1. REPORT DATE
APR 2010

2. REPORT TYPE

3. DATES COVERED
00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
Trust on the Battlefield in an Age of Automation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Ogden Air Logistics Center, 520 SMXS/MXDEA, Hill AFB, UT, 84056

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the 22nd Systems and Software Technology Conference (SSTC), 26-29 April 2010, Salt Lake City, UT.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
Same as Report (SAR)

18. NUMBER OF PAGES
35

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Overview

- Why Trust Matters
- Autonomy Defined
- Trust Defined
- Identifying Elements of Trust
- Simulating Trust
- Human-Robot Trust Games
- Web-based Game
- Diplomacy Agent
- Identifying Human-Agent Trust KPPs
Why Trust Matters

Congressional Mandate

- The National Defense Authorization Act for Fiscal Year 2001, Public Law 106-398, Congress mandated in Section 220 that “It shall be a goal of the Armed Forces to achieve the fielding of unmanned, remotely controlled technology such that... by 2015, one-third of the operational ground combat vehicles are unmanned.”

1
Secretary of Defense Gates’ Comments

- On 21 April 2008, Secretary Gates made the following comment about unmanned systems

“Unmanned systems cost much less and offer greater loiter times than their manned counterparts, making them ideal for many of today's tasks. Today, we now have more than 5,000 UAVs, a 25-fold increase since 2001. But in my view, we can do and we should do more to meet the needs of men and women fighting in the current conflicts while their outcome may still be in doubt. My concern is that our services are still not moving aggressively in wartime to provide resources needed now on the battlefield. I've been wrestling for months to get more intelligence, surveillance and reconnaissance assets into the theater. Because people were stuck in old ways of doing business, it's been like pulling teeth.”

29 April 2010

Systems & Software Technology Conference 2010
Why Trust Matters
Why Trust Matters

- President’s Budget for Unmanned Systems

<table>
<thead>
<tr>
<th>PORs FY09PB ($M)</th>
<th>Funding Source</th>
<th>FY09</th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
<th>FY13</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>UGV</td>
<td>RDT&E*</td>
<td>$1291.2</td>
<td>$747.5</td>
<td>$136.2</td>
<td>$108.7</td>
<td>$68.9</td>
<td>$2353</td>
</tr>
<tr>
<td></td>
<td>PROC*</td>
<td>$33.4</td>
<td>$42.3</td>
<td>$53.5</td>
<td>$59.5</td>
<td>$21.1</td>
<td>$210</td>
</tr>
<tr>
<td></td>
<td>O&M*</td>
<td>$2.9</td>
<td>$3.9</td>
<td>$3.0</td>
<td>$12.8</td>
<td>$10.1</td>
<td>$33</td>
</tr>
<tr>
<td>UAS</td>
<td>RDT&E</td>
<td>$1347.0</td>
<td>$1305.1</td>
<td>$1076.4</td>
<td>$894.0</td>
<td>$719.5</td>
<td>$5342</td>
</tr>
<tr>
<td></td>
<td>PROC</td>
<td>$1875.5</td>
<td>$2006.1</td>
<td>$1704.7</td>
<td>$1734.3</td>
<td>$1576.2</td>
<td>$8897</td>
</tr>
<tr>
<td></td>
<td>O&M</td>
<td>$154.3</td>
<td>$251.7</td>
<td>$249.0</td>
<td>$274.9</td>
<td>$320.2</td>
<td>$1250</td>
</tr>
<tr>
<td>UMS</td>
<td>RDT&E</td>
<td>$57.3</td>
<td>$73.8</td>
<td>$63.2</td>
<td>$70.1</td>
<td>$76.9</td>
<td>$341</td>
</tr>
<tr>
<td></td>
<td>PROC</td>
<td>$56.7</td>
<td>$78.4</td>
<td>$95.9</td>
<td>$91.6</td>
<td>$103.7</td>
<td>$426</td>
</tr>
<tr>
<td></td>
<td>O&M</td>
<td>$5.0</td>
<td>$4.5</td>
<td>$11.3</td>
<td>$13.5</td>
<td>$13.9</td>
<td>$48</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>$4,823</td>
<td>$4,513</td>
<td>$3,393</td>
<td>$3,260</td>
<td>$2,911</td>
<td>$18,900</td>
</tr>
</tbody>
</table>

* RDT&E = Research, Development, Test, and Evaluation; PROC = Procurement; O&M = Operations and Maintenance
Why Trust Matters

