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Functionalized graphene-polyvinylidene fluoride (f-G-PVDF) 
nanocomposite films were synthesized using simple solvent 
casting technique. The investigation demonstrates the real 
time strain response of f-G-PVDF nanocomposite on macro 
scale under tensile loads and the use of this nanocomposite as 10 

strain sensor. This is ascribed to the variation in electrical 
properties of graphene in the polymer upon mechanical 
deformation at the nanoscale. 

A wide range of smart materials have been developed for 
practical applications such as  addressing challenges in advanced 15 

aerospace, mechanical, bionics and medical technologies.1,2 
Meanwhile nanotechnology has developed rapidly, permitting 
manipulation of matter at the level of the atoms and molecules 
that form the building blocks of smart materials. The combination 
of these two fields can foster new concepts and realize novel 20 

designs that cannot be achieved through conventional approaches 
thereby offering great opportunities. Graphene has simulated 
wide interest due to its intriguing properties such as high aspect 
ratio, high mobility of charge carriers, unique transport 
performance, high mechanical strength, and high electrical 25 

conductivity.3-5 Their thermal conductivity and mechanical 
stiffness may rival the remarkable in-plane values for graphite 
(3,000 W m-1 K-1 and 1,060 GPa, respectively); their fracture 
strength should be comparable to that of carbon nanotubes for 
similar types of defects.6 These fascinating properties render 30 

graphene suitable for many promising applications such as high 
strength composite materials,5 radiation protection etc.7 There are 
several possible potential applications using graphene polymer 
composites especially in automotive, aerospace, electronics, and 
packaging.  The micromechanical cleavage of graphene could 35 

produce only minute quantities of graphene and hence it is very 
difficult to harness its extraordinary properties in polymers in 
order to utilize graphene in real world applications. With the 
development of chemical and non chemical techniques for bulk 
preparation, the scenario of graphene synthesis has changed 40 

entirely .8,9 

 Recently there is an increased interest in the arena of strain 
sensing in structural health monitoring using novel polymer 
nanocomposites due to the distinct advantages of the polymer and 
nanofiller. Especially, there are a number of theoretical and 45 

experimental reports on strain sensing behavior of 1D carbon 
nanotubes reinforced polymer nanocomposites. Li et al.10 
reported that SWNT films can be used as strain sensors at macro 

scale due to the dependence of the electrical properties of the 
SWNT films on mechanical deformation at nanoscale. Dharap et 50 

al.11 reported a linear change in voltage when carbon nanotube 
film is subjected to tensile strain and they proposed that multiple 
location strain can be measured in the isotropic carbon nanotube 
film. Hu et al.12 exclusively studied the strain sensitivity of the 
carbon nanotube-polymer composites based on statistical resistive 55 

network using theoretical and experimental results. The limiting 
factor of all these hybrid nano composites is the high cost of 
carbon nanotubes.  
 Herein we present a novel nanocomposite for efficient strain 
sensing, exploiting a combination of functionalized graphene (f-60 

G) and PVDF. Selection of polyvinylidene fluoride (PVDF) was 
based on its unique properties such as highest chemical 
resistance,13 high temperature sustainability and its applications 
in wide variety of fields such as piezoelectric, pyroelectric etc. 
The surface of the graphene was modified with hydroxyl and 65 

carbonyl groups in order to avoid the aggregation of graphene 
nanofillers in the polymer and to disperse graphene in the solvent 
without prolonged sonication, since functionalized graphene 
sheets in polymer matrices improves the solubility of the f-G in 
polymers. 14 The aim and scope of the present work is to develop 70 

a low cost, light weight and flexible strain sensor with 
functionalized graphene reinforced PVDF composite.  
 

 
Fig. 1:Optical photographs of  a) 2 wt% f-G-PVDF film, b) experimental 75 

set up for testing strain sensing response from the nanocomposite films 
and c) f-G-PVDF composite film attached to the aluminium specimen 
with two copper leads. 

