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Abstract

A large body of research exists around the idea of channel shortening, where a prefilter is designed to reduce

the effective channel impulse response to some smaller number of contiguous taps. This idea was originally

conceived to reduce the complexity of Viterbi-based maximum-likelihood equalizers. Here, we consider a

generalization of channel shortening which we term “channel sparsening”. In this case, a prefilter is designed

to reduce the effective channel to a small number of nonzero taps which do not need to be contiguous. When

used in combination with belief-propagation-based maximum a posteriori (MAP) detectors, an analogous

complexity reduction can be realized. We address the design aspects of sparsening filters, including several

approaches to minimize the bit error rate of MAP detectors. We devote attention to the interaction of the

sparsening filter and detector, and demonstrate the performance gains through simulation.

1



Keywords: belief propagation; turbo equalization; channel sparsening; channel shortening.

1 Introduction

Intersymbol inteference (ISI) caused by frequency selective channels is one of the chief impairments

faced by modern, high data-rate communication receivers. The issue of compensating for ISI has been

studied at length over the past five decades, and a wide range of strategies are available for use by

communication system designers. For optimal performance, a maximum a posteriori (MAP) or maximum-

likelihood (ML) sequence estimator may be implemented using the Bahl-Cocke Jelinek-Raviv (BCJR) or

Viterbi algorithm, respectively. These optimal approaches, however, are exponentially complex in the

number of channel coefficients, and consequently suboptimal ISI compensation techniques are used in

most applications.

Sparse impulse responses are characterized as having only a small fraction of nonzero coefficients.

This behavior can arise, for example, in underwater acoustic communication channels or in terrestrial

communication channels over hilly terrain. Compensation of sparse ISI channels is considerably chal-

lenging since these channels can often have very long delay spreads, and optimal approaches like BCJR

and Viterbi are therefore infeasible. Recently, a MAP detector employing belief propagation (BP) was

proposed [1] for ISI compensation in sparse channels.

The proposed scheme is attractive because it permits near-optimal performance with complexity that

depends only on the number of nonzero coefficients. The complexity of this algorithm is exponential

in the number of nonzero channel coefficients, however, so it may still be prohibitively complex for the

majority of applications. A hybrid version of this detector was proposed [2] which uses a linear prefilter

in the receiver just before the BP-based MAP detector. By designing the prefilter so that the combined

response of the sparse channel and prefilter has a reduced, limited number of nonzero coefficients, the

use of the BP-based detector becomes feasible in a wider range of applications.
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The utility of the hybrid structure in [2] has been demonstrated through an extensive simulation

study that showed significant error-rate improvement in sparse channels when compared with competing

approaches that employ decision-feedback equalizers. While the simulation results are encouraging, rela-

tively little attention is paid to the interaction of the prefilter and the BP-based detector. For example,

the prefilter is arbitrarily designed so that the taps of the combined response of the sparse channel and

prefilter coincide with the dominant taps in the original channel, yet no motivation is provided for this

choice.

In this work, we focus on the design of sparsening prefilters for use with soft-input soft-output MAP

detectors of the form considered in [1, 2]. While [1, 2] primarily focused on the case where the original

channel is sparse, we note that even non-sparse channels can be sparsened with a simple linear, finite

impulse response (FIR) filter. Consequently, our work can be applied in general situations, even where the

original channel is not sparse. We address the issue of sparsening filter design with the goal of minimizing

the detector bit error rate (BER). We consider the interaction of the sparsening filter and BP detector,

and develop a practically-implementable sparsening filter design method.

