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On the Ungerboeck and Forney Observation Models
for Offset QPSK
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Abstract—The Ungerboeck and Forney observation models for
offset QPSK are derived for three different representations for
OQPSK. The representations and their corresponding Unger-
boeck observation models are different, but the trellises used
by the maximum likelihood sequence estimators possess the
same complexity. The Forney observation models are obtained
in straight-forward way for the bit-based representations for
OQPSK, but there is no Forney observation model in the
traditional sense for the symbol-based OQPSK representation. In
the case of the symbol-based OQPSK representation, a method
for whitening the resulting non-linear system is described.

I. INTRODUCTION

Frequency selective channels generate intersymbol inter-
ference (ISI) that can cause severe degradations in bit error
rate performance. The most common ISI mitigation technique
is some form of equalization using a linear filter (designed
to meet the zero-forcing or minimum mean-squared error
criteria), a non-linear decision-feedback filter, or, when the
ISI span is finite, a maximum likelihood (ML) sequence
estimator. These approaches have been well-studied for non-
offset linear modulations. In 1972, Forney [1] published an
early, rigorous analysis of the application of the Viterbi algo-
rithm to perform ML sequence estimation in an ISI channel.
Forney showed that the ML sequence estimator operates on
symbol-spaced samples of the output of a filter matched to
the channel-distorted pulse shape. The channel-distorted pulse
shape does not generally satisfy the Nyquist No-ISI condition.
Consequently, the noise samples at the output of the matched
filter are correlated. Because the Viterbi algorithm requires
uncorrelated noise samples, Forney describes a discrete-time
noise whitening procedure preceding the ML sequence de-
tector. The resulting equivalent discrete-time channel seen at
the Viterbi algorithm input is called the Forney observation
model. In 1974, Ungerboeck [2] described an approach that
does not require the noise whitening process. Ungerboeck’s
approach operates directly on the symbol-spaced samples of
the matched filter output and employs a modified version
of the Viterbi algorithm. The resulting equivalent discrete-
time channel seen at the Viterbi algorithm input is called the
Ungerboeck observation model.

In general, ML sequence estimation performs equally well
with the two observation models. However, this is not the case
when reduced-state sequence estimation is employed. Hafeez
and Stark [3], Schober, Chen, and Gerstacker [4], and Lončar

and Rusek [5] showed that the performance of a reduced state
sequence estimator is better over the Forney observation model
than over the Ungerboeck model.

ML sequence estimation for offset QPSK (OQPSK) has
received little attention in the open literature. This is almost
certainly due to the similarities in the structure and analysis
techniques for the offset and non-offset cases. In the context of
equalization, the decision feedback equalizer for OQPSK was
developed by Bello and Pahlavan in 1984 [6] and revisited by
Tu [7] in 1993.

In this paper, we derive the Ungerboeck and Forney ob-
servation models for OQPSK and identify the of the ML
seqeunce estimator. Because there are different representations
for OQPSK, we derive the Ungerboeck and Forney observation
models for some representative cases. In particular we show
the following:

• [Approach 1, Section III-A] The representation that treats
OQPSK as a binary modulation with overlapping pulse
shapes yields an Ungerboeck observation model that is
a discrete-time LTI system — the Forney observation
model is derived in a straight-forward way.

• [Approach 1′, Section III-B] The representation that
extends Approach 1 to explicitly incorporate the
real/imaginary alternation of the binary symbols pro-
duces a linear (but not time invariant) system for the
Ungerboeck observation model. In this case, the Forney
observation model is obtained by whitening a linear
operator, not by performing a power spectral factorization
of an LTI system.

• [Approach 2, Section III-C] The representation that pre-
serves the quaternary symbol-based structure of OQPSK
produces a non-linear system for the Ungerboeck obser-
vation model. A noise-whitening procedure is possible,
but it is not clear in what sense the resulting system
represents a Forney observation model.

In each case, the Ungerboeck observation model is derived
from basic principles. Next, the equivalent discrete-time sys-
tem defined by the Ungerboeck observation model is identified
and the equivalent discrete-time system is whitened to produce
the Forney observation model.



