C-0043 SBIR N08-116 Phase II Final Report

14

Drawing 14: Policy Diagram

Drawing 15: Policy Diagram -- «partitionQosPolicy» dialog Drawing 16: Policy Diagram - Properties View

UNCLASSIFIED

 4.1.2.3 Data Definition Editor

The data definition editor allows the modeler

to capture data definitions used by the

middleware. These data definitions are

constrained to define only data that can be

transported by the DDS service. The model will

be used to generate CORBA Interface Definition

Language (IDL) source code that can then be

compiled to the desired target language

supporting code.

Drawing 17 shows the data definition editor palette and canvas. The palette contains sections for

simple types, collections, unions and structures as well as elements defining fields in a structure and

typedef elements that can be used to alias the same definition with different names.

Structure elements, shown in Drawing 18, have

containers for defining attributes, fields, and keys. The

'isDcpsDatatype' attribute is used to control the generation of

additional type support code specific to DDS and is required

for structures that will be bound directly to a topic.

Structures that are only contained by others and not bound to

topics directly

can suppress

generation of this additional code.

In addition to defining data types, aliases, and

relationships between types, the data definition editor

also validates the captured model elements to ensure

consistent and complete generated target code. Drawing

19 shows several data type elements specified along with

the 'Problems' Eclipse view with error and warning

Contract No. N68335- 10-C-0043 SBIR N08-116 Phase II Final Report

15

Drawing 17: Data Definition

Drawing 19: Data Definition - validation

Drawing 18: Data Definition -

structures

UNCLASSIFIED

reports for those elements. The standard Eclipse IDE process flow can be followed to track and correct

the reported errors.

 4.1.2.4 DCPS Model Editor

The DCPS model editor brings all of the

other model elements together and defines the

actual middleware structures to be used by

applications. The DCPS elements include the

Domain, DomainParticipant, Publisher,

Subscriber, DataWriter, DataReader, and

various Topic classes. The application uses these

objects to interact with the DDS API. Drawing

20 shows a DCPS model editor open with the

palette and a canvas with a DomainParticipant with a Publisher with DataWriter and a Subscriber

with DataReader defined. The palette contains the elements that can be created in the canvas directly.

In addition, shared elements can be included in the model by using the project view to navigate to the

external elements and adding them directly to the canvas. This is typically done with Topic elements,

which are shared between various applications in order to distribute data.

The elements captured in the DCPS

editor include containment relationships

and associations that are represented

graphically. A partial model is shown

in Drawing 21 that includes a Publisher

and Subscriber contained within a

DomainParticipant, and a DataWriter

contained by the Publisher and a

DataReader contained by the

Subscriber. Associations between a

Domain and DomainParticipant are

Contract No. N68335-10-C-0043 SBIR N08-116 Phase II Final Report

16

Drawing 20: DCPS Model Editor

Drawing 21: DCPS Model Editor - element relationships

UNCLASSIFIED

shown. Associations between Topic and ContentFilteredTopic and the corresponding DataWriter and

DataReader are also shown. Attributes on the elements define additional aspects of the model, such as

the Topic data type and filter expressions.

Data types are bound to Topic elements by

using a dialog selection that provides all of the

available data types that can be used, including

those from externally referenced models.

Drawing 22 shows data types that are available

from two different models that can be bound to

the selected Topic.

In addition to data types, each element of the DCPS model can have various QoS policies defined

for them. The DDS specification defines policies for each of the elements. The modeling toolkit allows

the policies appropriate for an element to be attached to and

values assigned each element. If a policy for an element is

not attached, the default value will be used by the generated

code. Policies are attached by value. If the values are not

from a shared QoS Policy model element, they are private to

the element and are

called “custom”

policies. They can be added to any element through the use of a

dialog as in Drawing 23. It is also possible to assign policy

values using elements defined in a local or external model by

the dialog shown in Drawing 24.

 4.1.2.5 Annotations

Each of the diagrams allows annotations to be added to both the diagram and the generated code.

