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Abstract— We propose a novel framework to search for a
static target using a multiscale representation. The algorithm we
present is appropriate when the target detection sensor trades
off accuracy versus covered area, e.g., when a UAV can fly and
sense at different elevations. A structure based on quadtrees
is used to propagate a posterior about the target location
using a variable resolution representation that is dynamically
refined in regions associated with higher probability of target
presence. Probabilities are updated using a Bayesian approach
accounting for erroneous sensor readings in the form of false
positives and missed detections. The model we propose is
coupled with a search and decision algorithm that determines
where to sense next and with which accuracy. The search
algorithm is based on an objective function accounting for
both probability of detection and motion costs, thus aiming
to minimize traveled distances while trying to localize the
target. The paper is concluded with simulation results showing
our approach outperforms commonly used methods based on
uniform resolution grids.

I. INTRODUCTION

Probabilistic search for one or more objects in an area
of interest continues to be a topic of active research in the
autonomous systems community. With relevance to numer-
ous applications, including but not limited to search for lost
objects such as downed aircraft, search and rescue of disaster
victims, and detection of submerged threats in maritime
environments, the ability to intelligently gather information
relevant to the search mission is essential. Due to the
ubiquity of mobile robotic sensors, such as unmanned aerial
vehicles (UAVs), approaches which address their effective
employment and efficient integration of information have
also engendered much interest. In particular, the nominal
challenges include relatively large spatial scales (that is,
the search area is large compared to the sensor footprint),
limited search resources such as endurance or search effort,
or combinatorial complexity in search planning.

This paper investigates the use of a quadtree representation
of both the environment and the underlying probability distri-
bution of the presence of targets. Many search problems face
the challenge of having to find small target(s) in a relatively
large search region. Further, both sensors and platforms
likely have different characteristics when gathering and
processing low resolution (large spatial scale) versus high
resolution (small spatial scale) information. This multiscale
nature highlights the trade off between exploring the search
region to achieve a broad perspective and exploiting focused
information to obtain high fidelity data. Notwithstanding,
most former research in this area has embraced models based
on uniform representations.

The main contributions of this work are three. We first
define a novel data structure coined probabilistic quadtree
that dynamically captures the multiscale evolving posterior
of the target location. Then, we propose a formulation of
a search decision process where a single stationary target
may or may not be in the search region and the objective
is specifically associated with the probability of the target’s
presence at a location. The applicability of a Bayesian
formulation combined with the probabilistic quadtree data
structure provides a novel framework in which to conduct
a family of search-related problems. Finally, we provide
extensive simulation results contrasting our proposed method
with search strategies based on uniform grids.

The sequel presents relevant research found in the lit-
erature, seen to be multidisciplinary in nature given the
breadth of probabilistic search applications. In Section III,
we provide a probabilistic model formulation of the search
problem for one object which defines how the searcher’s
belief is represented using a quadtree data structure. The as-
sociated probability map evolves by integration of imperfect
observations via appropriate Bayesian update expressions. In
the presence of possible false positive and false negative
detection errors, Section IV identifies a search plan for
effectively searching the area of interest while maintaining
an efficient representation, whereas Section V provides the
overall search and decision algorithm. Numerical investiga-
tions of the proposed approaches are presented in Section VI,
followed by a summary of results and discussion of future
avenues in Section VII.

II. RELATED WORK

The historical context for the theory of search is the
hunt for submarines during World War II, which led to the
application of analytic probability and optimization models
to aid in the detection and defeat of these threats [11]. Prior
information on the likelihood of a target’s presence was used
to inform the optimal allocation of constrained resources,
that is, the search platforms and the search time allotted to
inspect discrete sectors. Though these early works considered
arbitrary discretization of the environment, in practice regular
rectangular grids are most often used for clarity and ease of
representation for most planning purposes. Coarse uniform
partitions can lead to inefficiencies in representing spatially-
varying quantities, as collective regions of low value (e.g.,
low probability of target presence) are represented at identi-
cal resolution scales as those with high value. Alternatively,
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uniform grids at fine resolution suffer from the combinatorial
increase in the environment state space.

