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Abstract

In today’s military environment, emphasis has been placed on bandwidth ef-

ficiency and total use of the available spectrum. Current communication standards

divide the spectrum into several different frequency bands, all of which are assigned

to one or multiple primary users. Cognitive Radio utilizes potential white spaces that

exist between currently defined channels, or in the time between channel communi-

cations. One under-explored dimension of white space exploration is spatial. If a

frequency band is being used in one region, it may be underutilized, or not occupied

at all in another. Using an active localization method can allow for the spatial white

spaces to be discovered. Trying to spatially map all of the frequencies in a large area

would be come very computationally intensive, and may even be impractical using

modern centralized methods. Applying a distributed method and the concepts dis-

cussed in Wireless Distributed Computing to the problem can be scaled onto many

small wireless sensors and could improve the measuring system’s effectiveness. For

a bandwidth contested environment that must be spectrally mapped, three metrics

stand out as critical: Accuracy, Power Consumption, and Latency. All of these metrics

must be explored and measured to determine which method could be most effectively

applied to the spectral mapping of a spatial environment.
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Distributed Localization of Active

Transmitters in a

Wireless Sensor Network

I. Introduction

As technology continues to improve, the ways in which military forces fight wars

must continue to evolve. Modern advances in radio communication are critical to ex-

panding communication capabilities. Radios today have the ability to operate on a

wide range of frequencies. They can be designed to sense frequency bands for occupied

channels, to find friendly radios with which to connect, or to find enemy transmis-

sions that should be intercepted, jammed, or even geolocated. Warner J.A. Dahm, the

Chief Scientist of the Air Force, and his office, published a document demonstrating

projected capabilities over the next 20 years, resulting from new developing technolo-

gies being. One primary category is “Processing-Enabled Intelligent ISR Sensors,”

which are information sensors with inherent processing capabilities [4]. Additionally,

an emphasis on “Frequency Agile Spectrum Utilization,” also described by the Chief

Scientist of the Air Force, is focused on distributed methods to measure and map

the available spectrum, and on using this knowledge to more efficiently operate in

that radio environment. With an end goal to achieve these two research areas it is

important to develop techniques and methods to rapidly employ this technology as it

evolves. To prepare and develop future technology, improved bandwidth performance

and power performance are required, while maintaining the accuracy of the current

1



system. This research aims to explore the potential improvement of localization sys-

tems using Received Signal Strength by using distributed methods for data collection

and processing.

1.1 Motivation

In war, information can be a military force’s most valuable resource. For hun-

dreds of years military forces have succeeded and failed based on information about

enemy troop sizes, troop movements, and the morale of those forces. In today’s

battlefield, information is constantly being gained and updated from sensors spread

throughout the entire Area of Responsibility (AOR). Increased sensor usage brings

about issues with bandwidth and power management at each of these sensor nodes.

Distributed Processing can greatly improve both these as well as available process-

ing power. The bandwidth problem associated with the battlefield has been a well

documented. According to Anthony H. Cordesman, “There are questions to how the

United States will solve the bandwidth issues discovered in Afghanistan” [5]. It is

therefore imperative that all systems be designed for bandwidth efficiency to reduce

their bandwidth footprint, this reduction must also maintain accuracy. Additionally,

power must be used more efficiently on small devices in order to extend the battery

life of sensors. The localization process must be kept as simple as possible to allow

for processing on small sensors with minimal power.

We can apply distributed processing to the many different tasks a small wireless

sensor array may need to perform. Two such useful tasks are spectrum sensing and

2



localization. By combining these two tasks it is possible to make a map that shows

the usage of the spectrum in 3D space. A spectrum usage map would contain valuable

information for tracking radio locations, cognitively jamming enemy communication

channels, and finding channels for friendly communication. The map could also be

used to locate key enemy Command and Control (C2) facilities, which may use higher

bandwidth. These facilities could then be selected as potential targets for conventional

weapons or unconventional jamming attacks.

Localization methods with minimal power and bandwidth footprints, could be

applied to several problems in the current operating environment, so as to provide

a tactical advantage to users on the ground. First, they can be used to detect in-

terference between different radio networks, created by multiple users. By localizing

a transmitter, and then predicting its transmission, communications interference can

be predicted and prevented. Second, using a localization network can also allow for

asset tracking on a base. Tracking an active RFID tag or a human carrying a cell

phone can be used to monitor for safety and security on a flight line. Third, detection

along a fence line can allow for a low cost intrusion detection system, and can allow

for enemy positions to be monitored.

1.1.1 Scenario. A wireless sensor network used for scanning radio spectrum

can be utilized in a number of scenarios. One example would be during the initial

deployment to foreign country. By establishing a perimeter, and placing sensors

around it, useful spectrum usage information can be gathered. It could be used

3



to detect civilian transmitters like television and radio stations. By locating this

type of transmitter the US forces can avoid these frequency locations and prevent

interfering with the civilian populace. The second use would be for detection of enemy

transmitters, such as a enemy radio or cell phone. This type of device could be tracked

and monitored for potential security breaches. The third use would better allow a

radio spectrum map to be developed of the current radio environment. The map

would allow for prevention of friendly interference from multiple users utilizing the

same channel. For this concept to become a reality, advancements must be made in the

bandwidth efficiency, power efficiency, latency, and accuracy of wireless localization

networks.

1.2 Problem Statement

Wireless Distributed Computing allows for the processing of complex problems

and large collections of data using wireless sensors. Can Received Signal Strength

localization methods be used with Wireless Distributed Computing to create an ef-

fective method of localization? Also, how does this method of localization compare

with the centralized approach that has been previously explored? Which method is

better in terms of Accuracy, Power Consumption, Bandwidth, and Latency? What

situations allow for the best performance for each?

4



1.3 Background

The research in this thesis combines several research areas. These areas are

briefly described. Figure 1.1 shows how these disciplines are combined in this research

to develop the methods used in the thesis.

Figure 1.1: Thesis Concept Map

1.3.1 Cognitive Radio and Spectrum Sensing. Cognitive Radio is the next

evolution in the expansion of future communication systems. The goal is to add in-

telligence to radio networks and provide them with additional advanced functionality.

One example of that functionality, is the ability to search for available bandwidth and

then transmit and receive in a new, unoccupied channel. Future applications, such

as Dynamic Spectrum Access (DSA), would allow for radios to find and connect with
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other radios to form a dynamic backbone network. This network has uses in forward

operating bases (FOBs) as well as in rapid emergency response.

Signals are transmitted from essentially every powered device. In this research,

active transmitters are explored for the purpose of localization. Active transmitters

are devices that transmit signals using the device’s own energy supply. Examples of

active transmitters would include cell phones, walkie-talkies, radios, and other com-

munication devices. Active transmitters can be detected using a variety of methods,

but the simplest is energy detection. Energy detection can be performed by taking the

Fourier transform of received time data to compute the Power Spectral Density(PSD).

By searching the frequency data for energy spikes, it is possible to find signals that

are being transmit in the environment.

Spectrum Sensing is the concept of searching through the spectrum to find which

frequency bands are being used. The detection of available spectrum can be used in

a variety of ways. DSA and Cognitive Jamming are two examples of using spectrum

sensing. DSA is showing white space between primary and secondary users in both

time and frequency to potentially use the available spectrum [6]. Using DSA can

include more users and improve bandwidth efficiency. Cognitive Jamming is intelli-

gently jamming channels of interest only while a source while is transmitting. This

degrades the source by corrupting parts of packets to prevent reliable communication.

By only focusing on parts of packets, it is possible to jam multiple frequencies with

the same amount of energy [7]. A third use for spectrum sensing is finding signals

of interest, such as unidentified active transmitters. Once the power of a signal is
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detected, it is possible to use Received Signal Strength to localize the position of the

source. This research utilizes spectrum sensing for localization within a deployable

cognitive radio network, and utilizes spectrum sensing for localization.

1.3.2 Localization. Currently, the Global Positioning System (GPS) is the

primary method of localization in both the public and private sectors. Commercially,

it is used in automobile navigation systems, as well as in cellular devices. In the

military, it is used in auto-pilot systems, weapons guidance, and troop tracking. While

GPS has proven to be a powerful and precise method of locating users, it has also

shown weaknesses. Its weaknesses are most prevalent in urban environments where

walls of buildings deny Line of Sight (LOS) to the GPS satellite [8]. In these types of

environments, other methods become essential to augment or replace GPS.

Another limitation of GPS is that it is used only for locating cooperative users.

For example, if an individual wants to find their own position, satellite information

must be collected to generate an estimate. The localization process is preformed by

the user, and is not shared with others. Non-cooperative localization has applications

for tracking active or passive transmitters in both the private and public sectors.

Non-cooperative localization is also applicable for locating where signals are present,

and then predicting where spatial white spaces exist.

There are several methods of localization that could be used when GPS is de-

nied or when trying to locate non-cooperative targets these include: Received Signal

Strength (RSS) localization, Time Difference of Arrival (TDOA) localization, and
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Angle of Arrival (AOA) localization. The simplest of these types of localization is

RSS localization, which is where power measurements at several nodes are used to

generate an estimate of the source’s location. TDOA localization uses the difference

in time between a signals transmission and arrival to find the range, then estimates

the location using triangulation. AOA localization relies on detecting the direction

from which a signal is transmitted, with respect to the sensor. Once it determines this

information, a small number of sensors can predict where the source is located [9].

This research applies distributed processing to improve the performance of the

RSS localization and to improve accuracy, power consumption, bandwidth consump-

tion, and computational time.

1.3.3 Wireless Distributed Computing and Distributed Algorithms. Sensor

networks have become much more common in today’s world. Networks of smart

phones are a common example of sensor networks. These devices have very limited

battery life and often the battery life becomes the fundamental limitation. A method

of improving the energy usage is through Wireless Distributed Computing (WDC) [10].

By dividing a task among multiple sensor nodes, the energy usage per node can be

reduced. This energy savings can then extend each sensor’s battery life, and allow

the sensors to stay in the field longer without recharging.

Distributed Algorithms are commonly applied to wired networks for solving com-

plex tasks. They are fairly well understood and books have been published describing

them [11]. Distributed algorithms are common algorithms that spread a task among
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multiple nodes to improve processing speed and reduce the computational load on

any single node. Reducing computational intensity on machines allows additional

operators to more efficiently use the resources, and improve the time required for

processing [11].

1.4 Research Objectives and Contributions

This section explains the contributions of this research. It also explains the

products that this research generates.

1.4.1 Contributions. This research validates WDC using the example prob-

lem of RSS localization using the Maximum Likelihood Algorithm [3]. The research

measures “quality of service (QoS) constraints” [1], which are tested in the form

of power consumption requirements, communication requirements, such as latency

and bandwidth usage, and computational requirements, such as accuracy. These are

evaluated and compared via a trade space analysis. Each category is evaluated by

defining the metrics to be explored. The first metric is accuracy, the second is power

consumption, and the final is bandwidth and latency. Finally, initial experiments are

preformed to demonstrate the feasibility of applying distributed RSS localization on

a USRP2 test bed such as the CORNET at Virginia Polytechnic Institute and State

University.

1.4.2 Trade Space Analysis. The trade space analysis shows the relation-

ships between the different metrics with respect to the various the clustering tech-
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niques. This analysis develops a baseline for comparing the different methods so that

a system designer can select the best method for their situation. The comparisons

are based on four metrics: Power Usage, Accuracy, Bandwidth Usage, and Latency.

The Latency is measured from the time when a source becomes detectable until a

location estimate is generated. If a user wants to favor any of these parameters, the

trade space analysis presents which methods and arrangements would be the most

effective. This trade space is measured and examined using a simulation.

1.4.3 Simulation Model. A simulation model is generated that allows for

several different node layouts, distribution methods, and system performance metrics.

For this research, a single ring topology is used. This ring is used to represent sensors

placed around a fence line, or building perimeter. The simulation explores different

distribution methods of grouping nodes into clusters. These clusters are adjusted to

improve power performance, accuracy, bandwidth consumption, or other performance

metrics. The simulation serves as the final deliverable of the research effort, and will

be expandable in future research projects.

1.5 Thesis Organization

The research in this thesis is presented in five chapters. Chapter II contains a

literature review of related research in the area of distributed localization. Chapter III

provides the methodology for this research, which explains the experimental process

that is followed. Chapter IV presents the results of this thesis, and includes all of

the findings as well as a discussion of trends and interesting data points. Finally, the
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conclusion in Chapter V recaps the results and provides recommendations for future

work.

1.6 Conclusion

This research effort provides a potential application of WDC. Localization serves

as an application of WDC, motivated by the requirement of improving both power

and bandwidth usage in a deployed environment. The gains to localization will be

applied to Cognitive Radio networks, because they allow for improved methods of

signal spacing by using the time, frequency, and spatial domains.
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II. Literature Review

This chapter presents a study of topics related to wireless distributed computing,

spectrum sensing, and localization using cognitive networks. The topics described

here are built upon in the remainder of the research.

2.1 Cognitive Radio and Dynamic Spectrum Access

There have been several recent advances in Cognitive Radio. New interest in

this topic originates from the idea of changing the current Federal Communication

Commission (FCC) spectrum usage standards to allow for more users to share the

same spectrum range. The idea is that primary users would use the spectrum, and

the left over “white space,” between channels in both time and frequency, could be

reused by secondary users. Various techniques of scanning this spectrum to monitor

its usage have been devised. A large spectrum scanner atop the Illinois Institute

of Technology (IIT) tower in Chicago monitors the spectrum in downtown Chicago.

It generates spectrum versus time plots over a very large bandwidth. The scanner

is used to determine how much of the spectrum is being used, and how often the

occupied bands are being used. This project was a research effort to push for improved

Dynamic Spectrum Access (DSA) [2]. While the IIT method of sensing is valid, it

takes a long time for the single sensor to scan the entire spectrum. It is necessary

for quick scans of the spectrum to allow secondary users to detect and utilize white

spaces as they become available. One potential method of increasing the speed of the

scanning process is to include more scanning nodes. A potential method is through
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Cooperative Sensing, which is based on the idea of creating a sensor array whose

components work together to scan segments of the spectrum at a given time [6]. The

sensor array explored by Bacchus et al. used a grouping of several Software Defined

Radios (SDR) as the sensors. Cooperative Sensing allows the single spectrum to be

scanned in parallel rather than serially, saving considerably on the time and cost of

spectrum sensing.

Cooperative sensing can be useful, but issues arise in network construction.

Because of the large spectrum access of wireless radios, protocols must be created

to allow for the radios to locate one another and create wireless links between them.

To deal with this issue, Rendezvous Protocols have been developed [12]. The radios

use various methods of searching the spectrum as they attempt to detect another

radio’s beacon signal. The beacon signal is a tone transmitted to allow for other

radios to detect the transmitter. Each SDR spends some amount of time transmitting

a beacon tone on an available channel, and another portion of the time listening for

another radio’s beacon tone. Once located, the radios can perform some simple virtual

handshaking and establish a reliable method of communication [9]. Because of this

reliable method of linking SDRs, it is possible to build a robust Cognitive Radio

Network (CRN).

Approaches to optimization of DSA in CRNs have already been developed [13].

DSA is used to further develop the availability of spectrum for secondary users. One

issue with optimal DSA algorithms is that they do not take into account spatial

differences in the spectrum. Primary users may only transmit a signal over a few
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kilometers, and outside that range the frequency is completely available to other

users. DSA can be improved using localization methods to determine the spatial

presence of signals.