We note that channel sparsening filters can be seen as a generalization of so-called channel shortening

filters proposed in [3–7]. Given an FIR channel h of length Lh, the channel shortening problem roughly

amounts to designing a filterw so that the energy in the combined response h⋆w is concentrated in µ < Lh

contiguous taps. Channel sparsening is nearly the same, though the µ taps which contain the majority of

the energy are not constrained to be contiguous. Furthermore, while much of the recent interest in channel

shortening has been for application to multicarrier systems, the original idea of channel shortening [3]

was proposed for a reduced-complexity hybrid prefilter/ML detector which bears some resemblance to

the one considered here. More recent works such as [8] have considered channel shortening in conjunction

with iterative MAP detectors. Again, however, these works impose a constraint that the taps in the

combined channel/filter response must be contiguous. One very recent work [9] has considered use of

matching pursuit to find a sparse, non-contiguous target impulse response (TIR), and it is shown to yield

a lower mean squared error (MSE) compared to the conventional contiguous approach.
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In Section 2 we present the basic system model, and in Section 3 we describe the basic operation of the

BP detector. Sections 4 through 6 focus on the design aspects of the channel sparsening filter (CSF), while

Section 7 presents simulation results which compare various sparsening filter design methods. Finally,

Section 8 concludes the article.

2 System model

We consider the system model shown in Figure 1. A sequence of symbols x[k] drawn from an M -ary

alphabet is transmitted through an intersymbol interference channel denoted h—which may or may not

be sparse—and additive white Gaussian noise (AWGN) n[k] with variance σ2
n is added. At the receiver,

we employ a detector which consists of the cascade of a CSF which we denote w, followed by a belief-

propagation-based detector [1]. As mentioned, the BP detector is exponentially complex in the number

of nonzero channel taps. Consequently, the purpose of the CSF is to reduce the number of nonzero

coefficients in the effective channel to some specified quantity µ so that use of the BP detector becomes

practically feasible.

Let c = h⋆w be the effective channel (or combined response) where the ⋆ operator denotes convolution.

We assume that the channel, CSF, and effective channel are modeled as FIR filters of lengths Lh, Lw,

and Lc = Lh + Lw − 1, respectively. Thus, the received data is given by

y[k] =

Lh−1∑
l=0

h[l]x[k − l] + n[k].

After filtering by the CSF, the data is

z[k] =

Lw−1∑
l=0

w[l]y[k − l]

=

Lc−1∑
l=0

c[l]x[k − l] + v[k]. (1)

where the CSF output noise, which is colored, is given by v[k] = n[k] ⋆ w[k]. Finally, the output of the

CSF is passed to the soft-input soft-output BP detector which outputs likelihood values that can be used

to make decisions as to what was transmitted.
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In this work, we focus our attention on the optimal design of the sparsening filter. As such, we

make the simplifying assumption that the channel h is known perfectly to the receiver. It is rather

straightforward, however, to extend our proposed design method to adaptive implementations which can

be employed in situations where the channel is unknown and/or slowly time-varying.

3 Belief propagation detector

Before discussing the sparsening filter design in detail, we first provide some details about the BP detector.

The BP algorithm used in the detector is in the class of message passing algorithms, and is sometimes

called the sum-product algorithm [1]. By representing the ISI channel as a factor graph, the BP algorithm

can be used to implement MAP detection, thereby finding the sequence x which maximizes the joint a

posteriori probability density function P (x|y). The BP algorithm proceeds iteratively, and computes log

likelihood ratios of the transmitted bits which become more reliable with each iteration. After a sufficient

number of iterations, the log likelihood ratios can be used to make bit decisions.

To compute the likelihood ratios, the BP detector needs to know the effective channel impulse re-

sponse. Given a finite-length filter h, it is not possible in general to find a finite-length filter w such

that the combined response is exactly equal to some prescribed FIR response c since the problem is

overdetermined.a In other words, in designing the CSF filter w, we must accept that it is not possible

to perfectly sparsen the channel so that the effective channel c consists of only µ nonzero taps. Conse-

quently, the remaining Lc − µ taps of c will not be exactly equal to zero in general unless the CSF is

chosen to have infinite length. Nevertheless, to keep computational complexity at the level prescribed by

the choice of µ, we only use the largest µ taps of c in the computation of the likelihood ratios used inside

the BP detector. As such the residual ISI contribution from the smallest Lc − µ taps of c in (1) will be

treated as noise by the BP detector. A sufficiently large choice of CSF length Lw, however, can ensure

arbitrarily small additional ISI.