Cellular decomposition methods which provide weighted,
non-uniform cells include Voronoi partitioning [6] and mesh
generation [7], and have been extensively used in the robotics
literature for problems of robotic coverage [4] and path
planning [13]. Unlike the irregularly-shaped cells output by
some approaches, regular meshes, such as rectilinear ones
easily represented by quadtrees, provide mission relevance
and simplicity. These practical considerations are important,
for example, when specifying areas of responsibility for a
given search asset within a larger operational context.

While the general topic of active sensing has been inves-
tigated for a long time, the problem of sensor selection is
more recent and less explored. Isler and Bajksy present an
approximation algorithm to select a sensor with a polygonal
footprint to minimize the error in a target pose estimation
task [8]. A similar problem is considered by Joshi and Boyd
[9], though they cast their problem in the context of convex
optimization.

From the longstanding probabilistic search community,
numerous search theoretic results examine variations on the
constrained path optimal search problem. Benkoski et al.
offer a survey of the classical literature [1], including the
“whereabouts” search problem introduced by Kadane [10]
in which the searcher must correctly locate the target under
search budget constraints or otherwise be able to offer the
target’s most likely location. The use of search decision
thresholds is considered in [12], but the probability of a
target’s presence in a cell is assumed independent of other
cells. Other examples of relevant works in the robotics
community involving probabilistic search include [3], which
investigates the use of an aerial platform conducting search
for a lost target. However, the search area and the associated
probability maps utilize a fine uniform grid representation.
This work proposes a probabilistic data structure that ad-
dresses the joint probabilities of target presence as well as
efficiently mitigates the computational complexity that arises
from large state spaces.

III. MODEL DEFINITION

In this section we present the models used to maintain the
posterior about possible target locations. We first present a
hierarchical structure to compute posteriors using multiscale
information. Next, we introduce a sensing model intimately
tied to the chosen representation, and we then discuss how
sensor readings can be used to update probabilities using a
Bayesian approach. This section ends with a short descrip-
tion of how the data structure is constructed, updated, and
maintained.

A. Probabilistic quadtrees

Our method builds upon a data structure dubbed
probabilistic quadtree. Informally speaking a probabilistic
quadtree is a quadtree where every node is associated with a
probability value, and where some constraints relating these

probabilities and the tree topology are enforced. In the frame-
work we present, the topology of the tree varies while the
search process advances, i.e., new nodes may be added to the
tree or pruned away. In either case, the constraints presented
in the following are enforced throughout the process.

We start by shortly recalling some basic concepts from
computational geometry (the reader is referred to [7] for a
more comprehensive treatment of this topic). A quadtree is
a rooted tree in which every internal node has four children.
A quadtree is said to be complete if all its leaves are at the
same depth. Every node (internal or leaf) is associated with a
planar region. For sake of simplicity, we herein assume these
regions are square, but in general they could also be rectangu-
lar. For a given node n, let R(n) ⊂ R2 be the square planar
region associated with n. Since the association between a
node n and its region R(n) is univocal, in the following we
will consider the terms “node” and “region” synonymous. If
n is an internal node and n1, . . . , n4 are its children, then the
various regions R(ni) are obtained by splitting the parent’s
area into four equally sized squares. Therefore R(n) =⋃4

i=1R(ni) and int(R(ni)) ∩ int(R(nj)) = ∅ whenever ni
and nj are siblings1. If T is a quadtree, then R(T ) is the
region associated with its root node. Moreover, if n is a node,
let c(n) be the geometrical center of its associated square
region R(n). In the following, unless otherwise noted, if n
is an internal node then n1, . . . , n4 will be used to indicate
its children. In this paper we consider quadtrees of bounded
depth, i.e., while the tree is being modified during the search
process we will ensure its depth never exceeds a fixed value.
For a tree T , let D(T ) be the maximum depth. Given a
tree T with a fixed maximum depth, we indicate with N(T )
the set of nodes of the complete quadtree of depth D(T ),
while A(T ) ⊆ N(T ) is the set of nodes actually in T . In
our framework the tree T is modified during the process, so
while N(T ) is fixed, A(T ) varies. Finally, for a node n let
d(n) be its depth and let 0 be the depth of the root.

