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ABSTRACT 

Polyphase continuous waveform (CW) radar systems often use the popular Frank code 

and P4 code due to their linear time-frequency characteristics as well as their low 

periodic ambiguity sidelobes. The phase relationship of the Frank code corresponds to a 

sawtooth folding waveform. The phase relationship of the P4 code is symmetrical with a 

parabolic distribution. The radar system’s unambiguous target detection range is limited 

by the number of subcodes within the code period (code length). Increasing the code 

length to extend the unambiguous range results in a larger range-Doppler correlation 

matrix processor in the receiver, a longer compression time and an increase in the 

receiver’s bulk memory requirements. In addition, the entire code period may not be 

returned from the target due to a limited time-on-target resulting in significant correlation 

loss. To significantly extend the unambiguous range beyond a single code period, this 

thesis explores the relationship between the polyphase codes (Frank and P4) 

and the number theoretic transforms (NTT) where the residues exhibit the same 

distribution as the polyphase values. The unambiguous range is extended from the 

number of subcodes within a single code period to the dynamic range of the transform 

without requiring a large increase in correlation processing. The dynamic range of a NTT 

is defined as the greatest length of combined phase sequences that contain no ambiguities 

or repeated paired terms. By transmitting 2N   coprime code periods, the unambiguous 

range can be extended by considering the paired values from each sequence. A 

new Frank phase code formulation is derived as a function of the residue number system 

(RNS) where each residue corresponds to a phase value within the code period (modulus) 

sequence. Based on the symmetrical distribution of the P4 code, a new phase code 

expression is derived using both the symmetrical number system (SNS) and the robust 

symmetrical number system (RSNS). Here each phase value within the code period 

corresponds to a symmetrical residue. MATLAB simulations are used to verify the new 

expressions for the RNS, SNS and RSNS phase codes. Implementation considerations of 

the new approach are also addressed. 
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EXECUTIVE SUMMARY 

The Frank phase code and the P4 phase code are often used in continuous wave (CW) 

polyphase modulation radar systems to detect the target’s range due to their linear time-

frequency characteristics as well as their low periodic ambiguity sidelobes. Both phase 

codes limit the unambiguous range uR  to within a single code period c bT N t , where cN  

is the number of subcodes and bt  is the subcode period. To extend the unambiguous 

detection range, the radar might simply increase the code period of the polyphase 

modulation signal. However, the longer code period requires a larger range-Doppler 

correlation matrix processor, an increase in the compression time, as well as an increase 

in the bulk memory in the receiver. Moreover, a significant amount of loss is incurred if 

the total number of code periods returned from the target is less than the number of 

reference code periods used in the compression process due, for example, to a limited 

time-on-target. A new set of waveform architectures that can solve these limitations is 

proposed in this thesis.   

 Number theoretic transforms (NTT) based on residue number systems are used in 

many digital signal processing applications to increase the amount of information 

available from various folding waveforms. With a set of 2N   moduli, the paired integer 

residue terms from the transform sequences must be distinct (no ambiguities) throughout 

the entire dynamic range.  The dynamic range of a NTT is defined as the greatest length 

of combined sequences of integers that contain no ambiguities or repeated paired terms. 

Consequently, the NTT residues within the dynamic range can be used to construct a 

low-power CW polyphase waveform that is useful for detecting targets beyond the single 

code period unambiguous range.  

 To significantly extend the unambiguous range beyond a single code period, this 

thesis explores the relationship between the polyphase codes (Frank and P4) and the  

NTT where the residues exhibit the same distribution as the polyphase values. The 
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unambiguous range is extended from the number of subcodes within a single code period 

to the dynamic range of the transform without requiring a large increase in correlation 

processing.  

 A new Frank phase code formulation is derived as a function of the residue 

number system (RNS) where each residue corresponds to a phase value within the code 

period (modulus) sequence. Based on the symmetrical distribution of the P4 code, a 

new phase code expression is derived using both the symmetrical number system (SNS) 

and the robust symmetrical number system (RSNS). Here each phase value within the 

code period corresponds to a symmetrical residue. MATLAB simulations are used to 

verify the new expressions for the RNS, SNS and RSNS phase codes. Implementation 

considerations of the new approach are also addressed. 

The relationship between the Frank phase code and the RNS is developed based 

on their similar saw-tooth waveform distribution. A new equation using the RNS to 

derive the Frank phase code is formulated. This new phase code sequence is called the 

residue-Frank phase code. The periodic autocorrelation function (PACF) and the 

periodic ambiguity function (PAF) show that the new residue-Frank phase code formula 

gives exactly the same results as using the formula in the Frank phase code. Next, a set of 

3N   RNS coprime moduli [3 4 5] (with dynamic range 60RNSM  ) is chosen to 

examine the idea of extending the unambiguous range. A MATLAB program is used to 

plot the results for detecting two targets that lie in an ambiguous detection range bin if a 

single modulus is used. To solve the unambiguous range, the combined residues from N  

sequences are used. The result shows that the paired terms from both targets are different, 

meaning that both targets have different corresponding ranges. Thus, the residue-Frank 

phase code sequences can be used to extend the unambiguous detection range from 

/ 2 / 2u b cR cT ct N   to , / 2u RNS b RNSR ct M   where c  is the speed of light in free space. 

A block diagram of a polyphase CW radar system that uses the residue-Frank phase code 

is shown below in Figure 1. 
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Figure 1. Block diagram of a CW polyphase radar system that uses a residue-Frank 

phase code. 

 

The relationship between the P4 phase code and the SNS is developed based on 

their similar parabolic waveform distribution. A new equation using the SNS to derive 

the P4 phase code is formulated. This new phase code sequence is called the symmetrical 

residue-P4 phase code. The PACF and the PAF show that the symmetrical residue-P4 

phase code formula gives the same results as using the formula in the P4 phase code. 

Then, the symmetrical residue-P4 phase code sequences using a set of 3N   SNS 

coprime moduli [7 8 9] (with dynamic range ˆ 37SNSM  ) are examined for the two targets 

located in an ambiguous range bin by using MATLAB programming. Similar to the 

residue-Frank phase code sequences, the result shows that the symmetrical residue-P4 

phase code sequences can be used to extend the unambiguous detection range from 

/ 2 / 2u b cR cT ct N   to ,
ˆ / 2.u SNS b SNSR ct M  

Reconstruction of the target’s range from the paired RNS and SNS phase terms 

can contain inaccuracies when the incoming target range straddles two range bins. As a 

result, the recovered range of the target has a large error. To prevent the target range 

error, the RSNS is used. The paired terms from all N  sequences in the RSNS when 

considered together change one at a time at each range bin subcode transition (integer 

Gray code property). This property makes the RSNS particularly attractive for controlling 
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the target range error. In this thesis, the relationship between the P4 phase code and the 

RSNS is also developed. A new equation using the RSNS to derive the P4 phase code is 

formulated. This new phase code sequence is called the robust symmetrical residue-P4 

phase code. Within each P4 subcode, the phase shifts in the robust symmetrical residue-

P4 phase sequences are repeated N  times (equal to the number of moduli), resulting in 

the broader mainlobe for the PACF and the reduction of signal bandwidth as a function of 

.N  The PACF and the PAF show that the robust symmetrical residue-P4 phase code 

formula gives similar results as using the formula for the P4 phase code. A MATLAB 

program is used to examine the abilities to extend the unambiguous range and to control 

the range bin errors by using a set of 3N   RSNS coprime moduli [3 4 5] (with dynamic 

range ˆ 43RSNSM  ). The results verify that the unambiguous range can be extended from 

/ 2 / 2u b cR cT ct N   to ,
ˆ / 2u RSNS b RSNSR ct M  where bt  is the subcode period in the 

RSNS phase code, and the range bin has an error of only one range bin.  

 In summary, all three NTT are investigated to show that they can be used to 

extend the unambiguous range. Also, the target range error from coding can be prevented 

by using the robust symmetrical residue-P4 phase code sequences. The use of these new 

derived phase sequences can be applied to CW radar systems in order to have a low 

probability of intercept characteristic given that the set of moduli and the radar signal 

parameters are chosen properly. The next step in this research is to investigate the 

performance of using various sets of coprime moduli, and the hardware implementation 

and testing of an actual system and is being proposed for future work. 
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I. INTRODUCTION 

A. CONTINUOUS WAVE RADAR SYSTEMS USING POLYPHASE 
MODULATION 

Continuous wave (CW) radar systems have a superior low probability of intercept 

(LPI) performance over pulse train radar systems due to their low average power 

transmitted (e.g., 1 W) and their use of pulse compression techniques. Note we extend the 

concept of pulse compression to unpulsed CW waveforms since the techniques are 

similar and the objectives are the same. Power management is also a benefit when a solid 

state phased array antenna is used. This enables the target return signal-to-noise ratio 

(SNR) to remain at a constant value within the radar receiver, thus lowering the 

transmitted power further as the range-to-target decreases. An LPI radar system is 

defined as a radar system that uses a special emitted waveform intended to detect targets 

as well as to prevent a non-cooperative intercept receiver from intercepting and detecting 

its emission [1]. On the other hand, pulsed radar systems require a relatively high peak 

power (e.g., 10 kW) to be transmitted to obtain the same probability of target detection. 

Consequently, the non-cooperative intercept range is significantly longer for the pulsed 

radars.  

Since pure CW waveforms cannot resolve the target’s range, periodic modulation 

techniques are used, such as frequency modulated CW (FMCW), frequency-shift keying 

(FSK), noise modulation, phase-shift keying (PSK), as well as hybrids of these 

techniques. The first step to designing CW radar systems that use periodic modulations 

for compression is to decide on the range resolution that is required. This in turn sets the 

transmitted bandwidth of the waveform for the above techniques (except for FSK where 

the range resolution is dependent on the duration of each frequency). Due to the advances 

in high-speed processing and direct digital synthesis modules [2], the use of PSK 

techniques in CW radar is highly advantageous. CW radars that transmit and receive PSK 

signals can result in LPI radar systems with small range resolution cells and are ideally 

suited for many sensor applications for situational awareness, including multiple-input 

multiple-output (MIMO) configurations. 
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Binary Barker phase coded sequences (1, –1) are one of the most popular PSK 

techniques in the design of pulse compression radar signals due to the aperiodic 

autocorrelation coefficients or time sidelobes being limited to 1/ cN  (at zero Doppler) 

relative to a mainlobe level of one, where cN  is the number of subcodes used. The 

longest code length is cN = 13 (or cN =169 for a compound code) [3]. These codes are not 

used in CW radar systems for LPI applications since they are very sensitive to Doppler 

shifts and can be easily detected by an intercept receiver that uses frequency doubling 

detection, which consists of multiplying the signal by itself and processing the result 

through an envelope detector. 

Polyphase sequences are also of finite length with cN  subcodes and consist of 

discrete time complex values with constant amplitude but with a variable phase. 

Polyphase coding refers to phase modulation of the CW carrier with a polyphase 

sequence consisting of a number of discrete phase states with each phase corresponding 

to a subcode. The number of subcodes is taken from an alphabet of size cN  ≥ 2, which is 

also the processing gain of the radar excluding any post detection integration.  Increasing 

the number of phase values in the sequence allows the construction of longer sequences, 

resulting in a greater processing gain or compression ratio in the receiver (or equivalently 

a larger SNR). The code period is c bT N t  where the size of each subcode bt   determines 

the 3 dB bandwidth of the waveform 1/ bB t  and the range resolution / 2.bR ct   The 

unambiguous range is limited by the number of subcodes in the sequence as .u cR N R    

With a CW polyphase waveform, the matched filter in the receiver is a coherent, 

range-Doppler matrix correlation processor that performs a cross correlation between the 

received signal and a reference signal whose envelope is the complex conjugate of rN  

code periods of the transmitted polyphase signal. The cross correlation output values are 

added together to reduce the ambiguity sidelobe levels. When the polyphase signals are 

returned and have an impressed Doppler shift, the correlation process used in the receiver 

compression operation is not perfect, resulting in a certain amount of correlation loss due 

to the phase shifts across the code period .T  
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Two of the most important PSK codes that are used in CW radar systems include 

the Frank code [4] and the P4 code [5]. The Frank code is a polyphase code that is 

derived from a step approximation to a linear FMCW waveform using M  frequency 

steps and M  samples per frequency, giving the number of subcodes or processing gain as 

2.cN M  The phase steps of the Frank code exhibit a saw-tooth folding waveform 

distribution. The peak sidelobe level (PSL) of a single compressed Frank code period is 

 1020log (1/ ) .PSL M
 

The P4 code consists of discrete phases of a linear chirp 

waveform taken at specific time intervals. It is derived by converting a linear FMCW to 

baseband using a local oscillator on one end of the frequency sweep and sampling the 

inphase and quadrature video at the Nyquist rate. The P4 phase steps exhibit a 

symmetrical parabolic distribution. The PSL of a single P4 compressed code period is 

2
1020 log 2 / ( ).cPSL N   

 Although polyphase CW modulations can serve as a transmission waveform for a 

LPI radar system, there are several limiting factors. Most significantly, the unambiguous 

detection range of the waveform is limited by the number of subcodes (code length) as 

.u cR N R   By increasing the number of subcodes to extend the unambiguous range, a 

larger range-Doppler correlation matrix processor in the radar receiver is needed to 

provide the code compression. To lower the peak sidelobes, rN  copies of the phase code 

are used to compress the pN  returned code periods from the target. Consequently, the 

increased code length or processing gain requires a larger code compression time as well 

as an increase in the bulk memory requirements in the receiver. Further, a significant 

amount of correlation loss is incurred if the total number of code periods returned from 

the target pN  is less than the number of code periods rN  used in the correlation 

processor, as would be the case due to a limited time-on-target.  

In this thesis, a novel relationship between the Frank code and the residue number 

system (RNS) is developed in order to significantly extend the unambiguous range 

beyond a single code period c bT N t  while not having to increase the number of 

subcodes. In addition, due to the symmetrical distribution of the P4 polyphase code, the 
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unambiguous range is extended by developing a phase relationship based on symmetrical 

number systems; both the symmetrical number system (SNS) and the robust symmetrical 

number system (RSNS) are investigated. The phase relationships are constructed using 

these number theoretic transforms to extend the unambiguous range of the radar system 

by associating each phase subcode within the code period T  with an integer sequence 

within a coprime modulus from the set  1 2, ,..., Nm m m . The paired integer terms from 

each polyphase sequence are unambiguous within the transform’s dynamic range. The 

dynamic range is defined as the greatest length of combined phase sequences that contain 

no ambiguities or repeated paired terms. The dynamic range for the RNS is denoted 

RNSM  (Frank code). The dynamic range for the SNS is ˆ
SNSM  (P4 code). The dynamic 

range for the RSNS is ˆ
RSNSM  (P4 code).  

For each case, the length of the dynamic range contains multiple code periods. In 

the radar receiver, the integer values within each modulus sequence correspond to the 

phase values from a phase detector [6]. The RNS phase sequence contains multiple Frank 

codes and extends the unambiguous target detection range from / 2 / 2u b cR cT ct N   to 

, ( ) / 2 / 2.u RNS b i b RNSR ct m ct M    The SNS phase sequence contains multiple P4 codes 

and extends the unambiguous target detection range beyond a single code period to 

,
ˆ / 2.u SNS b SNSR ct M  It is noted that the SNS also has a direct relationship with the 

discrete Fourier transform (DFT) and has been used to resolve frequency ambiguities in 

undersampling digital receivers [7]. Similarly, the unambiguous range using the RSNS is 

extended to ,
ˆ / 2u RSNS b RSNSR ct M  where bt  is the subcode period in the RSNS phase 

code.  