Annotations to the diagram are not propagated to the generated code, but remain on the diagram for the

modeler to provide additional model information to the reader. Drawing 25 shows the palette selection

Contract No. N68335- 10-C-0043 SBIR N08-116 Phase II Final Report

17

Drawing 22: DCPS Model Editor - data type selection

Drawing 23: DCPS Model Editor -

QoS policy selections

Drawing 24: DCPS Model Editor -

shared policy values

UNCLASSIFIED

for adding a note to a diagram, and Drawing 26 shows a note with its connection handles. These

handles can be used to connect the annotation to diagram elements.

Annotations to the model elements can include comments that are added to the generated code.

These comments can be in standard native format or in a doxygen [Ref 1.] style format for use in post

processing the code to generate automatic documentation. This is done by using the Properties view of

a selected element and entering a single or multi-line comment in the comment property. Annotations

to DCPS model elements will appear in the internal generated C++ code headers. Annotations to Data

Definition model elements will appear in the generated IDL code that is then compiled into the C++

source code. Typically only the data definition comments would be useful to a project; the DCPS

element comments appear in generated code that is not normally viewed by the application developers.

 4.1.3 Code Generation

Once the middleware semantic model for a system has been captured, it can be used to generate

code to one or more destination directories. The generated code consists of OMG IDL data definitions

that can be compiled into a target language,

C++ source code that can be compiled and

linked into applications, and build support

files that can be used to create makefiles or

project files used to build and link

applications for a system. This code

generation is done using a form editor that

includes a Generate tab, as shown in

Drawing 27, where the target directory and

source model file can be selected. The code generation specification is stored in a separate XML file

Contract No. N68335-10-C-0043 SBIR N08-116 Phase II Final Report

18

Drawing 26: Note connection handlesDrawing 25: Note palette selection

Drawing 27: Code Generation - generate tab

UNCLASSIFIED

with a separate schema from that of the middleware models. This allows the same middleware model

to be targeted to different build directories with different code generation constraints, which enables

reuse of common models within a system.

The Target Folder of the code generation specification is where all generated code will be placed.

The recommended work flow places this directory as a sub-directory of an application that will be

linking the source model. Two styles of model partitioning can be used with the toolkit – one where

each model is associated with a single application of a system and includes data types and topics by

reference from centralized definition models. This reduces the amount of code linked to each

application. Another, equally valid, style of modeling includes defining the entire system middleware

as a single model (or set of cross referenced models) that is linked to all applications within a system.

Partitioning models into individual sets of elements for use by a system is done to support the needs of

the target system and can combine use of these two styles of organization.

The Model File field of the code generation specification should refer to a file that is created by the

graphical model editors described in section 4.1.2 (“Model Capture”). It will be used to provide the

middleware semantic model for generating code. External model elements, included by reference into

the model, will be included by reference in the generated code as well.

The source code generated into each separate target directory will be compiled into a single link

library (typically a dynamically linkable library) that is then linked with applications that require those

model elements. A single model can be used to generate tailored code into different target directories,

which will then be used to build separate libraries linkable by applications. This one to many mapping

of middleware models to link libraries means that designing the system middleware should account for

what middleware elements are needed by applications and partitioning the models accordingly.

Code generation is performed by using an XSLT stylesheet for each target file type to transform

the semantic model elements of the source model file or code generation specification into the desired

format. This can be done directly from the editor or scripted using jar files containing the stylesheets

and XSLT transformation engine.

Contract No. N68335- 10-C-0043 SBIR N08-116 Phase II Final Report

19

UNCLASSIFIED

 4.1.3.1 Model Customization

The code generation specification includes the ability to customize the generated code by

specializing the model that is generated. This is done using the Model Customization tab of the code

generation editor. This tab allows the specification of transport configuration details and binding those

to semantic elements of the source model. This is done using a tree editor with two root elements as

shown in Drawing 28.

The Instances root element of the tree allows customization

of the model elements in more than one way within the same

generated code. As an example, if a model segment contained

definition for a computation element that could be replicated

several times within a single application, the model could be

captured once, and then instantiated in the application multiple

times as separate instances. A single default instance is available

when a specification is started, and the user can then create

more instance definitions as required. The customization of

instances includes the definition of Transport Config lists that

are used by the model. The model can bind these configuration

lists to elements of the model as a property of the elements in

the DCPS model editor. The lists then reference one or more specific Transport definitions as well as

some common properties for all transports.