II. BACKGROUND AND NOTATION

Let s(t) denote the OQPSK signal. The OQPSK signal
passes through a channel with impulse response c(t) and is
immersed in additive white Gaussian noise. Consequently, the
received signal is

r(t) = s(t) ∗ c(t) + w(t) (1)

where ∗ is the convolution operator and w(t) is a complex-
valued, zero-mean, white Gaussian random process with power
spectral density N0 W/Hz. The log-likelihood function is

Λ̃ = − 1

N0

∫
|r(t)− s(t) ∗ c(t)|2 dt. (2)

The maximum likelihood sequence is symbol sequence that
maximizes Λ or, after the elimination of data-independent
terms, maximizes

Λ = 2Re
[∫

r(t) [s(t) ∗ c(t)]∗ dt
]
−
∫
|s(t) ∗ c(t)|2 dt. (3)

There are different signal representations for OQPSK that
may be used.1 The chosen representations depends on the point
of view one wishes to adopt for OQPSK. The choice has
a profound impact on the resulting Ungerboeck and Forney
observation models.

The representations define the transmission of 2N binary
symbols a(0), a(1), . . . , a(2N − 1) where a(n) ∈ {−A,+A}.
Motivated by the non-offset arrangement, the binary symbols
may be thought of as quaternary symbols where a(2k) +
ja(2k+1) is the kth quaternary symbol for k = 0, 1, . . . , N−
1. The first representation considered in this paper is

s1(t) =
2N−1∑
n=0

x(n)p(t− nTb) + w(t) (4)

where p(t) is a real-valued unit-energy square-root Nyquist
pulse shape,2 Tb is the bit time (sec/bit), and the binary
symbols x(n) are defined by

x(n) =

{
a(n) n even
ja(n) n odd

. (5)

Here, OQPSK is thought of as a binary modulation with
overlapping pulse shapes. This formulation is preferred when
the desire is to hide the real/imaginary alternation of the
binary symbols from the intermediate signal processing. Keep-
ing track of the real/imaginary alternation is pushed to the
equalization and detection phase of the process. The second
representation is the more traditional model:

s2(t) =
N−1∑
k=0

a(2k)p(t−kTs)+ja(2k+1)p(t−kTs−Ts/2) (6)

1The two most common signal representations are used here: see Equations
(4) and (6). Others include the cross-correlated trellis-coded quadrature
modulation (XTCQM) [8, Chapter 3] (see also [9]) and an equivalent CPM
representation [8, Chapter 3] (see also [10]).

2Because both Tb and Ts = 2Tb spaced pulse trains are considered, there
is potential for ambiguity in what is meant by a Nyquist pulse shape. Here,
Nyquist pulse shape refers to the zero-ISI condition for Ts-spaced samples
of p(t) ∗ p(−t), not to Tb-spaced samples.

Γ(z)x(n)

v(nTb)

y1(nTb)

a(2k) + ja(2k + 1) nonlinear 
system 

vR(kTs) + jvI((k + 1/2)Ts)

y2(kTs)

a(n)
vR(nTb)

vI(nTb)

Γo(z)

Γe(z)

y1�(nTb)

even n 

odd n 

(a) 

(b) 

(c) 

Fig. 1. The three equivalent discrete-time systems representing the Unger-
boeck observations models for the approaches discussed in this paper: (a)
The discrete-time system for Approach 1; (b) The discrete-time system for
Approach 1′; (c) The discrete-time system for Approach 2. In (a), Γ(z) is the
z-transform of γ(nTb) [see (9)]. In (b), Γe(z) is the z-transform of he(`)
and Γo(z) is the z-transform of ho(`) [see (17)].

where a(n) and p(t) are the same as before and Ts = 2Tb is
the symbol time (sec/symbol). Here, the notion of a quaternary
symbol is captured by using Ts as the time reference for the
pulse train. This point of view is the one usually taken for
OQPSK and preserves the explicit relationship between the
non-offset and offset versions of QPSK.

III. THREE APPROACHES

A. Approach 1

Using g(t) = p(t) ∗ c(t) to represent the composite pulse
shape, the modified log-likelihood function Λ for s(t) = s1(t)
may be expressed as

Re

(
2N−1∑
n=0

x∗(n)

[
2y(nTb)−

Lb∑
`=−Lb

x(n− `)γ(`Tb)

])
(7)

where

y(nTb) =

∫
r(t)g∗(t− nTb)dt (8)

γ(τ) =

∫
g(t)g∗(t− τ)dt. (9)