Reconstruction of the target’s range from the paired RNS and SNS phase terms 

can contain inaccuracies when the incoming target range straddles two range bins or 

subcodes. For example, if the target is straddling a range bin and a constant false alarm 

rate (CFAR) processor detects the target in the wrong subcode within a modulus 

sequence, the recovered range of the target will have a large error. This is shown to be the 

case for both the RNS and the SNS. Additional signal processing can be used to eliminate 
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these errors but adds additional complexity to the detection process. A more efficient 

method to eliminate the target range bin errors uses the RSNS. The RSNS is also a 

modular scheme; however, the paired terms from all N  sequences, when considered 

together, change one at a time at each range bin subcode transition (integer Gray code 

property). Although the dynamic range of the RSNS is less than the SNS 

( ˆ ˆ
RSNS SNSM M ), the RSNS integer Gray code property makes it particularly attractive for 

controlling the target range error. In summary, all three number theoretic transforms are 

investigated to determine the feasibility of extending the unambiguous range of the CW 

polyphase emitter.  

B. PRINCIPAL CONTRIBUTIONS 

The first step in this thesis was to understand the principles of CW phase 

modulation radar systems. This included the complex envelope representation of the 

transmitted signal and the related modulation parameters such as the code period, the 

subcode period, the number of subcodes within the code period, and the number of cycles 

of the carrier frequency per subcode. Their relationship to the signal bandwidth, the range 

bin size, the unambiguous detection range and the processing gain were also studied. 

Upon reception, the CW signal is compressed, and several code compression techniques 

were studied and modeled. To understand the receiver performance when a particular 

CW phase code is used, the periodic autocorrelation function and the periodic ambiguity 

function were examined. A MATLAB code was written to generate the CW phase coded 

signals and to call the periodic ambiguity function subroutines.  

The next step in the thesis was to study the Frank polyphase code formulation and 

the phase distribution within a code period. Periodic ambiguity analysis was also 

performed to quantify the sidelobe levels within the receiver’s ambiguity space (range 

offset – Doppler offset). Next the RNS was studied as a means to generate the Frank code 

since they both have sawtooth folding waveform representations. By using the RNS to 

create the Frank polyphase modulation, the unambiguous range of the code can be 

extended significantly beyond a single code period. A new expression to generate the 

Frank polyphase code was developed as a function of the coprime RNS moduli chosen. 
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By using two or more Frank code sequences that are relatively prime, the detected target 

residue from each sequence is combined within a system of congruences which can be 

solved in a straightforward manner using the Chinese Remainder Theorem (CRT). The 

solution is the target’s unambiguous range. A MATLAB model was developed to 

simulate the new Frank polyphase modulation in order to verify the expression and 

determine the differences in phase values (if any) that might occur. Next a new CW radar 

signal processing algorithm was developed to transmit and receive the coprime Frank 

sequences to demonstrate the extension of the unambiguous range. The algorithm also 

addressed multiple targets within the field of view. Several examples were given to 

demonstrate the concept. To examine the practical considerations, a simulation of the 

transmit power versus required compression output SNR was performed in MATLAB for 

several values of coprime moduli.   

Next, the P4 polyphase code was examined the relationships to the SNS and the 

RSNS. A new formulation of the P4 polyphase code as a function of the SNS and RSNS 

coprime moduli was developed. Analysis similar to that for the Frank code described 

above was performed to verify the new P4 expression. Finally, a summary of the different 

relationships that were developed is given and a comparison was performed. 

C. THESIS OUTLINE  

In Chapter II, the fundamentals of radar systems that use polyphase modulation 

are reviewed. In Chapter III, the Frank code and RNS are examined to extend the 

unambiguous range. In Chapter IV, the relationships between the P4 and the SNS are 

developed. In Chapter V, the relationships between the P4 and the RSNS are investigated 

to reduce the possibility of a range bin encoding error. Concluding remarks are offered in 

Chapter VI.  
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II. PRINCIPLES OF PHASE MODULATION RADAR   

The idea of CW radar using phase modulation is reviewed in this chapter. First, 

the fundamentals and use of phase modulation in CW radar systems are explained. Next, 

the concepts of signal analysis and the technique used in the receiver’s signal processing 

are presented. Also, the system equations for a phase modulation in CW radar are given 

in order to examine the signal’s properties. These equations will be used to determine the 

new phase modulation code’s performance in the following chapters. 

A. CW PHASE MODULATION CONCEPTS  

In Figure 1, the basic CW radar geometry is illustrated. First, the CW radar 

transmits the phase coded signal ( )s t  to the target through the transmitting antenna. 

When the signal propagates to the target at a range ,R  it reflects back to the CW radar 

with different characteristics. For example, the signal’s amplitude is less and the 

frequency is shifted in time in accordance with the relative movement between platforms 

along the line-of-sight ( cosV   in Figure 1) or Doppler shift .  The return signal ( )x t  is 

then captured by the receiving antenna. In the radar system’s receiver and digital signal 

processor, the compression processing output is used to detect and extract the target’s 

characteristics.  

In phase coded CW radar systems, the phase shifting operation is performed in the 

radar’s transmitter, with the timing information generated from the receiver-exciter. The 

transmitted complex signal can be written as [1]  

 (2 ( ))( ) c kj f t ts t Ae    (1) 

where A  is the signal amplitude, cf  is the carrier frequency, and ( )k t  is the time 

dependent phase modulation code. The inphase I  and quadrature Q  representations of 

the complex signal from the transmitter can be represented as 

 ( ) cos(2 ( ))c kI t A f t t    (2) 

and 

 ( ) sin(2 ( )).c kQ t A f t t    (3) 
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Figure 1.   Geometry of CW radar using phase modulation codes to sample a moving 
target. 

 For one code period ,T  the CW signal is shifted in phase every subcode with each 

code period consisting of cN  subcodes. Each subcode with phase k  has a duration of bt  

which is the subcode period. For a specific code sequence, the code period is 

 .c bT N t  (4) 

The transmitted signal can be expressed as  

 
1

[ ( 1) ]
cN

T k b
k

u u t k t


    (5) 

for 0 t T  and zero elsewhere. The complex envelope ku  is 

 .kj
ku e   (6)  

If cpp  is the number of cycles of the carrier frequency per subcode, the bandwidth B  of 

the transmitted signal is  

 
1

.c

b

f
B

cpp t
   (7) 
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To understand the concepts of phase modulation, a binary Barker phase code is 

examined [3]. In Figure 2, an example of one code period with 7cN   is shown. Here, 

the carrier frequency is 1 kHzcf  , the subcode period 1 msbt  , and from (7) 1.cpp   

 

 

 

 

 

 

 

 

Figure 2.   Phase coded signal with the Barker code 7cN  , 1A  , 1 kHzcf  , 

1 ms.bt   

The received return signal ( )x t  from the target can be written as 

 {2 ( )( ) ( )}( ) c kj f t tx t Ae           (8) 

where   is the amplitude attenuation coefficient of the received signal due to target 

scattering and propagation attenuation. The two-way roundtrip delay   for a monostatic 

radar system is 2 /R c  , where c  is the speed of light in free space. The Doppler 

frequency   due to the target motion is 2 cos( ) /V    where   is the signal 

wavelength and V  is the target velocity.  

B. CODE COMPRESSION OF RECEIVED SIGNAL 

Code compression (CC) is a signal processing technique designed mainly to 

minimize the range resolution cell and increase the SNR of the returned signal. The idea 

of CC is similar to that in signal correlation in pulse train radar. As shown in Figure 3a, 

the CW radar repeats the phase sequence every code period .T  A similar pulse train 
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signal would also have a pulse repetition interval PRI = .T  Referring to Figure 3b, if the 

pulse width pw
 
of the pulse train signal is equal to the width of the subcode period bt  in 

the CW phase coded signal, the output’s mainlobe from both correlator and compressor 

would have the same duration ( 2 2pw bt  ). These CC peaks represent the targets if the 

peaks are higher than the threshold desired in a constant false alarm rate (CFAR) process. 

 
(a) 

 
(b) 

Figure 3.   The relationship between uncompressed pulse train and phase-coded CW 
signal for (a) Transmitted signal, and (b) The output of the signal processed in the 

receiver.  

The phase-coded signal is transmitted to detect the target at a range R. When 

reaching the target, the reflected signal returns to the radar. At the radar receiver, the 

phase coded return signal is correlated with the reference phase code. This is achieved by 

convolving the incoming signal’s phase code with a conjugated and time-reversed 

version of the transmitted signal’s phase code. This operation can be done either in the 
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digital or analog domain. Many digital signal processing architectures have been 

proposed for fast correlation using fast Fourier transforms.  If no compression loss is 

present, the correlated output will give a very narrow pulse width at the compression 

output for the detected target. The correlation output is then sent to a target detection 

process such as a constant false alarm rate processor. If there is any alteration of the 

return signal’s phase (for example from a Doppler shift or a less than adequate bandwidth 

in the receiver 1/ bB t ), a certain degree of correlation loss occurs. 

The received waveform from the target is digitized and correlated using a phase 

code compressor. The range-Doppler correlation matrix can contain a cascade of rN  sets 

of cN  reference coefficients to improve the sidelobe structure. In Figure 4, the range-

Doppler correlation matrix receiver for zero Doppler offset is illustrated. Here, the 

received signal consists of pN  code periods, each of which has cN  subcodes. The return 

signal is first processed by a filter matched to a rectangular subcode of length bt , 

followed by a phase detector that sends forward the phase values. The detected output 

signal is then sent through a tapped delay line where each delay D  is .bt  As the signal 

progresses through the tapped delay line, it is multiplied by the reference signal. At each 

step, the multiplication for each delay is summed separately for each of the rN  reference 

code periods. To reduce the sidelobe structure, a weighting function iC  can also be added 

[8]. To compute the entire range-Doppler ambiguity function, the correlation outputs 

from each subcode are multiplied by 2 bj k tkq e    for     where k  ranges from 0 to 

1.r cN N   For 2 ,   the output of the previous     operation are again multiplied 

by 2 bj k tkq e    and so on for the entire ambiguity space [9]. 
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Figure 4.   Correlation receiver matched to rN  periods of a transmitted polyphase code 

for 0   (After [9]). 

In Figure 5, an illustration of the code compression for CW binary Barker code 

with 7cN   is shown. The radar receives the returned Barker sequence with the number 

of code periods 3.pN   The number of reference code periods used in the receiver is 

1.rN   The receiver starts compressing the first returned code 1T  at 0,   giving the 

correlation output peak at a normalized delay of / 0bt   representing the detected 

target. At each step in the compression, the returned signal is shifted one subcode period 

.bt   When the returned code is shifted by one code period ,T  the correlation output 

gives another peak value due to the second code 2T  being compressed at a normalized 

delay of / 7.bt   The last peak from the third code 3T  compressed is also shown at a 

normalized delay offset of / 14.bt   That is, the peak value for the detected target 
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repeats every code period .T  Generally, the width of the PACF mainlobe is 2 .bt  To be 

able to distinguish between two targets close to one another, the pulses have to be 

separated by at least bt   period (which is defined as the range resolution cell). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.   Example of code compression in CW Barker code 7cN   and 3.pN   

 In summary, the unambiguous range of a specific CW phase-coded sequence is 

 
2 2

c b
u

cN tcT
R    (9) 

and the range resolution for one transmitted polyphase signal is 

 .
2

bct
R   (10) 

 

Another important parameter in pulse compression is the pulse compression ratio 

(PCR) or time-bandwidth product. This is also referred to as the radar’s processing gain 
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(PG) and is the preferred term in this thesis. In general, the higher the PG, the higher the 

SNR improvement in the signal processing step. The radar signal processing input SNR is 

RiSNR  and the radar signal processing output SNR is RoSNR (see Figure 1). They are 

related to the processing gain of the signal processor by 

 .Ro

Ri

SNR
PG

SNR
  (11) 

For a polyphase code, the PG is equal to the time-bandwidth product or the number of 

subcodes as 

 (1/ ) ( ) / .b c b b cPG T t N t t N    (12) 

In the Barker code 7cN   example, the processing gain is 7. For a carrier 

frequency cf , narrowing the subcode period bt  enables the transmitted signal to be 

spread over a larger bandwidth. Also, increasing the number of subcodes cN , the 

correlation output sidelobes can be decreased significantly while providing a larger PG. 

This comes at the expense of a larger range-Doppler correlation matrix processor in the 

receiver. In addition, a longer compression time and an increase in the size of the bulk 

memory is required. 

The signal processing function used for the compression is the autocorrelation 

function (ACF). For CW radars, the compression is accomplished with a periodic 

autocorrelation function (PACF). Also, the periodic ambiguity function (PAF) is used to 

show the delay-offset versus frequency-offset in the receiver and shows the resulting 

sidelobe structure. This is especially useful for monitoring the ambiguity space for 

secondary targets that might hide in the sidelobe structure. Note that the zero Doppler cut 

of the PAF is the PACF [1].  

C. PERIODIC AUTOCORRELATION FUNCTION 

It is important that in order to achieve high range resolution for a polyphase code 

sequence, the coded signal has to have a noise-like PACF property, close to an impulse 

function. The ACF is used for signals of finite energy. For a CW polyphase code 
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sequence with the number of phase codes cN , subcode duration bt , and a code period 

c bT N t , a periodic complex envelope ( )u t  is given by [1]  

 ( ) ( )u t u t nT   (13) 

for 0, 1, 2, 3,....n     The values of the PACF as a function of the delay r  (which are 

the multiples of bt ) are given by 

 
1

1
( ) ( ) ( ).

cN

b
nc

R rt u n u n r
N





   (14) 

Ideally, a perfect periodic autocorrelation function (zero-sidelobe) is desired where 

( ) 1bR rt   when 0 (mod ),cr N and ( ) 0bR rt   when 0 (mod ).cr N  Since the CW 

signal is continuous, a perfect periodic autocorrelation function can be achieved.  

In Figure 6a, the ACF output for a 7cN   Barker code is plotted (in dB) with no 

noise using 1 kHzcf  , 7 kHzsf  , 1cpp   and 1rN   using the MATLAB  m-file 

(amfbn7.m) [11]. The highest peak mainlobe is at the zero time delay. The width of the 

mainlobe is equal to the length of the subcode .bt  For the Barker code, it is found that the 

PSL is equal to 1020log ( )cN  17 dB.   The PACF in Figure 6b shows that the peak is 

repeated every code period c bT N t  at the value of 7. Also note from (14) that the CW 

binary Barker code is not a perfect code. 

 

 
(a)  

 
 

 
 
 

(b)  

Figure 6.   Normalized correlation output of Barker code sequence 7cN   and 1rN   
for (a) ACF and (b) PACF.   
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Today, many studies on PSK show that the PSL of the phase-coded sequences can 

be reduced by choosing a proper phase coding. Moreover, there are CW polyphase codes 

able to achieve a zero sidelobe (perfect codes).    

D. PERIODIC AMBIGUITY FUNCTION 

In a realistic environment, the returned signal will be shifted in frequency if the 

target is moving relative to the radar’s antenna beam axis (Doppler effect). The PAF is an 

important tool to assess the response of a correlation receiver. In pulsed radar analysis, 

the ambiguity function ( , )    is a two-dimensional function of time delay offset  and 

Doppler frequency offset   showing the correlation between the returned signal and the 

receiver matched filter. For the finite duration signal, the ambiguity function (AF) is 

determined by the properties of the pulse and the matched filter. If ( )u t  is the complex 

envelope of both the transmitted signal and received signal, the AF is given by [10] 

 * 2( , ) ( ) ( ) j tu t u t e dt   



   (15) 

where * denotes the complex conjugate. A target further from the radar than the reference 

( 0  ) position will correspond to positive .  A positive  implies a target moving 

toward the radar. 

A more concise way of representing the ambiguity function consists of examining 

the one-dimensional zero-delay and zero-Doppler cuts; that is, (0, )   and ( ,0)  , 

respectively. The matched filter output as a function of a time (the signal one would 

observe in a radar system) is a delay cut, with constant frequency given by the target’s 

Doppler shift ( , ).    Ideally, the ambiguity diagram should show the diagonal ridge 

centered at the origin and zero elsewhere, no ambiguity.  