The Transports root element of the tree allows definition of individual transport instances. Each of

these transport definitions includes any non-default property values for the transport. The instances are

included in the Transport Config lists defined for the Instances above to

allow the specification of transport behavior for a particular model.

 4.1.3.2 Build Support

Build support files are generated in addition to the C++ source code

and IDL data definitions. These build support files are in the form of

Contract No. N68335-10-C-0043 SBIR N08-116 Phase II Final Report

20

Drawing 28: Code Generation -

Model Customization tab

Drawing 29: Code

Generation - Build Paths tab

UNCLASSIFIED

project definition files for the Makefile, Project, and Workspace creator (MPC) [Ref. 6.] tool that can

be used to generate GNU makefiles and Visual Studio project and solution files. MPC supports other

build systems as well. The MPC input files generated include specification of directories to search for

include files and libraries during building as well as defining dependencies between generated model

libraries. The Build Paths tab of the code generation editor, shown in Drawing 29, allows for the

specification of variables and paths, both absolute and relative, that will be searched at build time for

include files and link libraries. These can be specified relative to environment variables to allow

deferring the actual location specification until the build is actually performed.

 4.1.4 Application Integration

Once the semantic content for

middleware has been captured and the

model customized and code

generated, it can be linked in to

applications for use. This is done

through the use of a support library

specific to the generated code. This

simplifies lifetime management for

middleware Entities and provides for

consistent access to all model elements.

An example fragment of application code incorporating model elements is shown in Code 1 which

demonstrates the inclusion of both the generated model and support library header files. It also shows

the instantiation of the support library as an object (app) and the middleware model as an object

(model). Access to DDS API Entities is then performed via accessor methods that use enumeration

values to select the desired Entities by type. Use of the enumeration values allows efficient storage of

the Entities and minimizes access times. Once accessed, the DDS Entities are used directly as standard

Entities (which they are). Use of the object representations makes the lifetime of the middleware and

the support library explicit in the application and ensures that both will be shutdown correctly after

use.

Contract No. N68335- 10-C-0043 SBIR N08-116 Phase II Final Report

21

// Generated Model include file
#include "../model/SatelliteTraits.h"

// Support Library include file
#include <model/Sync.h>

int main(int argc, char* argv[])
{
 try {
 // Using support library
 OpenDDS::Model::Application app(argc, argv);

 // Using generated model code
 Satellite::PubSub::DefaultSatelliteType model(app, argc, argv);
 using OpenDDS::Model::Satellite::PubSub::Elements;
 DDS::DataWriter_var writer =
 model.writer(Elements::DataWriters::telemetry_base_dw);

Code 1: Application using generated code

UNCLASSIFIED

 4.2 Runtime support tools

Additional runtime support tools were developed to simplify the use and tuning of OpenDDS in

systems. A Wireshark [Ref. 17.] dissector plug-in was developed to allow network traffic to be

captured and analyzed during system operation. A DDS monitoring service was developed that

subscribes to the DDS metadata and additional monitoring Topics to display operational status

information.

 4.2.1 Wireshark Dissector

Wireshark is a ubiquitous

packet analyzer that allows

network traffic to be filtered and

parsed. It parses packets using

plug-ins that understand the

different protocols involved.

These plug-ins are called

dissectors. We developed a

dissector for the transport layer

and sample headers of OpenDDS

traffic. We also included the

ability to link in information

about user defined data types so

that they can be dissected as well.

This dissector parses the

OpenDDS specific transport packets over either UDP or TCP transports and displays the transport

header, sample header, and sample contents. The IDL compiler was extended to generate parsing

support that can be used by the dissector to understand and display the sample data. Drawing 30 shows

a Wireshark session including an OpenDDS sample with the user defined data dissected and displayed.

Contract No. N68335-10-C-0043 SBIR N08-116 Phase II Final Report

22

Drawing 30: OpenDDS Wireshark Dissector

UNCLASSIFIED

 4.2.2 Service Monitor

A monitoring facility was developed that

reads and displays DDS service metadata as

defined by the specification along with

additional status topics defined to expose

internal operational state. This facility is

made available as both a standalone Qt based

GUI application as well as an Excel

spreadsheet add-on.