Cognitive Radio has also been examined for its military applications. Ashwin

Sampath has explored multi-channel jamming using cognitive radios [7]. Significant

gains in the number of jammable channels can be achieved using only one cognitive

radio. Sampath shows “that an attacker using a single cognitive radio can jam up

to 7 channels. Such jamming attacks pose a serious threat” [7]. This jamming could

be improved further with the knowledge of a signal’s coordinate origin. It is also

important to note that the current method of jamming involves filling a frequency

channel with energy, raising that channel’s noise floor, and corrupting the transmit-

ted signals. To perform jamming in this fashion requires a large amount of energy.

Switching to cognitive radio makes it possible to generate small collisions and corrupt

enough of the source’s packets to prevent reliable communication. This reduces the

energy required and makes the jammer more difficult to locate.

2.2 Wireless Distributed Computing and Distributed Algorithms

This section will provide an overview of Wireless Distributed Computing and

Distributed Algorithms, as well as some current research areas.

2.2.1 Wireless Distributed Computing. Wireless Distributed Computing can

be applied to CRN to better leverage the network’s computing potential. WDC uti-
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lizes nodes that can communicate over a wireless channel to share the computational

load of a complex task. Developed by Dinesh Datla, WDC utilizes the processing

power of idle nodes to allow the network to perform in a more energy efficient man-

ner. His concept relies on determining a cost function between a centralized data

repository and the nodes used for distributing. This cost function is then used to

determine which nodes are useful for their computational abilities based on a variety

of factors [10]. Datla et al. shows that by applying WDC to a CRN, the network life-

time can be improved by over 90% in systems with four or more nodes [1]. The model

used for Datla’s research can be directly related to this research model. Datla’s sim-

ulations apply a communication system and a computational system to monitor the

energy usage at each of the nodes in the system [14]. Similar simulation methodology

can be used for the distributed localization problem. Datla et al. also examines the

effects of various other metrics, including latency and system scalability [10]. Their

papers thoroughly explain WDC and its potential gain. They also present potential

problems that must still be addressed.

The first problem that arises in WDC is the presence of additional bit errors

caused by the extra wireless transmissions used in WDC. Datla et al. shows that there

is a correlation between bit errors in transmission and errors that appear in the final

result of the communication [14]. Bit errors are significant to note, because they must

be taken into account when performing processing on the SDRs. Other problems arise

when trying to implement the WDC idea on an actual platform. These problems are

related to the power consumption of real world devices and synchronization problems
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[1]. These problems are easily solved in simulation, but remain serious issues in real

world systems and must still be addressed. While Datla et al. does explain WDC, he

never applies it to a specific application or candidate algorithm.

WDC can be impacted severely by variations in channel conditions. Datla et

al. continued his effort by exploring some of the effects of varying channel conditions

in a WDC network. In particular, there was a reduction in performance for higher

numbers of nodes. The reduction in performance occurred in both latency and power

consumption for the three methods proposed. These methods included an evenly

distributed workload to all nodes in the network, a tasking based on average channel

conditions at the node, and a hybrid approach developed by Datla.

Comparisons must also be made to Figure 2.1 [1] to fully validate the WDC

model created by Datla. It can be seen that the network lifetime improves as the

number of nodes are increased, and additional energy savings are found when the

back haul range is increased.

Figure 2.1: Effect on Network Energy Savings based on communication range [1].
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In order to apply WDC to a system, it is important to understand the fundamen-

tals of network connection and task allocation. Early foundation for task allocation in

collaborative networks was provided by Yang Yu and Viktor K. Prasanna [15]. Their

work was based on optimizing task allocations for Fast Fourier Transform (FFT)

and LU factorization problems using linear programming and heuristic approaches.

Their findings show that energy can be saved in collaborative networks using these

methods. In some cases, they show that there are potential lifetime improvements

exceeding 1000% of the original life [15]. This research was continued by Datla et al.

who relates his WDC concept to Yu’s and Prasanna’s method using a task graph and

a communication graph. The task graph shows how the WDC process is segmented

into several software components, where each step of the distributed computing is

processed. The communication graph shows the available connections, and the cost

that each connection yields. The WDC framework developed as a cognitive engine

(CE) maps the task graph to the communication graph, generating the optimum task

flow for the algorithm distributed task to implement. An example of task and com-

munication graphs are shown in Figure 2.2. Similar graphs will be developed for the

RSS localization task. In the task graph, each link usually has a weight associated

with it. These have been omitted here as they are represented by the required power

for communication.

2.2.2 Distributed Algorithms. Distributed Algorithms can take on several

different forms. Two common types of algorithm are Wave Algorithms and Traversal
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Figure 2.2: Communication Graph to Task Graph

Algorithms. A Wave Algorithm must satisfy three requirements: it must have a

termination point, each computation must contain a decision, and each decision must

be preceded by an event. The termination point prevents the algorithm from running

indefinitely. The decision requires the algorithm to determine if enough information is

available or if more nodes must be included. Finally, the algorithm must begin with

an initiation event occurring. It can be used for a task that continually processes

information. The Wave Algorithm may be centralized or decentralized: it may have

one initiator or several, and it can be implemented in any topology desired. The

algorithm may also require some initial information about the topology, neighbors’

names, or the complexity of the system. In a Traversal Algorithm, there can only

be one initiator that sends only one message; once this message is received, the next

node sends out one message or makes a decision. The algorithm then terminates at

the initiator node, after every node has sent at least one message [11].

Some algorithms called Ring Algorithms, fall into both of the categories. Ring

Algorithms can be initiated by one node or multiple nodes, and nodes then send one
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message to the next node in the ring. This message travels around the ring until

it returns to the first node, which then decides to process the data if it has enough

available environment data. It has a clear initiation and termination point, beginning

and ending at the same node. The ring algorithm is an algorithm for data collection

and processing, once enough data has been acquired to produce a solution to the

algorithm’s task. If more data is needed, then the currently available information is

passed to another node in the network. The standard ring algorithm is demonstrated

in Figure 2.3.

Figure 2.3: Ring Algorithm Flow Chart

In the algorithm shown in Figure 2.3, there are two types of nodes of importance.

The first is the initiator, and the second is a non-initiator. The initiator is a node

that begins the algorithm, and is represented by the begin block, sends a token or

datagram to the next node. Once a decision is made the algorithm is ended. The non-

initiator simply receives and then decides what to do. Both types of node may append

additional information to the packet; in this research the additional information will

be each node’s RSS measurements taken from the spectrum.

19



Another example is algorithms that are commonly called Tree Algorithms, which

rely on leaf nodes to pass the data towards the center of the tree. A final decision

is made once the data propagates to the center of the tree [11]. Tree Algorithms are

particularly useful in cases where data can be preprocessed in preparation for a final

computation, and can be directly applied to the localization problem. The leaf nodes

act as the initiators of the algorithm and pass the collected information towards a

central node. Data is processed at each level of the tree. The algorithm for a standard

Tree Algorithm is represented in Figure 2.4.

Figure 2.4: Tree Algorithm Flow Chart

In Figure 2.4 the tree algorithm is described. In the algorithm the initiator

node, indicated by the begin block, waits for the initiation event. Once received, it

passes data through the tree until it reaches the top level. Finally, a computation is

made at the end block. Figure 2.5 shows both the ring and tree algorithm data flow

diagrams.

2.2.3 Distributed Algorithms Applications. Distributed Algorithms have

been applied to many problems over the years. Recent research focuses on apply-
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Figure 2.5: Distributed Algorithms Data Flows

ing these Distributed Algorithms toward improvement in data collection and more

effective techniques for node localization.

Distributed Algorithms are often used when several processors are available

to a user, and they can greatly reduce the time needed for processing, as well as

reduce data storage requirements. Distributed Algorithms can also improve the power

usage of the overall system, and allow for additional processing to occur. Distributed

Algorithms can be used for a variety of tasks; one such example is data collection,

where nearby sensor locations collect correlated data. Spreading the computation

amongst multiple processors can be used to reduce the amount of data that must be
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returned to a central node for processing. A one-dimensional model shows that there

can be and energy conservation benefit using this correlation, and the energy used per

node could be reduced by a factor of nearly six, as the number of nodes increase [16].

It is important to understand the potential energy efficiency gains that distribution

provides. The correlation of data in a sensor network is critical to improving the

localization problem. It also assists in determining the best clustering algorithms for

generating localization estimates.

Distributed Algorithms can also be used for adaptive filtering of sensor data, to

improve the quality of collected data. Using either a Least Mean Square algorithm

or Recursive Least Squares Algorithm, it is possible to improve the performance of

a noise canceling adaptive filter [17]. The filtering is done by sharing all information

gathered by several nodes, in an attempt to better understand noise characteristics.

The distributed approach was shown by Abdolee and Champagne to reach a better

steady state than the centralized approaches. The filtering process may assist in

energy detection of real world signals in the RSS localization problem.

Finally, localization has been explored with Distributed Algorithms for a variety

of purposes. Xing-yu Pi looked at distributed target localization problems for wireless

sensor networks [18]. The algorithm spread the processing out to several nodes, several

estimates were created, and the centroid was then used to find the final position

estimate. A block diagram explaining the algorithm is shown in Figure 2.6.
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Figure 2.6: Pi’s Distributed and Cooperative Target Localization Algorithm

While this method was shown to be effective, the author did not apply any

fading model to communications, and assumed that accurate range measurements

can be made at each node [18]. This is not true in a purely RSS method. The

method of fusing the estimates using the centroid will be applied to this research. By

performing multiple estimations at several different nodes, and then combining these

estimates, it is possible to reduce computational intensity of the task and spread the

work load to multiple nodes. Additional approaches will be further explained in the

following section.
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2.3 Localization Methods and Implementations

Better localization of assets has been a topic of interest in the United States

Military, as intelligence about enemies is an important area of study. RSS methods

of localization are an emphasis area, because of the simplicity of data collection. RSS

is often used to assist in locating friendly nodes. For example, if a few nodes have

GPS locations available, they can serve as anchors for other nodes in the system.

Hosein Sabaghian-Bidgoli utilized the GPS anchors to improve the localization of

sensors in the sensor network [19]. This improvement allowed for better localization

of all nodes in a network, and improved the localization of non-cooperative sources.

Using the anchor nodes, and the known communication ranges of the nodes it was

possible to locate other network nodes. By knowing how far a communication signal

can be transmitted, localization can be established using connectivity. If a group of

nodes can connect to one another, then positions can be approximated amongst the

group [19]. An example of this friendly localization is provided in Figure 2.7. In the

figure, the node falls within communication range of three other nodes. The three

overlapping communication circles define one central region in which the node could

be located; the algorithm selects the center of this region. The left figure shows the

actual position of a target. This position is slightly off-center from the intersecting

region. The figure shows the prediction being centered in the intersecting region. This

introduces error in the estimate. As more anchors are added, the estimate will become

more accurate. While this is not using pure RSS measurements, it does require the

knowledge of the transmit powers to localize the nodes. This is a valid method of
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distributing the localization task; however, it can only be employed to friendly nodes

trying to localize each other.

Figure 2.7: Friendly Localization Example Using Localization by Connectivity

Pure RSS measurements can be used in a number of ways to create estimates for

the location of a non-cooperating node. One method uses the beacon method. First, a

signal must be associated with a node at a given location. This is called fingerprinting

the node, and establishes the fingerprinted node as a beacon [8]. Once a fingerprint

database has been established containing multiple nodes, the RSS measurements of

the beacon nodes can be compared to new nodes entering the Region of Interest

(ROI). Using this information, it is possible to approximate which beacon the new

signal’s source is closest to, and how far away the signal is from all of the beacons [8].

The other method of applying RSS, is to collect data from a large group of sensors,

and then locate the source based on RSS measurement variations from sensor position

to sensor position.

It is important to recall the difference between active and passive transmitters.

An active transmitter is any device that is intentionally transmitting a signal. A
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passive transmitter is a device that is unintentionally transmitting a signal, or trans-

mitting using energy not derived from an on-board power source. An unintentional

signal is generated by most powered devices, and the power of that signal is dependent

on the quality of the device design. An RFID is an example of a device that does

not have an on-board power source; it begins transmitting after being activated by a

RFID reader, or similar signal. Methods have been developed to locate both of these

types of transmitters. Additionally signals can be used to detect solid objects, using a

method called Radio Tomographic Imaging (RTI). RTI relies on data collection from

a group of sensors surrounding a particular target of interest. The data collected are

RSS measurements received from communication with other nodes in the network.

When an object moves into the path of the communication between nodes, the RSS

value will become lower. With a large collection of these measurements it is possible

to create a mapping of the locations where objects are. An example is shown in Figure

2.8 [2]. In the figure, a sphere moves between a row of several sensors. Based on the

sensor readings, it is possible to estimate the size of the object, and its position along

the road. This is useful for detecting and locating vehicles moving down a road.

For active transmitters, an RSS value can be generated by listening to a signal of

interest. By computing the power of the signal of interest, the RSS value is obtained.

By combining several of these measurements, through different methods, it is possible

to generate a position estimate for the signal’s source of the. One particular method

is using the approximate Maximum Likelihood (ML) algorithm presented by Rick

Martin and Ryan Thomas [3]. This algorithm uses an estimate the location of a

26



Figure 2.8: Example of RTI localization methods [2]

source, as well as its transmit power, to determine the range of communication. The

algorithm can also be used to locate directionality of the source’s transmit antenna;

however, in this thesis, it is assumed that the transmit antenna is omnidirectional.

The first step of the algorithm is to select a point in the selected search grid. Next,

Equations (2.1) and (2.2) must be solved for P0 and np, which represent the transmit

power and the path loss exponent. These equation vary slightly from the literature,

because of the assumption of an omnidirectional antenna, which eliminates two of the

directionality terms [3].

P̂o =

〈
d
2

s

〉
〈ps〉 −

〈
ds
〉 〈
dsps

〉
〈d2s〉 − 〈ds〉

2 (2.1)

n̂p =

〈
ds
〉
〈ps〉 −

〈
dsps

〉
〈d2s〉 − 〈ds〉

2 (2.2)
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To complete Equations (2.1) and (2.2) the variables ds must be computed. Equations

(2.3) and (2.4) describe this computation.

ds = 10log10(ds/do) (2.3)

ds =
√

(xs − x0)2 + (ys − y0)2 (2.4)

Next, the ML cost function, Equation (2.5), must be evaluated using grid loca-

tion, the transmit power and the path loss parameters. The cost function must be

evaluated for all coordinates in the search grid. Finally, the location estimates are

selected which maximize the cost function [3].

L = ln[f(p|z)] = −1/2(p−m)TC−1(p−m) (2.5)

the variable p in Equation (2.5) is a vector containing the received power from sensors

in the network, and the variable m is a vector, where each element is determined by

Equation (2.6) [3]. Again, this equation is varies from the literature because the

directional variable, Θ, which may be omitted for the omnidirectional case.

mi = P0 − npds (2.6)
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Figure 2.9: Example of Source Localization using ML Estimation Algorithm [3]

After solving the equations above, it is possible to create an accurate estimation

for the source node. An example of the results collected from this algorithm is shown

in Figure 2.9.