The PAF, introduced by Levanon and Freedman [11], describes the response of a 

correlation receiver to a CW signal modulated by a periodic waveform with period 

,T when the reference signal is constructed from an integral number rN  of periods of the 

transmitted signal (coherent processor length rN T ). The target illumination time (dwell 

time) pN T  must be longer than .rN T  As long as the delay   is shorter than the 
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difference between the dwell time and the length of the reference signal 

0 ( ) ,p rN N T    the illumination time can be considered infinitely long and the 

receiver response can be described by the PAF given as [8] 

 2
,

0

1
( , ) ( ) ( ) .

r r

r r

N T
j t

N T
r r

u t u t e dt
N T

       (16) 

 

 

 

 
(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 

 

Figure 7.   PAF of Barker code 7cN   with (a) 1rN   and (b) 4.rN   
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In Figure 7a, the PAF of the Barker code 7cN   with 1rN   is plotted using 

MATLAB m-file (amfbn7.m) from [10]. Also, the PAF of the Barker code 7cN   with 

4rN   is plotted in Figure 7b. By increasing rN , the Doppler sidelobes have been 

significantly lowered.  

In the next chapter, the PACF and PAF are used to characterize the CW Frank 

code. The residue number system is introduced and a relationship to the Frank code is 

developed.  

Since there are many variables used throughout this thesis, all of important 

variables are listed in the Appendix to provide unambiguous meanings. 
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III. FRANK POLYPHASE MODULATION AND THE RESIDUE 
NUMBER SYSTEM 

In this chapter, the Frank phase code and the residue number system (RNS) are 

introduced. Their relationship is presented. 

A. FRANK PHASE CODE 

The Frank code is derived from a step approximation to a linear frequency 

modulation waveform using M  frequency steps and M  samples per frequency [4]. If i  

is the sample number in a given frequency and j  is the frequency number, the phase of 

the thi  sample of the thj  frequency is given by 

 ,

2
( 1)( 1)k i j i j

M

      (17) 

where k is the time index for a single phase change per subcode and it ranges from 1 to 

2 ,M and , 1, 2,..., .i j M  

The phase values and the phase values modulo 2  of the Frank code for 

8,M  64cN   are shown in Figures 8 and 9, respectively. The carrier frequency is 

1 kHz,cf  the sampling frequency is 7 kHz,sf  and the number of carrier cycles per 

subcode is 1.cpp   The ACF and the PACF are shown in Figure 10 where rN  is the 

number of reference code periods in the receiver. The delay axis is normalized by the 

subcode period .bt  Note from Equation (14) and Figure 10b that the Frank code is a 

perfect code. The PSL is  20log 1/ ( )PSL M  or 28 dB.  The PAF in Figure 11 

shows the delay-offset and Doppler-offset sidelobes. Note that the Doppler tolerance is 

reflected in the way the sidelobes are arranged about the mainlobe. The study on Doppler 

tolerance is presented in [5] and [12]. 
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Figure 8.   Frank code modulation for 8, 64cM N   (From [1]). 
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Figure 9.   Signal phase (radians) modulo 2  versus k -index for phase change of the 
Frank code with 8, 64cM N   (From [1]). 
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(a) 
 
 
 
 

 
 

(b) 
 
 
 

Figure 10.   ACF (a) and PACF (b) for the Frank code with 8,M  1,cpp  and 1rN   

(From [1]). 

 
 

Figure 11.   PAF for the Frank code modulation with 8,M  1,cpp  and 1rN   

(From [1]). 
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B. THE RESIDUE NUMBER SYSTEM 

The RNS was introduced by Szabo [13]. It has been established as an important 

tool in parallel processing applications and high speed computations [14]–[16]. The RNS 

can serve as a source for extending the unambiguous range by decomposing the 

unambiguous range into a number of parallel sub-ranges (moduli) that have a smaller 

number of subcodes. Each sub-range for a different coprime modulus requires only a 

code period in accordance with that modulus. A much larger unambiguous range is 

achieved after the results of these smaller sub-range operations are recombined. Thus, by 

developing a relationship between the RNS, the polyphase distributions within the Frank 

code period, and the target detection processing, the extension of the unambiguous range 

beyond a single code period is feasible.  

The RNS residue distribution is based on a saw-tooth folding waveform, where 

the discrete residue values rise gradually and fall quickly as the input value rises 

gradually (i.e., in mod 5 the succession of discrete values for an increasing input is 0, 1, 

2, 3, 4, 0, 1, 2, 3, …). A single RNS sequence can be generated as  

 (mod )ma R m  (18) 

where 0 ,mR m  m  is the modulus, and mR  is the residue of a  modulo .m  The integer 

values mR  within each modulus sequence are 

 [0,1,..., 1, ]mR m   (19) 

and are representative of the saw-tooth folding waveform. The sequence is repeated in 

both directions forming a periodic sequence with the period 

 .RNSP m  (20) 

 Given a set of RNS coprime moduli, a complete residue number system is 

formed. A set of integers 0 1 1, , , (mod )my y y m  form a complete residue system if 

(mod )gy g m  for 0,1, , 1.g m   The dynamic range RNSM  of the RNS is the number 

of paired terms from the sequence of values that contain no ambiguities and is 
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1

N

RNS i
i

M m


  (21) 

where im  is the thi  coprime modulus and 2N   is the number of moduli, 1 .i N   In 

Figure 12, an RNS example for 2N   moduli, 1 4m   and 2 5,m   is shown. Note the 

stair step relationship of the residues. 
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Figure 12.   The RNS residue folding waveforms for 1 4m   and 2 5m  . 

From Equation (21), for 1 4m   and 2 5,m   the dynamic range is 20.RNSM   In 

Table 1, the two sequences are shown along with the input .a  Starting at 0,a   the total 

number of distinct paired terms is 20,  0 19.a   The index value 1l a   in Table 1 is 

shown to count the integer number of distinct paired terms within the dynamic range. 

Table 1.   Finding the RNS dynamic range for 1 4m   and 2 5m  . 
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C. RESIDUE-FRANK PHASE CODE 

The RNS residues  ,m kR  can be folded into the Frank phase code sequence by 

associating ,m kR  with the Frank subcode phases. The phase index k  starts from 1 to cN , 

where cN  is the number of subcodes within one code period. The residue-Frank phase 

code sequence from modulo m  is given by  

 , ,

2 1
m k m k

k
R

m m

     
 (22) 

where 21,2,3,...,k m  is the phase index for each phase change, and x    
indicates the 

greatest integer less than or equal to .x  In Equation (22), the number of subcodes within 

one code period is 2.cN m  For example, if we choose m  = 4, cN = 16, the RNS folding 

waveform becomes 4, 1,2,...,16m kR    {0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3}.  

Next, the phase sequences from equations (17) and (22) are compared. For 

Equation (22), the parameters used to calculate the residue-Frank phase code sequence 

are 4,m  2 16m   with 4, 1,2,...,16m kR    {0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3}.  For the 

Frank code from Equation (17), the parameters are 4,M  16cN   with , 1, 2,3,4.i j   In 

Table 2, the phase code sequences are shown for comparison. 

The phase code sequences of both waveforms are identical. The ACF, PACF, and 

PAF of the CW waveform generated by Equation (22) with 8,m  64cN   are also 

identical to those shown in Figures 10 and 11, which were generated by Equation (17) 

with 8,M  64.cN   
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Table 2.   Comparison of the residue-Frank phase code sequence ( 4m  ) with the 
Frank phase code sequence ( 4,M  16cN  ).  

Time index  

( k ) 

Residue-Frank phase code (22) Frank phase code (17) 

4,m kR   1k

m

 
  

 4,m k  (rad) i j
,k i j  (rad) 

1 0 0 2
0 0 01 4

      1 1 2
0 0 01,1 4

     

2 1 0 2
10 02 4

      2 1 2
10 02,1 4

     

3 2 0 2
2 0 03 4

      3 1 2
2 0 03,1 4

     

4 3 0 2
3 0 04 4

      4 1 2
3 0 04,1 4

     

5 0 1 2
01 05 4

      1 2 2
01 01,2 4

     

6 1 1 2
116 4 2

       2 2 2
112,2 4 2

      

7 2 1 2
217 4

      3 2 2
213,2 4

     

8 3 1 2 3
318 4 2

       4 2 2 3
314,2 4 2

      

9 0 2 2
0 2 09 4

      1 3 2
0 2 01,3 4

     

10 1 2 2
1 210 4

      2 3 2
1 22,3 4

     

11 2 2 2
2 2 211 4

      3 3 2
2 2 23,3 4

     

12 3 2 2
3 2 312 4

      4 3 2
3 2 34,3 4

     

13 0 3 2
0 3 013 4

      1 4 2
0 3 01,4 4

     

14 1 3 2 3
1314 4 2

       2 4 2 3
132,4 4 2

      

15 2 3 2
2 3 315 4

      3 4 2
2 3 33,4 4

     

16 3 3 2 9
3 316 4 2

       4 4 2 9
3 34,4 4 2

      
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D. RESOLVING RANGE AMBIGUITIES USING N RESIDUE-FRANK 
PHASE CODE SEQUENCES   

1. Block Diagram of the Residue-Frank Radar System  

To extend the unambiguous detection range, 2N   coprime moduli are used with 

Equation (22) to generate the residue-Frank phase code sequences necessary to modulate 

the CW frequency. The block diagram of the radar using the residue-Frank phase code 

modulation is shown in Figure 13. In the transmitter, the first step is to generate and store 

the sequence values ,m kR  for each modulus. Then, a direct digital synthesizer uses each 

residue sequence ,m kR  to generate the 2
cN m  subcodes ,m k  according to Equation (22) 

for each modulus. Each subcode corresponding to ,m kR  has a length of .bt  Together the 

cN  subcodes have a code period of .T  To detect the target’s unambiguous range, each 

phase code sequence must have RNSM  subcodes. Each sequence is amplified and 

transmitted in succession. 

 

 

 

 

 

 

 

 

Figure 13.   Block diagram for the radar using N  residue-Frank phase code sequences. 

Upon reception, the signal is amplified and downconverted to an intermediate 

frequency compatible with an available analog-to-digital (ADC) converter technology. 

The output of the ADC is processed by a moving target indication (Elliptic) filter to 

remove the clutter, and then a phase detector is used to determine the phase and 
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magnitude of each subcode. The output of the phase detector is processed by a phase 

code compressor which is followed by a noncoherent post-detection integration (PDI) 

process. The output of the PDI is sent to a constant false alarm rate processor to detect 

and save the range bin of the target for that modulus sequence. This series of steps is 

performed for each residue-Frank phase code sequence, and the detected target’s range 

bin mR  is sent to a RNS-to-decimal algorithm to resolve the target’s true range after all 

N  residues mR  are obtained.   

2. Transmitted and Reference Codes for Compression 

In this section, the transmission of the set of N  residue-Frank phase code 

sequences is discussed. The use of each phase code sequence as a reference sequence for 

code compression is discussed. An example using 3N   moduli with 1 3,m  2 4,m   

and 3 5m   is illustrated. The dynamic range from Equation (21) for these RNS moduli is 

3 4 5 60.RNSM      

The transmitted sequence for each modulus requires the number of subcodes 

equal to the dynamic range .RNSM  The transmitted signal is shown in Figure 14. For 

modulus 1 3,m   there are three residues within a code period (0, 1, 2). For the residue-

Frank phase code period, the sequence has 2 2
1 3 9.cN m    To cover a dynamic range 

of 60RNSM   subcodes, the number of code periods required is  

 , 2
ˆ .RNS

p m

M
N

m
  (23) 

For 1 3,m  ,3
ˆ 60 / 9 6.67pN    code periods. The last 3 subcodes (9 7 60 3   ) are not 

used since they are ambiguous.  

For 2 4m   and 3 5,m   the number of subcodes cN  for each code period are 

2 2
2 4 16m    and 2 2

3 5 25,m    respectively. Also, the maximum number of transmitted 

and received code periods are ,4
ˆ 3.75pN   (the last 4 subcodes are not used) and 



 28

,5
ˆ 2.4pN   (the last 15 subcodes are not used),  respectively. In Figure 14, the code period 

corresponding to each modulus is denoted as ,im pT  where p  represents code period 

number. Note that the number of received code periods processed in the range-Doppler 

matrix rN  should be less than the number of code periods received .pN  That is 

ˆ .r p pN N N   Otherwise, a certain amount of correlation loss occurs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.   Illustration of transmitted signal using 3N   residue-Frank phase code 
sequences for  1 3,m  2 4,m  and 3 5.m   

In Figure 15a, the residues ,m kR  for 1 3,m  2 4,m  and 3 5m   ( 60RNSM  ) are 

shown with 2, ,m k m k nm
R R


  where  0, 1, 2,... .n   The residue-Frank phase sequences 

,m k  from each modulus are shown in Figure 15b. Each phase code sequence has a length 

2 ,cN m  giving 2, ,
.m k m k nm

 


  If the receiver uses one code period as a reference 

( 1rN  ), the reference code sequence for compression has a phase sequence from index 

1k   to 2.m    
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Figure 15.   Plot of the residue-Frank phase code sequence for 1 3,m  2 4,m  and 

3 5m   ( 60RNSM  ) showing (a) residues, and (b) phase sequences from (22). 

In Figure 16, the compression and range bin detection process is illustrated for 

1 3m   and 1.rN   The residue-Frank phase code sequence is returned to the radar 

receiver with delay   and then processed by a filter matched to a rectangular pulse of 
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duration .bt  The phase detector is used to calculate the phase of the signal which is 

passed to the compressor. The output from the compression is then processed by the 

threshold detection to see whether the amplitude reaches the desired minimum value. The 

compressor processes a single compression delay within a sampling period .st  If the 

threshold detector detects the pulse, the presence of the target will be saved and 

associated with residue .mR  Each delay lD  has a duration of bt  (e.g. 1D  is for the time 

delay between 0 to bt , 2D  is for the time delay between bt  to 2 bt  and so on).  For 2 4m   

and 3 5,m   the process is similar, except the phase reference values have to correspond 

to the transmitted phase code sequence that is being received.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 16.   Illustration of compression at the receiver and the range bin for RNS 

1 3,m  9,cN  and 1.rN   
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3. Calculating the Target Range 

After the returned signal is compressed, the first sample appears in the receiver’s 

range bin that corresponds to a duration .  For each modular sequence, the target 

detection corresponds to a residue .mR  By combining the paired residue from each 

sequence, the target’s range bin can be calculated. 

Continuing the example in the previous section, we show the residues for 

1 3,m  2 4,m  and 3 5m   and the corresponding target range in Table 3. Here, the signal 

bandwidth 1 MHzB  , and the subcode period 1 s.bt   The unambiguous range using 

residue-Frank phase code is 

 , .
2
RNS b

u RNS

cM t
R   (24) 

For this example, the maximum unambiguous range is , 9 kmu RNSR   ( 60RNSM  ) and is 

considerably longer than that of any single code period. The range resolution is 

/ 2 150 m.bR ct    The target’s range now has to be ,u RNSR R  in order to be detected 

with no range ambiguity. The range interval for each range bin of this example is also 

given in the Table 3. 