The variable y(kTb) is interpreted as the output, at the instant
t = kTb, of a filter whose input is r(t) and whose impulse
response is matched to the composite pulse shape g(t). The
variables γ(mTb) are Tb-spaced samples of the autocorrela-
tion of the composite pulse shape g(t). The autocorrelation
function γ(τ) is assumed to be zero outside the interval

−LbTb ≤ τ ≤ LbTb or − LsTs ≤ τ ≤ LsTs. (10)

(Because Tb = 1/2Ts, Ls is approximately 1/2Lb.)
The ML sequence estimator finds the sequence that maxi-

mizes (7). The argument of (7) may be re-written in a recursive
way to produce a more suitable form for the Viterbi Algorithm.
Following Ungerboeck, a useful recursion is obtained by
exploiting the symmetry γ(τ) = γ∗(−τ) and eliminating
the term |x(n)|2γ(0) = A2γ(0), which is the same for any
sequence. Using the notation an = a(0), a(1), . . . , a(n), the
result is

M1(an) = M1(an−1)

+ Re

(
x∗(n)

[
y(nTb)−

Lb∑
`=1

x(n− `)γ(`Tb)

])
. (11)

This formulation has the usual interpretation in the context of
the Viterbi algorithm:
• The state at time step n may be defined by

x(n− 1), x(n− 2), . . . , x(n− Lb)

which are uniquely determined by

a(n− 1), a(n− 2), . . . , a(n− Lb).

The number of states (or nodes) at each time step is 2Lb .
• The state transition from time step n−1 to time step n is

defined by a(n). Because a(n) ∈ {−A,+A}, there are 2
branches leaving each state and 2 branches entering each
state.

• Each time step in the trellis corresponds to a bit time Tb.
• M1(an−1) is the partial path metric corresponding to the

surviving path at time step n− 1.
• The second term on the right-hand side of (11) defines

the branch metric for the branch connecting the states
corresponding to an−1 and an.

The system model defined by (12) is illustrated in Figure 1
(a) where Γ(z) is the z-transform of γ(`Tb). The input is x(n),
the output is y1(n), and the relationship between the two is

y1(nTb) =

Lb∑
`=−Lb

x(n− `)γ(`Tb) + v(nTb) (12)

where v(nTb) is the sample, at t = nTb of v(t) = w(t) ∗
g∗(−t). The v(nTb) are a sequence of complex-valued zero-
mean Gaussian random variables with autocorrelation function
R1(k) = N0γ(kTb). Equation (12) defines the Ungerboeck
observation model for Approach 1. The Forney observation
model is obtained from Figure 1 (a) by whitening the noise.
The most common way to approach this is to perform a

power spectral factorization Γ(z) = F (z)F ∗(1/z∗) and use
the system 1/F ∗(1/z∗) as the whitening filter. See [1, pp.
366–368] or [11, Section 9.3-2] for more details.

The standard noise whitening approach produces an uncor-
related sequence of Tb-spaced noise samples. This is more
than what is needed: in the next section we show that an
uncorrelated sequence of Ts = 2Tb-spaced samples is all that
is required. Clearly, the more strict approach (uncorrelated
Tb-spaced noise samples) satisfies the minimum requirement
(uncorrelated Ts-spaced noise samples). But in the event the
more strict requirement forces one to “work too hard,” we are
motivated to ask if realizing the minimum requirement reduces
the computational complexity.

For future reference, the Ungerboeck observation model
(12) has the following vector/matrix formulation:

y1 = Γ1x + v (13)

where y1, x, and v are column vectors formed in the obvious
way from y1(nTb), x(n), and v(nTb), respectively, and Γ1 is
the convolution matrix formed from γ(`Tb). The autocorrela-
tion matrix of noise vector is3

E
[
vv†

]
= N0Γ1. (14)

B. Approach 1′

Approach 1 does not account for the fact that the binary
data symbols x(n) alternate between purely real and purely
imaginary quantities; cf., (5). Using the substitutions (5) in
(7) and using the notation y(t) = yR(t) + jyI(t) and γ(τ) =
γR(τ) + jγI(τ) produces a form of Λ similar to (12) except
where the each term in the sum over n depends on the parity4

of n. For even n, the summand is

a(n)

[
2yR(nTb)−

Lb∑
`=−Lb

a(n− `)he(`)

]
(15)

whereas for odd n, the summand is

a(n)

[
2yI(nTb)−

Lb∑
`=−Lb

a(n− `)ho(`)

]
(16)

where

he(`) =

{
γR(`Tb) ` is even
−γI(`Tb) ` is odd

ho(`) =

{
γR(`Tb) ` is even
γI(`Tb) ` is odd

(17)

As before the resulting expression for Λ may be formulated
recursively to create a metric suitable for use by the Viterbi
algorithm. Again, exploiting the symmetry of γ(`Tb) and
eliminating the data-independent term yields

M1′(an) = M1′(an−1) +B(an,an−1) (18)

3The transpose of the vector v is v>. The conjugate-transpose of v is v†.
The complex conjugate of v is v∗.