The standalone application includes three

views: Tree, Node, and Graph. The graphical

Node and Graph views are generated from

the data using the GraphViz [Ref. 5.]

applications to automatically generate a graphical view from dependency data. The Tree view shows

the entire data set as a navigable tree. The values of tree nodes are displayed as the information

associated with that node. For example, in the Tree view of Drawing 31, the DDS Entities have

displayed values corresponding to their GUID values

within the service. They are shown as expandable

elements with the sub-elements representing contained

Contract No. N68335- 10-C-0043 SBIR N08-116 Phase II Final Report

23

Drawing 31: OpenDDS Monitor - Qt GUI Tree View

Drawing 32: OpenDDS Monitor - Qt GUI

Node View Drawing 33: OpenDDS Monitor - Qt GUI Graph View

UNCLASSIFIED

nodes, such as the DomainID value or Subscriber node elements contained by a DomainParticipant

node. The Node View of Drawing 32 shows the same information, but as a set of connected nodes,

with cross references between elements shown as arcs. This can be seen with the relationship of the

Reader and Writer association in the diagram. The Graph View shown in Drawing 33 illustrates the

same elements in a graphical format and also includes association between elements, as the association

between the Reader and Writer for the “Movie Discussion List” Topic in the diagram. The diagram

also includes a dialog that can be used to restrict the amount of information in the display, which is

useful for large systems and to suppress repetitive and common information such as the Builtin Topics

defined by the specification.

The data displayed joins information provided by the DDS Built-in Topic metadata and monitor

data that has been defined specifically for

this feature. The monitor data includes both

static information about the elements of the

service as well as dynamic information that

provides a snapshot of current operational

state. These topics are published by linking

applications with a separate dynamically

linked library and enabling the feature,

which allows applications to avoid any cost

associated with the feature other than the

DDS defined metadata. The display

applications generate a view of the

available data, and do not require all

possible data to be available for display.

The Excel spreadsheet addon displays the same data from within a spreadsheet as shown in

Drawing 34.

Contract No. N68335-10-C-0043 SBIR N08-116 Phase II Final Report

24

Drawing 34: OpenDDS Monitor - Excel Addon

UNCLASSIFIED

 4.3 Implementation Enhancements

The OpenDDS free open source software (FOSS) implementation of the DDS specification

implemented the minimum and persistence profiles of the specification at the start of Phase 2. During

Phase 1 we identified development needed in order to fully comply with the DCPS portion of the

specification. This included the addition of the DCPS layer of the object model profile, the ownership

profile, and the content-subscription profile. These were all implemented during Phase 2, and

OpenDDS is now in compliance with the specification. In addition to this development, internal tuning

was performed as well. This included implementation of publisher side filtering for the content

filtering and transport auto-selection, which simplifies and extends the previous transport specification

capabilities. We also extended the development work to begin implementation of the interoperability

transport specification, RTPS [Ref. 9.], for use both as a transport and a discovery mechanism.

The object model profile includes a Data Local Reconstruction Layer (DLRL) that is not

implemented by OpenDDS. It requires implementation of an optional feature to permit coherent

communications for grouping of data. This implements the PRESENTATION policy access_scope

value of 'GROUP', allowing use of the DCPS API for grouping delivery of data. This allows

applications the ability to implement object replication by guaranteeing the coherency of entire sets of

data.

The ownership profile extends support of the OWNERSHIP policy values to include

kind=='EXCLUSIVE'; implementing the OWNERSHIP_STRENGTH policy; and, adding the ability to

set values for the HISTORY policy depth values to greater than 1. This allows applications to

implement 'hot sparing' style redundancy by setting policy values (and providing the spare

publications).

The content-subscription profile adds the ContentFilteredTopic and MultiTopic entities to the API

as well as a QueryCondition object that can be used to restrict data available for reading. These entities

and conditions allow applications the ability to specify data to be received through the use of a SQL

query using a sub-set of SQL that is appropriate for a streaming data style read. The implementation

includes a publisher side filtering feature that pushes the query and its parameters from the receivers to

Contract No. N68335- 10-C-0043 SBIR N08-116 Phase II Final Report

25

UNCLASSIFIED

the publishers so that if data will not be received on the remote end of an association, it will not be

sent. This allows reduced network loading when using this profile.