- Common Performance Envelope Across Domains

<table>
<thead>
<tr>
<th>Year</th>
<th>Evolutionary Adaptation</th>
<th>Revolutionary Adaptation</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>Physical Human Machine Interfaces</td>
<td>Scripted Voice Command/Hand Signals</td>
</tr>
<tr>
<td></td>
<td>Individual System</td>
<td>Natural Language Understanding</td>
</tr>
<tr>
<td></td>
<td>Constrained RF</td>
<td>Frequency Hopping</td>
</tr>
<tr>
<td></td>
<td>Operator Controlled</td>
<td>Teamed Collaboration</td>
</tr>
<tr>
<td></td>
<td>Limited Environmental Difficulty</td>
<td>Autonomous Adaptive Tactical Behaviors</td>
</tr>
<tr>
<td></td>
<td>Mission Package Product Line Dependent</td>
<td>All-Weather Product Line Independent</td>
</tr>
<tr>
<td></td>
<td>Signature High</td>
<td>Signature Low</td>
</tr>
<tr>
<td></td>
<td>1 Operator / Platform</td>
<td>1 Operator / Domain</td>
</tr>
<tr>
<td></td>
<td>Limited</td>
<td>Advanced Bandwidth Management</td>
</tr>
<tr>
<td></td>
<td>Hours</td>
<td>Autonomous Bandwidth</td>
</tr>
<tr>
<td></td>
<td>Days</td>
<td>Years</td>
</tr>
<tr>
<td></td>
<td>Mission Endurance</td>
<td>Automated</td>
</tr>
<tr>
<td></td>
<td>Operator</td>
<td>Actionable Information</td>
</tr>
<tr>
<td></td>
<td>Maintenance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sensor Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Situational Awareness</td>
<td></td>
</tr>
</tbody>
</table>

29 April 2010 Systems & Software Technology Conference 2010
Why Trust Matters

P.W. Singer of the Brookings Institution stated the following in an article published in 2009:

“So, despite what one article called „all the lip service paid to keeping a human in the loop„ „the cold, hard, metallic reality is that autonomous armed robots are coming to war. They simply make too much sense to the people that matter.”

4
Why Trust Matters

- From recent news, the X-37B Orbital Test Vehicle was launched on 22 April 2010 and received a fair amount of media attention
 - Who is in control?
 - What are its capabilities?
 - How long will it remain in orbit and what is it doing?
An article in the February 2010 issue of *Popular Mechanics* asked “Can We Trust Robots?”

- The primary point of the article was that humans may be too trusting of robots because they anthropomorphize them.
- We humans think we understand a robot's “thought processes” and “motivations”.
- This could become worse as robots become ubiquitous and as we begin to rely upon them more.
The American Heritage Dictionary defines *autonomy* as

“Independence.” ⁷

Wikipedia defines an *autonomous agent* as

“A system situated in, and part of, an environment, which senses that environment, and acts on it, over time, in pursuit of its own agenda. This agenda evolves from drives (or programmed goals). The agent acts to change the environment and influences what it senses at a later time.”

“Non-biological examples include intelligent agents, autonomous robots, and various software agents, including artificial life agents, and many computer viruses.” ⁸
Autonomy Defined

- There are varying degrees of autonomy
 - None – System is completely manually controlled
 - Partial – Some functions are automated
 - Sliding – The amount of autonomy is selectable
 - Full – The system operates entirely without human control
- With any autonomy the user gives up some level of control
- Wikipedia has a good definition of the abilities of a fully autonomous robot
 - “A fully autonomous robot has the ability to
 - Gain information about the environment
 - Work for an extended period without human intervention
 - Move either all or part of itself throughout its operating environment without human assistance
 - Avoid situations that are harmful to people, property, or itself unless those are part of its design specifications.”

29 April 2010 Systems & Software Technology Conference 2010
Autonomy Defined

Examples of Degrees of Autonomy

- **No Autonomy**
 - (Remote-control EOD robot)
 - US Air Force Photo

- **Partial Autonomy**
 - (ISS assembly robot)
 - NASA Photo

- **Sliding Autonomy**
 - (UAS)
 - US Air Force Photo

- **Full Autonomy**
 - (ALCM)
 - Boeing Photo

Increasing Autonomy
The “classic” definition of trust comes from Diego Gambetta

“trust (or, symmetrically, distrust) is a particular level of the subjective probability with which an agent assesses that another agent or group of agents will perform a particular action, both before he can monitor such action (or independently of his capacity ever to be able to monitor it) and in a context in which it affects his own action. When we say we trust someone or that someone is trustworthy, we implicitly mean that the probability that he will perform an action that is beneficial or at least not detrimental to us is high enough for us to consider engaging in some form of cooperation with him.”

10
Assuming that autonomous agents are coming to hazardous environments, like disaster areas and combat zones, how can we trust them?

This research project is attempting to identify the factors that contribute to trust in autonomous agents, in order to develop a set of key performance parameters (KPPs) for trusted agents.