Table 3.   Bin matrix and range intervals of 3 channel  RNS with 1 3,m  2 4,m  and 

3 5.m   

Bin a  
1 3m   2 4m   3 5m   Range(m) Bin a  

1 3m   2 4m   3 5m   Range(m) 

0 0 0 0 0–150 30 0 2 0 4500–4650 

1 1 1 1 150–300 31 1 3 1 4650–4800 

2 2 2 2 300–450 32 2 0 2 4800–4950 

3 0 3 3 450–600 33 0 1 3 4950–5100 

4 1 0 4 600–750 34 1 2 4 5100–5250 

5 2 1 0 750–900 35 2 3 0 5250–5400 

 6 0   2  1 900–1050 36 0 0 1 5400–5550 

 7 1  3   2 1050–1200 37 1 1 2 5550–5700 
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8 2 0 3 1200–1350 38 2 2 3 5700–5850 

9 0 1 4 1350–1500 39 0 3 4 5850–6000 

10 1 2 0 1500–1650 40 1 0 0 6000–6150 

11 2 3 1 1650–1800 41 2 1 1 6150–6300 

12 0 0 2 1800–1950 42 0 2 2 6300–6450 

13 1 1 3 1950–2100 43 1 3 3 6450–6600 

14 2 2 4 2100–2250 44 2 0 4 6600–6750 

15 0 3 0 2250–2400 45 0 1 0 6750–6900 

16 1 0 1 2400–2550 46 1 2 1 6900–7050 

17 2 1 2 2550–2700 47 2 3 2 7050–7200 

18 0 2 3 2700–2850 48 0 0 3 7200–7350 

19 1 3 4 2850–3000 49 1 1 4 7350–7500 

20 2 0 0 3000–3150 50 2 2 0 7500–7650 

21 0 1 1 3150–3300 51 0 3 1 7650–7800 

22 1 2 2 3300–3450 52 1 0 2 7800–7950 

23 2 3 3 3450–3600 53 2 1 3 7950–8100 

24 0 0 4 3600–3750 54 0 2 4 8100–8250 

25 1 1 0 3750–3900 55 1 3 0 8250–8400 

26 2 2 1 3900–4050 56 2 0 1 8400–8550 

27 0 3 2 4050–4200 57 0 1 2 8550–8700 

28 1 0 3 4200–4350 58 1 2 3 8700–8850 

29 2 1 4 4350–4500 59 2 3 4 8850–9000 

 

In Figure 17, an example of the target detection process using 1 3,m  2 4,m   and 

3 5m   is illustrated. The residue-Frank phase code signal is transmitted to the target and 

the target’s return is in range bin  5a   or 770 m. In the code compression step, the 

returned signal is compressed corresponding to each modulus in consecutive order. 

Shown in each graph are residues ,m kR  (stair-step waveform), the range bin index a , and 
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a helicopter target detection. The range bin index a  goes from 0 to 59 ( 60RNSM  ). 

Since the phase code sequence is periodic, the residues is also periodic with 

2, ,
.m k m k nm

R R


  For modulus 1 3,m  the CC peak is repeated with 
1m c bT N t 2

1 9 .b bm t t   

The threshold detector detects the correlated signal output, and the range bin residue 3R  

is stored. Here, the range bin residue corresponding to the correlated output for channels 

1 3m   is at 3 2.R   The processes are the same for channels 2 and 3 using the moduli 

2 4m   and 3 5,m   respectively. The detected target range bin residues are 4 1R   and 

5 0.R   The residues are paired as [2 1 0], and a RNS-to-decimal algorithm is used to 

calculate the target’s true range .R  From Table 3, the paired values [2 1 0] correspond to 

the range bin 5,a   and the calculated target range is between 750 m and 900 m.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17.   Example of compression output for target detection using 3N   residue-
Frank phase code sequences with 1 3,m  2 4,m  and 3 5.m   
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Although the look up table in Table 3 can be used to find the target’s range from 

the corresponding residues, for a practical implementation the table would be very large. 

Alternatively, the system of simultaneous congruences of the form (mod )
im ia R m  can 

be solved with a straightforward application of the Chinese remainder theorem (CRT). 

The system to be solved for this example is 2(mod3),a  1(mod 4),a  0(mod5).a   

This CRT algorithm only requires the target range bin residues .
imR  The CRT solution of 

the system is  

 
1

j

N
RNS

j m
j j

M
a b R

m

  (25) 

where a  is the range bin index. If we consider this number modulo im , we find that 

mod .
i i

RNS
i m m i

i

M
a b R R m

m
   The jb  values can be found with the Euclidean algorithm, 

which is a repeated application of the division algorithm [17]. We note that the jb  values 

are also hardwired into the system and depend only on the moduli and not at all on the 

range bin residues.  

4. Resolving Multiple Target Range Ambiguities 

In this section, the detection of multiple targets is considered. As illustrated in 

Figure 18, the residue for the two targets are periodic as 2, ,
.m k m k nm

R R


  If there are no 

missed targets in the detection process, the sequence of residues within each modulus can 

be paired directly for the solution of the target’s range. To solve for the range of each 

target, the residues are paired as [2 2 2] for the first target and [2 0 0] for the second 

target. Using the CRT or lookup table, we find the range of the first target is 

1150 300 mR  ( 2a  ) and the range of the second target is 23000 3150 mR   

( 20a  ).  
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Figure 18.   Resolving the range ambiguity of 2 targets using RNS for 

1 3,m  2 4,m  and 3 5.m   

In Figure 19, if the first set of residues for the two targets are not detected, the 

residue-Frank phase code waveform still allows the two target range values to be 

determined. Note the residues are determined but there is no information available to pair 

them up correctly. Additional information must be used in order to pair them correctly. 

For example, for 1m , we have 3 {2, 2},R   for 2m , we have 4 {2, 0},R   and for 3m , we 

have 5 {2, 0}.R  To pair them up correctly, the magnitude information associated with 

each subcode (from the phase detector) can be used. 

 

Figure 19.   Missed detections of the first set of residues. 

A more convenient method is to extend or fill in the residues according to their 

code period, which can be identified through examination of the residues throughout the 

unambiguous range. This result gives the same residue configuration as shown in Figure 

18. Note that this method works even with the target residues overlapping. 
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5. Practical Considerations   

a. Detection of Target in Noise Using RNS Compression 

In this section, the performance of the 3N   residue-Frank for 1 3,m   

2 4,m   and 3 5m  with 60RNSM   is examined by using MATLAB to plot the returned 

signals from two targets at ranges of 440 m and 5840 m. The transmitted signal has an 

amplitude 1,A   carrier frequency 1 MHz,cf   sampling frequency 7 MHz,sf   

1,cpp   and 1 s.bt   For a practical case, the signals are received with noise. The noise  

changes the returned phase sequences and affects the compression output value. Here, 

two different SNRs are examined. In Figure 20, the transmitted signal without noise for 

each channel is plotted. In Figure 21, the signal with SNR = 30 dB is plotted. The signal 

power is high compared to the noise power. Consequently, the noise signal does not 

significantly affect the phase sequences. In Figure 22, the SNR is reduced to 0 dB. The 

phase sequences are changed significantly. 
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Figure 20.   Residue-Frank signal without noise for 1 3,m  2 4,m  and 3 5m  with 

60,RNSM  1,A  1 MHz,cf  7 MHz,sf  1,cpp  and 1 s.bt   
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Figure 21.   Residue-Frank signal with SNR = 30 dB for 1 3,m  2 4,m  and 3 5m   

with 60,RNSM  1,A  1 MHz,cf  7 MHz,sf  1,cpp  and 1 s.bt   
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Figure 22.   Residue-Frank signal with SNR = 0 dB for 1 3,m  2 4,m  and 3 5m  with 

60,RNSM  1,A  1 MHz,cf  7 MHz,sf  1,cpp  and 1 s.bt   
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In Figures 23 and 24, the range bin profiles for each channel after 

threshold detection of the compression output for the two targets are shown with SNR = 

30 dB and SNR = 0 dB, respectively. The first target appears at a range bin 2a   with 

the paired residues [2 2 2] (range 300–450 m). The second target appears at range bin 

38a   with the paired residues [2 2 3] (range 5700–5840 m). Note that the targets 

straddle the range bins since the first sample received from the targets lies in the correct 

range bin. Also shown is the noise signal that is compressed before the signals are 

returned to the receiver. Shown in Figure 24, the amplitudes of compressed pulses 

degrade when the SNR is decreased to 0 dB. Also, the sidelobes from the compression 

output are higher when the noise power is increased. Another important point is that the 

average sidelobes from the higher modulus (e.g. 3 5m  ) are lower than those from the 

lower modulus (e.g., 1 3m   and 2 4m  ). This is due to the different processing gain or 

cN  subcodes that each sequence provides. For 1 3,m  2 4,m  and 3 5,m   the processing 

gains are 2
1 9,m   2

2 16,m  2
3 25,m   respectively. 
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Figure 23.   Target detection for SNR = 30 dB showing the range bins for 1 3,m  2 4,m  and 3 5m   with the two targets at 440 m 

and 5840 m.  

Target 1 
at [2 2 2] 

Target 2 
at [2 2 3] 

Note the ambiguities present if only 
one modulus is used (e.g. 1m ).  

Noise only present RNS bin 
Signal and noise 
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Figure 24.   Target detection for SNR = 0 dB showing the range bins for 1 3,m  2 4,m  and 3 5m   with two targets at 440 m and 

5840 m. 
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One situation that may occur is that the threshold detector might read the 

wrong range bin because the amplitudes of the compressed pulses fluctuate due to the 

noise present. This results in a target range error. In Figure 25, the first target in channel 

2 4m   can be seen with the compressed pulse detected by a CFAR (threshold level at 

0.8) at residue 4 3R   instead of 4 2.R   So the paired terms [2 3 2] (range 7050–7200 m) 

are computed instead of the true range at [2 2 2] (range 300–450 m). This is a large range 

error. 

 
 
 

 

 

 

      

Figure 25.   Illustration of detection error from the threshold detector (CFAR) using 
the residue-Frank for 1 3,m  2 4,m  and 3 5.m   

b. Required CW Signal Power Versus Required Output SNR  

In this section, the CW power required when using the residue-Frank 

phase code sequences to detect the target at the maximum unambiguous range is 

presented. Given the fixed unambiguous range 9000 m,uR   the CW radar power can be 

changed accordingly as a function of the RoSNR  at the output of compressor. The 

relationship between the required RoSNR  and the average CW power ( CWP ) is expressed 

as [1]  

CFAR might read residue 3 
instead of 2, resulting in a new 
paired terms [2 3 2] bin a = 47  
instead of bin a = 2 [2 2 2] 
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4 3

0
2

2

(4 ) ( / )u B R Ri RT RR Ro
CW

t r T

R k T F B L L SNR PG
P

G G L


 

  (26) 

where uR  is the unambiguous range, 231.38 10  joule/KBk    (Boltzman’s constant), 0T  

is the ambient noise temperature ( 0 290 KT  ), RF  is the receiver noise factor, RiB  is the 

radar receiver’s input bandwidth in Hz, and t rG G  are the transmitting and receiving 

antenna gains, T  is the target’s radar cross section in m2, 2L  is the two-way atmospheric 

transmission factor, RTL  is the loss between the radar’s transmitter and antenna, and RRL  

is the loss between the radar’s antenna and receiver.  

In Figure 26, the CW signal power as a function of the required output 

signal-to-noise ratio RoSNR  for 1 3,m  2 4,m  and 3 5m   is plotted with 1 MHz,RiB   

1 s,bt  30 dB,t rG G  3 GHz,cf  0.1 m,  2100 m ,T  5 dB,RF  2 RTL L   

1,RRL   and / 2 9000 mu RNS bR cM t   (maximum detection range without ambiguity). 
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Figure 26.   Average power of the CW transmitter for residue-Frank with 

1 3,m  2 4,m  and 3 5.m   
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Note the difference in the average power required in each channel due to 

the different PG. The channel 3 5,m   giving 2 25,c iPG N m    requires less power 

than the other channels, 1 3m   ( 9PG  ) and 2 4m   ( 16PG  ), to detect the targets 

within the same unambiguous detection range. For example, at 30 dB,RoSNR   the 

required CW power CWP  for 3 5,m  2 4,m   and 1 3m   are 7, 10.5, and 18 W, 

respectively. Note that this helps contribute to the LPI characteristic of the emitter. 

c. Unambiguous Detection Range for a Constant Output SNR 

It is important to see how superior the residue-Frank phase code is 

compared to a single Frank code with the unambiguous range / 2 / 2u b cR cT ct N   and 

limited to only one code period. Here, the relationship between the average signal power 

CWP  and the maximum detection range maxR  is  

 
 

1

42
2

max 3

0

.
4 ( / )

CW t r T

B R Ri Ro RT RR

P G G L
R

k T F B SNR PG L L

 


 
  
  

 (27) 

However, the resolvable detection range is limited by the unambiguous range. The radar, 

however, can detect the targets beyond uR  but there are ambiguities. 

In Figure 27, the detection range maxR R  is plotted as a function of the 

required CW power with constant 13 dB,RoSNR  1 MHz,B  1 s,bt  30 dB,t rG G   

3 GHz,cf  0.1 m,  2100 m ,T  0 290 K,T  5 dB,RF  and 2 1.RT RRL L L    Also, 

the performance of each Frank code using the corresponding cN  is plotted. For the Frank 

code (17), 1 3,  9cM N   and 2 4,  16,cM N  and 3 5,  25.cM N   Shown in the 

graph, the single Frank code has a limited unambiguous range, where 1 3M   gives 

8 63 10 10 9 / 2 1350 m,uR      2 4M   gives 8 63 10 10 16 / 2 2400 m,uR      and 

3 5M   gives 83 10uR   610 25 / 2 3750 m.   These values are less than using the 

residue-Frank phase code, giving / 2 9000 m.
RNSu RNS bR cM t   
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Figure 27.   Comparison of the maximum unambiguous range of CW radar system for 
13 dBRoSNR   using the residue-Frank phase code for 1 3,m  2 4,m  and 

3 5m  with the radar using each Frank code sequence individually with the 

corresponding .cN  

In conclusion, the residue-Frank phase code presented in this chapter can 

be used to extend the unambiguous range of the CW polyphase radar system. The issue 

concerned with the range bin error due to the fluctuation of the compression outputs was 

also introduced. In the next chapter, the relationship between the P4 code and the 

symmetrical number system (SNS) is presented. As will be shown in examining the PAF, 

the P4 has a better property in Doppler tolerance than the Frank code. This makes it more 

attractive when the emitter attempts to detect the moving targets.  
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IV. P4 POLYPHASE MODULATION AND THE SYMMETRICAL 
NUMBER SYSTEM 

In this chapter, the P4 phase code and the SNS are introduced. Their relationship 

is presented. 

A. P4 PHASE CODE 

The P4 polyphase code is conceptually derived from a linearly frequency 

modulated waveform (LFMW). Such codes and compressors can be employed to obtain 

much larger time-bandwidth products. The significant advantages of P4 codes are low 

peak sidelobes and that they are more Doppler tolerant than other phase codes derived 

from a step approximation to an LFMW [5], [12]. 

In the P4 code the local oscillator frequency, which is offset in the I  and Q  

detectors, results in a coherent double sideband detection. The phase sequence of a P4 

signal is given by  

 2( 1) ( 1)k
c

k k
N

      (28) 

where k  is the time index for a single phase change per subcode and ranges from 1 to 

cN . 

The phase values and phase values modulo 2π of a P4 code for 64cN   are 

shown in Figures 28 and 29, respectively. The carrier frequency is cf = 1 kHz, the 

sampling frequency is sf  = 7 kHz, and the number of carrier cycles per subcode is cpp = 

1. The ACF and PACF for 1rN   are shown in Figure 30. The peak-to-sidelobe level is 

2
1020 log 2 / ( )cPSL N   or 25 dB.  The PACF is a perfect code with low sidelobes. 

The PAF in Figure 31 shows the delay-offset and Doppler-offset sidelobes.                                               
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Figure 28.   P4 phase sequence for 64cN   (From [1]). 
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Figure 29.   Signal phase (radians) modulo 2  versus k -index for phase change of the 
P4 code with 64cN   (From [1]). 
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(a) 

 

 

(b) 

 

Figure 30.   ACF (a) and PACF (b) for the P4 code with 64,cN  1,cpp  and 1rN   

(From [1]). 