Since the BP detector is typically implemented in the log domain, the majority of its complexity is
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due to the many summation operations which must be performed [1]. If the BP algorithm proceeds over

N total iterations, the total complexity requires on the order of N(µ + 1)Mµ+1 summations, where M

is the size of the source alphabet and µ is the number of significant effective channel taps used in the

detection. As such, the complexity of the BP is exponential in µ, and so the system designer can specify

the total complexity by appropriate choice of µ.

We note that the BP detector performance only truly coincides with the MAP detector when two

conditions are met: (1) there are no cycles in the factor graph corresponding to the channel, and (2)

the additive noise is white and Gaussian. In general, the first of these conditions is never satisfied. In

practice cycles have been shown to be of little concern since they are a low probability event (in the

case of potentially detrimental length 4 cycles) [10], or the cycles themselves do not pose a noticeable

performance penalty [1]. The second condition on the noise, however, is more serious for this hybrid

structure. Since the AWGN gets colored by the CSF, the noise at the input of the BP detector is no

longer white.b We will address this issue in the sequel.

We emphasize that the CSF does not change the operation of the BP detector. As the CSF changes

the effective channel taps, however, and passes the µ largest effective channel taps to the BP detector,

the CSF obviously affects the behavior and performance of the combined filter/detector structure. Since

the BP detector itself is unaltered from [1], it can accommodate a system employing channel codes such

as LDPC encoding considered in [1], or can readily be extended to the MIMO case with, for example,

space-time coding as in [2,8]. Since our focus is on the design of the CSF, we consider an uncoded system.

4 Channel sparsening

In the design of the CSF w, the goal is for the number of significant (nonzero) taps of c to be µ or less,

regardless of where they lie in c or whether they are contiguous or not. We note that µ ∈ {1, 2, . . . , Lh} is

a parameter chosen by the system designer. If µ = 1, then the detector coincides with traditional linear

equalization since the goal of the CSF design is to make the effective channel be a single spike. At the
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other extreme, the choice µ = Lh corresponds to “pure” BP detection as in [1] since the CSF need not do

any sparsening and can be a simple unity gain filter. Larger choices of µ will result in an exponentially

more complicated BP detector, but will also result in better BER performance.

Ideally, we would like to choose w to minimize the system BER. As no closed form expression for

the BER exists, direct minimization of BER is intractable. Consequently, we consider choosing w to

maximize a proxy for the BER which we term the Sparse Shortening SNR (SSSNR). In the sequel, we

will assess the validity of this metric by measuring the proximity of the SSSNR-optimal filter to the

BER-optimal filter for some low-dimensional examples. Accordingly, we define the SSSNR as the ratio

of the useful signal power coming out of the µ large taps of c over the total power of the received signal

plus noise,

JS(w) =
σ2
x ∥large taps of c∥2

σ2
x ∥large taps of c∥2 + σ2

x ∥small taps of c∥2 + σ2
v

=
σ2
x

∑
k∈S |ck|2

σ2
x

∑
k |ck|

2
+ E

{
|v[k]|2

} (2)

where S is the set of the locations of the desired largest µ taps in c. The numerator of (2) is the signal

power scaled by the power of the µ significant taps in c, and the denominator contains the total received

signal power. Ideally, the energy in the significant taps,
∑

k∈S |ck|2, will make up almost all of the energy

in the channel,
∑

k |ck|
2
, since we want all other taps to be as close to zero as possible. Ignoring noise for

a moment, 0 ≤ JS ≤ 1, and the only way to force JS → 1 it to make all but µ taps in c go to zero. Adding

in the noise term to the denominator ensures that the residual self-interference is weighted comparably

to the noise, so that the excess taps are not made small at the expense of noise amplification.