This particular algorithm is useful, because it can be easily expanded to a di-

rectional antenna, which is more likely in a real world environment. It also allows

for power and path loss computations to be made, which can be used to predeter-

mine potential interference locations on an FOB. Localizing the area of a source’s

communication can also be used to cognitively jam an enemy transmitter.

2.4 Conclusion

In this research, the previous topics will be combined in order to develop an

improved localization system for CRNs. A CRN will be built for the purpose of lo-

calization, and Distributed Ring and Tree Algorithms will be applied to the network
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for the purposes of data collection and clustering of the nodes. Once clustering is

complete, localization estimates are made using the ML estimation method. By com-

bining the preliminary distributed estimates, a final solution can be obtained. The

goal is to then compare the distributed method to the current centralized ML esti-

mation method. The results are applicable to the DSA problem, in that DSA can

be performed by detecting which signals are present in what geographical locations,

improving spectrum availability. Other potential uses include cognitive jamming and

interference detection. Figure 2.10 provides a graphical relation for the previous work

and its application to this research.

Figure 2.10: Previous Work and Application to Research
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III. Methodology

This section of the thesis explains the methodology used in the research. The goal is

to determine the effectiveness of distributed localization techniques and to create a

comparison to centralized methods. The comparison will be accomplished according

to various metrics including accuracy, power consumption, bandwidth consumption,

and latency. The simulation model was validated using a real world network of USRP2

sensors from the CORNET test bed at Virginia Tech.

3.1 Simulation Model

3.1.1 Simulation Components and Subsystems. The devised simulation has

several key components, which are graphically shown in Figure 3.1.

The system model will be discussed from the top of the diagram down to the

lowest component. Each component exists as a MATLAB class. Each class can be

instigated as an object that contains a set of properties and functions. The advantage

of using this object-oriented design is that it allows for changes to be made to each

component without affecting the implementation of the other classes. This implemen-

tation allows for versatility to be built into the system and enables the user to select

from a vast, ever growing selection of system parameters.

3.1.1.1 Main Simulation. The main simulation controls which topolo-

gies are used, how many nodes, and when and where sources are placed. Each simula-

tion uses a different main simulation environment to control the various parameters,
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Figure 3.1: Simulation Model

and monitor the metrics of the system. The main simulation is divided into four main

sections. In the first section, parameter initialization, the user enters all parameters

that will be used in the simulation. These simulation parameters are shown in Table

3.1.

Additional parameters are used for determining the target’s location in space.

These parameters are shown in Table 3.2. Two parameters are used for checking

accuracy using a Cartesian grid, and the others are for checking accuracy with polar

coordinates.
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Table 3.1: User Defined System Parameters
Parameter Range of Values Description

N Positive Integer ≥ 12 Number of Nodes

numInit Positive Integer ≤ N/3 Number of Initiators

space 0,1 Allows for Selection of Next
Neighbor Clustering and Node Spacing

distMode 0,1 Allows for Selection of the Estimate
Fusion Method

nodeBatt Positive Integer Battery Life of the Sensors in Watts

sourPow Positive Number Source Transmit Power

nPow Positive Number Noise Power

BW Positive Number Bandwidth to be Scanned by Nodes in Hz

cFreq Positive Number Center frequency of the Scanned Bandwidth

Table 3.2: Transmit Location Space
Parameter Description

sourXLoc X Location of the Source, Used for Cartesian Coordinates

sourYLoc Y Location of the Source, Used for Cartesian Coordinates

radius Distance from Center of Search Grid, Used for Polar Coordinates

theta Angle Between East and the Radius, Used for Polar Coordinates

These parameters are then used by simulation. Another important computation

to note is the computation of the minimum number of required nodes for localization.

This computation is found in Equation (3.1).

minToLocate =

⌈
N

numInit

⌉
(3.1)

After generation of the critical parameters, the program moves into the next

section of the main simulation, where node generation and topology are set up. The

simulation creates several sensor node objects and establishes the communication

links needed for operation of the sensor network. The simulation can be changed to
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different topologies by adjusting the node positioning loop and establishing the source

location.

The third section is the simulation section. The simulation section runs multiple

trials, the number of which is established by the user defined system parameters. The

simulation can either produce a grid or concentric circles. The grid approach places

target locations in a rectangular pattern and transmits from each grid location. Grid

source locations are useful for mapping accuracy in a graphical figure and for square

topologies. The concentric circle method varies the radius and angle from the center

of the map. The concentric circle source locations are useful for circular topologies,

and for comparisons of different topologies according to distance from the network

center.

The final section is the plot generation section, which collects data from the

simulation section and produces graphical plots for the user. This section can be

modified for any number of plots containing information about any of the metrics of

interest.

3.1.1.2 Parent Node. The parent node has one main purpose in the

simulation, which is estimation fusion. All sensors view this node as a parent, but it

can be interpreted as a centralized user’s computer. Each cluster of nodes generates

an estimate and transmits it to the parent node. The received estimates can be fused

in a number of different ways; two methods are explored in this research. A discussion

of these methods is found in Section 3.2.3.
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3.1.1.3 Sensor Nodes. The sensor nodes execute the largest bulk of

the work in the simulation environment. Each sensor is “listening” for a signal to

appear in the simulation environment. When a signal is detected, if the node is an

initiator, then it begins passing data to its cluster members. If it is not an initiator,

it simply waits for a datagram with information about the signal. Once the cluster of

sensor nodes have gathered three or more RSS measurements, they create an estimate

using an ML localization estimate, and report that information to the parent node.

The sensors use a ring algorithm, previously discussed in Chapter II.

3.1.1.4 Spectrum. The spectrum contains a list of source objects that

are present in the environment. When a sensor scans the spectrum at a frequency or

frequency band, it reports the power in that frequency band. This scan is similar to

an energy detector searching the spectrum. The spectrum object computes the effects

of fading and noise on the source to each node, and is based on the source location

and the node location. The fading and noise model is given in Equation (3.2); the

noise is assumed to be Additive White Gaussian Noise (AWGN). In Equation (3.2),

RSS is the received signal strength, γ is the fading constant, D is the distance from

the source to the node, and P is the power of the source. Finally, ν is described by

ν ∼ N(µ, σ2)

RSS = P − γ ∗ 10log10(D
2) + ν (3.2)

In this thesis a γ of 0.3 was used to represent an environment with a lower level

of fading, because of its setup in a non-urban environment.
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3.1.1.5 Source. The source object contains its location and an energy

level at which to transmit. This source emits a constant energy signature at a given

frequency and over a certain bandwidth. Currently, the signal is a perfect rectangle

in the frequency domain, but it can be changed to improve the realism of the model.

3.1.2 Limiting Assumptions. For the simplicity of the research, a number

of assumptions have been made in this research effort. These assumptions allow for

a simple model to be used. These assumptions are presented here:

• Sensor nodes and target sources are both stationary and the node positions are

known.

• Channel conditions are constant throughout the trial.

• Nodes have sufficient processing capability to perform the localization algorithm.

• No collisions or bit errors occur during communication.

• All nodes are identical.

• The source transmits a constant tone at a single frequency.

• The transmitter is using an omnidirectional antenna.

• All sensors are synchronized in both time and frequency, meaning there is no

offset between each SDR in frequency.

These assumptions must be reconsidered when applying this to a real world

environment.
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3.1.3 Power Consumption Model. There are two key components to the

power consumption model used in this research effort, which are modeled after Datla

et al. [14]. There are two ways that energy can be used in the network. The first is

through communication of data packets. Communications serve as the larger power

consumption process, and are related to the distance of the communications. Equation

(3.3) shows the amount of power dissipated for communication purposes, where Bold

is current battery life, Bnew is the new battery life, D is the distance between nodes,

and Ptrans is the power required to transmit Do meters. In this effort, Ptrans is

set to 32mW, because of its similarity to WiFi transmission power for a 20 meter

communication region, with Do set to 10 meters.

Bnew = Bold − 10
( D
Do∗log10

(Ptrans)) (3.3)

The other energy usage comes from the processing and idle time of the sensor.

The energy is computed by reducing battery power every time the sensor is used

based on how long it is active. The power consumption model assumes that the

processor usage is roughly the same whenever the sensor is running. Additional power

is used when a localization estimate is made and must also be taken into account.

There is additional power consumption when the processor performs the localization

computation. Equation (3.4) shows the power consumption based on time operated,

and Equation (3.5) shows the power used for localization estimates. These three

calculations are subtracted from the available battery of the sensors, and can be used
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to calculate the power usage of the system. Here Bold is the current battery life,

Bnew is the new battery life, Pidle is the power used while idle and is varied between

two settings, and Pcomp is the power required for computation and varied between 2

different settings. The first setting is with Pidle set to 1 mW and Pcomp to 5 mW,

which yields a low Computation to Communication Ratio (CCR). The CCR represents

a comparison of the computational intensity. Then Pidle is raised to 5 mW for the

middle and high CCR levels. Pcomp is set to 30 mW and 50 mW for these settings

respectively.

B = B − Pidle (3.4)

B = B − Pcomp (3.5)

3.2 Topologies, Clustering, and Estimate Fusion

The topologies used and how nodes are clustered are the fundamental differ-

ence between each of the simulations in this research effort. Two topologies will be

explored, Ring Topologies and Grid Topologies. The nodes will also be clustered in

two different ways, Next Neighbor Clustering and Node Spacing Clustering. The dis-

tributed method produces multiple estimates; methods of fusing these estimates will

also be discussed.
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3.2.1 Topology. The Ring Topology is based on the idea of grouping sensors

placed in a large circle, similar to a fence line around a base. This topology will serve

as the preliminary experiment for verification of the model, as well as some baseline

ideas of how distributed techniques will compare to the centralized methods. The

Ring Topology features N nodes which are equally spaced from each other, and have

a constant radius from the center of the circle. An example of a ring topology is

shown in Figure 3.2.

Figure 3.2: Ring Topology with 24 Nodes

3.2.2 Clustering. Two methods of clustering have been selected for this

research effort. The goal of the first method is to optimize power consumption in

the system. The others is to optimize the “usefulness” of the collected data by re-

ducing the similarity of collected RSS measurements. This can be done by reducing
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the number of similar sensor locations. In WDC, the ultimate goal is to optimize

power efficiency, but it may be necessary to alter this goal to also achieve the compu-

tational requirements of the problem. When discussing Clustering it is important to

distinguish the two types of nodes used, Forwarders and Estimators. A Forwarder is

a node that takes an RSS estimate and then forwards, or passes that information to

the next node in its cluster. The Estimator takes an RSS estimate, receives all of the

other RSS estimates, and then performs the ML Estimation algorithm on the data to

generate a localization estimate.

3.2.2.1 Next Neighbor Clustering. The Next Neighbor Clustering

method is used to reduce the transmission distance between the nodes in the cluster.

Nodes are grouped based on their proximity to one another. This reduction in dis-

tance will reduce the energy footprint of the system of nodes; however, it means that

each cluster will collect more similar data. This correlation may negatively impact

the accuracy. This method of clustering is shown in Figure 3.3. Each shape and

color identifies a different cluster. Each of these nodes in a cluster collects an RSS

measurement. The data is pooled and an estimate is generated from each cluster.

Each result is then returned to the central node for fusion.

3.2.2.2 Node Spacing Clustering. The Node Spacing Clustering method

attempts to minimize the correlation among measurements taken in the system. To

minimize the similarity in measurements from similar locations, nodes that are clus-

tered together are spread out over the ring or grid. The increase in communication
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Figure 3.3: Next Neighbor Clustering Example

distance will reduce energy efficiency; however, it improves the accuracy over the Next

Neighbor Clustering method. This clustering method is shown in Figure 3.4. Each

shape and color identifies a different cluster.

3.2.3 Estimate Fusion Techniques. The number of initiators in the system

determines the number of estimates generated in the network. These estimates must

be fused to create meaningful results. Two methods have been selected for the pur-

poses of this research. This fusion will take place as the final computation in the

system task graph. The two methods explored are the Centroid method and the

Weighted Averaging method.
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Figure 3.4: Node Spacing Clustering Example

3.2.3.1 Centroid. The Centroid method of Estimate Fusion is the

simplest explored in this research. The value n represents the number of clusters

in the system. The n estimates that are generated from the n clusters are divided

into X and Y coordinates. The X coordinates are then averaged, as well as the Y

coordinates. This result creates the final estimate. Equation (3.6) demonstrates how

the estimates are mathematically fused, where X and Y are the X and Y components

of the final fused estimate and Xi and Yi are the individual component of the i -th

estimate.

X = 1
n

∑n
i=1Xi

Y = 1
n

∑n
i=1 Yi

(3.6)
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An example of the centroid estimate fusion technique is shown in Figure 3.5.

Figure 3.5: Centroid Method of Estimate Fusion

3.2.3.2 Weighted Averaging. The idea behind Weighted Averaging is

that the closer a cluster is to the source, the more accurate the localization is, while

the further away the cluster is, the more likely errors exist. This accuracy variance

increases as the received SNR becomes lower. A cluster that is close to a source

approximates the source as very close to itself, while a distant source approximates it

as further away. Using Weighted Averaging allows the system to predict which cluster

is more likely to be correct. How the weighting is performed is shown in Equation

(3.7) where X and Y are the X and Y components of the final fused estimate and

Xi and Yi are the individual component of the i -th estimate.
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X =
∑n

i=1 wiXi

n
∑n

i=1 wi

Y =
∑n

i=1 wiYi
n
∑n

i=1 wi

(3.7)

An example of Weighted Averaging Estimate Fusion Technique is shown in

Figure 3.6.

Figure 3.6: Weighted Averaging Method of Estimate Fusion

Equation (3.7) is solved using a weighting function. The weighting is computed

using Equation (3.8).

wi = (100− 100 ∗ di/(
n∑
k=1

dk))
2 (3.8)

The weighting function shown in Equation (3.8) was created to more heavily

weight estimates that are found to be closer to one cluster than another. This would
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likely show that the cluster has a lower signal to noise ratio received from the trans-

mitter, and more likely to be correct. The variable di represents the distance from

the cluster to the estimate. The variable dk is the distance from any cluster to that

same estimate.

3.3 Performance Metrics

Several performance metrics are used to analyze the trade space developed,

when comparing centralized RSS localization methods with various methods of dis-

tributing the task using WDC. These metrics have been selected to validate the QoS

requirements that were provided as critical to WDC. Those metrics are reviewed, and

their computation is explained. Table 3.3 gives a brief synopsis of these metrics and

the requirements that they satisfy.

Table 3.3: Performance Metrics Synopsis
QOS Requirement Metric Name Units Description

Computational Accuracy Meters Average euclidean distance
between target
and estimation

Power/Energy Power Usage Milliwatts Power usage per
node total and
system Power Usage

Communication Channel Usage Channels Channels required
for a given
system latency

Communication System Latency Time Steps Time required for
localization given
a bandwidth constraint

3.3.1 Computational Requirements - Accuracy. The accuracy of the system

is an important attribute to measure and understand. To determine the accuracy of
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a system, the source must be moved to a large number of locations, and each area

must be tested with varying levels of source power levels. The Euclidean Distance

Error (EDE) can then be computed based on the euclidean distance between the

localization estimate and the source location. Several iterations of this process must

be completed to provide a 95% confidence interval. The accuracy metric provides

insight into the impact of applying WDC principals to localization.