 

Figure 31.   PAF for the P4 code modulation with 64,cN  1,cpp  and 1rN      

(From [1]). 

B. THE SYMMETRICAL NUMBER SYSTEM  

The SNS is composed of N  coprime moduli. The integers within each SNS 

modulus are derived from a symmetrically folded waveform [18]. The integer values 

within each SNS modulus are derived from a mid-level quantization of the symmetrical 
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folding waveform and, therefore, incongruent modulus m  (i.e., mod 5: {0, 1, 2, 2, 1, 0, 1, 

2…}). Due to the presence of ambiguities, the set of integers within each SNS modulus 

does not form a complete residue system by themselves. It is well known that the 

inclusion of additional redundant moduli can effectively detect and correct errors that 

may occur within a RNS representation of a number. The SNS formulation is based on a 

similar concept, which allows the ambiguities that arise within the SNS to be resolved by 

using various arrangements of the SNS moduli. The vector of integer values within a 

single SNS folding waveform is given as 

 0,1,..., , ,..., 2,1,0,1 , when  is odd
2 2m

m m
S m

             
 (29) 

and 

 0,1,..., , 1,..., 2,1,0,1 , when  is even
2 2m

m m
S m

    
 (30) 

where x    
indicates the greatest integer less than or equal to .x  An example of the SNS 

waveforms for 1 4m   and 2 5m   ( 2N  ) is shown in Figure 32. The period of each 

waveform equals the value of the modulus as 

 .SNSP m  (31) 
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Figure 32.   The SNS residues for 1 4m   and 2 5.m   
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 The dynamic range of the SNS ˆ
SNSM  is  

 
2 1

ˆ min
2 l l

j N

SNS i i
l l j

m
M m m

  

 
  

 
   (32) 

for coprime moduli im , with one of the moduli even,  j  ranges from 1 to 1,N  N  is the 

number of moduli, and 2 3, ,...,i i iNm m m  range over all permutations {2,3,…, N }. The 

product of j  from 2 to 1 is empty, and its value is 1. If all the coprime moduli in the 

system are odd, then 

 
1 1

1 1ˆ min
2 2l l

j N

SNS i i
l l j

M m m
  

 
  

 
   (33) 

where j  ranges from 1 to 1N   and 1 2 3, , ,...,i i i iNm m m m  range over all permutations 

{1,2,3,…, N }. Note that the dynamic range for the SNS is less than the RNS 

( ˆ
SNS RNSM M ). 

From Equation (32), for 1 4m   and 2 5,m   the dynamic range is ˆ 7.SNSM   In 

Table 4, the two sequences are shown along with the input .a  Starting at 0,a   the total 

number of distinct paired terms is 7, 0 6.a   The index value 1l a   in Table 4 is 

shown to count the integer number of the distinct paired terms within the dynamic range. 

Also shaded is the region with no ambiguity.  

Table 4.   Finding the SNS dynamic range for 1 4m   and 2 5.m   

Input( a )  
0 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

 
9 

 
10 

 
11 

 
12 

 
13 

 
14 

 
15 

 
16 

 
17 

 
18 

 
19 

 
20 

1 4m    
0 

 
1 

 
2 

 
1 

 
0 

 
1 

 
2 

 
1 

 
0 

 
1 

 
2 

 
1 

 
0 

 
1 

 
2 

 
1 

 
0 

 
1 

 
2 

 
1 

 
0 

2 5m    
0 

 
1 

 
2 

 
2 

 
1 

 
0 

 
1 

 
2 

 
2 

 
1 

 
0 

 
1 

 
2 

 
2 

 
1 

 
0 

 
1 

 
2 

 
2 

 
1 

 
0 

l   
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 
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C. SYMMETRICAL RESIDUE-P4 PHASE CODE  

The SNS symmetrical residues ,m kS  can be folded into the P4 phase sequence by 

associating ,m kS  with the P4 subcode phases. The phase index k  starts from 1 to .cN  The 

symmetrical residue-P4 phase sequence is given by 

 
2

, , 2 4m k m k

m
S m

m

 
      

   
 (34)           

where k  = 1,2,3, …., .m  The number of subcodes within one code period is .cN m  For 

example, if we choose 8,m  8,cN   and the SNS sequence becomes 8, 1,2,...,8m kS    

 0,1, 2,3, 4,3, 2,1 .  

Next, the phase sequences from equations (34) and (28) are compared. First, 

Equation (34) is used to calculate the symmetrical residue-P4 phase code sequence using 

8,m  8cN   with  8, 1,2,...,8 0,1,2,3,4,3,2,1 .m kS   
 
For the P4 code in Equation (28), the 

parameters are 8cN   and i  = 1,2,3,….8. In Table 5, the phase sequences are shown for 

comparison. 

The phase code sequences of both waveforms are identical. The ACF, PACF, and 

PAF of the CW waveform generated by Equation (34) with 64cm N   are also 

identical to those shown in Figures 30 and 31 which were generated by Equation (28) 

with 64.cN   
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Table 5.   Comparison of symmetrical residue-P4 phase code sequence 
( 8,m  8cN  ) with the P4 phase code sequence ( 8cN  ). 

Phase index 

( k ) 

Symmetrical residue-P4 phase code (34) P4 phase code (28) 

8,m kS   8,m k  (rad) k
k (rad) 

1 0 28
0 8 01 8 2 4

 
          

 
1 2(1 1)

(1 1) 01 8

 
     

2 1 28
1 8 2.74892 8 2 4

 
          

 
2 2(2 1)

(2 1) 2.74892 8

 
   

3 2 28
2 8 4.71243 8 2 4

 
            

3 2(3 1)
(3 1) 4.71243 8

 
   

 

4 3 28
3 8 5.89054 8 2 4

 
          

 
4 2(4 1)

(4 1) 5.89054 8

 
   

5 4 28
4 8 6.28325 8 2 4

 
          

 
5 2(5 1)

(5 1) 6.28325 8

 
   

6 3 28
3 8 5.89056 8 2 4

 
          

 
6 2(6 1)

(6 1) 5.89056 8

 
   

7 2 28
2 8 4.71247 8 2 4

 
          

 
7 2(7 1)

(7 1) 4.71247 8

 
   

8 1 28
1 8 2.74898 8 2 4

 
          

 
8 2(8 1)

(8 1) 2.74898 8

 
     

 

D. RESOLVING RANGE AMBIGUITIES USING N SYMMETRICAL 
RESIDUE-P4 PHASE CODE SEQUENCES 

1. Block Diagram of the Symmetrical Residue-P4 Radar System 

The block diagram of a radar system using symmetrical residue-P4 phase code 

sequences is shown in Figure 33. This diagram is similar to the residue-Frank phase code 

radar system in Chapter III, except that now the symmetrical residue-P4 phase code 

sequences are used instead. Each phase sequence with the length equal to the dynamic 
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range ˆ
SNSM  is transmitted to detect the target. In the receiver, each code sequence is 

compressed with its corresponding conjugate of phase code.  

 

 

 

 

 

 

 

 

Figure 33.   Block diagram for the radar using N  symmetrical residue-P4 phase code 
sequences. 

2. Transmitted and Reference Codes for Compression 

In this section, the transmission of N  symmetrical residue-P4 phase code 

sequences is explained as well as the phase code reference for compression. An example 

using 3N   moduli with 1 7,m  2 8,m   and 3 9m   is illustrated. The dynamic range, 

using Equation (32) for these SNS moduli, is ˆ 37.SNSM   

Each sequence has the number of code length equal to the dynamic range with the 

transmitted signal as shown in Figure 34. To create the P4 code sequence, one code 

period requires the number of subcodes .cN m  To cover a dynamic range of subcode, 

the number of code periods required is 

 ,

ˆ
ˆ .SNS

p m

M
N

m
  (35) 

For 1 7m   and 7,cN   Equation (35) gives ,7
ˆ 37 / 7 5.29,pN    which last 5 subcodes 

( 7 6 37 5   ) are not included since they are ambiguous. For modulus 2 8m   and 
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3 9,m   the number of subcodes cN  for one code period are 8 and 9 respectively. Also, 

the maximum number of transmitted and received code periods are ,8
ˆ 4.63pN   (the last 3 

subcodes are not used) and ,9
ˆ 4.11pN   (the last 8 subcodes are not used), respectively. In 

Figure 34, the code period corresponding to each modulus is denoted as ,im pT  where p  

represents the code period number. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 34.   Illustration of transmitted signal using 3N  symmetrical residue-P4 
phase code sequences for 1 7,m  2 8,m  and 3 9.m   

In Figure 35a, the symmetrical residues ,m kS  using 1 7,m  2 8,m   and 3 9m   

( ˆ 37SNSM  ) are shown. Since the phase sequences are periodic, , ,m k m k nmS S   where 

 0, 1, 2,... .n   The phase sequences from each channel are plotted in Figure 35b. Each 

symmetrical residue-P4 phase sequence has a phase code period equal to ,cN m  giving 

, ,m k m k nm   .  If the receiver uses one code period ( 1rN  ), the reference code sequence 

for compression is the phase sequence from index 1k   to .m  
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(b) 

Figure 35.   Plot of the symmetrical residue-P4 for 1 7,m  2 8,m  and 3 9m   

( ˆ 37SNSM  ) showing  (a) symmetrical residues, and (b) phase sequences from 

(34). 

In Figure 36, the compression and range bin detection process is illustrated for 

1 7m   and 1.rN   The symmetrical residue-P4 phase code is returned to the radar 

receiver with delay   and then processed by a filter matched to the rectangular pulse of 

duration .bt  Then the phase detector is used to calculate the phase of the signal and pass 
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it through the compressor. The output from the compression is then processed by 

threshold detection to see whether the amplitude reaches the desired minimum value. If 

the threshold detector detects the pulse, the presence of the target will be saved with the 

symmetrical residue value .mS  In 2 8m   and 3 9,m   the process is similar, except that 

the phase references have to correspond to the transmitted phase code that is being 

received.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 36.   Illustration of compression at the receiver and the range bin for SNS 

1 7,m  7,cN  and 1rN  . 

3. Calculating the Target Range 

 Using all channels, we see that the paired terms are mapped to a specific range bin 

input a  (similar to residue-Frank code bin detection process). Continuing the example in 

the previous section for 1 7,m  2 8,m  and 3 9,m   we show the symmetrical residue 

paired values and the corresponding ranges in Table 6. The signal bandwidth 1 MHz,B   

and the subcode period 1 s.bt   The unambiguous range using symmetrical residue-P4 

is 
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 ,

ˆ
.

2
SNS b

u SNS

cM t
R   (36) 

For this example, the maximum unambiguous range is 5550 m ( ˆ 37SNSM  ). Range 

resolution is 150 m ( / 2bR ct  ). 

Table 6.   Bin matrix and range intervals of 3 channel SNS for 1 7,m  2 8,m  and 

3 9.m   

Bin a  
1 7m  2 8m  3 9m  Range (m) Bin a  

1 7m  2 8m  3 9m  Range (m) 

0 0 0 0 0 – 150 19 2 3 1 2850 – 3000 

1 1 1 1 150 – 300 20 1 4 2 3000 – 3150 

2 2 2 2 300 – 450 21 0 3 3 3150 – 3300 

3 3 3 3 450 – 600 22 1 2 4 3300 – 3450 

4 3 4 4 600 – 750 23 2 1 4 3450 – 3600 

5 2 3 4 750 – 900 24 3 0 3 3600 – 3750 

6 1 2 3 900 – 1050 25 3 1 2 3750 – 3900 

7 0 1 2 1050 – 1200 26 2 2 1 3900 – 4050 

8 1 0 1 1200 – 1350 27 1 3 0 4050 – 4200 

9 2 1 0 1350 – 1500 28 0 4 1 4200 – 4350 

10 3 2 1 1500 – 1650 29 1 3 2 4350 – 4500 

11 3 3 2 1650 – 1800 30 2 2 3 4500 – 4650 

12 2 4 3 1800 – 1950 31 3 1 4 4650 – 4800 

13 1 3 4 1950 – 2100 32 3 0 4 4800 – 4950 

14 0 2 4 2100 – 2250 33 2 1 3 4950 – 5100 

15 1 1 3 2250 – 2400 34 1 2 2 5100 – 5250 

16 2 0 2 2400 – 2550 35 0 3 1 5250 – 5400 

17 3 1 1 2550 – 2700 36 1 4 0 5400 – 5550 

18 3 2 0 2700 – 2850         
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 In Figure 37, an example of target detection for 1 7,m  2 8,m   and 3 9m   is 

illustrated. The target’s return is in range bin 4a   or 650 m. Shown in the graph are 

symmetrical residue ,m kS  (stair-step waveform), the range bin ,a  and a helicopter target 

detection. The bin corresponding to the correlated output for channel 1 7m   is at 

1 7 3.mS    Note the repeated pulse from the compression output due to the periodic phase 

code. The process is the same for the channel 2 8,m   and 3 9.m   The residue bins are 

2 8 4mS    and 
3 9 4mS    respectively. Then the three symmetrical residues are paired as [3 

4 4], and the SNS-to-decimal algorithm is used to find the target’s true range .R  From 

Table 6, the paired terms [3 4 4] correspond to the range bin 4,a   and the calculated 

range is between 600 m and 750 m.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 37.   Illustration of target detection by using the range bin matrix for SNS-P4 
code with 1 7,m  2 8,m  and 3 9.m   
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In Chapter III, we solved the system of congruences using CRT for recovering the 

target range bin a  ( ˆ
SNSM ). Due to the definition of the SNS, 

1 1(mod ),ma S m   

2 2(mod )ma S m  ,…, (mod ).
Nm Na S m  For each of the congruences, either the plus or 

minus is correct, but we do not know which. Thus, we have 2N  sets of N  equations. For 

example, if 2,N   we have 

i) 
1 1(mod ),ma S m  

 
2 2(mod ),ma S m  

ii) 
1 1(mod ),ma S m  

 
2 2(mod ),ma S m   

iii) 
1 1(mod ),ma S m   

 
2 2(mod ),ma S m   

iv) 
1 1(mod ),ma S m   

 
2 2(mod ).ma S m  

The CRT guarantees that each of these has a unique solution modulo 1 2 ,m m  and exactly 

one of these solutions lies within the dynamic range of the system. This is the value of .a  

In fact, it is only necessary to solve (i) and (ii) at most because the solutions to (iii) and 

(iv) are the negatives of the solutions to (i) and (ii), respectively. 

Recall that in the standard statement of the CRT we wish to solve for a  where 

(mod ),
im ia S m 1 ,i N   and the im  are pairwise relatively prime. The solution is  

 1 1 2 2

1 2

...RNS RNS RNS N N

N

M b a M b a M b a
a

m m m
     (37) 

where 
1

.
N

RNS i
i

M m


  Note that the values of ib  depend only on im  and not at all on 

.
imS Thus, we may assume that the constants /i RNS i ic M b m  are known, and the SNS-
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to-decimal algorithm only needs to evaluate 
1 21 2 ...

Nm m N mc S c S c S    modulo RNSM  and 

picks the one value that lies within the dynamic range ˆ .SNSM  

4. Resolving Multiple Target Range Ambiguities 

 In this section, the detection of multiple targets is considered. In Figure 38, we 

see that the symmetrical residue for the two targets are periodic as , , .m k m k nmS S   If there 

are no missed targets in the detection process, the sequence of symmetrical residues 

within each modulus can be paired directly for the solution of the target’s range. To solve 

for the range of each target, the residues are paired as [2 3 4] for the first target and [2 2 

1] for the second target. From the CRT or lookup table, the range of the first target is 

1750 900 mR  ( 5a  ), and the range of the second target is 23900 4050 mR   

( 26a  ).  