The SSSNR in (2) is analogous to Melsa’s Shortening SNR (SSNR) [4], with a few distinctions: the

set of desired taps S is not contiguous, the denominator includes the noise power, and the denominator

includes both the desired and undesired taps (rather than just the latter). The last distinction is for

numerical reasons, and it can be shown that keeping or omitting the desired taps in the denominator

leads to the same solution in this type of problem [11, III.B].
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LetH be the Lc×Lw tall convolution matrix of h, i.e., a Tœplitz matrix with first column [hT ,01×Lw−1]
T

and first row [h(0),01×Lw−1]. Then let HS be the µ × Lw matrix obtained by extracting the µ rows of

H corresponding to the desired nonzero tap locations, k ∈ S. As an example, for Lw = 3, Lh = 3, µ = 2,

and S = {1, 3},

H =



h0 0 0

h1 h0 0

h2 h1 h0

0 h2 h1

0 0 h2


, HS =

h0 0 0

h2 h1 h0



With these definitions, the combined response is c = H ·w, and the values of the desired nonzero taps

are contained in the vector cS = HS ·w. Then we have

∑
k∈S

|ck|2 = ∥HS ·w∥2

∑
k

|ck|2 = ∥H ·w∥2 ,

and the SSNR from (2) becomes

JS(w) =
wHBSw

wHCw
(3)

BS = σ2
xH

H
S HS

C = σ2
xH

HH+ σ2
nI.

The SSSNR expression in (3) is a generalized Rayleigh quotient. The value of w that maximizes this

quantity, i.e., the SSSNR-optimal CSF for a given set S, is computed by finding the generalized eigenvector

of the matrix pair (BS ,C) corresponding to the largest generalized eigenvalue. An algorithm for this

general problem is given in [12, Section 8.7.2].

The method used to compute the tap values in [2], which is based on [8], is mathematically similar to

our approach, with two key differences. Most importantly, the set S is fixed in [2]. Second, [2] uses the

concept of a TIR. The optimal CSF is written as a function of the TIR, and then the TIR is optimized.
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(This is implicit within [2, Equation (25)].) The choice of CSF is “optimal” in the sense that it minimizes

the MSE between the outputs of the CSF and TIR, and the TIR is optimal in the sense that it maximizes

the signal-to-noise ratio (SNR) at the CSF output. Similar to the channel shortening literature where the

minimum MSE and the maximum SSNR channel shorteners are equivalent [13, Section 5], the approach

in [2] is mathematically equivalent to our approach with the exception of the fixed sparse coefficient

locations. However, the minimum MSE approach is more convoluted to implement, as two filters must

be designed rather than one.

The CSF that maximizes (3) is only optimal for a given choice of S. As such, the design of w involves

two issues: picking the best locations for the µ nonzero taps in c (i.e., choosing the set S), and picking

the values of the filter coefficients so that (3) is maximized. The first issue is related to the problem of

choosing the optimal delay in linear minimum mean squared error (LMMSE) equalization, which is known

to be nontrivial since there is no known expression for the optimal delay [14]. In the classical equalization

problem, it is feasible to conduct a brute-force search over the Lc possible delays. Here, however, the

problem is considerably more challenging since there are

Lc

µ

 = Lc!
(Lc−µ)!µ! possible choices of S. In

this article, we consider three methods of choosing the set S.

• Use the indices of the µ largest magnitude taps of h, as in [2]. This will be referred to as Roy’s tap

selection method.

• Try all of the possible combinations. This will be referred to as the combinatorial tap selection

method, and it is optimal (though expensive).

• Try the heuristic approach outlined below, which will be referred to as the greedy tap selection

method.

The greedy method is as follows. First, set µ = 1, and find the location S1 of a single tap that maximizes

the SSSNR. This involves computing w for all Lc possible tap choices. Next, set µ = 2 and S = {S1,S2}.

Keep S1 from the prior step, and find the location S2 such that the best two-tap channel is produced.
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This involves computing w for each of Lc− 1 values. Continue adding one tap at a time until µ locations

have been chosen.