3.3.2 Power Requirements - Power Usage. Energy Usage monitors how

much total energy is consumed throughout the entire localization process. This metric

can be compared using three different methods. The first is by exploring the total

power consumption of the system. The total power metric is ideal for comparisons

that require low total energy footprints, particularly in regions with limited power

availability. The second method is comparing the maximum and minimum energy

used at any particular node. Some nodes may be required to use more energy than

other nodes, and may serve as a limiting factor in some systems. Finally, power can be

compared as the Power Usage per Node, which averages energy consumption across all

nodes in the network. Average power per node is useful for networks of homogeneous

nodes, like small sensors scattered throughout a field. The average power per node is

used to validate the WDC concepts and how it impacts system power consumption.

Comparisons are drawn relating these results to the results of the WDC system.

3.3.3 Communication Requirements - Bandwidth Usage. This metric ex-

plores how much bandwidth is required to operate the system. Bandwidth usage
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varies based on the bandwidth available to the CRN. It is assumed that nodes can

find and build new connections in the available spectrum. This metric is measured

using a number of communication channels, and is related with the System Latency

metric. This metric monitors the number of channels or links that are used. Each

channel or link is represented as a dedicated section of bandwidth for the sensors to

communicate over. Exact bandwidth values are determined in Chapter IV.

3.3.4 Communication Requirements - System Latency. For various band-

width availabilities, different numbers of channels can be located. If another band-

width is available, or nodes are spatially separated enough, it may be possible for

multiple nodes to communicate simultaneously. System Latency measures the num-

ber of time slots that are required to perform the given localization problem. Each

time slot represents a transmission or a location estimation. The assumption is that

the system is operating in a synchronous fashion. This metric, along with bandwidth

usage, provides insight into the potential improvements in bandwidth efficiency and

latency.

3.4 Simulations

Simulations were run to test the metrics previously discussed. Each simulation

served the purpose of comparing the metrics for the various methods of clustering

and topologies. Each of these simulation’s results are also be compared to the current

centralized RSS techniques.
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3.4.1 Simulation Cases. Several simulations were explored to explore the

various metrics obtained for both centralized and decentralized techniques. To ensure

consistency, each simulation was run using identical parameters, and only the topology

or distribution method was changed. The Bandwidth and Latency metrics are also

validated using basic networking theory. The experiment’s run for each metric are

shown in the corresponding section.

3.4.1.1 Accuracy Simulation Cases. Accuracy was tested in a number

of different ways. First, it is important to understand the effects on accuracy in

different regions of the localization map. It is possible that some techniques perform

better in terms of accuracy closer to the edge of the map, or closer to the center.

A comparison of how each method performs, based on the location of a transmitting

source, can be valuable for a system designer. This analysis was performed by moving

the target away from the center of the map at varying angles. The distance and angle

are delineated as r and θ. Figure 3.7 shows this approach for comparison.

The first set of experiments test how different regions perform and compare those

regions to one another. Ninety-five percent confidence intervals are also established to

assist in determining the regions of performance. The different methods of estimate

fusion are also compared. The experiments are described in Table 3.5.

The experiments in Table 3.5 will be run with 12, 16, 20, 24, 28, 32, 36, 40,

44, and 48 nodes with a search space of 40x40 meters. Each simulation is run with 4

initiators and each cluster contains between 3 and 12 nodes. Additionally, the radii
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Figure 3.7: Radial Analysis Concept for Comparison of Methods

Table 3.4: Accuracy Simulations for Regional Analysis
Trial Topology Clustering Mode Estimate Fusion Nodes Clusters

Number

1 Ring Node Spacing Centroid 12-48 4

2 Ring Node Spacing Weighted Average 12-48 4

3 Ring Next Neighbor Centroid 12-48 4

4 Ring Next Neighbor Weighted Average 12-48 4

5 Ring Centralized N/A 12-48 N/A

from the center of the ring to the source were varied from 0 to 20 meters in half-meter

increments. The angle will also be varied from 0 to 2π radians over four different

angles, 0, π/2, π, and 3π/4. Using this information, Figure 3.8 can be generated

which shows the search space, sensor locations and transmitter locations on one map.

In Figure 3.8, each red triangle falls on one of the black rings, which are spaced by a

0.5 meter difference in radius.

Position estimates from each of those angles are tested for statistical indepen-

dence. To determine independence, confidence intervals were placed around each
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Figure 3.8: Transmitter Locations

estimate at each θ. If they are statistically the same, the results are independent

of θ and can be averaged. The evidence for identical distributions on θ is shown in

Appendix A. The 95% confidence intervals are used and computed according to Equa-

tion (3.9) [20], where x is the average of the trial, n is the number of trials, and zα/2

= 1.96 for 95% confidence intervals. One hundred trials has been selected, because it

yields confidence intervals of less than one meter for a majority of the predicted trial

cases.

x′ − zα/2
σ√
n
≤ x ≤ x′ + zα/2

σ√
n

(3.9)

After the accuracy has been determined and the regional performance estab-

lished, it is possible to determine which method performed best. This can be done
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using a number of methods. One method that can be used to determine an overall

best performance, is to compute the average error of each method at each location.

This method is shown in Equation (3.10), where r is the maximum radius used for

transmitter locations, and in this case is 20 meters. By comparing each of these

values, the average improvement of performance over the centralized method can be

generated.

∑r
p=0ErrorDistance(p)

r + 1
(3.10)

The best method, however, may be different based on what region is being

considered, as well as other factors. The number of initiators must be varied to

determine the impact of more clusters on the accuracy. To test the effect of varying

the number of initiators, which represents the number of clusters in the network, a

ring network was be generated with 36 nodes. The accuracy was then measured at

all radii from 0 to 20 meters with 0.5 meter increments. The different clusters’ plots

will be overlayed to allow for analysis of the effects of varying the number of clusters.

Table 3.5 shows the proposed experiments.

Table 3.5: Accuracy Simulations for Testing Effects of Number of Clusters
Trial Number Topology Clustering Mode Number of Clusters

6 Ring Node Spacing 3-12

7 Ring Next Neighbor 3-12

The final experiment verifies which regions perform better in each clustering

method. A single radius source location is used with a varying number of nodes. This
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allows for a more precise understanding of the effects of increasing the number of

nodes in the network at important points for accuracy. The points selected are at one

and ten meters. The one meter mark represents the central area of the network. The

ten meter mark represents a source transmitting at the fence line. Table 3.6 shows

the experiments used for determining the effects of network size on accuracy on search

area points.

Table 3.6: Accuracy at a Single Transmitter Location
Trial Number Clustering Mode Transmitter Radius (m)

8 Node Spacing 1

9 Node Spacing 10

10 Next Neighbor 1

11 Next Neighbor 10

12 Centralized 1

13 Centralized 10

The SNR is determined using SNR = Ptrans
σ2 and is held constant at five. Also,

the number of initiators can never exceed 1
3
N where N is the number of sensors in

the topology.

3.4.1.2 Power Simulation Cases. Power Consumption is highly de-

pendent on the number of nodes in the system, the size of the ring, and the method of

clustering. each of these variables are changed to determine the power efficiency of the

system. To compare the power consumption of different systems, several simulation

trials are compared based on the power usage for a specific topology and clustering

method, while varying the number of nodes. Table 3.7 shows a list of test cases

explored. Each of these figures compare the power usage to the number of nodes.
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Table 3.7: Power Simulation Test Cases
Trial Number Topology Clustering Method Number of Nodes

14 Ring Node Spacing 12-1000

15 Ring Next Neighbor 12-1000

16 Ring Centralized 12-1000

Each of the experiments explained in Table 3.7 was run using a 40m x 40m search

grid, with a ring radius of 10 meters, and a resolution of 1 meter. This experiment

allows a comparison to be made for how the number of nodes in the network affects

the power usage, and gives a baseline for comparing each clustering method to one

another.

Additionally, a similar experiment is run to explore the effects of changing the

number of clusters in the system. This is done by holding the number of nodes

constant at 36 and then varying the number of clusters from three to twelve. This

allows for power results of networks with different numbers of clusters and cluster

sizes. For both experiments the minimum, maximum and average power consumed

per node are recorded. The experiments to determine the effects of the number of

clusters on power consumption are shown in Table 3.8.

Table 3.8: Power Simulation Test Cases
Trial Number Topology Clustering Method Number of Clusters

17 Ring Node Spacing 3-12

18 Ring Next Neighbor 3-12

19 Ring Centralized 3-12

3.4.1.3 Bandwidth and Latency Simulation Cases. Bandwidth and

Latency are directly related to one another. As the amount of available bandwidth

increases, the latency of the system decreases, and the opposite trend is also true.
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Each method of clustering and topology has different bandwidth usage properties

based on the required communication range technique. A mathematical analysis of

what the usage is presented in Appendix B. The derived equations are then be

applied to the simulation model, to provide an understanding of the bandwidth and

time relationships of the distributed methods compared to the centralized method.

Plots are generated showing a comparison between the number of nodes, the number

of clusters, and the number of available channels. One channel is described as a link

between two nodes. This link allows for a stream of packets to be transmitted reliably,

and within an allotted time slot. The time slot is long enough to allow for either a

scan and communication of packet data on the link, or a scan and a computation

of collected data to provide an estimate. Table 3.9 shows the parameters used to

determine the number of time steps required. The number of time steps represents

the system latency.

Table 3.9: Bandwidth Latency Simulation Data
Trial Number Clustering Method Number of Clusters Available Links

20 Node Spacing 1-12 1-30

21 Next Neighbor 1-12 1-30

22 Centralized 1-12 1-30

3.4.2 Trade Space Analysis. The trade space analysis comparing the cen-

tralized and distributed localization techniques requires data collected for the various

simulation cases described above. Analysis of optimal conditions for each clustering

method is made as well as cross comparison of each method. The final results are

tabulated and analyzed for improvements in each of the various metrics. Finally,
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recommendations are made as to which method performed the best and according to

which metrics.

3.5 Concluding Remarks

This research effort was performed using a three step approach. First a simu-

lation model was built according to the model shown in Figure 3.1. Next, this model

was used to better understand the effects on four key metrics—accuracy, power usage,

bandwidth consumption, and time to localization. Finally, the simulation model was

validated using a real world testbed. The use of 95% confidence intervals allowed for

easy comparison of each simulation case, and gave an accurate trade space analysis

of the different localization methods.
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IV. Results

This section of the thesis provides an overview of the analysis and results, and con-

cludes with a summary of the key findings. The research areas explored are the

three QoS metrics described by Datla. These categories are Computational, Power

Consumption, and Latency.

4.1 Communication and Task Graphs

In order to apply WDC to the localization problem, it is important to identify

both the communication graph and the task graph for the network. The following

communication graph is assumed for all of the networks involved. It is a fully inter-

connected communication graph, and shown here in Figure 4.1.

Figure 4.1: Assumed Communication Graph for all Sensor Networks

This fully connected communication allows for any number of clustering meth-

ods to be developed. The first task graph that was used is the task graph correspond-
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ing to the Next Neighbor method. This is the optimal task graph in terms of energy

efficiency, because it seeks to minimize the communication distance between sensors.

This graph is shown in Figure 4.2.

Figure 4.2: Next Neighbor Task Graph

This task graph has four clusters and twelve nodes. Each of the clusters are

connected with a communication link. These links are based on a cognitive network,

and they may change as channel conditions in the radio environment also change. The

cost of using each communication link is based on the energy required to transmit,

and is related to the distance between nodes in the network. The other clustering

method explored is shown in Figure 4.3.

This task graph values the data collection process more than communication

efficiency. Similar to the previous graph, each node in a cluster is connected with a

communication link. Additional spacing between nodes is used to reduce correlation
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Figure 4.3: Node Spacing Task Graph

in collected data. This will likely improve the overall results in terms of computa-

tional effectiveness, but it will also reduce the performance with respect to power

consumption.

4.2 Computational Requirements - Accuracy Results

In determining which system performs the best for a given situation, the accu-

racy results are critical. The accuracy curves show how well a system performs based

on the distance from the center of the network. Depending on the application, one

system may be more or less effective. For example, a system that is highly accurate

near the edge of a sensor network, would make it more effective for base defense and

security. Another system, that is more accurate near the center of a sensor network,

may be better used for interference prevention or asset tracking. The accuracy results

are replicated here for each of the methods explored in this thesis. After each method
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is reviewed, a comparison is given and explained in the final part of this section. Fi-

nally, a description of the most effective method is given according to the the accuracy

metric.

4.2.1 Centralized. In the centralized case, all collected RSS measurements

are transmitted wirelessly to the central processing node. This simulation took the

average of 100 trials with a radius parameter of 0 to 20 meters in 0.5 meter increments.

The angle varied from 0 to 2π radians in increments of π
2

radians. This was repeated

for several sensor network sizes, ranging from 12 to 48 nodes in increments of four

nodes. Figure 4.4 shows the obtained results for the centralized method.

Figure 4.4: Trial 5 - Baseline Centralized Method of Localization

In Figure 4.4, there are no noticeable improvements from one experiment to

another except outside the sensor ring. This means that performance remains consis-

tent regardless of the number of sensors used in the centralized method, and is likely

59



caused by the symmetry of the problem. This is important to note, because it does

not fully adhere to current theory. This is further tested in the analysis section, and

proven that it does follow theoretical trends. The optimum accuracy point is at the

radius of the ring, which means that the centralized method operates the best the

closer the target is to the sensor network. This could be useful for perimeter defense.

4.2.2 Next Neighbor. Two methods of Estimate Fusion were applied to

the collected data. The first was the Centroid Method, which simply averaged the

collected data points together. The results for various N ’s are shown in Figure 4.5.

In this figure, the ring forms a 10m circle around the center, radius zero. A radius of

10m indicates the edge of the ring, while radius zero indicates the center of the search

space.

Figure 4.5: Trials 3 and 4 - Next Neighbor Localization Using Centroid and
Weighted Averaging with 4 Clusters
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A similar result to what was found in the centralized results for the Centroid

Averaging method, shown on the left of Figure 4.5. Here, the performance is in-

dependent of the number of nodes in the network. Also, Next Neighbor clustering

performs better near the center of the ring, and then the accuracy becomes worse as

the transmitter moves radially away from the center. The second method of Estimate

Fusion was the Weighted Averaging Method, shown on the right of Figure 4.5. This

method weights estimates that are closer to a cluster higher than the estimates that

are further from the cluster. There is no significant change between each curve for the

Next Neighbor case. There is a slight improvement in the performance for a trans-

mitter location radius of less than 10 meters. This was found to not be statistically

significant according to 95% confidence intervals.

By comparing the two plots shown in Figure 4.5, the Weighted Averaging

method does slightly improve the performance for Next Neighbor Clustering close

to the center of the ring. The next dimension to this problem is exploring the effects

of varying the number of clusters. A ring of thirty-six nodes was generated with vary-

ing numbers of clusters from 3 to 12 clusters. The effects on the accuracy are shown

in Figure 4.6.

Figure 4.6 reveals critical information for system design. The number of clusters

greatly impacts the accuracy performance of Next Neighbor accuracy. As the number

of clusters is decreased, the accuracy increases for a radius of greater than four meters.

This shows the number of clusters must be considered before implementing the system

for different applications
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Figure 4.6: Trials 1 and 2 - Comparison of Different Numbers of Clusters with
Next Neighbor Clustering

4.2.3 Node Spacing. For the Node Spacing case, similar experiments were

explored as in the Centralized and Next Neighbor case. The results computed are

shown in Figure 4.7.

