John Mathieson

US Air Force (WR-ALC)

Systems & Software Technology Conference
Salt Lake City, Utah

19 May 2011

Report Documentation Page

Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,

including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it

does not display a currently valid OMB control number.

1. REPORT DATE
19 MAY 2011 2. REPORT TYPE

3. DATES COVERED
00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Using Hash Functionsto Ensur e Softwar e | ntegrity

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
US Air Force (WR& #8208; AL C),402 EM XG/402
EMXSSM XDEAB,Robins AFB,GA,31098

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

Presented at the 23rd Systems and Softwar e Technology Conference (SSTC), 16-19 May 2011, Salt Lake

City, UT.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THISPAGE
unclassified unclassified unclassified

17. LIMITATION OF
ABSTRACT

Same as
Report (SAR)

18. NUMBER | 19a NAME OF
OF PAGES RESPONSIBLE PERSON

17

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Software Integrity

* Software Integrity — level of confidence that software has
not been modified intentionally or unintentionally from
its original configuration(e.g. baseline).

* Related Topics Software Assurance, Trustworthiness

Software Integrity/Hash Functions Page 2

g e

Software Integrity

* Problem: How to verify integrity of electronic
data? Are copies of files, the same as the
original? Have files been modified?

* Data (files) moved between different mediums
(CDs, Tapes, Floppy Disks, Hard Drives, network,
etc.) and different computers and Operating
Systems (Microsoft Windows, UNIX, VMS, etc.)
must remain unchanged.

Software Integrity/Hash Functions Page 3

“

Software Integrity

® Problem: How to track electronic data?

e Must have a unique identifier (e.g. file size, date,
name)

e For different revisions, file name & size may not be
unigue. Date can be easily changed, intentionally
or unintentionally.

* Derive file identifier from unique file data. (e.g. data
changes, identifier changes)

Software Integrity/Hash Functions Page 4

“

Software Integrity

® Solution: Create an Electronic “Fingerprint” of Data
® Requirements

e Every fingerprint must be unique, no matter how small the file
differences.

e No file modification to create fingerprint

e Highly portable. Can be created, stored, and moved between
different computers (hardware) and operating systems
(Windows, UNIX, LINUX, VMS, etc.)

e Small size. Does not require much additional storage space.

Software Integrity/Hash Functions Page 5

Solution- Hash Function

® Use a Hash Function (also sometimes called
message digest, cryptographic hash function, one

way encryption)

* A hash function takes as input, an arbitrary length
stream of data (message) and generates a fixed
length output (digest).

Input data stream (Message)

of arbitrary length
ouoonioottoro. [>

Hash

(Message Digest)
Function

Software Integrity/Hash Functions

—>

Fixed length data output
(Hash, Digest)

Page 6

“

Hash Function

® Goals

* Create a unique output, given unique (input) data.
That is for every unique set of input data (e.g. file)

there should be a unique(only 1) output (hash) of fixed
length... (ideally).

e Hash function is a one way function. This means if you
have the function output, you can’t (easily) reverse it
and regenerate the original message (input).

Software Integrity/Hash Functions Page 7

Terminology

* A well designed hash function avoids the following (ideally)

e Collision
e Two unique inputs produce the same output

« All hash functions will have collisions given an arbitrarily long input
message and a fixed length output. Well designed hash functions
will produce less collisions and they will be harder to find.

e Pre-image
« For a given a output (message), the input can be derived from it.

e The hash is meant to be one way (i.e. The input can not be derived
(easily) from the output.

Software Integrity/Hash Functions Page 8

Hash Algorithms

® Secure Hash 1(SHA-1), SHA-256, SHA-512, MD4, MD5,
and more.
* Federal Information Processing Standard (FIPS)

e FIPS-180-1 (Secure Hash Standard)

« SHA-1 160 bit
- For an input < 2°* bits (18,446,744,073,709,551,616) !

» Generates 160 bit hash,

» 40 char hexadecimal string
c62a99e8ee63adf8c9¢c34d303123f3a02376c290

1. exabyte = 1 million terabytes

Software Integrity/Hash Functions

Page 9

“

Creating File Hashes

®* Numerous programs (cmdline and GUI) exist to
create/verify hashes (e.g. md5summer, md5sum,
shalsum, etc.)

* You tell program which files to generate hashes for and
store the results in a new file. The “hash file” would
contain the path/filename and its hash.

Software Integrity/Hash Functions Page 10

Verifying Files Against Stored Hashes

-When verifying file(s) integrity, the hash program can be run
in “check” mode to match existing files against stored hashes.
- If hashes don’t match 100%, files are not identical.

Sample file with stored hashes

Secure Hash-1 (160 bit, 40 chars, hexadecimal string) [PATH/]Filename

4 !

bcbef c14e728e9f 7ae0e369f 5b3f 58077e62f 24b *aut oexec. bat
906826abda839ee4269607c3e0b9241c0863d4fe *confi g. sys

1c8f 520143514e6e€035349be90631f 4502a4ef 09 *host s/ host s. doc
bcf a5565419869e4c9e9850bbf 27a210dd4daf 7b *host s/ m sc. t xt
e5851ccc700al1d490f 02d3279a91586e105df c36 *start. bat
32d378a21392a8b770d6087b036b4d1455413efa *test.drv

Software Integrity/Hash Functions Page 11

representation.

From FIPS 180-1

Digital Signature & Hash Relationship

Digital Signatures work by “signing” a unique representation of the
message(file). The Hash(message digest) of the message is that

Signature Generation

—}n

Key

Message

Message Digest

Private Digital

DSA Sign |_y

O peration

Signature

I&g;nature YVerification
Received Message

Message Digest

Digital * Public
DSA Verif

Operation

Signature Key

Y es- Signature Verified
or
No - Signature Verification Failed

Using SHA-1 with Digital Signature Algorithm

Software Integrity/Hash Functions

Page 12

- Implementation

® Create hashes of original data at time of baselining.

® Store hashes with original code. One extra file can
contain all the hashes. Create a “master” hash of
the “hash file” and store it separately from the
original files.

* For verification, verify “stored” master hash, against
hash file, then use hash file to verify all the rest of
the files.

® Process automated or performed “manually”.

Software Integrity/Hash Functions Page 13

Who Benefits?

* Everyone who “touches” the software from cradle to
grave.

* Essentially creates a “tamper seal” on the software.
Software changed, seal is “broken” (i.e. hash or
“fingerprint” is changed).

* Developer = End User can easily verify the software is
identical to the baselined version.

Software Integrity/Hash Functions Page 14

Hash uses

¢ |dentification

e National Institute of Standards & Technology (NIST)

NIST has set up National Software Reference Library (NRSL) It is a
repository of known software, file profiles, and their signatures
(CRC32, MD4, MD5, SHA-1) to assist Department of Justice, federal,
state, and local law enforcement with computer forensics.

® Verification

e Computer security tools

Intrusion detection (Tripwire). Store file signatures in secure
database and use to check for unauthorized modification.

Software Integrity/Hash Functions Page 15

“

Data Configuration Management

® Configuration Management of data is a process not
a product.

® This method provides a way to help track and verify
the integrity of electronic data (i.e. software) from
cradle to grave.

Software Integrity/Hash Functions Page 16

Contact Info

e Robins AFB, GA

e John.Mathieson@robins.af.mil
e 402 EMXG/402 EMXSS/MXDEAB
e DSN 468-1399

e Commercial (478) 926-1399

Software Integrity/Hash Functions Page 17