4The parity of an integer is its property of being even or odd.



where the branch metric is connecting the state corresponding
to an−1 to the state corresponding to an is

B(an,an−1) = a(n)

[
yR(nTb)−

Lb∑
`=1

a(n− `)he(`)

]
(19)

for even n, and

B(an,an−1) = a(n)

[
yI(nTb)−

Lb∑
`=1

a(n− `)ho(`)

]
(20)

for odd n. As before, a(n − 1), . . . , a(n − Lb) define the
2Lb states; there are 2 transitions leaving and entering each
state; and the state transitions occur at Tb-spaced intervals.
The important differences include the following:
• For even n, only the real part of the matched filter output

is required whereas for odd n, only the imaginary part
of the matched filter output is required. Consequently, the
real part of the matched filter output may be sampled at 1
sample/symbol. The imaginary part of the matched filter
output may be sampled at 1 sample/symbol as well, but
with sampling instants delayed (or offset) by Tb relative
to the sampling instants applied to the real part. This
is identical to the sampling regime for OQPSK in the
AWGN environment.

• The branch metrics require only the real part of γ(`Tb)
for even ` or the imaginary part of γ(`Tb) for odd `.

• The branch metrics connecting the states are different
depending on the parity of n. This difference is nothing
more than the sign on γI(`Tb) for odd ` [see (17)].

Whereas Approach 1 suggests that the ML sequence estimator
for OQPSK requires more complexity than the ML sequence
estimator for QPSK, Approach 1′ shows that the ML sequence
estimators for both OQPSK and QPSK have the same com-
plexity.

The equivalent system defined by this version of Λ is
illustrated in Figure 1 (b). The input is a(n) [real-valued]
and the output is y1′(n) [also real-valued]. The relationship
between a(n) and y1′(n) depends on the parity of n:

y1′(n) =



Lb∑
`=−Lb

a(n− `)he(`) + vR(nTb) n even

Lb∑
`=−Lb

a(n− `)ho(`) + vI(nTb) n odd

(21)

where vR(nTb) and vI(nTb) are the real and imaginary parts
of v(nTb) defined in the previous section. The sequence of
noise samples

vR(0), vI(Tb), vR(2Tb), vI(3Tb), . . . vI((2N − 1)Tb)

is a sequence real-valued, zero-mean Gaussian random vari-
ables with autocorrelation function

R1′(k, k
′) =


0 k − k′ is odd
1/2N0γR((k − k′)Tb) k and k′ are even
1/2N0γI((k − k′)Tb) k and k′ are odd

.

(22)

Equation (21) defines the Ungerboeck observation model for
Approach 1′. Note that the equivalent discrete-time system of
Figure 1 (b) is not an LTI system. One of the consequences is
that the noise sequence is not stationary. For this reason, the
standard approach (involving power spectral factorization) to
produce the Forney observation model does not apply.

The equivalent discrete-time system of Figure 1 (b), how-
ever, a linear system. As such, the input output relation-
ship may be expressed using vector/matrix notation and the
Cholesky decomposition may be used to create a usable Forney
observation model. The vector/matrix form of (21) is

y1′ = Γ1′a + v1′ (23)

where a = [a(0), a(1), . . . , a(2N − 1)]>,

y1′ =


yR(0)
yI(Tb)
yR(2Tb)
· · ·

yI((2N − 1)Tb)

 v1′ =


vR(0)
vI(Tb)
vR(2Tb)
· · ·

vI((2N − 1)Tb)

 (24)

and

Γ1′ =


γR(0) −γI(−Tb) γR(−2Tb) · · · 0
γI(Tb) γR(0) γI(−Tb) · · · 0
γR(2Tb) −γI(Tb) γR(0) · · · 0

...
...