It was found that as the number of sensors in the network increases, the per-

formance of the system improves, shown on the left side of Figure 4.7. This is most

noticeable in the region where the radius is equal to the sensor radius. It is interesting

that the best performance is the used for base defense, where accuracy close to the

sensor network edge is critical. Figure 4.7 on the right, shows that using the Weighted

Averaging method reduces performance, and should be further explored and poten-

tially re-evaluated. To explore the Node Spacing results and the effect of varying

the number of clusters, a ring with 36 nodes was arranged with varying numbers of

clusters. The final comparison of these results is shown in Figure 4.8.
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Figure 4.7: Trial 7 - Comparison of Centroid and Weighted Averaging with 4
Clusters

In Figure 4.8, a result similar to Figure 4.6 is discovered about the effects of

changing the numbers of clusters in a localization system. Smaller numbers of clusters

lead to improved accuracy for a larger radius, in locations outside of a seven meter

radius. The performance is better for larger numbers of clusters inside of the seven

meter radius, but becomes worse for a radius greater than seven meters. This is likely

related to the fact that fewer large clusters behave like centralized clustering, while

more smaller clusters behave less like the centralized case. The exception to this rule

is when 12 clusters exist in the network. In this case, the cluster size is three, and

additional error is incurred because little data is available.
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Figure 4.8: Trial 6 - Node Spacing Accuracy Results for Varying Cluster Size

4.2.4 Analysis. The case of 24 nodes was taken from each of the above

simulation cases, and they were replotted here for further analysis.

It can be seen in Figure 4.9 that the Node Spacing Method performs significantly

better than the other methods. The next best performer is the Next Neighbor with

weighted averaging, followed by Next Neighbor with Centroid fusion, and finally the

centralized method. This trend is very important for determining the optimal system

for base defense. Notice that the largest gap between the performance of all the

systems is at the sensor radius. Here, the Node Spacing method performs much

better than the others. For base security, and especially fence line monitoring, the

Node Spacing method is the most useful and applicable. This means that in terms of

the computational QoS metric, centralized methods are the most effective. This also

validates the WDC ideals presented by Datla et al [11]. In WDC, it was shown that
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Figure 4.9: Comparison of Methods in terms of Accuracy

introducing distribution can reduce the computational accuracy of the system, and a

similar trend is seen here.

To further compare the performance, the average error of each system is com-

puted using Equation (3.10). Then, by comparing these values, Figure 4.10 was

generated to show the average improvement created by each system.

In Figure 4.10, it can be seen that for four initiators, the Node Spacing method

always performs better. Likewise, the Next Neighbor method is always less accurate

than the Centralized method. The average error was then computed by varying the

number of initiators on a single sized sensor network. These results are shown in

Figure 4.11.

Figure 4.11 shows how changing the number of clusters impacts the performance

of the distributed method relative to the centralized method. When there are 11
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Figure 4.10: Average Improvement over the Centralized Method using Distributed
Methods

clusters in the system, the Node Spacing method actually preforms worse on average

than the centralized method. The number of clusters in the system provide a potential

stumbling point for a system designer. The properties of each cluster size must be

taken into account, because increasing the number of clusters negatively impacts the

performance of both distributed clustering methods.

Additional tests were performed to examine the impact of adding more nodes

to the system while holding the transmitter at a fixed radius. The sensor was held

at radii of one and 10 meters. Figures 4.12 and 4.13 show the results from these

experiments.

In Figure 4.12, the emitter location is set to be one meter from the center of

the ring. This is to simulate asset tracking of a device operating near the center of

the base. At the one meter point, it can be seen that the Next Neighbor is the worst
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Figure 4.11: Average Improvement over the Centralized Method using Distributed
Methods and Varying Numbers of Clusters

preforming method. This may be because of the similarity in sensor location. Another

interesting trend is that the Centralized and Node Spacing accuracies improve as the

number of sensors N increase.

From Figure 4.13, it can be seen that when the emitter is placed at the same

distance from the center of the map as the sensor network, the Centralized method

performs the best. Also, the Centralized and Next Neighbor methods appear to

remain relatively linear for any number of sensors. There is also a significant amount

of fluctuation for different numbers of sensors, which may be caused by the randomness

of the system. Another interesting trend is that the Node Spacing and Centralized

techniques continues to improve as the number of nodes increases, and the accuracy

approaches a minimum error of approximately one meter. This proves that the result

is consistent with theory by showing that accuracy improves with additional sensors.
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Figure 4.12: Trials 9, 11 and 13 - Accuracy for Emitter Located one Meter from
the Center

In conclusion, the accuracy QoS requirement is shown to remain high for the

distributed methods, specifically Node Spacing clustering. The distributed techniques

actually perform better than the centralized techniques. There is a small drop-off

for WDC techniques in the region outside of the sensor network; however, the RSS

localization method used in this research is largely focused on locating sources within

a group of sensors. With one of the primary concerns being computational accuracy

for WDC, it has been shown here that WDC is effective in localization processes and

computational error is mitigated by averaging several measurements.

4.3 Power Results

Power consumption occurs for two primary reasons in a wireless sensor network.

The first is the use of power for communication between the nodes. This consumption
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Figure 4.13: Trails 8, 10 and 12 - Accuracy for Emitter Located 10 Meters from
the Center

is largely based on the required communication range and the noise present in the

system. The second is the power used while the node is active, which includes idle time

and processing of data. These two components can be monitored during the operation

of the localization process to better understand which method of localization performs

the best in terms of power efficiency. The results for each method are presented and

analyzed in the following section.

4.3.1 Centralized. For the centralized case, a large draw of power is expected

on each sensor because of the long return distance to the centralized node. This

communication distance is the same for each node, so the maximum and minimum

power used by any one node is expected to be very similar. The average energy

used for all numbers of nodes is the same. This is shown in Figure 4.14 and is

compared with the other methods’ energy consumption levels. It can be seen that for
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Figure 4.14: Trials 14, 15, and 16 - Power Consumption for all Methods of
Localization

small numbers of nodes, less than 28, the Centralized method performs better than

the node spacing method in terms of power consumption. Also, the Next Neighbor

method always performs better than the centralized method. This is discussed further

in the following sections.

4.3.2 Next Neighbor. The Next Neighbor method is expected to have the

best power performance of any of the methods. The results for this experiment are

shown in Figure 4.15.

In Figure 4.15, there are several key features to notice. First, the maximum

power used by any one node is a constant. The maximum power is always used by

the estimating node, which then returns the result of the computation. Second, the

minimum and average power consumed both decrease as the number of nodes increase.

As the distance between the nodes decreases, the distance required for communica-
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Figure 4.15: Trial 15 - Power Consumption for Next Neighbor Clustering Method

tion decreases. The reduction in distance lowers the average power expended in the

network. Figure 4.14 also shows that this method is the most power efficient method

used. In addition to exploring the effects of varying the numbers of nodes, it is also

important to see the impact of varying numbers of clusters on the power usage, using

an arrangement of 36 nodes, and changing the number of clusters in the network.

Figure 4.16 shows the results from this experiment.

In Figure 4.15, as the number of clusters increases, the power required by the

system increases. As the number of clusters increase, the size of each cluster becomes

smaller. This reduction in cluster size means that more computations occur in the

network at the node level, and ultimately this causes the computational requirements

to rise.
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Figure 4.16: Trial 18 - Power Consumption for Next Neighbor Clustering Method
with Varying Numbers of Clusters

4.3.3 Node Spacing. The Node Spacing method is expected to perform

better then centralized in most cases; however, performance may be worse in terms of

energy consumption for cases with very small numbers of nodes. Large communication

distances exist between nodes in a cluster, and this communication distance ultimately

creates a larger drain on the available energy of each sensor. There is also a large

variance in the maximum and minimum power usage of each node, because of the

great variance in distances between each node, and the requirement of the nodes to

generate their own estimates. The power results for this clustering method are shown

in Figure 4.17.

In the Node Spacing method, there is a large energy demand for networks with

small amounts of nodes less than 28 nodes. The transmit distance to the next node

in the cluster is further than the distance to the central node. In these cases, the
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Figure 4.17: Trial 14 - Power Consumption for Node Spacing Clustering Method

nodes returning the data to the central computer, the least power. Once the distance

between nodes in each cluster is less than the distance from the nodes to the centralized

node, there is a significant improvement in power efficiency. This transition also

causes the maximum power usage to equal the Next Neighbor method. Also, for

larger numbers of nodes, the Next Neighbor and Node Spacing methods approach the

same value. The distance between nodes becomes negligible as they approach less

than a meter in distance.

An additional study was performed on the impact of varying the number of

clusters in the network with a ring of size 36 nodes. The results in Figure 4.18 show a

trend in Next Neighbor clustering, which is similar to Node Spacing. As the number of

clusters increases, the power requirement also increases. This increase is significantly

larger than the Next Neighbor method, because as the number of clusters is increased,
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both the communication distance and number of estimators increases. This drain is

quite high and greatly increases the power consumption of the network.

Figure 4.18: Trial 17 - Power Consumption for Node Spacing Clustering Method
with Varying Numbers of Clusters

4.3.4 Analysis. This power analysis is comparable to work performed by

Datla in his WDC research. The most important relation is his comparison of network

lifetime improvement to the number of nodes. This plot showed around a 94% im-

proved network lifetime [10]. This figure was also reproduced in Chapter II in Figure

2.1. A similar computation was performed on the data collected in simulation and

the results are shown in Figure 4.19.

The network life improvement shown here has a maximum life extension of

approximately 93%, slightly lower than Datla’s theoretical maximum. He showed

that 94% could be achieved, with as few as two nodes, while the localization problem

needs around 100 nodes to achieve similar gains. Datla et al.’s research assumes that
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Figure 4.19: Network Life Improvement for Varying Numbers of Nodes

the data collection has already occurred and only requires processing. This thesis work

includes the data collection along with the processing, which reduces the efficiency

because more tasks are placed on the nodes. The localization data collection can be

very power consuming due to the required level of communication needed to share

the information to perform the task.

An additional comparison was performed by changing the required computa-

tional cost. Different networks and algorithms may have a different ratio between the

computational power and the communication power requirements. Three Computa-

tional to Communication Ratio’s (CCRs) were used in this research for that purpose.

A low CCR was used in the previous experiment. Middle and high CCRs are shown in

Figure 4.20. The values of the computation cost were changed from 5 mW to 30mW

and 50mW, respectively.

75



Figure 4.20: Power Consumption Effects using Changes in CCR system Parameters

In Figure 4.20, it is clear that Node Spacing energy consumption is worse than

Next Neighbor power consumption. However, the figure does show that if there is a

high computation cost, it can be overcome using additional nodes. This indicates that

the distributed method can be more energy efficient than the centralized method, as

long if there exist enough nodes in the ring network.

In terms of WDC, the expectation is that additional power consumption is

required to perform a task in a centralized manner. However, there may be some

conditions that would benefit from a centralized method in terms of power. Using

a WDC cognitive engine would allow for the network to detect these conditions and

determine which method is the most practical. In the results shown, it was found

that as the average number of nodes available increased, the average power used in

the distributed networks decreased. Also, in the purely WDC method of localiza-
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tion, namely Next Neighbor Clustering, the power efficiency was always lower than

the centralized technique, due to the optimization of the task graph for power con-

sumption. If the power consumption is not the most critical parameter, and accuracy

becomes more important, the cognitive engine may select the Node Spacing method

over the Next Neighbor method. Interestingly, as for a large number of nodes, there

is little difference in power usage per node for either distributed method. Finally, the

network lifetime improvement results are comparable to results computed by Datla

et al. [10]. The difference in results is likely caused by the increased computational

intensity of both collecting and processing data, rather than assuming it has already

been collected. Additionally, the back-haul distance is considerably shorter for this

experiment, than in Datla et al.’s, and this shorter distance impacts the overall power

performance of the network. In summary, the power consumption QoS metric has

been shown to achieve energy improvement over previously explored centralized tech-

niques.

4.4 Time and Bandwidth Results

Time and Bandwidth are two highly related values in this research. As band-

width increases, the time required to communicate decreases, due to the additional

data transfers that can occur simultaneously. This improvement, however, is limited

by the number of communications that may occur simultaneously. The lower limit im-

pacts the performance in high bandwidth environments. The following section shows
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the impact of bandwidth availability on latency in the network. All three methods

are explored and compared.

4.4.1 Channel Definition. A channel or link is a dedicated frequency domain

slot of bandwidth. The center frequency this slot may change over time, depending on

the number of primary users in the area, and how often the channel is accessed. The

network is established with an expected number of available channels at any given

time. Channels are made up of a 500 Hz sections of bandwidth, and are used for

communications between the different nodes in the network. Each of these channels

may also be used to report a final estimate to the central node. It is assumed initially

that the central node has a sophisticated receiver which can receive multiple pack-

ets over multiple channels simultaneously. The 500 Hz bandwidth requirement was

determined according to Figure 4.21.

It can be seen in Figure 4.21 that a delay of 0.284 seconds is incurred at the

highest latency, for a packet containing 20 measurements with a 1/4 code rate. This

will likely by more than enough coding to prevent correct bit errors, while also sup-

porting and above average cluster size. This delay is not significant enough to be

impractical when compared to the time required for the localization estimate. Here,

a code rate of 1/2 would be more than satisfactory for accurate communication, and

to prevent any significant bit errors.

4.4.2 Centralized. For Centralized processing of the collected RSS data,

it is expected that a large amount of bandwidth will be required to prevent any
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Figure 4.21: Predicted Communication Latency for Varying Code Rates and Band-
width Usages

interference from occurring. Otherwise, the nodes will have to wait until the channel is

unoccupied before returning their RSS measurements. The results for the Centralized

bandwidth availability and time constraints are shown in Figure 4.22. The derivation

of the equation used for Figure 4.22 is found in Appendix III, the final result is

reproduced in Equation 4.1. The Centralized case has a very high time delay when

the radio environment is highly utilized; however, there is rapid time improvement

with additional bandwidth channels for communication. The system peaks in terms

of time performance, when the number of channels equals the number of nodes in the

system. Here, one time step is needed to return all of the collected data, and one time

step is needed to process the data.
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Figure 4.22: Trial 20 - Centralized Bandwidth-Time Results for 36 Nodes

The derivation of the equation used for Figure 4.22 is found in Appendix II, the

final result is reproduced in Equation (4.1), where t is the time steps required, N is

the number of nodes in the network, and c is the number of channels available.

t =

⌈
N

c

⌉
+ 1 (4.1)

4.4.3 Distributed Methods. For the Distributed methods, a derivation for

the number of time steps required is given in Appendix II. The final result for the

Next Neighbor case is given in Equation (4.2), where n is the number of nodes in each

cluster, k is the number of clusters. Channel reuse is possible, because each cluster

can communicate internally without interfering with other clusters.
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t = n+

⌈
k

c

⌉
(4.2)

The Node Spacing case has a more complicated results, based on the number

of clusters. If sufficient clusters are used, then channel reuse is possible. If not, then

only some of the clusters may communicate simultaneously. If N ≥ (2k + 1)k then

Equation (4.2) can also be used. If N ≤ (2k + 1)k, then Equation (4.3) must be

used, where kmax is given by Equation 4.4 and represents the maximum number of

clusters that may communicate on the same channel. Additional details can be found

in Appendix II.

t =

⌈
k

kmaxc
(n− 1)

⌉
+ 1 +

⌈
k

c

⌉
(4.3)

kmax = bn/2c+ 1 : N < 2k2 + k (4.4)

In the Distributed cases, the limiting factors are the number of clusters and

cluster size. As the number of clusters increases, more bandwidth is needed to return

the estimates to the centralized node. However, if the number of clusters is reduced

then the cluster size must increase. As the cluster size grows, additional hops are

required, and there is additional latency incurred, which cannot be alleviated with

additional bandwidth. Figure 4.23 shows the results from the Distributed methods

when compared to the Centralized method.
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Figure 4.23: Trial 21 and 22 - Bandwidth-Time Plot Comparing Distributed and
Centralized Methods

In Figure, 4.23 the black regions in the upper left corner indicates the regions

where Distributed methods require less time to perform the localization with a fixed

number of channels available. The gray regions indicates where both Distributed and

Centralized methods perform equally as well. Finally, the white regions show the

areas where the Centralized methods performs the best under the given bandwidth

conditions. Low bandwidth availability and large numbers of clusters benefit the

Distributed methods. There are also an few interesting points in the equal latency

regions, where the centralized method preforms better. This is caused by cluster inter-

ference when the nodes are reporting estimates back to the central node. Additional

bandwidth improves this performance for the decentralized cases.
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4.4.4 Analysis. Bandwidth and latency of a localization algorithm are

critical to understanding the value of the system. Figure 4.24 shows a comparison of

Next Neighbor and Node Spacing clustering.