Roy’s method requires designing a single CSF, although the tap locations are likely far from optimal (as

will be demonstrated in Section 7). The combinatorial method requires designing Lc!
(Lc−µ)!µ! filters. Finally,

the greedy method requires designing 1
2µ(2Lc − µ + 1) filters. It is far cheaper than the combinatorial

method, although its performance approaches that of the combinatorial method, as will be demonstrated

in Section 7. For example, with Lc = 20 and µ = 2, the greedy method is 4.9 times cheaper; and with

Lc = 25 and µ = 5, the greedy method is 460 times cheaper than the combinatorial method.

5 Noise coloration

As mentioned previously, even if the noise n[k] is white, the CSF outputs colored noise. To see this, we

let W be a wide Tœplitz convolution matrix corresponding to the filter wT , and compute the covariance

matrix of the noise observed by the BP detector as

E
{
vvH

}
= E

{
(Wn) (Wn)

H
}
= WE

{
nnH

}
WH

= σ2
nWWH ̸= σ2

nI.

This is a problem because the BP algorithm assumes white noise. The coloration in the noise will harm

the BP performance, potentially making it worse than a classical LMMSE equalizer followed by a simple

slicer. Thus, to avoid this pitfall, we consider a penalty term based on the squared autocorrelation of the
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output noise, or equivalently of the CSF,

JA(w) =
1

∥w∥4 σ4
n

Lw−1∑
l=1

∣∣E{vkv∗k−l

}∣∣2

=
1

∥w∥4
Lw−1∑
l=1

∣∣∣∣∣
Lw−1∑
m=0

wmw∗
m−l

∣∣∣∣∣
2

=
1

∥w∥4
Lw−1∑
l=1

Lw−1∑
m,n=0

wmw∗
nw

∗
m−lwn−l

It can be shown that JA is equivalent to

JA =

1∫
0

(
|W (f)|2∫ 1

0
|W (f ′)|2 df ′

− 1

)2

df + 1,

where 2πf = ω. Thus, JA penalizes non-flatness of the spectrum of w, since JA drops to its minimum

value of 1 as the spectrum W (ω) approaches any constant value ∀f .

In order to combine JS , which should be maximized with JA, which should be minimized, we invert

the former and include a relative weighting term,

J = J−1
S + βJA. (4)

The weight β can be chosen to try to force the minimum of J to be in the proximity of the BER cost

surface, JE . In the next section, we look at the surfaces JS , J , and JE in order to visualize the effect of

β.

The value of β can be set several ways. The simplest is to try various values of β and get a sense

of which values lead to good results for the class of parameter values of interest. For example, for the

parameters in our simulations, β ∈ [0.1, 0.5] seems to yield good results. Alternatively, β can be included

in the optimization problem. One could search the objective function of (4) for a new value of w (but

without changing β), then occasionally adjust β (but not w) to improve the BER, and repeat. If β is

updated on a much slower time scale than w, then the computationally-intensive BER does not have to

be evaluated very often during the search.
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For a given value of β, (4) can be minimized over w by any method of unconstrained non-linear

optimization. We chose to use the simplex method of [15], since it was already available in Matlab, via

the “fminsearch” function.

6 Cost surfaces

To visualize the cost surfaces, consider the following example. The channel is h = [1, 0.5, 0.9, 0.3], the

target number of taps is µ = 2, the SNR is 8 dB, the CSF w has three taps so Lc = 6, and we use the unit

norm constraint ∥w∥ = 1. With this constraint, the CSF lies on a unit sphere, and can be represented

in spherical coordinates: w0
△
= wx = cos(θ) sin(ϕ), w1

△
= wz = cos(ϕ), w2

△
= wy = sin(θ) sin(ϕ). A

contour plot of the SSSNR (inverted) is shown in Figure 2; note that this is an amalgamated surface (i.e.,

maximized across all choices of S). There is symmetry of a sort due to the fact that w and −w have the

same SSSNR.

The impulse response magnitudes of the channel, SSSNR-optimal CSF, and effective channel are

shown in Figure 3, and the µ = 2 significant taps of c are filled in. While the the other taps are small,

they are not exactly equal to zero, and will contribute some residual ISI that is left uncorrected by the

BP detector. Note that the impulse responses as shown have been normalized to have unit infinity norm.