Starting from the definition of quadtree we now define
a probabilistic quadtree (PQ). This data structure is called
Type1 PQ because it is aimed to model search problems
where at most one target needs to be located. In fact, with
some modifications it is also possible to consider scenarios
with multiple targets. This extension, called Type2 PQ is not
discussed in this manuscript for lack of space, but is the topic
of further investigations.

Definition 1 (Type1 PQ): A probabilistic quadtree of
Type1 is a quadtree where each node n is annotated with the
probability pn that a target is located inside its associated
region R(n). In a Type1 PQ the following constraint is
enforced: if n is an internal node, then

pn = pn1
+ pn2

+ pn3
+ pn4

. (1)
A Type1 PQ is used when considering a search task where

there is at most one stationary target located in R(T ). In this
case it is convenient to define a Bernoulli random variable
Xn associated with every node in the tree, with Xn = 1
indicating the target is inside R(n). The probability linked

1int(R(ni)) is the internal of region R(ni).



to a node n is then pn = Pr[Xn = 1]. Let n be an internal
node and ni 6= nj be two of its children. Because it is
assumed there is at most one target, the events Xni = 1
and Xnj = 1 are disjoint, and then the constraint given in
Eq. 1 holds. Since the possibility that no target is present in
the search area is also legitimate, it is convenient to include
a further node n∅ to track this hypothesis, and let pn∅ be
the probability of this event. In a Type1 PQ let P (H) be the
probability that one target is located in R(T ). Then, P (H)
is given by the sum of the probabilities defined on the leaves
in T , while the probability that no target is located therein
is then 1− P (H) = pn∅ .

It is pivotal to observe that in a Type1 PQ all variables
Xi are related with each other because we assumed there
is at most one target located in R(T ). Therefore when
updating one probability value p because of a new sensor
reading, it is necessary to update all the others as well.
These considerations are key in order to understand the
Bayesian update procedures described after the sensor model
is described.

B. Sensor model

We assume the availability of a sensor capable of detecting
a target in an assigned sensing area. As commonly done in re-
lated literature, we model the sensor reading with a Bernoulli
random variable assuming value one when detection occurs.
When searching for a target in a region R(T ) we consider the
availability of a single sensor that can be moved throughout
the region. The sensing area and the sensor performance
depend on where the sensor is placed. We assume the sensor
can be positioned only at a discrete set of locations defined
as

S = {s ∈ R2 | ∃n ∈ N(T ) with c(n) = s}

i.e., it is possible to sense only at the centers of the nodes
of the complete tree of maximal depth associated with the
search area. The reader should note that S defines the set of
all possible sensing locations, but when selecting where to
sense next we will restrict the search domain to A(T ), i.e.,
the set of nodes currently in the tree. When sensing at point
s = c(n) the sensing area is R(n), i.e., the square associated
with the center where it is positioned. We hypothesize that
sensing errors may occur in the form of false positive or
false negative detections. Let Zt

n be the random variable
describing the outcome of an observation performed at point
c(n) at time t. In the following we will sometimes write just
Zt to indicate a sensor reading at time t without specifying
where it was taken. The sensor performance is given by the
following parameters:

Pr[Zn = 1|Xn = 0] = α(n)

Pr[Zn = 0|Xn = 1] = β(n)

where the superscript t has been dropped because these
detection probabilities are assumed stationary. The false
positive (i.e., “false alarm”) rate α(n) and the false negative
(“missed detection”) rate β(n) are functions of the area being
sensed, i.e., R(n). Specifically, we formalize the intuition

that when sensing a large area errors of either type are more
likely to occur, whilst when concentrating the sensing effort
on focused regions accuracy increases. These principles are
formalized by the following constraints:

1) d(n1) < d(n2)⇒ α(n1) ≥ α(n2),
2) d(n1) = d(n2)⇒ α(n1) = α(n2).