Figure 4.24: Comparison of Systems with 36 Nodes

Figure 4.24 shows that Next Neighbor always preforms equal to or better than

Node Spacing. The black regions represent where Next Neighbor requires less time

to complete the localization with the available bandwidth, and the white regions

represent where they require and equal amount of time. For an overwhelming majority

of the cases, both methods perform equally, and the bandwidth metric can be ignored

when selecting a localization method.
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The overall conclusion from this set of simulations is that if there is low band-

width, both of the distributed methods preform well. Next Neighbor guarantees the

optimum performance in those low bandwidth environments, while Node Spacing

may be the same or worse than the Next Neighbor method. When large amounts

of bandwidth are available, the Centralized method performs better in terms of time

efficiency.

4.5 Key Findings

The three QoS metrics explored in this research are the Computational Accu-

racy, Power, and Latency. These metrics were explored as a tradespace, and sacrifices

must be made to select the best solution for any given situation. The findings show

that for the ring topology, representative of a series of sensors along a fence line, WDC

could be used in a meaningful and advantageous system. The overall results, shown

in Table 4.1, demonstrate the tradespace for each requirement.

Table 4.1 gives a general synopsis of the final results from each of the QoS metrics

explored. Using this table, it is possible to identify which method is the most effective

for a given situation. Because of the accuracy advantages of Node Spacing, it would

be most useful for asset tracking of objects on a base. Next Neighbor provides high

energy conservation, but its weakness in localization makes it somewhat impractical

for RSS estimation. It could be adapted for cooperative spectrum scanning and

spectral mapping of the radio environment in near real time. Centralized has the

greatest advantage for its accuracy outside of the ring; however, the accuracy is still
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relatively poor. It could be used in cases where large amounts of available bandwidth

exist.

4.6 Conclusion

Wireless Distributed Computing can be applied to many different tasks involv-

ing cognitive radios. Its application in localization has been shown to be a practical

approach, which can improve computational accuracy in certain situations. It sig-

nificantly improves power consumption and can extend the battery life of a sensor

network by nearly 100%. Finally, there are bandwidth improvements that can be ob-

tained from applying WDC in an intelligent manner to avoid interference with other

radios. There may be initial setup needed for the radios to establish communication

links, and discover the optimal routes for communication. Once this is established,

there are significant energy and bandwidth gains to be made, which can overcome the

initial configureation overhead.
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Table 4.1: Trade Space Results
Requirement Control Experimental

Centralized Next Neighbor Node Spacing
Mean Mean Mean

% Improvement % Improvement

Computational - Worst Average Best
Accuracy 8.05m 5.45m 4.54m
0-4 meters 32.4% 43.6%

Computational - Average Worst Best
Accuracy 5.48m 6.98m 3.58m
4-9 meters -26.16% 34.68%

Computational - Best Worst Average
Accuracy 5.85m 13.45m 6.94m

9-20 meters -129.94% -18.80%

Power Energy Average Best Worst
Consumption - 33.0mW 13.75mW 149.86mW
12-20 nodes 58.33% -354.13%

Power Energy Worst Best Average
Consumption - 33.0mW 6.41mW 14.69mW
20-60 nodes 80.56% 55.47%

Power Energy Worst Best Best
Consumption - 33.0mW 2.49mW 2.75mW
≥ 60 nodes 92.44% 91.65%

Latency - Worst Best Average
1-5 17.6 Time Steps 9.75 Time Steps 11.1 Time Steps

Channels 44.60% 36.93%

Latency - Best Worst Worst
5-10 6.5 Time Steps 7.90 Time Steps 7.93 Time Steps

Channels -21.58% -22.01%

Latency - Best Worst Worst
10-30 3.47 Time Steps 7.51 Time Steps 7.51 Time Steps

Channels -116.10% -116.10%

86



V. Conclusions

This section provides a summary analysis of the data presented in Chapter IV. The

results are reviewed to make recommendations on how the system may be employed,

and for what purposes they may be optimal. Finally, suggestions for future work will

be presented that could continue this area of research.

5.1 Trade Space Analysis

This section provides an analysis of the trade-offs associated with selecting each

method of clustering.

5.1.1 Centralized. The following Pros and Cons lists represent the compiled

results for Centralized Localization.

Pros:

• Most Accurate Method Outside of the Network Area – When the transmitter is

further than nine meters from the center of the network, it was found that the

centralized method was found to be the most effective.

• Low Variability of Node Energy Usage – All of the nodes in the centralized case

have the same responsibilities and use the same amount of power.

• Minimal Latency with High Bandwidth Availability – If there is a large amount

of bandwidth available for secondary users, the Centralized method has the least

latency, since only one hop is required to generate an estimate.

Cons:

87



• Poor Accuracy near the Center of the Network — Both distributed methods of

localization perform better when the transmitter is within four meters of the

network center.

• High Average Power Usage per Node — The average power usage for the cen-

tralized case was found to be around 35 mW, which is higher than the average

energy usage for most of the distributed configurations.

• High Bandwidth Requirements — If there is a small amount of bandwidth avail-

able, there is high latency with the Centralized case.

The Centralized method of localization was used as a baseline and describes the

current method of collecting data for localization processing. Centralized localization

has both several advantages as well as drawbacks. The Centralized method was

the most accurate method outside of a nine meter radius. This comes at a cost of

performing worse inside the nine meter area, than both of the distributed methods.

The Centralized method maintains a constant power requirement, related to the power

required to return a RSS value to the central node. This means that power usage per

node is the same regardless of the number of sensors in the network. In the case of

a small number of sensors, Node Spacing clustering loses power efficiency, because of

the increase in required transmission distance. If there are large numbers of nodes

available, typically more than 24 nodes, distributed methods are more power efficient.

Finally, Bandwidth and Time are directly related: if more bandwidth is available,

less time is required. The distributed methods use bandwidth more efficiently and

require less time if fewer channels are available. If there are large numbers of links
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or channels, then the Centralized methods out performs the distributed methods in

terms of bandwidth.

5.1.2 Next Neighbor. Based on the analysis from previous chapters, the

following pros and cons were found for the Next Neighbor Method of Localization.

Pros:

• Good Accuracy at Network Center — The accuracy at the center of the sensor

network is the same as Node Spacing and better than Centralized.

• Maximizes Energy Usage per Node — This method maximizes the average en-

ergy usage for the network.

• Excellent Bandwidth Efficiency — This clustering setup enables multiple clus-

ters to communicate simultaneously using links with the same bandwidth.

Cons:

• Poor Overall Accuracy — The accuracy steadily deteriorates as the transmitter

gets further from the center of the network, and this method becomes the worst

in terms of accuracy.

• High Maximum Node Energy Usage — Because one node per cluster is respon-

sible for both the estimate and communicating to the user, there is a higher

power draw on this node.
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• High Latency Requirements — Because this clustering method requires a multi-

ple hops before an estimate can be made, there is an increased minimum latency

for the network.

The Next Neighbor method of clustering was designed to reduce the power foot-

print of the localization process. The clustering method does this by wisely selecting

clusters to limit the communication range between nodes. The results from Chap-

ter IV showed that a large amount of energy savings can be obtained by using Next

Neighbor method of localization. Specifically, gains of over 60 percent for small num-

bers of nodes can be gained over the Centralized method. However, this did come

at a cost—there is a significant loss of accuracy outside of five meters compared to

the Centralized method. This loss in accuracy would make it difficult to use this as

a practical method of localization. One advantage is that the accuracy performance

is not affected by the number of nodes in the network. In terms of bandwidth usage,

when there are fewer available channels for communication, there are fewer time steps

required to complete the localization process. This is the result of multiple clusters

being able to communicate simultaneously. It was found that Next Neighbor per-

forms better than Centralized metrics of power consumption and bandwidth latency

metrics, but is weak in the area of accuracy.

5.1.3 Node Spacing. The following are the generalized pros and cons for

Node Spacing:

Pros:
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• Very Accurate Inside Sensor Network — This method performs very well for a

transmitter less than nine meters from the center of the network.

• Energy Efficient for Larger Sensor Networks — As more sensors are added to the

network, this method of localization approaches the energy efficiency of Next

Neighbor Localization.

• Excellent Bandwidth Efficiency — For low bandwidth availabilities, it can still

maintain a relatively low latency when compared to the Centralized method.

Cons:

• Accuracy Becomes Poor Outside Sensor Network — The performance of the

method is significantly reduced outside the sensor network.

• High Energy Requirements for Small Sensor Networks — The power used with a

smaller number of sensors is larger than the Centralized method’s power usage.

• High Latency Requirements — Similar to the Next Neighbor method, the la-

tency is dependent on the number of hops required for the clusters to commu-

nicate.

Node Spacing localization was designed to optimize data collection by spreading

out sensors within the same cluster. The spacing between nodes allows the data

collected to be less correlated and the final estimates to be more accurate. It was found

that, within a radius of nine meters, Node Spacing clustering was more effective in

terms of accuracy, and the results between Centralized and Node Spacing are similar

beyond the 12 meter point. Node Spacing provides the most accurate method of
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localization. The accuracy of the Node Spacing is highly dependent on the number of

clusters and cluster size in the network. Changing the clustering impacts the shape

of the accuracy curve, and affects how accurate the system is at two points: at the

center of the network, and at the sensor radius. Additionally, in terms of power usage,

Node Spacing performs better than centralized when there are more than 24 nodes

in the system, and approaches the energy usage of Next Neighbor clustering as the

number of nodes increases. This shows that Node Spacing is the average performer

of the three methods in terms of power consumption. Finally, in regions with low

bandwidth, the Node Spacing method performs better in terms of latency than the

Centralized method. However, it may not perform as well as the Next Neighbor

method when cluster sizes are small.

5.1.4 Conclusions. Each method has its merits as a useful technique for

localization. Each has areas where it performs best, and it is up to a system designer

to choose which method to apply. One key trend could help a system designer with

this task, that is, how cluster size and number of clusters affect all of the metrics.

This research sought to answer several research questions, one of which being: can

WDC be paired with RSS to successfully localize an active transmitter? This research

shows, definitively, yes there are ways to use WDC to maintain the accuracy of lo-

calization, while still having gains in terms of power and bandwidth. Additionally, a

second research question was to provide a trade space analysis for the various methods

explored. This was also performed and presented previously. The final research ques-
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tion was: which situations would each method be best applied to? This is explored

in Section 5.3.

5.1.4.1 The Effect of Cluster Size. Each metric was greatly affected by

the cluster size, which was inversely related to the number of clusters in a network. In

terms of accuracy, smaller cluster sizes improved accuracy near the center of the search

grid, and reduced the accuracy further from the center. Likewise, larger cluster sizes

improved the accuracy for larger radii and reduced the accuracy at the center of the

network. Additionally, increasing cluster size reduced the average power consumption

of the system, while decreasing cluster size reduced the power consumption. The final

metrics of Bandwidth and Latency also showed that reducing cluster size reduced the

bandwidth needed to maintain latency. In summary, cluster size is a key concern

for a system designer and must be considered when selecting a distributed clustering

method.

5.2 Contributions

The research area explored in this thesis sought to explore and further the basic

knowledge of Wireless Distributed Computing by applying it to localization, specif-

ically using RSS and the ML algorithm. WDC previously had only been applied

theoretically to processing already collected data. The localization problem focuses

on both processing and collecting data in real time. The application of WDC was

shown here to improve power and bandwidth performance of the system network, and

even improve the computational accuracy of the localization process. This research
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validates WDC’s effectiveness when applied to localization. The following contribu-

tions represent the success of this research project.

• Two methods of applying WDC to localization were determined.

• Accuracy, Power Usage, and Bandwidth and Latency metrics where all mea-

sured.

• A simulation environment was developed for testing different communication

and task graphs on the maximum likelihood estimation algorithm with WDC

applied.

• A trade space analysis exploring the impact of WDC on RSS localization was

generated.

• Potential methods of system deployment were discussed.

• The initial localization results on CORNET test bed were inconclusive due to

the complexity of the propagation model in the building (see Appendix D).

5.3 Deployment Recommendations

Each method of clustering has its own advantages and disadvantages. The Cen-

tralized method has the greatest advantage of accuracy near the edge of the sensor

network, since it operates quickly with high a bandwidth availability. The Central-

ized method could be useful for a base security system and the monitoring of active

transmitters moving near the perimeter of a base. This method is very accurate near

the edge of the sensor network, and ideal for a fence line. The method could be used
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to tell if there is someone crossing the base perimeter. Figure 5.1 shows an example

of how Centralized Localization can be applied to a real world situation.

Figure 5.1: Potential Centralized Use

In Figure 5.1, the cell phone icon indicates an active transmitter located in the

area. Each transmitter is labeled with a threat level indicating how likely a threat

the device’s user may be. The x’s along the black line indicate sensors place along a

fence line at a FOB. The central processor receives all of the RSS measurements from

these sensors and uses the information to determine the devices’ locations and the

users’ threat levels. The Security Breach in the lower left corner can then be reported

to security forces so they may respond.

Next Neighbor clustering is better in terms of energy efficiency when compared

to the other methods of localization explored. This method has poor accuracy which
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makes it difficult to deploy. However, the method may be best employed as a coopera-

tive spectrum sensor to avoid interfering with communication channels, or to identify

potential channels for jamming. This could be a method for quickly identifying chan-

nels for DSA while minimizing overhead on secondary users. Figure 5.2 demonstrates

how Next Neighbor clustering could be applied.

Figure 5.2: Potential Next Neighbor Use

Figure 5.2 shows how the sensor network could be used to detect potential

interference as well as enemy transmission frequencies. The sensor network can allow

a jammer to cognitively jam the enemy signal without affecting the friendly signal.
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Also, it is possible to predict the friendly transmission interference, so the potential

problem can be avoided. The map shows where all friendly transmitters are located

and their projected transmission patterns. This is often estimated by a communication

officer and not measured. The application of WDC localization can allow for more

accurate spectrum usage maps to be generated.