The internal transport API was simplified and extended to allow the use of defaults without

programmer selections or configuration settings. Previously, the application program was required to

establish the bindings between the actual transport implementation and the DCPS layer. As part of the

Phase 2 development work, we simplified this so that if no specification was made that a default

transport would be used along with its default settings. We also extended the configuration mechanism

and data model to allow sets of transports to be specified in priority order. The priority ordered lists of

transports for each end of an association are then matched to determine which transport

implementation will be used. Where previously a best effort and reliable publication to different

subscriptions would have required different writers, the transport layer can now provide the ability for

a single writer to send data to both types of receivers.

The RTPS interoperability transport and discovery mechanisms were implemented through

coordination with other projects using OpenDDS. This feature will allow OpenDDS to be integrated

into legacy systems using other DDS implementations.

 4.4 Performance Characterization

During the development activities of Phase 2, we continued executing the performance testing that

was developed during Phase 1. This ensured that we did not adversely impact performance of the

OpenDDS implementation as we modified and extended the features. This testing included both

throughput and latency testing. The final performance is not significantly different from that at the

beginning of Phase 2. The performance testing was done in an environment that reflects the ESTEL

laboratories with a 100 Mbps network connection. The available bandwidth was determined by

executing data transfers with ftp between hosts and was determined to be 875 Kbps. The throughput

testing was done to require capacities up to 2 Gbps and showed all capacity was utilized for tests

requiring more than what was available, i.e. there was no limiting effect (foldback) for rates

overdriving the available capacity.

Contract No. N68335-10-C-0043 SBIR N08-116 Phase II Final Report

26

UNCLASSIFIED

Latency and jitter data were collected for various payload sizes, sent at a rate of 100 Hz to not

stress the network bandwidth limitations. A representative plot of the raw measurements is shown in

Drawing 35. This plot includes both latency and jitter measurements with robust statistics for the data

annotated on the chart. The tests were executed for 120 seconds, with the last 5,000 measurements

retained and plotted. The median, median absolute deviation (MAD) and extremes noted on the charts

reflect the statistics for the entire 120 second test execution. Since the test was executed without

privileges on a time shared system, the data has noise that would not be present in a real-time

scheduled system.

The latency measurements were taken for various payload sample sizes for the different OpenDDS

transport implementations. This is charted in Drawing 36. The intrinsic (transport) delay shows the

time for the data to be received over the test network with no latency at all. This is an artifact of the

measurement; which is from the time the data is written to the time the entire data sample is read at the

remote end. The plotted latency shows that the delay through the OpenDDS layer is consistent across

payload sizes.

The plot also shows that the performance is independent of the transport mechanism, so other

considerations such as reliability and number of destinations should be used to select the

Contract No. N68335- 10-C-0043 SBIR N08-116 Phase II Final Report

27

Drawing 35: Performance - Measurements

UNCLASSIFIED

implementation to use for a given application. The testing was done for different sizes of payload and

measurements taken for a round trip, with the resulting latency referenced to a single hop by dividing

the measured value by 2. The effects this has on the measurements is addressed in [Ref. 15.], which

discusses how to interpret the performance measurements.

Jitter was measured as defined by RFC 3393 [Ref 16.], using the definition in §4.5 “Type-P-One-

way-ipdv-jitter”. These values are calculated from the derived single-hop latency measurements

described above. A plot of the measured jitter for various transport implementations over different

payload sizes is shown in Drawing 37. The jitter is normalized for the expected delay and plotted as a

percentage of the latency for the payload size. This allows meaningful comparisons to be made for the

jitter at the different message sizes. The smaller payloads have a larger jitter value, which is expected

since the overhead for sending the payload is a larger portion of the total transport time and is expected

to be more variable than the payload between messages. Other than the single measurement of the TCP

Contract No. N68335-10-C-0043 SBIR N08-116 Phase II Final Report

28

Drawing 36: Performance - Latency

UNCLASSIFIED

transport at 500 bytes having a measured jitter of approximately 2.1% of the latency, the remainder are

at around 1% or less, with the jitter measured as less than 0.5% for payloads of 8K bytes and larger.