0 · · · γR(2Tb) γI(Tb) γR(0)

 .
(25)

The autocorrelation matrix v1′ may be expressed in terms of
the autocorrelation matrix of v in the previous section using
the identity

v1′ = A(v + Bv∗) (26)

where

A=
1

2


1 0 0 · · · 0
0 −j 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · −j

 ,B=


1 0 0 · · · 0
0 −1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · −1


(27)

Based on the relationship (26), is is straight-foward to see that

E
[
v1′v

>
1′
]

= N0A
(
Γ1 + BΓ>1 B

)
A>. (28)

With some effort, it can be shown that

A
(
Γ1 + BΓ>1 B

)
A> =

1

2
Γ1′ (29)

from which we have

E
[
v1′v

>
1′
]

=
N0

2
Γ1′ . (30)

The relationship (30) forms the basis for generating the Forney
observation model from the Ungerboeck observation model
(23). Applying the Cholesky factorization Γa = ΥΥ>, the
Forney observation model is produced by multiplying both
sides of (23) by Υ−1 to give

ỹ1′ = Υ−1y1′ = Υ>a + ṽ1′ . (31)



Λ =
N−1∑
k=0

a(2k)

(
2yR(kTs)−

Ls∑
`=−Ls

[
a(2(k − `))γR(`Ts)− a(2(k − `) + 1)γI((`− 1/2)Ts)

])

+
N−1∑
k=0

a(2k + 1)

(
2yI((k + 1/2)Ts)−

Ls∑
`=−Ls

[
a(2(k − `))γI((`+ 1/2)Ts) + a(2(k − `) + 1)γR(`Ts)

])
(32)

M2(sk) = M2(sk−1) + a(2k)

(
yR(kTs)−

Ls∑
`=1

[
a(2(k − `))γR(`Ts)− a(2(k − `) + 1)γI((`− 1/2)Ts)

])

+ a(2k + 1)

(
yI((k + 1/2)Ts)−

Ls∑
`=0

[
a(2(k − `))γI((`+ 1/2)Ts) + a(2(k − `) + 1)γR(`Ts)

])
(33)

y2(kTs) =

Ls∑
`=−Ls

[
a(2(k − `))γR(`Ts)− a(2(k − `) + 1)γI((`− 1/2)Ts)

]
+ j

Ls∑
`=−Ls

[
a(2(k − `))γI((`+ 1/2)Ts) + a(2(k − `) + 1)γR(`Ts)

]
+ vR(kTs) + jvI((k + 1/2)Ts) (34)

It is easy to verify that the resulting noise vector ṽ1′ is
white. Equation (31) defines the Forney observation model
for Approach 1′.

C. Approach 2

This approach uses s2(t) as the representation for the
OQPSK signal. Substituting (6) into (3) and retaining the real
part gives Equation (32) at the top of the page. The maximum
likelihood sequence estimator finds the sequence that maxi-
mizes (32). The argument of (32) may be rewritten recursively
by exploiting the symmetry of γ(τ) and eliminating the term
|a(2k) + ja(2k + 1)|2γ(0) = 2A2γ(0) which is the same for
any sequence. The result is given by (33) at the top of the
page where s(k) = a(2k)+ja(2k+1) is the k-th symbol and
sk = s(0), s(1), . . . , s(k). This formulation has the following
interpretation in the context of the Viterbi algorithm:
• The state at time step k is defined by a(2k−2)+ja(2k−

1), . . . , a(2(k − Ls)) + ja(2(k − Ls) + 1). The number
of states at each time step is 4Ls .

• The state transition from time step k−1 to time step k is
defined by a(2k)+ ja(2k+1). Consequently, there are 4
branches leaving each state and 4 branches entering each
state.

• Each time step in the trellis corresponds to a symbol time
Ts.

• M2(sk−1) is the partial path metric corresponding to the
surviving path at time step k − 1.

• The second term on the right-hand side of (33) defines
the branch metric for the branch connecting the states
corresponding to the sequences sk−1 and sk.

Compared to the trellises of Approaches 1 and 1′, the temporal
spacing between the nodes is twice as long, but there are twice
as many branches leaving each node. Because Ls ≈ Lb/2, the

number of states here is approximately the same as the number
of states in Approaches 1 and 1′. Consequently, the trellises
have approximately the same complexity.