The Node Spacing method provides good accuracy within the sensor network,

while limiting the energy and bandwidth footprint. This could be directly applied to

asset tracking on a base because of its accuracy within the ring. By associating an

active transmitter a human using a device like a cell phone or walkie talkie, it would

be possible to track them throughout the base. This could be done to monitor them

for security as well as safety reasons. Figure 5.3 shows a projected usage for the Node

Spacing method of localization.

Using the Node Spacing clustering it is possible to estimate where an active

transmitter is located. Figure 5.3 represents three main areas on base. The first area

is a safe place for base personnel; the dining hall is represented in green. The yellow

area represents a flight line where there is a potential safety concern. There is one

individual who has wandered onto the flight line. Next, there is a secure area. This

could be a secure information vault, weapons depot, or hanger. When someone enters

this area with an unregistered active transmitter, they must be detained by security

forces.
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Figure 5.3: Potential Next Neighbor Use

5.4 Future Works

There is still a large amount of work to be done in the area of Wireless Dis-

tributed Computing and Localization. First, research must go into improving the

realism of the current model. This could be done by first removing the assumption of

a fully connected task graph (see Appendix V for initial results). Next, introduction

of packet collisions and the impact of dropped packets on accuracy must be factored

in (see Appendix V for initial results). Next, different topologies may be explored, one

such example is the a grid of sensors (see Appendix V for initial results). Additionally,
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the work done here was performed exclusively in simulation and can still be applied

to a real world system either using USRPs or another programmable cognitive radio

device. By testing some of these principles on a system, the simulation can be vali-

dated and improve the understanding of WDC. Another area that can be expanded

is incorporating antenna pattern detection from the ML Estimation algorithm. Using

the antenna pattern capability would allow for accurate spectrum usage maps to be

generated based on the antenna patterns of the transmitters in the search area.

5.5 Concluding Remarks

This thesis presented potential methods of improving centralized localization

techniques by applying WDC. Each method was evaluated in terms of three metrics:

accuracy, power consumption, and bandwidth and latency. The results from these

experiments were recorded and compared for use by a future system designer. It was

shown that each of these methods have advantages and disadvantages, and could be

applied to a wide verity of scenarios. Additional research must be explored to fully

develop a distributed localization system and deploy it into a real world environment.
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Appendix A. Verification of Independence on Angular Location in

Localization

In order to verify that a polar source movement approach was valid, it was necessary

to show that the accuracy was statistically independent from the angle of the source.

To prove this, 95% confidence intervals were placed around each of the simulation

results for a constant radius, and the angle was varied from 0 to 2π radians steps of

π/2 radians. Since all of the curves fell within their confidence intervals, it can be

said that simulation events are statistically similar.

A.1 Centralized

The first simulation case that was checked used the Centralized Method of

localization. The plot shown in Figure A.1 gives an example of the collected results

for one case containing 48 nodes.

It can be seen in Figure A.1 that the vast majority of points fell within each

other’s confidence intervals. This shows that the expected results for each θ is statisti-

cally independent. There was only one outlier at the radius of 10 meters. Notice that

this one point was slightly higher than the other points, and it was not encompassed

by the confidence intervals of the other points.

A.2 Distributed - Centroid Method

The process of determining independence with respect to angular placement was

also performed for the distributed cases. This was done by varying θ with steps of π/2
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Figure A.1: Average Accuracy vs Radial Distance for Centralized Case

radians, around one full rotation, from 0 to 2π radians. Since all points fell within the

95% confidence intervals of each other, the collected data points were determined to be

independent of θ. Therefore, the final results were averaged together for comparison.

The results for the Next Neighbor and the Node Spacing methods, using the Centroid

method, are shown in Figures A.2 and A.3. Because all of the estimates are in the

selected confidence intervals, they are independent of θ.

A.3 Distributed - Weighted Average Method

Findings show that the Weighted Average Method is only independent of angu-

lar location, when using the Next Neighbor method. Figures A.4 and A.5 show the

test for independence.
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Figure A.2: Results of Localization for Varying θ for Next Neighbor using Centroid
Estimate Fusion

Notice that in Figure A.5, the curves are no longer restricted to each other’s

confidence intervals after a radius of three meters. This means that after this point,

the localization becomes a function of the angle.

A.4 Conclusion

It was found that the results are independent of θ for the majority of cases,

but not for the case of Weighted Averaging with Node Spacing. The final results are

tabulated in the Table A.1

Table A.1: Summary - Statistical Independence of θ
Clustering Averaging Independence Region Dependence Region

Centralized N/A 0-20 meters none

Next Neighbor Centroid 0-20 meters none

Next Neighbor Weighted 0-20 meters none

Node Space Centroid 0-20 meters none

Node Space Weighted 0-1, 9-12 meters 1-9, 12-20 meters
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Figure A.3: Results of Localization for Varying θ for Node Spacing using Centroid
Estimate Fusion

Figure A.4: Results of Localization for Varying θ for Next Neighbor using Weighted
Averaging Estimate Fusion
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Figure A.5: Results of Localization for Varying θ for Node Spacing using Weighted
Averaging Estimate Fusion
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Appendix B. Clustering Methods Bandwidth and Time Derivations

This section explains in detail the derivations for how the bandwidth and time metric

equations were developed. It also provides simulated background for the results. The

variables in Table B.1 are used in the derivations.

Table B.1: Derivation Variables
Variable Meaning

N Number of Nodes in the Network

n Number of Nodes in a Cluster

k Number of Clusters in the Network

t Number of time steps

c Number of Bandwidth Channels

r Radius of the Sensor Ring

d Required Communication Distance

Three assumptions are made in the derivations. First, each channel provides

the required communication bandwidth over a given time interval, equal to the time

steps. Second, these channels are adaptively selected to avoid other primary users

in the region. Third, there is no need for data retransmissions. Retransmissions are

handled using short packets, which are coded with a minimum of a 1/2 code rate

code.

B.1 Centralized

The first method explored for bandwidth purposes, is the Centralized Method.

The Centralized Method requires that all sensor nodes send a single packet to the

user, and the estimation be performed locally on the user’s machine. The Centralized

Method, therefore, has a high bandwidth requirement in order for in the system to

operate in synchronous fashion. A graphical representation of the system interfering
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in communication is shown in Figure B.1. The multicolored rings represent the trans-

mitted signals from a selection of nodes. The nodes’ signals overlap, signifying that

there will be interference, if the nodes transmit over the same channel.

Figure B.1: Graphical Representation of Centralized Communication Interference

If there is only one channel available to the CRN, then each node must commu-

nicate back to the centralized node during one time interval. This means that N time

steps are required. If two channels are available, then N/2 time steps are required.

This trend continues with a lower bound of one required time step. It is assumed

that there is one required time step for processing the collected data. The final result

for the number of channels required for a given response time is shown in Equation

(B.1).
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c =

⌈
N

t− 1

⌉
(B.1)

Next, rearranging Equation (B.1), the equation for the time response given a

bandwidth constraint, produces Equation (B.2).

t =

⌈
N

c

⌉
+ 1 (B.2)

B.2 Next Neighbor

In the case of Next Neighbor, nodes are arranged such that they can communi-

cate with one another without interfering with other clusters. This allows all of the

clusters to operate synchronously until the data is returned to the user. The cluster-

ing method also requires that a number of hops occur before a location can be made.

Equation (B.3) is used to compute the time for the clusters to generate an estimate,

where tcluster is the time for cluster estimation, thops is the time for the individual

hops, and testimate is a single time step for actual computation of the estimation.

tcluster = thops + testimate

= n− 1 + 1

= n

(B.3)
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Next, the time required to return the packets to the central node is dependent

on both the number of clusters and the number of channels available. This is given

by Equation (B.4) and is similar to the Centralized results.

treturn =

⌈
k

c

⌉
(B.4)

Finally, the two components from Equations (B.3) and (B.4) are added to yield

the total time of the estimation, shown in Equation (B.5). This can be solved for

bandwidth and yields Equation (B.6).

t = tcluster + treturn

= n+
⌈
k
c

⌉ (B.5)

c =

⌈
k

t− n

⌉
(B.6)

Figure B.2 shows the interference pattern for the Next Neighbor method. The

small blue circles represent the intra-cluster communications; notice how they do not

overlap between clusters. The large red circles represent the return information to

the central node. These communications will interfere with one another.

B.3 Node Spacing

The Node Spacing Method creates the most complicated model for bandwidth

usage. There are two cases: one where the clusters are large enough so that all the
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Figure B.2: Graphical Representation of Next Neighbor Communication Interfer-
ence

clusters can operate in a synchronous fashion, or, if this is not the case, a second

where the bandwidth must be computed using a more complex equation.

By using a MATLAB simulation, it was determined that the number of nodes

required for all clusters to communicate synchronously on one channel was given by

Equation (B.7). If Equation (B.7) holds true then, Equations (B.5) and (B.6) can be

used to determine the Bandwidth and Time parameters.

N ≥ (2k + 1)k = 2k2 + k (B.7)
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If N does not meet the criteria above, then the maximum number of clusters

(kmax) that can communicate on the same channel is given by Equation (B.8). Again

this was determined experimentally using a MATLAB simulation.

kmax = bn/2c+ 1 : N < 2k2 + k (B.8)

Using Equation B.8, thops can be computed, and the results are given by Equa-

tion (B.9)

thops =

⌈
k

kmaxc
(n− 1)

⌉
+ 1 : kmaxc ≤ k (B.9)

Substituting Equation (B.9), into Equation (B.5), the final result for the Node

Spacing method, is given by Equation (B.10), is obtained.

t = tcluster + treturn

=
⌈

k
kmaxc

(n− 1)
⌉

+ 1 +
⌈
k
c

⌉ (B.10)

A graphical representation of the interference problems with Node Spacing is

shown in Figures B.3 and B.4.

Notice that in Figure B.3, none of the rings overlap with any of the other rings.

This means that there is no communication interference between the clusters, as long

as the cluster initiators are wisely selected and spread out throughout the network.

Cluster initiators should be placed as far apart from one another as possible to prevent

interference. Also note in Figure B.4, that there are two circles that overlap, meaning
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Figure B.3: No Communication Interference in Node Spacing

that their communication ranges will interfere with one another. Since only two of

the circles overlap, all but one cluster may communicate at a time. This must be

taken into account when setting up a CRN for localization purposes.
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Figure B.4: Communication Interference in Node Spacing
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Appendix C. Matlab Code and Discrete Event Simulation

This Appendix provides selected the Matlab scripts written for this research thesis.

The focus is on the classes needed for Discrete Event Simulation (DES) and how the

event system was established in this research effort. It also contains a selection of the

code used in this research effort to explain some of the basic concepts.

C.1 Matlab DES

Matlab DES relies on event triggers. By setting up a class to throw an event

whenever a trigger occurs, it is possible to have other classes listen and react to this

trigger. The listening class must have a listener method, and it must be linked to

the other class by listening for that event to occur. This is further explained in the

following sections.

C.1.1 Handle vs Value Classes. First, it is important to understand the

difference between Handle and Value Classes. A value class is a class, that once

instantiated, it is stored as a variable. This means that if that variable is set equal to

another variable, an exact copy of the same information is created. See Figure C.1.1

for an example. When a handle class is created, the variable referencing it is pointing

at a memory location. If the variable is copied and either variable is altered, both

variables will reflect the change.

It is important to understand that if either Var or Var2 from Figure C.1.1 are

changed, there would be no impact on each other. If these variables were set up as
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Figure C.1: Creation of Two Value Classes

handle classes, this would not be true. Because the handle class variables access a

memory location, both variables reflect the changes made to one. The handle class

is helpful, because it is easily passable from one class to another as a variable, and it

can be influenced to affect every other reference to it. This is required to create an

event that impacts multiple classes, such as a sensor node.

C.1.2 Matlab Event Handling. To create an event-driven simulation, an

event class is created that controls which variables are passed from the event trigger
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to the event listener. The event class used in this thesis is provided here in Listing

C.1

1 c l a s s d e f newSourceData < event . EventData
%f r e q = frequency o f detec ted souce

3 p r op e r t i e s
f r e q = 0 ;

5 end
methods

7 %when a source i s detec ted t e l l someone
function eventData = newSourceData ( f r e q )

9 eventData . f r e q = f r e q ;
end

11 end
end

Listing C.1: Sample Event Class

This event class is used by creating an instance of it in the spectrum class. The

Spectrum Class method that creates the event is shown in Listing C.2.

function addSource ( s e l f , source )
2 i f source . getFreq ( ) < s e l f . centerFreq + s e l f .BW/2 | | source ...

. getFreq ( ) > s e l f . centerFreq − s e l f .BW/2
s e l f . s ou r c e s = [ s e l f . s ou r c e s source ] ;

4 n o t i f y ( s e l f , ’newSource’ , newSourceData ( source . ...
getFreq ( ) ) )

end
6 end

Listing C.2: Event Creation

The notify statement is the event creation statement. First, it creates a new-

SourceData Class, which contains data about the frequency at which the source was

detected. The notify statement creates the event with the label “newSource.” Any

class that has a listener set up for the “newSource” event, will react and run the

prescribed event handling method. The code for the event listener and the event

handling method is shown in Listing C.3.
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methods
2 %Ring Node Constructor

function s e l f = Ring Node ( locX , locY , ParentNode , ...
minimum to locate , IP Address , . . .

4 spect , i n i t i a t e , ...
a v a i l a b l e b a t t e r y )

. . .
6 s e l f . lh = add l i s t e n e r ( s e l f . spec , ’newSource’ , @se l f . ...

newSourceDetect ion ) ;
. . .

8 end
. . .

10 %c a l l e d i f a new source en t e r s the spectrum
function newSourceDetect ion ( s e l f , eventSrc , eventData )

12 i f ( s e l f . i n i t == 1)
s e l f . Locate ( [ ] , [ ] , eventData . f r eq , s e l f . name , 0)

14 end
end

16 . . .
end

Listing C.3: Event Listener and Handling method

The Listener is listening for a “newSource” event to occur. Once it does, the

newSourceDetection class is called. In this particular usage, the method checks if this

sensor is an initializer; if it is, it will begin attempting to locate the transmitter. If

it is not an initializer, the node simply waits for a packet transmission from another

node. Figure C.2 shows that the listener is created by a ring node object and the ring

node object is referenced when an event is thrown.
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Figure C.2: Event Handling in Matlab
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Appendix D. Validation Feasibility Test at CORNET

The purpose of this appendix is to explain the methodology and experimental results,

used on the CORNET, to determine if the network is a feasible location for distributed

RSS experiments.

D.1 Data Collection on Cornet at Virginia Tech

CORNET has 48 Universal Software Radio Peripherals 2 (USRP2) with custom

daughter boards based on the Motorola RFIC4. The nodes span four floors of the

ICTAS building on the Virgina Tech campus and are connected to blade servers

on the building’s first floor. The nodes can be accessed by logging into each node

using the Secure Shell (SSH) protocol. After logging in, the USRP2 nodes can be

controlled using GNU Radio scripts. GNU Radio scripts were generated using GNU

Radio Companion (GRC), which is a graphical user interface for developing GNU

Radio flow diagrams. Several of the nodes were malfunctioning at the time of the

experiments. For this reason, only the first floor was used for the experiments. The

layout of CORNET can be seen in Figure D.1. Figure D.2 shows the actual interior

pictures of the building, the nodes are located above the dropped ceiling tiles.