In addition to the aggregate statistics shown above, the latency delay for each sample was analyzed.

The results of this analysis are grouped for each transport and can be understood with two charts: one

that displays the latency delays as a density function plotted for each payload size as in Drawing 38;

and one that displays the latency delays as quantiles plotted for each payload size as in Drawing 39.

The density functions provide information about the spread, peakiness, and asymmetry of transporting

each size payload. The quantile plots show the same information as a cumulative density function

(rotated) that makes any anomalies in the latency performance explicit. A detailed description of these

charts and their meaning can be found in [Ref. 15.].

Contract No. N68335- 10-C-0043 SBIR N08-116 Phase II Final Report

29

Drawing 37: Performance - Jitter

UNCLASSIFIED

Contract No. N68335-10-C-0043 SBIR N08-116 Phase II Final Report

30

Drawing 38: Performance - Latency Density

Drawing 39: Performance - Latency Quantiles

UNCLASSIFIED

 5 Recommendations for Further Development

On completion of Phase 2 development, there are several areas where the OpenDDS product could

be extended with additional capabilities and features. These can be segregated into possible Phase 2.5

development, Phase 3 development, and additional commercial applications. This extended

development includes implementation of higher layer abstractions, interoperability, and security

features. These are summarized in the table below.

Category Feature Description

Phase 2.5 Interoperability Implement RTPS interoperability specification as a
transport implementation for OpenDDS.

Implement RTPS discovery protocol for interoperability
with other DDS implementations.

Shared Memory Implement a shared memory transport mechanism to
increase collocated performance.

Future Airborne Capabilities
Environment (FACE)
integration

Implement the FACE higher layer abstraction API
wrapping the DDS API to allow OpenDDS to be used
within a FACE system.

Data Local Reconstruction
Layer (DLRL)

Implement the DLRL abstraction layer for OpenDDS to
simplify the application programming mechanisms.

DLRL SDK Extend the modeling toolkit to include the DLRL
elements and features.

Monitoring Tools Extend the existing OpenDDS service monitoring tool
to provide more dynamic information.

Integrate OpenDDS with existing system management
and monitoring tools such as Nagios and Hyperic.

Libraries Generate IDL libraries of defined DoD messages (such
as Link11) to be available for development work with
OpenDDS.

Phase 3 Scalability Extend the scalability of OpenDDS to larger domains to
allow use in broader applications. This includes scaling
the number of topics and instances as well as the
amount of data and participants during operation.

Test and improve the scalability of the reliable multi-
cast implementation for OpenDDS.

Contract No. N68335- 10-C-0043 SBIR N08-116 Phase II Final Report

31

UNCLASSIFIED

Category Feature Description

Recording service Implement a feature to allow capture and playback of
message streams generated by OpenDDS for review
and analysis. This enables audit trails of service
operation to be generated as well.

API extensions Implement the C++11 language mappings as they are
formalized by the OMG.

Implement self describing topic features as they are
formalized by the OMG.

Web services Research and develop a web service integrated
implementation for OpenDDS.

Topic level security Implement Topic level security capabilities for
OpenDDS. This is to include key management and a
CA as well as implementation of secure transport
layers. This is not necessarily conformant to the
proposed (preliminary) security specifications from the
OMG.

Other Small footprint Implement a small footprint version of OpenDDS
suitable for use in embedded systems.

Static discovery Implement static discovery mechanisms to support
small footprint and embedded system applications.

CORBA Component Model Integrate OpenDDS with the DDS OMG Corba
Component Model (DDS4CCM) abstraction.

Delay Tolerant Networking Implement an RFC5050 DTN capability, including
bundle processing and a convergence layer.

Federated security Extend Topic level security to be supported with the use
of OpenDDS federated meta-data repositories.