 

Figure 38.   Resolving the range ambiguity of 2 targets using SNS for 

1 7,m  2 8,m  and 3 9.m   

In Figure 39, if the first set of symmetrical residues for the two targets are not 

detected, the symmetrical residue-P4 phase code still allow the two target range values to 

be determined. Note the symmetrical residues are determined but there is no information 

available to pair them up correctly. Additional information must be used. For example, 

for 1,m  we have 7 {2, 2},S   for 2 ,m  we have 8 {3, 2},S   and for 3m , we have 
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9 {4, 1}.S   To pair them up correctly, the magnitude information associated with each 

subcode (from the phase detector) can be used. 

 

Figure 39.   Missed detections of the first set of symmetrical residues. 

A more convenient method is to extend or fill in the symmetrical residues 

according to their code periods, which can be identified through examination of the 

symmetrical residues throughout the unambiguous range. This result gives the same 

symmetrical residue configuration as shown in Figure 38. Note that this method works 

even with the target symmetrical residues overlapping. 

5. Practical Considerations   

a. Detection of Target in Noise Using SNS Compression 

In this section, the performances of the 3N   SNS for 1 7,m  2 8,m   and 

3 9m   with ˆ 37SNSM   are examined by using MATLAB to plot the returned signal from 

two targets at ranges of 890 m and 2990 m, respectively. The transmitted signal have 

amplitude 1,A  carrier frequency 1 MHz,cf  sampling frequency 7 MHz,sf  1,cpp   

and 1 s.bt   The two different SNRs are examined. In Figure 40, the transmitted signal 

without noise for each channel is plotted. In Figure 41, the signal with SNR = 30 dB is 

plotted. For the data shown in Figure 42, the SNR is reduced to 0 dB. The phase 

sequences are changed significantly with the increase in noise power.  
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Figure 40.   Symmetrical residue-P4 signal without noise for 1 7,m  2 8,m  and 

3 9m   with ˆ 37,SNSM  1,A  1 MHz,cf  7 MHz,sf  1,cpp  and 1 s.bt   
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Figure 41.   Symmetrical residue-P4 signal with SNR = 30 dB for 1 7,m  2 8,m  and 

3 9m   with ˆ 37,SNSM  1,A  1 MHz,cf  7 MHz,sf  1,cpp  and 1 s.bt   
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Figure 42.   Symmetrical residue-P4 signal with SNR = 0 dB for 1 7,m  2 8,m  and 

3 9m   with ˆ 37,SNSM  1,A  1 MHz,cf  7 MHz,sf  1,cpp  and 1 s.bt   

In Figures 43 and 44, the range bin profiles for each channel are shown 

using SNR = 30 dB and SNR = 0 dB, respectively. The first target appears at range bin 

5a   with the paired symmetrical residues [2 3 4] (range 750–900 m). The second target 

appears at range bin 19a   with the paired symmetrical residues [2 3 1] (range 2850–

3000 m). Also shown is the noise signal that is compressed before the returned signals 

from the targets arrive at the receiver. In Figure 44, the amplitudes of compressed pulses 

degrade when the SNR is decreased to 0 dB. The effect from the noise signal degrades 

the ability to detect the targets similar to that discussed in the residue-Frank phase code 

radars. The average sidelobes from the higher modulus (e.g. 3 9m  ) are lower than those 

from the lower modulus (e.g., 1 7m   and 2 8m  ) due to the different processing gain. 

For 1 7,m  2 8,m   and 3 9,m   the processing gains are 1 7,cN  2 8,cN   and 3 9,cN   

respectively. 
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Figure 43.   Target detection for SNR = 30 dB showing the range bins for 1 7,m  2 8,m  and 3 9m   with two targets at 890 m and 

2990 m.  
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Figure 44.   Target detection for SNR = 0 dB showing the range bins for 1 7,m  2 8,m  and 3 9m   with two targets at 890 m and 

2990 m. 
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Like the RNS phase code, a situation in where the threshold detector 

might read the wrong residue bin can occur because the amplitudes of the compressed 

pulses fluctuate due to the noise. This results in the target range error. In Figure 45, the 

first target in channel 2 8m   is seen with the compressed pulse detected by CFAR 

(threshold level at 0.85) at symmetrical residue 8 2S   instead of 8 3.S   So, the paired 

terms are now [2 2 4] (no range match) instead of the true range at [2 3 4] (range 750–

900 m). This results in target range error. 

 
 
 
 
 

 

 

 

 

 

       

Figure 45.   Illustration of detection error from the threshold detector (CFAR) using 
the symmetrical residue-P4 for 1 7,m  2 8,m  and 3 9.m   

b. Required CW Signal Power Versus Required Output SNR  

In this section, the CW power required when using the symmetrical 

residue-P4 phase code sequences to detect the target at the fixed unambiguous range 

5550 muR   is presented. The relationship between the required RoSNR  and the average 

CW power CWP  is given by Equation (26).  

In Figure 46, the CW signal power as a function of the required output 

RoSNR  for 1 7,m   2 8,m   and 3 9m   is plotted with 1 MHz,RiB  1 s,bt   

CFAR might read symmetrical 
residue 2 instead of 3, resulting 
in a new paired terms [2 2 4] no 
matched bin instead of bin a = 5 
[2 3 4] 
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30 dB,t rG G  3 GHz,cf  0.1 m,  2100 m ,T  5 dB,RF  2 1,RT RRL L L   and 

ˆ / 2 5550 mu SNS bR cM t   (maximum detection range without ambiguity). 
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Figure 46.   Average power of the CW transmitter for symmetrical residue-P4 with 

1 7,m  2 8,m  and 3 9.m   

Note that the difference of the average power used in each channel is due 

to the PG. The channel 3 9,m   giving 9,c iPG N m    requires less power than the 

other channels, 1 7m   ( 7PG  ) and 2 8m   ( 8PG  ).  

c. Unambiguous Detection Range for a Constant Output SNR 

For a single P4 code, the unambiguous range is limited to only one code 

period ( / 2 / 2u b cR cT ct N  ). In this section, we compare the maximum unambiguous 

range using the symmetrical residue-P4 phase code sequences with the corresponding 

single P4 code sequences. The relationship between the average signal power CWP  and 

the maximum detection range maxR  is given by Equation (27).   
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In Figure 47, the detection range is plotted as a function of the required 

CW power using 3N   SNS for 1 7,m   2 8,m   and 3 9m   with 13 dB,RoSNR   

1 MHz,B  1 s,bt  30 dB,t rG G  3 GHz,cf  0.1 m,  2100 m ,T  0 290 K,T 
5 dB,RF  and 2 1.RT RRL L L    For comparison, the performance of each P4 code 

using the corresponding cN  is plotted. For the P4 code from Equation (28), 1 7cN   and 

2 8,cN  and 3 9.cN   The single P4 code has a limited unambiguous range, 1 7cN   gives 

8 63 10 10 7 / 2 1050 m,uR      2 8cN   gives 8 63 10 10uR    8 / 2 1200 m,  and 

3 9cN   gives 8 63 10 10uR    9 / 2 1350 m.   These values are less than using the 

3N   symmetrical residue-P4 phase code sequences, giving / 2
RNSu SNS bR cM t  

5550 m.  
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Figure 47.   Comparison of the maximum unambiguous range of a CW radar system 
for 13 dBRoSNR   using symmetrical residue-P4 phase code for 1 7,m   

2 8,m  and 3 9m   with the radar using each P4 code individually with the 

corresponding cN .  

Ru = 5550 m 
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In conclusion, the symmetrical-P4 phase code sequence presented in this chapter 

can be used to extend the unambiguous range of the CW polyphase radar systems. The 

issue concerned with the range bin error due to the fluctuation of the compression outputs 

was considered. In the next chapter, the relationship between the P4 code and the robust 

symmetrical number system (RSNS) is presented to examine the integer Gray code 

properties and how they can prevent an error in the detected symmetrical residues. 
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V. P4 POLYPHASE MODULATION AND THE ROBUST 
SYMMETRICAL NUMBER SYSTEM 

As discussed in Chapters III and IV, using the RNS and the SNS may give a large 

error in the target’s range when the threshold detector detects the wrong residue due to 

the presence of noise which can change the phase of the received signal. In this chapter, 

the RSNS is presented, and it is shown that the range errors in the robust symmetrical 

residue-P4 phase code sequence can be bounded to a small value due to the Gray code 

property of the RSNS [20]. The P4 phase expression is presented and examples are given 

to illustrate the target detection process with this new waveform.    

A. P4 PHASE CODE 

The details of the P4 phase code are discussed in Chapter IV. The P4 phase code 

is derived from a linearly frequency modulated waveform (LFMW). To calculate the 

phase sequence, Equation (28) is used. Recall the characteristics of the P4 code sequence 

is its superior PAF sidelobe structure and its Doppler tolerance properties.  

B. THE ROBUST SYMMETRICAL NUMBER SYSTEM   

The RSNS is a modular system consisting of 2N   integer sequences with each 

sequence associated with a coprime modulus im .  Due to the presence of ambiguities, the 

set of integers within each RSNS sequence do not form a complete residue system. A set 

of integers 0 1 1, , , (mod )my y y m  form a complete residue system if (mod )gy g m  for 

0,1, , 1g m  [21]. The ambiguities within each modulus sequence are resolved by the 

use of additional moduli and considering the vector of paired integers from all N 

sequences.  The RSNS is based on the sequence 

  , [0,1, 2, , 1, , 1, , 2,1]m hRS m m m      (38) 

for an integer h  such that 0 2 .h m   To form the N-sequence RSNS, each term in (38) 

is repeated N  times in succession. The integers within one folding period of a sequence 

are then 
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 , [0,0 ,0,1,1, ,1, , 1, , 1,

             , , , 1, , 1, ,1, ,1].

m hRS m m

m m m m m

  

 

   

   
 (39)                          

This results in a periodic sequence with a period of [20] 

 2 .mP Nm  (40) 

That is, each RSNS sequence contains im  integers with the folding period of each 

sequence equal to 2 iNm .  The construction of the N sequences ensures that any two 

successive RSNS vectors (paired integers from the N sequences) differ by only one 

integer, resulting in an integer Gray code property.  

Each sequence corresponding to im  is right (or left) shifted by 1is i   places. 

The chosen shift values { 1 2, , , Ns s s } must also form a complete residue system modulo 

N. Further, if each sequence is extended periodically with period 2Nm as 

, 2 ,m h n Nm m hRS RS   where  0, 1, 2,... ,n    then ,m hRS  is called a symmetrical residue of 

( 2h n Nm ) modulo 2Nm.   

The calculation of ˆ
RSNSM  and its location in the sequence are a function of N and 

the choices for im  and is . A closed-form solution for computing ˆ
RSNSM  for 2N   

moduli is reported in [22], and summarized as follows: 

For 1 2 13 and 1m m m    

 1 2 1
ˆ 3( ) 6 6 3.RSNSM m m m      (41) 

For 1 25 m m   and 2 1 2m m   

 1 2
ˆ 4 2 5.RSNSM m m    (42) 

For 1 25 m m   and 2 1 3m m   

 1 2
ˆ 4 2 2.RSNSM m m    (43) 

A closed-form solution for 3N  moduli of the form 2 1, 2 , 2 1z z z   is 

 2
1 1

3 15ˆ 7
2 2RSNSM m m    (44) 
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where z  is any integer and 1 3m  [23].  An efficient algorithm for computing ˆ
RSNSM  and 

its position for any general set of moduli is reported in [24]–[25].  

The shift values is  for each sequence do not affect the RSNS dynamic range but 

do make a difference in the location of the beginning position h  of the dynamic range 

and the ending position ˆ 1RSNSh M  . After choosing the beginning  h , it is useful to 

know the symmetrical residues at this point (e.g., to align the symmetrical residues for 

each sequence). Since each folding period consists of 2 iNm  integers, the symmetrical 

residues are determined by first subtracting off an integer number of 2 iNm  integers as 

 2  .
2i i

i

h
n h Nm

Nm

 
   

 
 (45) 

This value is then used to find the symmetrical residue ,im hRS  as [20]     

 ,

1
  

2 2 1.2 1

i i

i i i i
m h

i i i i ii i i

n s
s n Nm sN

RS
Nm s n Nm sNm N n s

N

  
                   
  

 (46) 

Let hX  be the vector of N  paired integers from each sequence at h where h is the 

position of the vector hX
 
within the RSNS.  In Table 7, h and hX  for an N = 3 RSNS 

system with [3 4 5]T
im   and right shift [0,1, 2]T

is   are shown. For this example, the 

RSNS dynamic range ˆ 43,RSNSM   and the position begins at 61h   [20]. The vector 

61 [2 4 1] .TX   The set of integers that lie within the dynamic range ˆ 43RSNSM   contain 

no ambiguities. Also note in Table 7 the integer Gray code property where any code 

transition results in just one integer changing value by 1 . Also shown is the bin index a  

which runs from 0 to 42 (total 43) that will be used to refer to the range bin detection. 
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Table 7.   The RSNS folding waveforms for 1 1 2 23 ( 0),  4 ( 1),m s m s    and 

3 35 ( 2)m s  (After [20]). 

h  61 62 63 64 65 66 67 68        96 97 98 99 100 101 102 103 

1 3m   2 2 3 3 3 2 2 2        2 2 2 3 3 3 2 2 

2 4m   4 4 4 3 3 3 2 2        1 0 0 0 1 1 1 2 

3 5m   1 0 0 0 1 1 1 2        1 1 2 2 2 3 3 3 

a  0 1 2 3 4 5 6 7        35 36 37 38 39 40 41 42 

 

C. ROBUST SYMMETRICAL RESIDUE-P4 PHASE CODE 

Similar to the SNS phase code, the RSNS folding waveform can be related to the 

P4 code sequence. The RSNS symmetrical residues ,m kRS    can be folded into the P4 

phase sequence by associating ,m kRS   with the P4 subcode phases.  The phase index k   

starts from 1 to 
RSNScN , where 

RSNScN  is the number of RSNS subcodes within one code 

period. The robust symmetrical residue-P4 phase sequence is given by 

  2

, ,2 2m k m kRS m m
m

   
     

 (47) 

and 

 2
RSNScN mN  (48) 

 

where N  is the number of channels.  For example, if we choose 4,m  2,N  and 

16.
RSNScN   The robust symmetrical residue-P4 phase code sequence is 4,m kRS  

 

{0,0,1,1,2,2,3,3,4,4,3,3,2,2,1,1}. Note that the folding sequence is similar to SNS with 

8,m   8, 0,1, 2,3, 4,3, 2,1m kS    except that the robust symmetrical residue-P4 phase is 

repeated N  times; there are N  phase values for each robust symmetrical-P4 phase for 

every P4 phase value. That is, both 1 and 2k k    of the RSNS corresponds to 1k   
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for the P4 phase. Consequently, the number of subcodes cN  for the P4 code is related to 

the number of RSNS subcodes 
RSNScN  as 

 .RSNSc
c

N
N

N
  (49) 

Also, the PG for the robust symmetrical residue-P4 waveform is   

 2 .RSNSc
RSNS c

N
PG N m

N
    (50) 

 

1. Example of Phase Sequence Calculation  

In this section, the phase code sequences from equations (47) and (28) are 

compared. Equation (47) is used to calculate the phase sequence for 4,m  2,N   and 

16.
RSNScN   Using the RSNS, we find that the robust symmetrical residues are 

4,m kRS  {0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 3, 3, 2, 2, 1, 1} where 1,2,...,16.k   In order to 

compare to the P4 phase sequence in Equation (28) with / 16 / 2 8
RSNSc cN N N   , k = 

1,2,3,…,8, the two phase sequences are shown in Table 8. 

Table 8.   Comparison of the robust symmetrical residue-P4 phase code sequence 
( 4,m  2,N  16

RSNScN  ) with the P4 phase code ( cN = 8).  