Two experiments were performed on the test bed. The first was a benchmark

test to gain understanding about how well the nodes could communicate with one

another. Using the Benchmark Tx and Benchmark Rx files included in GNU Radio,

one node was set to transmit while all other nodes where set to receive. The nodes

were set to transmit and receive on the 465 MHz band. The frequency band was
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Figure D.1: CORNET Building Layout

selected after previous experiments showed unmanageable interference at the other

frequencies. This frequency band also closely emulates the frequency that is used by

Family Radio Service (FRS) walkie-talkies. All nodes were used as transmitters in

different iterations of the experiment. Two statistics were monitored: packets received

and packets received correct. Each trial transmitted 667 packets, which were used

to compute the percentage of packets received and percentage of packets received

correctly.

The second experiment performed an energy-based localization estimate using

RSS. Each node transmitted on four different tone frequencies: 464.930 MHz, 464.965

MHz, 465.035 MHz, 465.070 MHz. Again these frequencies where selected because of

their similarities to FRS channels. The center oscillator in each case was set to 465

MHz. This means that the tones where spaced slightly to the left or right of the center

oscillator. Each node transmitted on this frequency while the other nodes listened
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Figure D.2: CORNET Interior

for the tone for five seconds. The data was then collected and processed for RSS

measurements. The RSS measurements can be placed into a localization algorithm

using the location of the receiving nodes and the RSS values collected. The RSS

measurements will then generate the final position estimation.

D.2 Data Processing and Validation of Model

Once the data, from the CORNET, has been obtained it is then processed

using MATLAB to take the Fourier transform, locate energy spikes at the expected

frequency, then integrate over the signal bandwidth. In this case the bandwidth

is based on the potential error between each USRP2’s center oscillator. After the

RSS measurements were computed, the data was put into the RSS localization script

120



for both the centralized and distributed cases. Accuracy results were then compared

between the two. There are concerns of error being introduced, because of the extreme

multipaths exhibited in the CORNET test bed, created by piping and duct work in

the ceiling of each floor. Additional multipath modeling may need to be performed

in order to fully understand the final accuracy results of each localization method on

the CORNET testbed.

D.3 Results

Figure D.3 shows a sample of the results from the experiments run on CORNET

at Virginia Tech. It can be seen in this result that an energy spike was generated and

detected by another sensor in the network. This spike was not found consistently,

which can be explained by the results shown in Figure D.3.

Figure D.3: Sample Result from the CORNET experiments
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To explain the successful detection of the source at some nodes, and the failure

to detect at others, an analysis of the packet reception rate was performed. First,

for each possible transmitter, a series of packets were transmitted. Then, the number

of received packets and the number of correctly received packets were computed as a

percentage of total packets transmitted. Next, the collected results were then plotted

against the distance between the nodes on the CORNET layout. Finally, these results

are shown in Figures D.4 and D.5.

Figure D.4: Successfully Received Nodes Based on Distance Between Nodes

The line in Figures D.4 and D.5 indicates the average correct packet reception.

The trend is downward as the distance grows between nodes, but is not monotonic.

It should also be noted that early in both methods of packet analysis, there are nodes

that received zero packets from the transmitting source. This is likely caused by some

nodes being in adjacent rooms and not in the central hallway, as well as the issue
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Figure D.5: Correctly Received Packets Based on the Distance Between Nodes

with duct work and piping located in the ceiling of the hallway. The nodes are also

placed in the ceiling and caused several issues with multipath, and they did not allow

for any LOS communications. It will be challenging to generate accurate results from

this test bed.
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Appendix E. Initial Results on Future Works

This Appendix provides initial results discovered for the future works that are cur-

rently in progress.

E.1 Changing the Communication Graph

The first results show the power problems that occur with varying connectivity.

Figure E.2 shows the power usage per node. The dotted line represents the centralized

power usage determined previously. The lines with circles represent the power usage

from the node spacing method and the solid line represents the next neighbor method.

The blue is the average power usage. 36 nodes were used with 12 clusters. The Node

Range is a method of explaining the communication range of each node. A node range

of one represents only being able to reach the next node in the network. A node range

of two means it can skip the over one node in the network and reach the node that is

two nodes away. This continues until a fully connected network is achieved.

One interesting aspect of this plot, is that the next neighbor method has no

variance in the required power. Regardless of the communication range, the clustering

method only uses nearby neighbors. After 12 node range, Node Spacing becomes a

similar flat line to the Next Neighbor method results. This is because at 12 Node

range, the network is “connected enough,” and all the links are now used. An “erratic”

growth pattern is created by nodes that use multiple times to relay packets to other

nodes in the network. One limitation to this system is it only uses one route to reach

another node in the cluster. Using multiple routes may better spread the power usage

124



Figure E.1: Power Results created by varying the communication graph

out in the network. One interesting discovery is that using only the shortest link

reduces the overall power usage of the system for the Node Spacing method.

Next, the impact on latency was explored using the variable connectivity. The

centralized was marked for four channels available for communication. There are no

collisions and no waiting for a channel in the distributed cases for simplicity at this

point. In this case, because of the increased packet flow, it becomes more important

to take into account collisions. Figure E.2 shows the case with 36 nodes and 12

clusters. With only a node distance of one node, there is a large delay in time steps

compared to both centralized and distributed methods. As the number of reachable

nodes increases, the Node Spacing method approaches the Next Neighbor, since the
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number of hops needed for each communication approaches one. Next Neighbor is

again unaffected, because of its design.

Figure E.2: Latency Results created by varying the communication graph

E.2 Introducing Packet Loss

One situation that may occur if distributed localization techniques are employed

is a packet loss. In the event of a packet loss, an entire clusters RSS measurements

and its cluster’s estimate is lost. This clearly negatively impacts the performance of

the system. In the worst case scenario, no estimates are made, because all of the

clusters dropped a packet. In the future, additional fault tolerance must be added

to the clustering communication protocols, such as acknowledgments. A simulation
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was run using 36 nodes and 4 clusters, with a 25% chance that a cluster would drop

a packet. The results are shown in figure E.3. There is some decrease in accuacy

particulaly inside the sensor ring. There were also several instances where no target

source was detected by the system.

Figure E.3: Impact of Dropping a Packet with 25% Chance of a Cluster Dropping
a Packet

E.3 Grid Topology

The grid topology is a common topology for experiments using RSS localization.

To continue to validate the Node Spacing and Next Neighbor distributed methods,

it is important to apply them to the grid topology. Again, the focus is on spreading

out the nodes in the case of Node Spacing, and to group nodes tightly with Next

Neighbor. An example of how to cluster Node Spacing is shown in Figure E.4; Next

Neighbor is shown in Figure E.5.
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Figure E.4: Node Spacing Clustering with 16 Nodes in a Grid

Using the clustering shown in Figures E.4 and E.5 an initial simulation was

run testing these layouts’ accuracy. To test the grid layout sensors were placed using

rectangular coordinates, (x, y). The experiment configuration included sensors placed

from (0m, 0m) to (20m, 20m) with locations every two meters in each direction. Figure

E.6 shows the target positions, the sensor positions, and the search space. Only one

quadrant is explored, because of the symmetry of the grid.

The accuracy at each location was measured and then plotted showing the

regions of varying Error Distances. These plots are shown in Figures E.7, E.8 and

E.9.

After reviewing each of the grid’s accuracy figures, the Centralized technique

is the most accurate. This is because the nodes are equally spaced throughout the

entire grid, instead of simply around it. The additional spacing of nodes allows for
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Figure E.5: Next Neighbor Clustering with 16 Nodes in a Grid

greater difference in recorded power measurement form each node. Node Spacing is

the most accurate of the distributed cases, and provides reasonable accuracy inside

the sensor network. Next Neighbor is the least accurate.

E.4 Conclusions

In this Appendix, three initial experiments were explored. The first involved

making changes to the communication graph of the sensor network. It was found that

reducing node range had no impact on the Next Neighbor technique, but reduced

the overall power usage of the Node Spacing method. The Node Spacing method

incurred additional latency, approximately 600% more, when the node range was set

to one. The second experiment, packet loss, examined what happened when packets

were dropped in the network. It was determined that the loss of packets reduced the

accuracy of the system, because each time a packet was lost, one cluster was unable to
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Figure E.6: Search Space Map for Grid Experiment

make an estimate. To correct this problem, additional fault tolerance must be explored

and applied to the distributed systems. Finally, applying all three clustering methods

to a grid topology was explored. It was discovered that the additional spacing of each

sensor improved the overall accuracy for each method. The Centralized method was

shown to be the most accurate, both inside and outside the grid. The Node Spacing

technique was the second most accurate, and the Next Neighbor method was the least

accurate. To continue this research, additional grid sizes should be applied, as well

as an analysis of the power and latency used for each of the topologies.
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Figure E.7: Grid Accuracy for Next Neighbor

Figure E.8: Grid Accuracy for Node Spacing
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Figure E.9: Grid Accuracy for Centralized

132



Bibliography

1. D. Datla, X. Chen, T. Tsou, S. Raghunandan, S. M. Hasan, H. Reed, B. Fette,
C. B. Dietrich, J. Kim, and T. Bose, “Wireless distributed computing: A survey
of research challenges,” Communications Magazine, vol. 50, no. 1, pp. 144–152,
January 2012.

2. R. K. Martin, C. Anderson, R. Thomas, and A. King, “Performance analysis of
3D radio tomographic imaging,” IEEE Signal Processing Letters, vol. Dec, 2011.

3. R. K. Martin and R. Thomas, “Algorithms and bounds for estimating loction,
directionality, and environmental parameters of primary spectrum users,” IEEE
Transactions On Wireless Communications, vol. 8, pp. 1–10, 2009.

4. W. J. A. Dahm, Technology Horizons, May 2010, vol. 1.

5. A. H. Cordesman, The Iraq War: strategy, tactics, and military lessons, P. A. J.
Bacevich, Ed. Center for Strategic International Studies, 2003.

6. R. B. Bacchus, A. J. Fertner, C. S. Hood, and D. A. Robertson, “Long-term,
wide-band spectral monitoring in support of dynamic spectrum access networks
at the IIT spectrum observatory,” in 3rd IEEE Symposium on New Frontiers in
Dynamic Spectrum Access Networks, 2008, pp. 1–10.

7. A. Sampath, H. Dai, H. Zheng, and B. Y. Zhao, “Multi-channel jamming at-
tacks using cognitive radios,” in Proceedings of 16th International Conference on
Computer Communications and Networks, 2007, pp. 352–357.

8. G. Sun, J. Chen, W. Guo, and K. J. R. Liu, “Signal processing techniques in
network aided positioning,” IEEE Signal Processing Magazine, vol. 22, pp. 12–
23, 2005.

9. N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and N. S. Correal,
“Locating the nodes: Cooperative localization in wireless sensor networks,” IEEE
Signal Processing Magazine, vol. 22, pp. 54–69, 2005.

10. D. Datla, H. L. Volos, S. Hasan, J. H. Reed, and T. Bose, “Wireless distributed
computing in cognitive radio networks,” Elsevier Ad Hoc Networks Journal, vol.
Speical Issue on Cognitive Radio Ad Hoc Networks, pp. 1–13, 2011.

11. G. Tel, Introduction to Distributed Algorithms, P. Vitanyi, Ed. Cambridge
Unitversity Press, 2000.

12. M. D. Silvius, “Building a dynamic spectrum access smart radio with applica-
tion to public safety disaster communications,” Ph.D. dissertation, Virginia Tech,
2009.

133



13. W. Lee and I. F. Akyildiz, “Optimal spectrum sensing framework for cognitive
radio networks,” IEEE Transacations On Wireless Communications, vol. 7, pp.
3845–3845, 2008.

14. D. Datla, S. M. Hasan, J. H. Reed, and T. Bose, “Fundamental issues of wireless
distributed computing in SDR networks,” in Wireless Innovation Forum Technical
Conference, Dec 2010.

15. Y. Yu and V. K. Prasanna, “Exploring energy-latency tradeoffs for data gathering
in wireless sensor netowrks,” IEEE Transactions on Wireless Communications,
vol. 5, pp. 7–11, Nov 2006.

16. J. Acimovic, B. Beferull-Lozano, and R. Cristescu, “Adaptive distributed algo-
rithms for power-efficient data gathering in sensor networks,” in International
Conference on Wireless Networks, Communications and Mobile Computing, 2005.

17. R. Abdolee and B. Champagne, “Distributed blind adaptive algorithms based on
constant modulus for wireless sensor networks,” in 6th International Conference
on Wireless and Mobile Communications, 2010, pp. 303–308.

18. X. Pi and H. Yu, “A distributed and cooperative target localization algorithm
in wireless sensor networks,” in Sixth International Conference on Parallel and
Distributed Computing, Applications and Technologies., Dec. 2005, pp. 887 – 889.

19. H. Sabaghian-Bidgoli, N. Yazdani, and F. Lahouti, “A distributed algorithm for
node localization by connectivity in large scale wireless mesh sensor networks,”
in 14th International CSI Computer Conference (CSICC), 2009.

20. M. Berthold and D. J. Hand, Eds., Intelligent Data Analysis. Springer, 2003.

134



Standard Form 298 (Rev. 8/98) 

REPORT DOCUMENTATION PAGE 

Prescribed by ANSI Std. Z39.18 

Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any 
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

6. AUTHOR(S) 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 
a. REPORT b. ABSTRACT c. THIS PAGE 

17. LIMITATION OF 
ABSTRACT 

18. NUMBER 
OF 
PAGES 

19a. NAME OF RESPONSIBLE PERSON 

19b. TELEPHONE NUMBER (Include area code) 

Standard 

22-03-2012 Master's Thesis Sept 2010 - Mar 2012

Distributed Localization of Active Transmitters in a Wireless Sensor Network

11G182Vincent, Oba L, 2d Lt

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
Wright-Patterson AFB OH 45433-7765

AFIT/GE/ENG/12-41

Air Force Research Labroatory Sensors Directorate
Dr. Vasu Chakravarthy
2241 Avionic Circle
WPAFB OH, 45433
vasu.chakravarthy@wpafb.us.mil

AFRL/RYWE

Approved for Public Release; Distribution Unlimited

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

In today's military environment, emphasis has been placed on bandwidth efficiency and total use of the available spectrum. Current
communication standards divide the spectrum into several different frequency bands, all of which are assigned to one or multiple
primary users. Cognitive Radio utilizes potential white spaces that exist between currently defined channels or in time. One
under-explored dimension of white space exploration is spatial. If a frequency band is being used in one region, it may be
underutilized, or not occupied in another. Using an active localization method can allow for the discovery of spatial white; trying to
spatially map all of the frequencies in a large area would become very computationally intensive, and may even be impractical using
modern centralized methods. Applying a distributed method and the concepts discussed in Wireless Distributed Computing to the
problem can be scaled onto many small wireless sensors and could improve the measuring system's effectiveness. For a bandwidth
contested environment that must be spectrally mapped, three metrics stand out: Accuracy, Power Consumption, and Latency

Localization, Wireless Distributed Computing, Wireless Sensor Networks, Received Signal Strength

U U U UU 149

Maj Mark D. Silvius USAF

(937) 255-3636 x 4684 mark.silvius@afit.edu