Contract No. N68335-10-C-0043 SBIR N08-116 Phase II Final Report

32

UNCLASSIFIED

 6 References

1. Doxygen documentation generator,
http://www.doxygen.org/

2. Eclipse Graphical Modeling Project
http://www.eclipse.org/modeling/gmp/

3. Eclipse Modeling Framework project
http://www.eclipse.org/modeling/emf/?project=emf

4. Future Airborne Capability Environment (FACE™)
https://www.opengroup.us/face/

5. GraphViz – Graphical Visualization Software
http://www.graphviz.org/

6. Makefile, Project, and Workspace creator tool,
http://www.ociweb.com/products/MPC

7. Object Management Group, “Data Distribution Service for Real-time Systems,” Version
1.2, OMG Document formal/07-01-01, January 2007,
http://www.omg.org/cgi-bin/doc?formal/07-01-01

8. Object Management Group, “OMG's Meta Object Facility”
http://www.omg.org/mof/

9. Object Management Group, “The Real-time Publish-Subscribe Wire Protocol DDS
Interoperability Wire Protocol Specification ,” Version 2.1, OMG Document formal/09-
05-01, January 2009,
http://www.omg.org/spec/DDSI/2.1

10. Object Management Group, “UML Profile for Data Distribution Service,” OMG Document
ptc/08-07-02, June 2008,
http://www.omg.org/cgi-bin/doc?ptc/2008-07-02

11. Object Management Group, “XML Metadata Interchange (XMI),” Version 2.1.1, OMG
Document formal/07-12-01, December 2007.
http://www.omg.org/cgi-bin/doc?formal/07-12-01

12. OpenDDS Modeling Toolkit Eclipse installation site,
http://www.opendds.org/modeling/eclipse/

13. OpenDDS Portal,
http://www.opendds.org/

14. OpenDDS subversion source code repository,
svn://svn.dre.vanderbilt.edu/DOC/DDS/trunk

Contract No. N68335- 10-C-0043 SBIR N08-116 Phase II Final Report

33

svn://svn.dre.vanderbilt.edu/DOC/DDS/trunk
http://www.opendds.org/
http://www.opendds.org/modeling/eclipse/
http://www.omg.org/cgi-bin/doc?formal/07-12-01
http://www.omg.org/cgi-bin/doc?ptc/2008-07-02
http://www.omg.org/spec/DDSI/2.1
http://www.omg.org/mof/
http://www.omg.org/cgi-bin/doc?formal/07-01-01
http://www.ociweb.com/products/MPC
http://www.graphviz.org/
https://www.opengroup.us/face/
http://www.eclipse.org/modeling/emf/?project=emf
http://www.eclipse.org/modeling/gmp/
http://www.doxygen.org/

UNCLASSIFIED

15. Interpreting Performance Test Measurements,
http://mnb.ociweb.com/mnb/MiddlewareNewsBrief-201003.html

16. RFC 3393, “IP Packet Delay Variation Metric for IP Performance Metrics (IPPM)”,
http://tools.ietf.org/html/rfc3393

17. Wireshark, network protocol analyzer.
http://www.wireshark.org/

Contract No. N68335-10-C-0043 SBIR N08-116 Phase II Final Report

34

http://www.wireshark.org/
http://tools.ietf.org/html/rfc3393
http://mnb.ociweb.com/mnb/MiddlewareNewsBrief-201003.html

	SBIR-N08-116-Phase-II-Final-Report-print2side.pdf
	 1 Introduction
	 2 Phase 2 Technical Objectives
	 3 Summary of Development
	 3.1 Development Support
	 3.2 Runtime Support
	 3.3 Software Features
	 3.4 Testing
	 3.5 Plans for Phase 2.5 and Phase 3

	 4 Project Activities
	 4.1 OpenDDS Software Development Kit (SDK)
	 4.1.1 Meta-model
	 4.1.2 Model Capture
	 4.1.2.1 Main Diagram Editor
	 4.1.2.2 QoS Policy Model Editor
	 4.1.2.3 Data Definition Editor
	 4.1.2.4 DCPS Model Editor
	 4.1.2.5 Annotations

	 4.1.3 Code Generation
	 4.1.3.1 Model Customization
	 4.1.3.2 Build Support

	 4.1.4 Application Integration

	 4.2 Runtime support tools
	 4.2.1 Wireshark Dissector
	 4.2.2 Service Monitor

	 4.3 Implementation Enhancements
	 4.4 Performance Characterization

	 5 Recommendations for Further Development
	 6 References