In Figure 4, the ith subplot (counting across the first row then the second row) shows the regions in

which that tap is used in the final design, with “dark” indicating that the tap is used. The axes are as

in Figure 2 and we see, for example, that the sixth tap is never selected to be one of the nonzero taps in

the effective channel. Furthermore, the amalgamated cost surface is highly multimodal, with significant

shape changes at the boundaries of each tap’s usage region.

The corresponding amalgamated BER surface, shown in Figure 5 is also highly multimodal. This

plot was generated via Monte-Carlo simulation by exhaustively computing the BER at the output of the

BP detector for each value of w. Here, there are two minima with nearly equivalent BER of 0.0065 (or,

four equivalent minima if one counts symmetric pairs due to the fact that w and −w also yield the same
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BER). By comparing Figures 2 and 5, we see that the SSSNR and BER surfaces look quite different. We

note, however, that there are minima in nearly identical locations. This provides some evidence that, at

least for this low dimensional example, the SSSNR is a good proxy for BER.

Figures 6, 7, and 8 consider the added squared autocorrelation penalizing term, and show the amal-

gamated cost surface of (4) with β = 1, as well as various optimal CSFs. These include the two local

optima of the BER cost surface, the global optimum of the SSSNR, the near-optimum of the SSSNR with

heuristically chosen sparse tap locations, and the weighted SSSNR solution with β = 1. We note that in

Figure 6 there are two solutions with nearly identical BER; the heuristic solution is near one whereas the

SSSNR solution is near the other, and the two pairs of solutions have different active taps. The goal is to

determine which optimal solution is the best proxy for the minimum BER solution. Adding the squared

autocorrelation penalizing term moves the SSSNR heuristic solution past the minimum BER solution,

and it appears that β should be small, say in the range of 0 to 0.2. To further investigate the affect of

β, Figure 9 shows the BER performance of the weighted SSSNR scheme as a function of β at 8 dB SNR,

and we see that the optimal value of β occurs at 0.1.

7 Simulations

Having demonstrated that SSSNR is a good proxy for BER, we now compare the BER of the various CSF

design approaches. We consider a longer channel than in the low-dimensional example of the previous

sections, and we compare SSSNR and computational time among the different design metrics and tap

selection methods. Second, we evaluate the BER for two channels employing different sparsening filters

in conjunction with BP.

In the first example, we consider the channel h1 = [0.0722, 0, 0, 0.7217, 0.6495, 0, 0, 0.2165, 0, 0.0722].

We design the CSF to sparsen the channel to µ = 2 taps, we let Lw = 25, we transmit uncoded BPSK

symbols, and we use ten iterations in the BP detector.

The BER results are shown in Figure 10 for the three tap selection methods outlined at the end
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of Section 4, and for comparison we include the performance of a 25-tap classical LMMSE equalizer

with a memoryless slicer. The three methods employing a BP detector handily outperform the LMMSE

equalizer, and the greedy tap selection approach is able to attain performance nearly equal to the optimal

combinatorial method. In addition, we note that those methods which attempt to pick the set of nonzero

taps S to maximize the SSSNR outperform Roy’s method by approximately 1.5 dB for this example.

The complexity, taps selected, and the SSNR of each tap-selection method is displayed in Table 1.

The combinatorial approach achieved the best SSSNR performance, but requires the design of 561 filters.

On the other hand, the greedy approach achieved almost the same SSSNR performance with much fewer

filter designs, being more efficient than the combinatorial method. Roy’s tap selection method needs to

design only one filter, but its SSSNR result is inferior to the other two.

