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Software Integrity

* Software Integrity — level of confidence that software has
not been modified intentionally or unintentionally from
its original configuration(e.g. baseline).

* Related Topics Software Assurance, Trustworthiness
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Software Integrity

* Problem: How to verify integrity of electronic
data? Are copies of files, the same as the
original? Have files been modified?

* Data (files) moved between different mediums
(CDs, Tapes, Floppy Disks, Hard Drives, network,
etc.) and different computers and Operating
Systems (Microsoft Windows, UNIX, VMS, etc.)
must remain unchanged.
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Software Integrity

® Problem: How to track electronic data?

e Must have a unique identifier (e.g. file size, date,
name)

e For different revisions, file name & size may not be
unigue. Date can be easily changed, intentionally
or unintentionally.

* Derive file identifier from unique file data. (e.g. data
changes, identifier changes)
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Software Integrity

® Solution: Create an Electronic “Fingerprint” of Data
® Requirements

e Every fingerprint must be unique, no matter how small the file
differences.

e No file modification to create fingerprint

e Highly portable. Can be created, stored, and moved between
different computers (hardware) and operating systems
(Windows, UNIX, LINUX, VMS, etc.)

e Small size. Does not require much additional storage space.
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Solution- Hash Function

® Use a Hash Function (also sometimes called
message digest, cryptographic hash function, one

way encryption)

* A hash function takes as input, an arbitrary length
stream of data (message) and generates a fixed
length output (digest).

Input data stream (Message)

of arbitrary length
ouoonioottoro. [ >

Hash

(Message Digest)
Function
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Fixed length data output
(Hash, Digest)
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Hash Function

® Goals

* Create a unique output, given unique (input) data.
That is for every unique set of input data (e.g. file)

there should be a unique(only 1) output (hash) of fixed
length... (ideally).

e Hash function is a one way function. This means if you
have the function output, you can’t (easily) reverse it
and regenerate the original message (input).
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Terminology

* A well designed hash function avoids the following (ideally)

e Collision
e Two unique inputs produce the same output

« All hash functions will have collisions given an arbitrarily long input
message and a fixed length output. Well designed hash functions
will produce less collisions and they will be harder to find.

e Pre-image
« For a given a output (message), the input can be derived from it.

e The hash is meant to be one way (i.e. The input can not be derived
(easily) from the output.
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Hash Algorithms

® Secure Hash 1(SHA-1), SHA-256, SHA-512, MD4, MD5,
and more.
* Federal Information Processing Standard (FIPS)

e FIPS-180-1 (Secure Hash Standard)

« SHA-1 160 bit
- For an input < 2°* bits (18,446,744,073,709,551,616) !

» Generates 160 bit hash,

» 40 char hexadecimal string
c62a99e8ee63adf8c9¢c34d303123f3a02376c290

1. exabyte = 1 million terabytes
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Creating File Hashes

®* Numerous programs (cmdline and GUI) exist to
create/verify hashes (e.g. md5summer, md5sum,
shalsum, etc.)

* You tell program which files to generate hashes for and
store the results in a new file. The “hash file” would
contain the path/filename and its hash.
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Verifying Files Against Stored Hashes

-When verifying file(s) integrity, the hash program can be run
in “check” mode to match existing files against stored hashes.
- If hashes don’t match 100%, files are not identical.

Sample file with stored hashes

Secure Hash-1 (160 bit, 40 chars, hexadecimal string) [PATH/]Filename

4 !

bcbef c14e728e9f 7ae0e369f 5b3f 58077e62f 24b *aut oexec. bat
906826abda839ee4269607c3e0b9241c0863d4fe *confi g. sys

1c8f 520143514e6e€035349be90631f 4502a4ef 09 *host s/ host s. doc
bcf a5565419869e4c9e9850bbf 27a210dd4daf 7b *host s/ m sc. t xt
e5851ccc700al1d490f 02d3279a91586e105df c36 *start. bat
32d378a21392a8b770d6087b036b4d1455413efa *test.drv
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representation.

From FIPS 180-1

Digital Signature & Hash Relationship

Digital Signatures work by “signing” a unique representation of the
message(file). The Hash(message digest) of the message is that

Signature Generation

—}n

Key

Message

Message Digest

Private Digital

DSA Sign |_y

O peration

Signature

I&g;nature YVerification
Received Message

Message Digest

Digital * Public
DSA Verif

Operation

Signature Key

Y es- Signature Verified
or
No - Signature Verification Failed

Using SHA-1 with Digital Signature Algorithm
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- Implementation

® Create hashes of original data at time of baselining.

® Store hashes with original code. One extra file can
contain all the hashes. Create a “master” hash of
the “hash file” and store it separately from the
original files.

* For verification, verify “stored” master hash, against
hash file, then use hash file to verify all the rest of
the files.

® Process automated or performed “manually”.
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Who Benefits?

* Everyone who “touches” the software from cradle to
grave.

* Essentially creates a “tamper seal” on the software.
Software changed, seal is “broken” (i.e. hash or
“fingerprint” is changed).

* Developer = End User can easily verify the software is
identical to the baselined version.
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Hash uses

¢ |dentification

e National Institute of Standards & Technology (NIST)

NIST has set up National Software Reference Library (NRSL) It is a
repository of known software, file profiles, and their signatures
(CRC32, MD4, MD5, SHA-1) to assist Department of Justice, federal,
state, and local law enforcement with computer forensics.

® Verification

e Computer security tools

Intrusion detection (Tripwire). Store file signatures in secure
database and use to check for unauthorized modification.
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Data Configuration Management

® Configuration Management of data is a process not
a product.

® This method provides a way to help track and verify
the integrity of electronic data (i.e. software) from
cradle to grave.
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Contact Info

e Robins AFB, GA

e John.Mathieson@robins.af.mil
e 402 EMXG/402 EMXSS/MXDEAB
e DSN 468-1399

e Commercial (478) 926-1399
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