Phase 

index 

( k  ) 

Robust symmetrical reside-P4 phase code  

(47) 

P4 phase code (28) 

4,m kRS   4,m k  (rad) k
k (rad) 

1 0  20 4 4 01 2 4 2

        
  

1 

 

2(1 1)
(1 1) 01 8

 
     2 0  20 4 4 02 2 4 2

        
 

3 1  21 4 4 2.74893 2 4 2

        
 

2 

 

2(2 1)
(2 1) 2.74892 8

 
   

 4 1  21 4 4 2.74894 2 4 2

        
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5 2  22 4 4 4.71245 2 4 2

        
  

3 

 

2(3 1)
(3 1) 4.71243 8

 
     6 2  22 4 4 4.71246 2 4 2

        
 

7 3  23 4 4 5.89057 2 4 2

        
  

4 

 

2(4 1)
(4 1) 5.89054 8

 
     8 3  23 4 4 5.89058 2 4 2

        
 

9 4  24 4 4 6.28329 2 4 2

        
  

5 

 

2(5 1)
(5 1) 6.28325 8

 
     10 4  24 4 4 6.283210 2 4 2

        
 

11 3  23 4 4 5.890511 2 4 2

        
  

6 

 

2(6 1)
(6 1) 5.89056 8

 
     12 3  23 4 4 5.890512 2 4 2

        
 

13 2  22 4 4 4.712413 2 4 2

        
  

7 

 

2(7 1)
(7 1) 4.71247 8

 
     14 2  22 4 4 4.712414 2 4 2

        
 

15 1  21 4 4 2.748915 2 4 2

        
  

8 

 

2(8 1)
(8 1) 2.74898 8

 
   16 1  21 4 4 2.748916 2 4 2

        
 

 

2. ACF, PACF, and PAF 

In this section, we examine the ACF, PACF, and PAF of the signal. To compare 

the robust symmetrical reside-P4 phase code sequence with the P4 phase code sequence, 

the ACF, PACF, and PAF are examined for each waveform. In Figure 48, the robust 

symmetrical residues using 16,im  2,N  and 64
RSNScN   are shown. In Figure 49, the 

robust symmetrical residue-P4 phase code sequence residues are shown (using Equation 

(47)) with 1 kHz,cf  7 kHz,sf  and 2.cpp   Note that cpp  represents the number of 
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carrier cycles per phase change, and the cpp  value for the P4 is N  times that of the 

robust symmetrical residue-P4 phase code. For the P4, the subcode period is  

 .b
c

cpp
t

f
  (51) 

For the robust symmetrical residue-P4, the subcode period is 

 .b
c

cpp
t

Nf
   (52) 

From (51) and (52), we have 
 .b bt Nt  (53) 

Using Equation (48), we see that the phase sequence from the robust symmetrical 

residue-P4 for 16,im  2,N  and 64
RSNScN   is actually the same as the P4 phase code 

sequence using 32.cN   
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Figure 48.   RSNS residues ,m kRS  for modulus 16,  2,m N  and 64.
RSNScN    
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Figure 49.   The robust symmetrical residue-P4 phase code sequence using 16,m   

2,N  64
RSNScN   is shown with the relationship with the P4 code using 32.cN   

The power spectral density (PSD) of the signal is shown in Figure 50. The signal 

bandwidth B  is reduced by the factor of .N  With 2,cpp   the bandwidth of the robust 

symmetrical-P4 signal is / 1/ 500 Hzc bB f cpp t   (instead of 1 kHzB   when 

1cpp  ). In Figure 51, the ACF and PACF are plotted. The signal’s characteristics are 

the same as the P4 phase code sequence using 32,cN  2 ms.bt   In the ACF plot, the 

output gives PSL =  2
1020 log 2 / ( )cN   = 22 dB.  Note that the width of the mainlobe 

in the ACF plot is 2 bt  and is proportional to the number of moduli .N  That is, the higher 

the number of moduli ,N the broader the mainlobe. In Figure 52, the PAF is plotted. The 

PAF from the robust symmetrical residues using 16,im  2,N   and 64
RSNScN   in 

Figure 52a is compared to the PAF from the P4 code sequence using 32cN  in Figure 

52b. Both PAFs are the same. 

For P4 code, 
64

32
2

RSNSc
c

N
N

N
  
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Figure 50.   Power spectral density of the robust symmetrical residue-P4 signal using 
16,m  2,N  and 64

RSNScN   with 1 kHz,cf  7 kHz,sf  and 2.cpp   

0 10 20 30 40 50 60
-60

-40

-20

0

 / t'b

A
ut

oc
or

re
la

tio
n 

[d
B

]

0 10 20 30 40 50 60
-60

-40

-20

0

 / t'bP
er

io
di

c 
A

ut
oc

or
re

la
tio

n 
[d

B
]

 

Figure 51.   The ACF and PACF of RSNS phase-coded signal 
( 16,  2,  64

RSNScm N N   ) at the receiver with 1,rN   

1 kHz,cf  7 kHz,sf  and 2.cpp   

Bandwidth reduced to 500 Hz 

Doubled mainlobe 
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(a) 

 

(b) 

Figure 52.   The PAF of the signal for (a) the robust symmetrical residue-P4 phase 
code sequence using 16,m  2,N  64,

RSNScN  and 1 ms,bt  and (b) the P4 code 

using 32,cN  and 2 ms.bt   
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D. RESOLVING RANGE AMBIGUITIES USING N ROBUST 
SYMMETRICAL RESIDUE-P4 PHASE CODE SEQUENCES 

1. Block Diagram of the Robust Symmetrical Residue-P4 Radar System 

To extend the unambiguous detection range, 2N   coprime RSNS sequences are 

used. The block diagram of the radar using channelN   RSNS phase coding is shown in 

Figure 53. This diagram is similar to the residue-Frank phase code radar system except 

that now the RSNS moduli are used instead. Each phase sequence with the length equal 

to the dynamic range ˆ
RSNSM  is transmitted to detect the target. In the receiver, each code 

sequence is compressed with its corresponding reference phase code.  

 

 

 

 

 

 

 

 

Figure 53.   Block diagram for the radar using N  robust symmetrical residue-P4 phase 
code sequences. 

2. Transmitted and Reference Codes for Compression   

In this section, the transmission of a set of N  robust symmetrical residue-P4 

phase coded sequences is explained. Also, the use of the phase code sequences as the 

reference sequence for code compression is discussed. An example using 3N   RSNS 

moduli with 1 3,m  2 4,m  and 3 5m   is illustrated. The dynamic range for these RSNS 

moduli from Equation (44) is ˆ 43.RSNSM   The starting position h  and ending position 
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ˆ 1RSNSh M   are 61 and 103, respectively [20]. The robust symmetrical residues within 

the RSNS moduli are paired as shown in Table 7.  

The transmitted signal is shown in Figure 54. Each sequence has a length equal to 

the dynamic range. For 1 3,m   there are four robust symmetrical residues within the 

sequence, 3RS  0, 1,  2, and 3.  To create the P4 code sequence, one code period needs 

the number of subscodes 12
RSNScN Nm  2 3 3 18.    For 2 4,m   the robust 

symmetrical residues are 0, 1, 2, 3, and 4. The required number of subcodes is 

2 3 4 24.    For 3 5,m   the robust symmetrical residues are 0, 1, 2, 3, 4, and 5. The 

number of subcodes is 2 3 5 30.    As shown in the Figure 54, the beginning of each 

sequence is not necessarily the beginning of the phase code sequence 1k    (e.g., the 

beginning phase sequences for 1 3,m  2 4,m   and 3 5m   are 8,k  13,k   and 

30,k   respectively. The reference code sequences in the compressors can be chosen to 

be either starting at the beginning of the sending signal waveforms or the starting of 

phase sequence at 1.k    The importance is that the reference code has to have a length 

equal to the code period mT  for each channel in order to correctly calculate the code 

compression output.  In this example, we choose to use the reference signals starting from 

the beginning of the transmitted signal ( 8 7 1to  for 3,m    13 12 2to  for 4,m    and 

30 29 3 to  for 5m   ). The number of sequence periods is calculated as 

 ,

ˆ ˆ
ˆ .

2
RSNS

RSNS RSNS
p m

c

M M
N

N mN
   (54) 

Sending 43 subcodes, the modulus 1 3m   needs ,3
ˆ 43 /18 2.4pN   . For modulus 

2 4m   and 3 5,m   the number of subcodes 
RSNScN  are 24 and 30, respectively. Also, the 

number of transmitted code periods  are ,4
ˆ 1.8pN   and ,5

ˆ 1.4,pN   respectively. Here, 

only channel 1 3m   is sending more than one complete code period. So we can expect to 

see two compressed pulses from channel 1 3m   if all subcodes return back to the 

receiver (there will be only one pulse in the other two channels).  
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Figure 54.   Illustration of transmitted signal using 3N   robust symmetrical residue-
P4 phase code sequences for 1 3,m  2 4,m  and 3 5.m   

In Figure 55a, the RSNS folding waveforms for 1 3,m  2 4,m   and 3 5m  with 

ˆ 43RSNSM   are plotted. Also, the phase sequences from each channel are plotted in 

Figure 55b. Since , 2 ,m h n Nm m hRS RS   where  0, 1, 2, ,n    the phase sequences are 

periodic as , 2 ,m k n Nm m k    .  

In Figure 56, the compression and range bin detection process is illustrated for 

RSNS 1 3,m  and 1.rN   The returned phase coded signal is first processed by a filter 

matched to the rectangular pulse of duration .bt  The phase detector is used to calculate 

the phase of each sample and then pass it through the compressor. The output from the 

compression is then processed by the threshold detection to see whether the amplitude 

reaches the desired minimum value. If the threshold detector detects the pulse, the 

presence of the target will be saved with the robust symmetrical residue value .mRS In 

2 4m   and 3 5,m   the process is similar, except that the phase references have to match 

with the transmitted phase code that is being received.  
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Figure 55.   Plot of the RSNS using 1 3,m  2 4,m  and 3 5m  with ˆ 43RSNSM   for  

(a) folding waveforms, and (b) their phase sequences. 
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Figure 56.   Illustration of compression at the receiver and the range bin for RSNS 

1 3,m  18,cN  and 1rN  . 

3. Calculating the Target Range 

 Using all sequences, we map the paired terms to a specific range bin a  (similar to 

the residue-Frank code bin process in Chapter III). Continuing the example in the 

previous section for 1 3,m  2 4,m   and 3 5,m   we show the robust symmetrical residue 

paired values and the corresponding ranges in Table 9. The signal bandwidth is 

1 MHz,B   and the subcode period is / 0.33 s.b bt t N     The new expression formula 

for calculating the unambiguous range using RSNS is 

 ,

ˆ
.

2
RSNS b

u RSNS

cM t
R


  (55) 

For this example, the maximum unambiguous range is , 2150 m.u RSNSR   The range 

resolution is 50 m ( / 2bR ct  ). 
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Table 9.   Bin matrix and range intervals of 3 channel  RSNS for 1 3,m  2 4,m  and 

3 5.m   

Bin a  
1 3m  2 4m  3 5m  Range (m) Bin a  

1 3m  2 4m  3 5m  Range (m) 

0 2 4 1 0 – 50 23 2 3 3 1150 – 1200 

1 2 4 0 50 – 100 24 2 4 3 1200 – 1250 

2 3 4 0 100 – 150 25 2 4 2 1250 – 1300 

3 3 3 0 150 – 200 26 1 4 2 1300 – 1350 

4 3 3 1 200 – 250 27 1 3 2 1350 – 1400 

5 2 3 1 250 – 300 28 1 3 1 1400 – 1450 

6 2 2 1 300 – 350 29 0 3 1 1450 – 1500 

7 2 2 2 350 – 400 30 0 2 1 1500 – 1550 

8 1 2 2 400 – 450 31 0 2 0 1550 – 1600 

9 1 1 2 450 – 500 32 1 2 0 1600 – 1650 

10 1 1 3 500 – 550 33 1 1 0 1650 – 1700 

11 0 1 3 550 – 600 34 1 1 1 1700 – 1750 

12 0 0 3 600 – 650 35 2 1 1 1750 – 1800 

13 0 0 4 650 – 700 36 2 0 1 1800 – 1850 

14 1 0 4 700 – 750 37 2 0 2 1850 – 1900 

15 1 1 4 750 – 800 38 3 0 2 1900 – 1950 

16 1 1 5 800 – 850 39 3 1 2 1950 – 2000 

17 2 1 5 850 – 900 40 3 1 3 2000 – 2050 

18 2 2 5 900 – 950 41 2 1 3 2050 – 2100 

19 2 2 4 950 – 1000 42 2 2 3 2100 – 2150 

20 3 2 4 1000 –1050      

21 3 3 4 1050 –1100      

22 3 3 3 1100 – 1150      
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 In Figure 57, an example of target detection for 1 3,m  2 4,m  and 3 5m   is 

illustrated. The return signal is in the range bin 5a   or 270 m. First, the phase code 

signal of the modulus 1 3m   (top) is compressed. Recall that the RSNS has a width of 

the compression output that covers 3N   code sequences at robust symmetrical residues 

3RS   3, 2, and 2. So the threshold detection has to decide to take one bin, e.g., at the 

peak of the compressed pulse, giving the robust symmetrical residue 3 2.RS   The 

process is the same for the channels 2 4m   and 3 5.m   The robust symmetrical residues 

are 4 3RS   and 5 1,RS   respectively. The three robust symmetrical residues are paired 

as [2 3 1] and must be converted to the decimal RSNS bin number. In Table 9, the 

corresponding range is between 250 m and 300 m (bin 5a  ).   

 

Figure 57.   Illustration of target detection by using the range bin matrix for RSNS-P4 
code with 1 3,m  2 4,m  and 3 5.m   
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4. Resolving Multiple Target Range Ambiguities 

In Figure 58 for 1 3,m  the compressed pulses are repeated as the returned code 

runs through the reference code in the compressor. The two target returns overlap one 

another at range bins 19,  20,  and 21a   and are ambiguous. Next we resolve the range 

ambiguity by using 3 channels. If the threshold detector is set to measure at the peak of 

the compression output, the robust symmetrical residues from the first target are paired as 

[3 4 0], giving a range bin 2a   (range 50–100 m). Similarly, the robust symmetrical 

residue paired terms from the second target are [3 2 4], giving a range bin 20a   (range 

1,000–1,050 m). The two targets have different paired terms, so the range ambiguity can 

be resolved. 