In conducting simulations, we noticed that occasionally the hybrid CSF/BP structure yielded BER

performance which was inferior to that of a simple linear equalizer with a memoryless slicer. Upon

further investigation, it became clear that the performance degradation in such cases was due to noise

coloring by the CSF, as addressed in Section 5. We now consider such an example, and show that the

use of the modified cost function given in (4) results in flatter sparsening filters, and improves the BER

performance. We now consider the channel h2 = [−0.21,−0.36, 0.72, 0.5, 0.21], and we again design the

CSF to sparsen the channel to µ = 2 taps with a CSF and equalizer of length Lw = 25. As before, we

transmit uncoded BPSK symbols, and use ten iterations in the BP detector. We also add the squared

autocorrelation penalizing term to the combinatorial and greedy SSSNR CSF design metrics. To choose

the β value, we performed a grid search with 11 values between 0.0 and 1.0 at a 14 dB SNR and the best

value obtained was β = 0.1.

From the simulation results in Figure 11, it is apparent that approaches without the addition of the

squared autocorrelation penalizing term perform worse than a simple linear equalizer, at least at low to

moderate SNR. Overall, the addition of the squared autocorrelation penalizing term improves the BER

performance for both the combinatorial and greedy approaches, by approximately 0.7 dB. Also, Roy’s

tap-selection scheme performs significantly worse than the classical LMMSE equalizer for this example.
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The motivation given for Roy’s tap-selection approach [2] was that by choosing the locations of the

desired nonzero taps (i.e., the set S) to match the locations of strong arrivals of the incoming signal,

there is good “spectral matching” between the channel and the TIR which results in reduced noise

enhancement. However, it is unclear that matching dominant tap locations between the channel and

TIR (regardless of the tap values) results in spectra with a similar shape. In fact, in the example that

intended to motivate the reduced noise enhancement of their approach [2, Figure 12], the CSF apparently

amplifies the noise by about 40 dB in the region of a deep channel null. Thus, while extensive simulations

in [2] have demonstrated significant error-rate improvement when compared with competing approaches

that employ decision-feedback equalizers, we note that further BER improvement can be made by wiser

design of the CSF.

Examination of the frequency responses of the CSF and combined response for this second simulation

scenario provides further evidence that does not support Roy’s reduced noise enhancement claim. Fig-

ure 12 depicts the frequency response of each sparsening filter chosen by the combinatorial approach, the

combinatorial approach with addition of the penalizing term, and Roy’s method. Roy’s filter amplifies

the input signal over the frequencies in the center of the band. Comparing the original channel h2 with

the combined responses as shown in Figure 13 provides another picture showing that Roy’s chosen filter

amplifies noise in the center of the band, which contributes to the degraded performance pictured in

Figure 11.

Conversely, by adding the penalizing term to the combinatorial SSSNR approach, the resultant spars-

ening filter becomes flatter, producing an effective channel similar to the original one. This, in fact,

reduces the noise enhancement. Moreover, the flatter frequency response shown by the CSF will also

reduce noise coloring thereby improving BP detector BER performance. Both reasons explain the error

performance improvement and motivate the incorporation of the squared penalizing term to the CSF

design. The optimal choice of β however, remains an open issue and is likely to be channel-dependent.

In addition, to provide further evidence of the proposed method’s efficacy, we also considered the ITU

Vehicular A channel [16] that has six paths arriving at [0, 310, 710, 1090, 1730, 2510] ns and a power-delay
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profile of [0,−1,−9,−10,−15,−20] dB. In our simulations we used a square-root raised cosine pulse and

a symbol duration of T = 80ns, which generally resulted in a sparse equivalent discrete channel with

average length of 21 taps. Also, we transmit uncoded BPSK symbols, use ten iterations in the BP

detector, let µ = 2 non-zero taps, and use a CSF (and for comparison, an equalizer) of length Lw = 32.

Again, to calculate the β value, we used a grid search at 20 dB SNR and the valued obtained was β = 0.2.

Figure 14 shows the following tap-selection methods in comparison with the linear equalizer: Roy’s,

combinatorial, greedy and greedy with squared autocorrelation penalizing term. Once again the methods

employing BP detectors outperformed the linear equalizer and the method with squared autocorrelation

had the best performance. Moreover, at a 10−5 BER the greedy method with squared autocorrelation

outperforms the combinatorial method by approximately 2 dB.