 In a typical synthesis process, graphite oxide (GO) was 
prepared by modified Hummers method.15 The prepared GO was 80 

loaded into a quartz boat and kept in a furnace and hydrogen 
exfoliated at 200°C for 30 s with a flow of hydrogen gas and 
resulting graphene in powder form was collected.16 PVDF with 
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M.W 1, 00,000 g/mol was purchased from Alfa Aesar. N, N-
dimethyl formamide (DMF) in analytical grade was used as 
solvent. The graphene was functionalized with conc. nitric acid in 
combination with sulphuric acid in 3:1 ratio for 6 h at 60°C and 
this solution was washed several times with millipore water to 5 

remove the unreacted materials and vacuum filtered through 0.25 
µm size micro filter. The final product was dried at 70°C over 
night in vacuum and labelled as functionalized graphene. For the 
preparation of PVDF nanocomposites with different weight 
fractions of f-G, we have employed the following procedure. 10 

Initially, fixed amount of f-G nanofillers were dispersed in DMF 
for 60 min using ultrasonicator. In order to prepare fixed weight 
fraction of the f-graphene in PVDF matrix, fixed amount of 
PVDF polymer was dissolved in DMF with the help of magnetic 
stirrer for 30 min. These two solutions were mixed together using 15 

ultrosonicator for one hour. The mixed solution was transferred to 
a shear mixer and stirred at room temperature for 2 h and at 80°C 
for 30 min at 4000 rpm. Finally, the composite solution was taken 
out from the mixer and transferred to a petri dish and kept in the 
oven at 70°C to evaporate the solvent. Systematic analysis of 20 

electrical conductivities of 1 wt%, 2 wt% and 3 wt% graphene 
reinforced polymer composites have been carried out. The 
conductivity measurements reveal the insulating nature of 1 wt% 
composite. 2 wt% f-G-PVDF nanocomposite is conducting in 
nature due to electrical percolation in conducting filler polymer 25 

nanocomposites. On the other hand, the 3 wt% f-G-PVDF 
nanocomposite shows saturation behavior in electrical 
conductivity. Hence, it is obvious that percolation is happening 
with 2 wt% f-G-PVDF nanocomposites.  

 30 

  

 

Fig.2 a) Transmission electron micrograph of the functionalized 
graphene, b) Lattice imaging of  f-G, c) field emission scanning electron 
micrograph of  f-G and d) FESEM image of  2 wt% f-G in PVDF matrix. 35 

 Dispersion and distribution of nanofiller in polymer matrices 
play a major role in determining the improved properties of 
polymer nanocomposites. Owing to the extraordinary mechanical 
properties, graphene is considered to be one of the best known 
and cheap materials for polymer reinforcement. We successfully 40 

dispersed the nanofiller (graphene) using homemade shear cum 

solvent mixing technique.  Figure 2 shows the morphology of 
graphene and graphene-PVDF composite. Figure 2a exhibits 
randomly aggregated, wrinkled, thin crumpled sheets of 
graphene, closely associated with each other thereby forming a 45 

disordered solid. Figure 2b shows the lattice imaging of 
graphene, with thickness   ~5-6 nm, indicating a few layered 
graphene. Figure 2c and 2d show the FESEM images of f-G and 
2 wt % f-G-PVDF composite. It is interesting to note that there is 
a close resemblance between these two figures. The scaffolds in 50 

figure 2d suggest that superior conductive network has been 
formed among graphene flakes in the PVDF matrix. 

A nanocomposite film of 2 wt % f-G-PVDF was attached to 
one side of the Aluminium (Al) specimen (Dimensions: 28 cm x 
5 cm x 0.3 cm) using high strength epoxy to make perfect 55 

bonding between  Al and the nanocomposite film and on the 
other side, (Fig. 1) a conventional metallic strain gauge was 
adhered using glue. A constant current (Keithley source meter 
2400) was passed along the axial direction of the film and the 
corresponding change in voltage was systematically measured for 60 

various strains along the axial direction. Data was continuously 
acquired using Lab VIEW programme. Al specimen was 
subjected to ramping loads, tensile and compressive loads on 
materials testing system (MTS 810) servo hydraulic test machine. 
The corresponding strain in the composite film was measured by 65 

conventional metallic strain gauge.  