 

Figure 58.   Resolving the range ambiguity of 2 targets using RSNS for 

1 3,m  2 4,m  and 3 5.m   

As mentioned in Chapters III and IV, we can resolve the targets even if the first 

set of the residues are not detected. Imagine we use a higher set of RSNS moduli and the 

dynamic range is higher with the result that the code period repeats. To find the true 

range of the targets that are missed, the magnitude information or the filling in the range 

bin according to the code periodicity can be used. 
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5. Practical Considerations   

a. Detection of Target in Noise Using RSNS Compression 

In this section, the performances of the 3N   RSNS for 1 3,m  2 4,m   

and 3 5m   with ˆ 43RSNSM   are examined by using MATLAB to plot the returned signal 

from two targets at ranges of 140 m and 1040 m. The transmitted signal has amplitude 

1,A  carrier frequency 1 MHz,cf   sampling frequency 9 MHz,sf   1,cpp  1 s,bt   

and 0.33 s.bt    In Figure 59, the transmitted signal without noise for each channel is 

plotted. In Figure 60, the signal with SNR = 30 dB is plotted. The signal power is high 

compare to the noise power. As a result, the noise signal does not significantly affect the 

phase sequences. In Figure 61, the SNR is reduced to 0 dB. The phase sequences are 

changed significantly. 
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Figure 59.   Robust symmetrical residue-P4 signal without noise for 

1 3,m  2 4,m  and 3 5m   with ˆ 43,RSNSM  1,A  1 MHz,cf  9 MHz,sf   

1,cpp  and 0.33 s.bt    
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Figure 60.   Robust symmetrical residue-P4 signal with SNR = 30 dB for 

1 3,m  2 4,m  and 3 5m   with ˆ 43,RSNSM  1,A  1 MHz,cf  9 MHz,sf   

1,cpp  and 0.33 s.bt    
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Figure 61.   Robust symmetrical residue-P4 signal with SNR = 0 dB for 

1 3,m  2 4,m  and 3 5m   with ˆ 43,RSNSM  1,A  1 MHz,cf  9 MHz,sf   

1,cpp  and 0.33 s.bt    
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In Figures 62 and 63, the range bin profiles from two targets are shown 

using SNR = 30 dB and SNR = 0 dB, respectively. The first target appears at range bin 

2a   with the paired robust symmetrical residues [3 4 0] (range 100–150 m). The second 

target appears at range bin 20a  , giving paired terms [3 2 4] (range 1000–1050 m). As 

shown in Figure 63, the amplitudes of the compressed pulses degrade when the SNR is 

decreased to 0 dB. Also, the sidelobes from the compression output are higher when the 

noise power is increased. Another important point is that the average sidelobes from the 

higher modulus (e.g. 3 5m  ) are lower than those from the lower modulus (e.g. 1 3m   

and 2 4m  ) due to the different processing gains. For 1 3,m  2 4,m   and 3 5,m   the 

processing gains are 1 12 6,cN m  2 22 8,cN m   and 3 32 10,cN m   respectively.
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Figure 62.   Target detection for SNR = 30 dB showing the range bins for 1 3,m  2 4,m  and 3 5m   with two targets at 140 m and 

1040 m.  

Target 1 
at [3 4 0] 
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RSNS bin  The ambiguities present if only 
one modulus is used  Noise 
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Figure 63.   Target detection for SNR = 0 dB showing the range bins for 1 3,m  2 4,m  and 3 5m   with two targets at 140 m and 

1040 m. 
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Using N  robust symmetrical residue-P4 phase code sequences allows 

control of the range coding error. The threshold detector might read the wrong robust 

symmetrical residue bin because the amplitudes of the compressed pulses are fluctuating. 

However, the paired terms from the robust symmetrical residues will change only one 

position (the Gray code property). In Figure 64, the compressed pulse from the first target 

in 2 4m   is detected by CFAR (threshold level at 0.85) at the robust symmetrical residue 

4 3RS   instead of 4 4.RS   The paired terms are now [3 3 0] (range 150–200 m) instead 

of the true range at [3 4 0] (range 100–150 m). The maximum range error is only one 

range bin or 50 m. 

 

 

 

 

        

Figure 64.   Illustration of detection error from the threshold detector (CFAR) using 
the robust symmetrical residue-P4 for 1 3,m  2 4,m  and 3 5.m   

b. Plot of Required Signal Power Versus Required SNR Output  

In this section, the power required when using the robust symmetrical 

residue-P4 phase code sequence to detect the target at the maximum unambiguous range 

is presented (given the fixed unambiguous range 2150 muR  ). The relationship 

between the required RoSNR  and the average CW power CWP  is given by Equation (26).   

In Figure 65, the CW signal power as a function of the required RoSNR  for 

1 3,m  2 4,m   and 3 5m   is plotted with 1 MHz,RiB   1 s,bt   0.333 s,bt    

CFAR might read residue 3 
instead of 4, resulting in a new 
paired terms [3 3 0] bin a = 3 
instead of bin a = 2 [3 4 0] 
*error only one bin  
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30 dB,t rG G  3 GHz,cf  0.1 m,  2100 m ,T  5 dB,RF  and 2 1,RT RRL L L    

and max
ˆ / 2 2150 mu RSNS bR R cM t    (maximum detection range without ambiguity). 
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Figure 65.   Average power of the CW transmitter for robust symmetrical residue-P4 
with 1 3,m  2 4,m  and 3 5.m   

Note that the difference of the average power used in each channel is due 

to the PG. The channel 3 5,m   giving 2 10,PG m   requires less power than the other 

channels, 1 3m   ( 6PG  ) and 2 4m   ( 8PG  ).  

c. Unambiguous Detection Range for a Constant Output SNR 

For a single P4 code, the unambiguous range is limited to only one code 

period duration / 2 / 2.u b cR cT ct N   In this section, we compare the maximum 

unambiguous range using the robust symmetrical residue-P4 phase code sequence with 

the corresponding single P4 code sequences. The relationship between the average signal 

power CWP  and the maximum detection range maxR  is given by Equation (27).  
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In Figure 66, the detection range is plotted as a function of the required 

CW power using 3N   RSNS for 1 3,m  2 4,m   and 3 5m   with a constant 

13 dBRoSNR  , 1 MHzB  , 1 sbt  , 0.333 sbt   , 30 dBt rG G  , 3 GHzcf  , 

0.1 m  , 2100 mT  , 0 290 KT  , 5 dBRF  , and 2 1RT RRL L L   . Also, the 

performance of each P4 code using the corresponding cN  is plotted. For the P4 code 

from Equation (28), 1 , / 18 / 3 6,c c RSNSN N N   2 8,cN  and 3 10.cN   The single P4 

codes have a limited unambiguous range; 1 6cN   gives 8 63 10 10uR     6 / 2  

900 m, 2 8cN   gives 8 63 10 10uR    8 / 2 1200 m,   and 3 10cN   gives uR   

8 63 10 10  10 / 2   1500 m. These values are less than achieved using the 3N   

robust symmetrical residue-P4 phase code sequences, ˆ / 2 2150 m.
RSNSu RSNS bR cM t   
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Figure 66.   Comparison of the maximum unambiguous range of CW radar system  for 
13 dBRoSNR   using robust symmetrical residue-P4 code for 1 3,m     

2 4,m  and 3 5m   with the radar using each P4 code individually for the 

corresponding /
RSNSc cN N N .  
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One single period P4 code 
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In conclusion, the robust symmetrical-P4 phase code sequence presented 

in this chapter can be used to extend the unambiguous range of CW polyphase radar 

systems. The issue concerned with the range bin error due to the fluctuation of the 

compression outputs is also resolved. The integer Gray code properties can prevent an 

error in the detected robust symmetrical residues. In the next chapter, the concluding 

results from using the number theoretic transforms from Chapters III to V to extend the 

unambiguous range in CW polyphase radar systems are discussed. 
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VI. CONCLUDING RESULTS AND RECOMMENDATIONS 

A. EQUATION SUMMARY  

The summary of equations used to compute the signal and range detection 

parameters for each modular phase code (residue-Frank phase code, symmetrical residue-

P4 phase code, and robust symmetrical residue-P4 phase code) that results in extending 

the unambiguous range are shown in the Table 10. The equations are used for any of the 

coprime system moduli.  

Table 10.   Summary of equations for each modular phase code. 

Parameters RNS-Frank SNS-P4 RSNS-P4 

Phase sequence 

'( , )k k   

2 1
, ,

k
Rm k m km m




 
  

 
 2

,, 42

m
S mm km k m


         

  2,, 22
RS m mm km k m


 

     

Subcode 

period ( , )b bt t  

/b ct cpp f  /b ct cpp f  / /b b ct t N cpp Nf    

Signal 

bandwidth ( )B  

1/ bt  1/ bt  1/ 1/ ( )b bt Nt  

The number of 

subcodes 

( , )
RSNSc cN N  

2m  m  2mN  

Processing gain 

( PG ) 

2m  m  2m  

Code period ( )T  2
bm t  bmt  2 bmNt  
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Using a set of moduli, we can extend the maximum detection ranges beyond those 

of individual moduli. The equations for calculating the dynamic range, the number of 

code periods within the dynamic range, the range resolution, and the unambiguous range 

are shown in Table 11.  

Table 11.   Summary of equations for channelN   modular number system. 

Parameters RNS-Frank SNS -P4 RSNS -P4 

Dynamic range 

ˆ ˆ( ,  , )RNS SNS RSNSM M M

 

1

N

i
i

m

  min  (even)

2 2 1

1 1
min  (odd)

2 21 1

j Nm
m mi il l

l l j

j N
m mi il l

l l j

  
  

    

  
  

    

3 152
7  for1 12 2

m m 

3N  moduli of the 

form 2 1, 2 , 2 1z z z   

The number of 

code periods 

( ,
ˆ

p mN ) 
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RNSM

m
 

ˆ
SNSM

m
 

ˆ

2
RSNSM

Nm
 

Range 

resolution ( )R  2
bct

 
2

bct
 

2
bct

 

Unambiguous 

range ( uR ) 

ˆ

2
bcMt

 
ˆ

2
SNS bcM t

 
ˆ

2
RSNS bcM t

 

 

In the SNS and RSNS, the dynamic range is not necessarily greater with an 

increasing value of the moduli values. For example, the dynamic range of a 3-channel 

SNS system with moduli [7, 13, 16] is ˆ 69.SNSM   On the other hand, the dynamic range 

of a 3-channel RSNS system with moduli [7, 13, 19] is only ˆ 55.RSNSM   That is, 1m  and 

2m  are equal, but the last RSNS modulus is 3 19,m   which is larger than the last SNS 

modulus 3 16.m   However, the dynamic range of the RSNS is less than the SNS.  
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B. COMPARISON OF 3-CHANNEL MODULAR NUMBER SYSTEMS WITH 
THE SAME DYNAMIC RANGE 

In Table 12, a comparison of each modular number system having the same 

dynamic range (60), the same subcode period (1 µs), the same unambiguous range (9000 

m), and the same range resolution is shown. Note the bandwidth for the RSNS-P4 system 

is smaller since it is contains N  phase values that are equal.  

Table 12.   Comparison of each modular phase code in which each has the same 
dynamic range = 60, and ,  1 sb bt t   . 

Parameters RNS-Frank SNS-P4 RSNS-P4 

Set: Dynamic range 60 60 60 

Set: Subcode period (µs) 1 1 1 

Bandwidth (MHz) 1 1 0.33 

Unambiguous range (m) 9,000 9,000 9,000 

Range resolution (m) 150 150 150 

Moduli [3, 4, 5] [7, 13, 29] [3, 5, 7] 

Numbers of phase values [3, 4, 5] [4, 7, 15] [4, 6, 8] 

code period (µs) [9, 16, 25] [7, 13, 29] [18, 30, 42] 

Number of code periods  [6.67, 3.75, 2.4] [8.6, 4.6, 2.1] [3.3, 2, 1.4] 

 

The RNS compared to the SNS is more efficient in covering uR  since fewer code 

periods are required in the compression. The phase values from the phase detector are 

also less for the same .uR Comparison with the RSNS shows that it is the most efficient of 

all schemes due to the fewer number of phase values used, the smallest number of code 

periods required in the compression and its Gray code properties that limit the range error 

to one range bin. In terms of complexity, the size of the compressor is longest for the 
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RSNS since the dynamic range incorporates the fewest code period (assuming 1rN  ). 

The SNS requires the fewest code periods in the compressor. 

C. COMPARISON OF 3-CHANNEL MODULAR NUMBER SYSTEMS WITH 
THE SAME MODULI  

In Table 13, each number theoretic transform that has the same set of moduli [3 4 

5] with the subcode period equal to 1 µs is shown.   

Table 13.   Comparison of each modular number system in which each has the same 
moduli [3 4 5], and ,  1b bt t s   

Parameters RNS-Frank SNS-P4 RSNS-P4 

Set: Moduli [3 4 5] [3 4 5] [3 4 5] 

Dynamic range (units) 60 11 43 

Set: Subcode period (µs) 1 1 1 

Bandwidth (MHz) 1 1 0.33 

Unambiguous range (m) 9,000 1,650 6,450 

Range resolution (m) 150 150 150 

Number of phase values [3, 4, 5] [2, 3, 3] [4, 5, 6] 

Number of code periods  [6.67, 3.75, 2.4] [3.7, 2.8, 2.2] [2.4, 1.8, 1.4] 

 

In the RNS phase code, the extended unambiguous range is maximized due to its 

maximum dynamic range. In the SNS phase code, the number of phase values is lowest 

due to the construction of the SNS integers within the modulus. However, it gives the 

shortest unambiguous range since its dynamic range is the smallest. The RSNS gives the 

next largest unambiguous range of the three schemes. The Gray code properties make it 

an attractive choice.  
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D. RANGE DETECTION ERROR CONTROL 

As shown, only the robust symmetrical residue-P4 phase code sequence could 

prevent a range error due to the noise changing the phase of the return signal. This is due 

to the Gray code property that the RSNS has. For the other modular phase codes (residue-

Frank and symmetrical residue-P4), the range error is large when the target straddles two 

range bins. The higher set of moduli might help control the range error due to its higher 

processing gain. However, increasing the modular number would increase the number of 

phase steps, resulting in increasing receiver’s complexity and a longer code period, 

resulting in higher compression loss and required dwell time on targets.   

E. RECOMMENDATIONS FOR FUTURE WORK 

The modular phase codes used in this thesis were shown to be able to extend the 

unambiguous range in CW polyphase modulation radar systems. The applications of 

these modular phase codes in different types of radar systems would be interesting to 

study. Also, the performance of each moduli set with the different trade-offs should be 

further considered. The Doppler tolerant property that the P4 code has could also be 

investigated for the symmetrical residue-P4 and the robust symmetrical residue-P4 phase 

code sequences. Finally, the hardware implementation has to be examined and a 

simulation that includes hardware imperfections and errors must be conducted. 
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APPENDIX – LIST OF VARIABLES 

There are many variables used throughout this thesis. All of the important 

variables are listed here to provide unambiguous meanings. 

Table 14.   List of variables. 

Variable Meaning 

a Range bin index 
c  Speed of light (m) 
cpp  Number of carrier cycles within a subcode 

cf  Carrier frequency 

sf  Sampling frequency (Hz) 

h Integer position in RSNS 
k Phase index 

Bk  
Boltzman’s constant (joule/K) 

m Coprime modulus 

im  Coprime moduli 

bt  Subcode period (s) 

B  Bandwidth (Hz) 

RiB  
Receiver’s input bandwidth (Hz) 

RF  
Receiver noise factor 

rG  
Gain of receiving antenna 

tG  
Gain of transmitting antenna 

RRL  
Loss between the radar’s antenna and receiver 

RTL  
Loss between the radar’s transmitter and antenna 

2L  
Two-way atmospheric transmission loss 

M Frank frequency step 

RNSM  Dynamic range of the RNS 

ˆ
SNSM  Dynamic range of the SNS 

ˆ
RSNSM  Dynamic range of the RSNS 

N Number of coprime modular sequences 

cN  Number of subcodes within a code period 

cRSNSN  Number of subcodes within a code period (RSNS) 

pN  Number of code periods returned from target 
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Variable Meaning 

,
ˆ

p mN  Number of code periods used for modulus m  

rN  Number of receiver reference codes 

PG Processing gain 

PSL Peak-to-sidelobe level 

RNSP  Period of a single RNS sequence 

SNSP  Period of a single SNS sequence 

RSNSP  Period of a single RSNS sequence 

R  Range to target (m) 

uR  Unambiguous range (m) 

,u RNSR  
Unambiguous range of RNS (m) 

,u SNSR  
Unambiguous range of SNS (m) 

,u RSNSR  
Unambiguous range of RSNS (m) 

.m kR RNS residue kth for modulus m 

,m kRS  RSNS symmetrical residue kth for modulus m 

,m kS
 

SNS symmetrical residue kth for modulus m 

RiSNR  
Input signal-to-noise ratio 

RoSNR  
Output signal-to-noise ratio 

T Code period (s) 

imT  Code period for coprime modulus im  

V Target velocity (m/s) 
 Roundtrip time delay (s) 

PW  Pulse width 

 Signal wavelength (m) 
 Doppler frequency (Hz) 

R  Range resolution (m) 

T  
Target’s radar cross section (m2) 

,m k  Phase code for modulus m with index k 
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