These KPPs can be used by intelligent agent developers to verify the trustworthiness of their agents and to convince users of their trustworthiness.
Research Objective

- Three elements to the research
 - Identify factors of trust published in the literature
 - Simulate human-agent interactions
 - Collect data on human interactions with autonomous agents
- The ultimate objective is to develop a process that can be validated in field trials
Cristiano Castelfranchi and Rino Falcone argue that

Only agents endowed with goals and beliefs (cognitive agents) can “trust” another agent \(^{11}\)

They define the elements of trust with the following diagram:

GOAL g

- B₁: y can g, has the power of g (Evaluation)
- B₂: y will-do α for g (Expectation)
- B₃: g will be true (Trust that g)

CORE TRUST

- B₄: I need y for g (Dependence)
- GOAL of not doing/ not exploit alternatives/ betting on y (Reliance and bet)
- GOAL that y can & will do

RELIANCE

Mental ingredients of TRUST
Identifying Trust Factors

Sarvapali Ramchurn, et al., identified two principle components of trust in an agent12

- Confidence – Do I believe the agent can perform the desired task?
- Reputation – Has this agent been successful in the past and have others trusted this agent, with good results?
Identifying Trust Factors

Karen Fullam and Suzanne Barber focused on the importance of reputation when dealing with agents (either human or artificial) in the development of the ART Testbed.¹³
Identifying Trust Factors

Just in these three research papers, the following potential trust factors were identified:

- Evaluation
- Expectation
- Trust
- Dependence
- Reliance
- Bet
- Confidence
- Reputation

Which factors are the key factors?
Simulating Trust

- Trust of autonomous systems is an active area of research
- Much of the research uses simulations to explore issues of trust and to compare approaches
- The simulations tend to take two forms
 - Simulations designed specifically for examining issues of trust
 - Simulations that were designed for other areas of research that have been extended or adapted to trust research
- The following are some examples of both types of simulation
Simulating Trust

- Agent Reputation and Trust (ART) Testbed
 - A simulation of multiple art appraising agents specifically designed for agent trust research
Simulating Trust

- RoboCup Rescue Simulation15
 - An agent simulation system that has been used for trust research16

Coalition Formation

Resource Allocation

Estimation with Faulty Sensors
Simulating Trust

- Firefighting Simulation
 - A simulation of human-robot trust relationships
A prototype of a game for collecting user interaction data was created in NetLogo.

The objective of the prototype was to evaluate playability and design elements for data collection.
Last year a paper-based firefighting game was play tested at the RoboCup International Rescue Robotics Workshop

Based on feedback from the playtesting, a print and play game is being developed to gain wider feedback on the game mechanics

A print and play game simulating employment of UASs is also in preliminary development, with a working title of *Battle for Marjeh*

Links to both games and a wiki for feedback will be posted to the project web page when they are ready (see contacts slide at end of presentation)
Web-based Game

- To collect data from a variety of users, a web-based game will be developed, based on feedback from the print and play game, providing tools for collecting data on how game players utilize the robots.
Diplomacy Agent

- As a parallel research effort, an autonomous *Diplomacy* playing agent is going to be developed to explore trust elements in an environment intended to encourage distrust.

- *Diplomacy* games are available as play-by-email and via Internet play with a number of variants.

- There is also a Diplomacy AI Centre in the UK that is open to all researchers to test *Diplomacy* agents in play against each other in a test environment called the Diplomacy AI Development Environment (DAIDE)\(^{17}\)
Diplomacy was created in 1954 by Allan B. Calhamer as a simulation of the diplomacy between the major powers prior to World War I in Europe.

The game typically has seven players.

In each turn, players participate in a negotiation phase, then all movements are resolved simultaneously.
Identifying Human-Agent Trust KPPs

The final objective for this project is to develop Key Performance Parameters that can be used by autonomous agent designers:

- Serve as design guidelines for agents
- Provide verification parameters for testing
- Provide validation parameters for field testing
Summary

- Why Trust Matters
- Autonomy Defined
- Trust Defined
- Identifying Elements of Trust
- Simulating Trust
- Human-Robot Trust Games
- Web-based Game
- Diplomacy Agent
- Identifying Human-Agent Trust KPPs
Project Contact Info

daniel.stormont@aggiemail.usu.edu

Human-Robot Trust Project webpage:
https://sites.google.com/a/aggiemail.usu.edu/human-robot-trust-project/
Questions?
References

17. Diplomacy AI Centre. Online: [http://www.daide.org.uk]

29 April 2010

Systems & Software Technology Conference 2010
Acronym List

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>ALCM</td>
<td>Air Launched Cruise Missile</td>
</tr>
<tr>
<td>ART</td>
<td>Agent Reputation and Trust</td>
</tr>
<tr>
<td>DAIDE</td>
<td>Diplomacy AI Development Environment</td>
</tr>
<tr>
<td>DARPA</td>
<td>Defense Advanced Research Projects Agency</td>
</tr>
<tr>
<td>ISS</td>
<td>International Space Station</td>
</tr>
<tr>
<td>KPP</td>
<td>Key Performance Parameter</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>OSD</td>
<td>Office of the Secretary of Defense</td>
</tr>
<tr>
<td>SMXS</td>
<td>Software Maintenance Squadron</td>
</tr>
<tr>
<td>UAS</td>
<td>Unmanned Aerial System</td>
</tr>
<tr>
<td>UAV</td>
<td>Unmanned Aerial Vehicle</td>
</tr>
<tr>
<td>UGV</td>
<td>Unmanned Ground Vehicle</td>
</tr>
<tr>
<td>UMS</td>
<td>Unmanned Maritime System</td>
</tr>
</tbody>
</table>