Finally, we again emphasize that this hybrid detector is quite flexible since its complexity can be

adjusted by the system designer. While the complexity scales exponentially with µ, implementations

are quite feasible on modern hardware in a wide range of applications [17]. While linear and decision

feedback equalizer complexity scales only linearly with the channel length Lh, and are therefore attractive

for applications where hardware simplicity is at a premium, the performance advantage offered by the

hybrid BP detector (reported here and in [2]) may well be worth the additional complexity. Finally, when

compared with traditional Viterbi and BCJR detectors which scale exponentially with Lh, the hybrid

BP detector appears to have a considerable advantage in terms of complexity [1].

8 Conclusions

In this work we have considered the design of sparsening filters as a way to reduce the complexity of

iterative soft-input soft-output MAP detectors. By designing the sparsening filter so that the combined

response of the (possibly non-sparse) channel and filter has a sparse impulse response, i.e., a response

with only a handful of significant taps, the use of a BP-based MAP detector becomes feasible for detecting

the bits. We proposed a filter design metric called the SSSNR, and showed that maximizing this quantity
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serves as a good proxy for minimizing BER. We developed a greedy algorithm for tap selection, and

showed that this approach yields near-optimal performance with a significant reduction in complexity

when compared to the optimal, combinatorial tap selection approach. In addition, we treated the issue

of noise coloration introduced by the sparsening filter, and showed that the addition of a noise penalty

term to the SSSNR results in solutions with a flatter frequency response, thereby limiting the amount

of noise coloration. Numerical simulations compared our scheme with an existing approach due to Roy,

and showed that significant performance gains can be had by intelligently choosing the tap locations.

Future work in this area will consider fractionally-spaced or adaptive versions of this approach, as

well as the effects of sparsening filter length on performance. The authors would like to thank Yanjie

Peng at WPI for providing the initial version of the simulation code to implement the BP detector.
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Endnotes

aNote that a SIMO system employing either multiple receive antennas or fractional sampling can perfectly

sparsen the channel under certain conditions on subchannel roots [18]. bWhile it is possible that the noise

observed at the receiver front-end is not white to begin with, we make the standard AWGN assumption

throughout.
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Table 1.. Computational complexity, taps selected, and SSSNR achieved at 8 dB SNR

Tap-selection method Number of filters designed Taps selected SSSNR

Combinatorial 561 {17,18} 6.9344

Greedy 67 {18,19} 6.9336

Roy 1 {4,5} 5.7961
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Figure 1.. System model.

Figure 2.. Contours of SSSNR for a three-tap unit norm filter, parameterized by two angles

in spherical coordinates. The × indicates the filter with the highest SSSNR.

Figure 3.. Channel, filter, and effective channel tap magnitudes, using the SSSNR-optimal

3-tap filter.

Figure 4.. Usage maps of the six taps of the effective channel c. Axes are identical to Figure 2.

Dark areas indicate that the given tap is one of the µ largest taps in c.

Figure 5.. Contours of BER for a three-tap unit norm filter, parameterized by two angles

in spherical coordinates. The ▽ indicates the filters with the lowest BER.

Figure 6.. Comparison of different optimal CSFs, overlaid on contours of the surface (4)

with β = 1.

Figure 7.. Figure 6, zoomed in on the lower right section.

Figure 8.. Figure 6, zoomed in on the middle section.

Figure 9.. Bit error rate as a function of β for the weighted SSSNR scheme.

Figure 10.. Bit error rate for different CSF design metrics on channel h1.

Figure 11.. Bit error rate with h2 using same CSF design metrics shown in Figure 10 and

addition of the squared autocorrelation penalizing term.

Figure 12.. CSF frequency response for combinatorial, combinatorial with addition of pe-

nalizing term, and Roy’s approach.

Figure 13.. Frequency response of original channel and effective channel frequency responses

for combinatorial, combinatorial with addition of penalizing term, and Roy’s approach.

Figure 14.. Bit error rate for the ITU vehicular A channel.
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