 
Fig. 3 a) Monotonic increment of stress on Aluminium specimen, b) 
Strain measurement using strain gauge, c) Change in voltage of the 2 wt% 
f-G-PVDF nanocomposite of Aluminium specimen. 70 

  
 Figure 3a & 3b shows the stress and strain curves with respect 
to time when the specimen was subjected to continuous 
increment of loading (2 kN/min). When the load was applied on 
the aluminium specimen, the composite film bonded through high 75 

strength epoxy experiences the same. The change in voltage was 
observed while the specimen undergoes continuous increment in 
loading. The corresponding change in voltage of the 2 wt% f-G-
PVDF composite while the film was under tension is shown in 
figure 3c. The change in voltage of the nanocomposite increases 80 

continuously with the applied load. As the tensile strain increases, 
the change in the voltage of the composite also increases. Linear 
change in voltage was observed with respect to applied strain in 2 
wt% f-G-PVDF composite in the elastic region. From figure 3c, it 
is obvious that, voltage is changing linearly in the elastic region. 85 
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For 0.12 % of strain, a voltage change of ~ 9 mV was observed in 
film and it further increases monotonically up to 0.27 % of strain 
with a voltage change of 24.6 mV.  This leads to nonlinear 
behavior in voltage change when the specimen goes to inelastic 
limit. Figure 4 shows the cyclic behaviour of 2 wt % f-G-PVDF 5 

composite. It clearly confirms the cyclic response of the graphene 
composite to the applied strain. The change in voltage also 
follows the cyclic behavior as depicted in figure 4c. For 0.10% of 
strain applied, there is a change of ~20 mV which is very large 
value compared with that of carbon nanotubes as shown in figure 10 

4d. This confirms the continuous bending and relaxation of 
graphene nanofillers in the polymer. The change in voltage of the 
f-G-PVDF nanocomposite can be mainly attributed to breakage 
of conductive network or loss of contacts between the nanofiller 
(graphene) under tensile strain. The second factor is the change in 15 

voltage due to the change in distance between the conductive 
filler particles which promotes the tunnelling effect.  Finally, 
change in the band gap of graphene under tensile strain can also 
increase the voltage. The present experimental investigation 
validates the theoretical assumption of changes in the band gap of 20 

the graphene when it is strained under tensile and compressive 
loads.17 

 

Fig.4 Tensile and compressive cyclic test on functionalized graphene-
PVDF nanocomposites) applied stress on the specimen, b) induced strain. 25 

and the corresponding change in voltages of c) 2 wt% f-G-PVDF and d) 2 
wt% f-CNT-PVDF nanocomposites. 

 

2 wt% as well as 3 wt% f-G-PVDF nanocomposites were tested 
for strain sensing performance. The better strain sensing 30 

performance has been obtained with 2 wt% f-G-PVDF 
nanocomposite. The deterioration in sensing at higher 
concentration can be attributed to the increased overlap of 
nanofillers in polymer. 

Conclusions 35 

In conclusion, functionalized graphene-PVDF nanocomposites 
are synthesized by simple shear cum solvent casting technique. 
The homogeneous and stable dispersions of graphene in polymer 
solution have been attained after functionalization. The 
morphology of the graphene and graphene-PVDF 40 

nanocomposites have been characterized by scanning electron 

microscope which reveals the 3D interconnecting conducting 
network of graphene in polymer matrix. The analysis of the 
change in voltages of different nanocomposite films reveal that 2 
wt% f-G-PVDF composite films show higher strain sensing 45 

performance compared with its counterparts based on carbon 
nanotube polymer composites. For higher concentrations of f-G, 
low strain sensing performance was observed due to the overlap 
of nanofillers. The rapid changes in contact and tunnelling 
resistance between optimum concentration of graphene 50 

nanofillers in PVDF polymer causes high performance in strain 
sensing and it can be attributed to the 2D nature and flexibility of 
the graphene.  
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