This system defined by this formulation is illustrated in
Figure 1 (c). The inputs are the quaternary symbols a(2k) +
ja(2k+1) and the outputs are y2(kTs) = yR(kTs)+jyI((k+
1/2)Ts) where yR(·) and yI(·) are the real and imaginary parts,
respectively, of the matched filter output (8). The input/output
relationship is given by (34) at the top of the page and
defines the Ungerboeck observation model for Approach 2.
This relationship does not represent an LTI system. Not only
is it the case that the relationship (34) cannot be written as
a convolution involving a(2k) + ja(2k + 1) and a complex-
valued impulse response, but it is also the case that y2(kTs)
cannot be written as a linear operation on a(2k)+ ja(2k+1).
In light of these observations, it does not appear that Approach
2 has a Forney observation model in the traditional sense.

However, all is not lost. Using vector/matrix notation it can
be shown, with some effort, that the vector of outputs may be
expressed as

y2 =

[
G1 +

j

2
G2 (I + F)

]
︸ ︷︷ ︸

H1

s +

[
j

2
G2 (I− F)

]
︸ ︷︷ ︸

H2

s∗

+ Pv + PBv∗︸ ︷︷ ︸
v2

(35)

where

s =


a(0) + ja(1)
a(2) + ja(3)

· · ·
a(2N − 2) + ja(2N − 1)

 ,



G1 =


γR(0) γR(−Ts) γR(−2Ts) . . . 0
γR(Ts) γR(0) γR(Ts) . . . 0
γR(2Ts) γR(Ts) γR(0) . . . 0

...
...

0 0 0 . . . γR(0)

 ,

G2 =


γI(0.5Ts) γI(−0.5Ts) . . . 0
γI(1.5Ts) γI(0.5Ts) . . . 0
γI(2.5Ts) γI(1.5Ts) . . . 0

...
...

0 0 . . . γI(0.5Ts)

 ,

F =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0

 ,

P =
1

2


1 1 0 0 · · · 0 0
0 0 1 1 · · · 0 0
...

...
0 0 0 0 · · · 1 1

 ,
I is the identity matrix, B is defined in (27), and the noise
vector v is defined in (13). (The fact that both v and its
conjugate v∗ are required to describe v2 is a consequence
of the fact that the noise samples are non-proper complex-
valued Gaussian random variables [12]. Readers familiar with
non-proper complex-valued Gaussian random variables will be
familiar with this form.) The matrix-vector formulation of the
Ungerboeck observation model may be expressed as

y2 = H1s + H2s
∗ + v2 (36)

and the ML sequence estimate is

ŝ = argmin
s

{
(y2 −H1s−H2s

∗)
†
Φ−1 (y2 −H1s−H2s

∗)
}

where

Φ = E[v2v
†
2] = N0

(
PΓ1P

> + PBΓ>1 BP>
)

(37)

is the autocorrelation matrix of the noise vector v2 [the matrix
Γ1 is defined in (13)]. A noise-whitened system is obtained
by writing Φ = ΥΥ† based on the Cholesky decomposition
and using ỹ2 = Υ−1y2 for detection. The result is

ỹ2 = Υ−1 (H1s + H2s
∗) + ṽ2 (38)

and the corresponding ML sequence estimate is

ŝ = argmin
s

{ ∣∣ỹ2 −Υ−1 (H1s + H2s
∗)
∣∣2} . (39)

This is clearly not a Forney observation model in the tradi-
tional sense because it is not clear that the resulting ISI model
Υ−1 (H1s + H2s

∗) has any merit from a computational point
of view — that is, it could very well be the case that the ISI
model cannot be written in a recursive form suitable for use
with the Viterbi algorithm.

IV. CONCLUSIONS

We have derived the Ungerboeck observation models for
offset QPSK operating in an ISI channel using three different
points of view for OQPSK. In each case, the trellis and
modified Viterbi algorithm corresponding to the Ungerboeck
observation model was identified and described. The trellises
and the associated Viterbi algorithm have the same complexity.

The Forney observation model is entirely different situation.
The bit-based representations of OQPSK produce an linear
discrete-time system for their corresponding Ungerboeck ob-
servation models. The Forney observation models are obtained
from the Ungerboeck observation models in a straight-forward
way. The symbol-based representation of OQPSK produces
a non-linear discrete-time system for the Ungerboeck ob-
servation model. We show that the resulting discrete-time
system can be whitened, but is is not clear if the resulting
system possesses and ISI model that can be written recursively.
Consequently, it is not clear if a Forney observation model in
the traditional sense exists for this case.
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