Identical trends are supposed for β(n). These constraints
model, for example, the scenario where a UAV may fly at
different altitudes while searching for a target in a given
area by using a nadir-pointing camera. When the UAV flies
at high altitudes it senses a larger region but its error rate is
higher. Conversely, if the UAV lowers its altitude it senses a
smaller region but with greater fidelity. These two different
choices are associated with choosing a sensing point close
to the root of T versus a sensing point at higher depth.
In the following we will repeatedly refer to the uniform
nature of the sensing process. This means that when detection
occurs in a given region the detected target could be located
anywhere therein with the same probability. Similarly, if an
error occurred, it could have happened anywhere and with
the same probability.

C. Bayesian updates

We now discuss how probabilities are updated when a
new sensor reading Zt

n is received. In the following we use
standard notation for Bayesian estimation, i.e.,

ptn = Pr[Xn = 1|Z1, . . . , Zt]

where it is furthermore assumed that the prior p0n is available.
This process is conceptually similar to the problem described
in [5], but some changes in the posterior update method
emerge because of the representation embraced in this
manuscript. The starting point are the following equations
(see [5] for details):

Φ(Zt
n) = (1− Zt

n)(1− α(n)) + Zt
nα(n)

Ψ(Zt
n) = (1− Zt

n)β(n) + Zt
n(1− β(n))

Θn(Zt
m) =

{
Ψ(Zt

m) if m = n
Φ(Zt

m) if m 6= n

ptn =
Θn(Zt

m)pt−1n

Φ(Zt
m)(1− ptm) + Ψ(Zt

m)ptm
. (2)

In the last relationship the reader should note that in general
it could be n 6= m, i.e., we also need to update the posterior
probability for cells different from the one where sensing
occurred. This is consistent with the former statement saying
that all cells are correlated with each other. The reader should
notice that in principle Eq. 2 could also be used to compute
pn∅ , although in practice one can also obtain this value as
one minus the sum of probabilities stored in the leaves of T .

We now discuss how these relationships are applied to
update posteriors in a Type1 PQ. Upon receiving a sensor
reading Zt

m Eq. 2 is first applied to compute ptm and then



ptn for all nodes n that are leaves of T . If m is an internal
node then the change in its probability value needs to be
propagated to its children. The change in probability is
redistributed proportionally to the children, i.e., considering
the constraint given by Eq. 1 we set:

δp = ptm − pt−1m

and we then update the probability of all m’s children setting

ptmi
= pt−1mi

+

(
pt−1mi

pt−1m

)
δp. (3)

Changes applied to the m’s children are then recursively
propagated to their descendants until they reach the leaves.
Once no more updates are necessary, a further sweep of
T is needed in order to reinforce the constraint on the
internal nodes. This is easily done by visiting the tree bottom
up, starting from the leaves and repeatedly applying Eq. 1.
Overall, the complexity of the Bayesian update isO(|A(T )|),
where |A(T )| is the number of nodes in T .

D. Construction and Update of a Probabilistic Quadtree

Before the search procedure starts, T must be initialized.
Two approaches are possible. If no prior information is given,
then a tree consisting of just the root is built, with R(T )
equal to the area where the search takes place. An initial
probability value assigned to the root (pn = p0n) gives the
a priori confidence that one target is present in the area. If
this value is not provided, then one may set pn = 0.5 to
indicate total lack of a priori information. Alternatively, the
initial decomposition of the environment can be extracted
from a prior belief probability distribution. For example,
when searching for a lost ship one may be given a distri-
bution related to the last known location. From this a priori
distribution a PQ may be extracted in a number of ways,
including restrictions on the maximum depth or number of
nodes in the initial quadtree. Such considerations may have
practical relevance in terms of computation. Figure 1 shows
two possible initializations of the search area, R(T ), using
the probabilistic quadtree structure. Figure 1(a-b) represents
a decomposition induced by the initial belief probability
distribution while restricting the maximum number of nodes
(a.k.a. the order) of the tree to A(T ) = 300 nodes. The
resultant quadtree has nodes at varying depth, with high
depth (i.e. high resolution) corresponding to areas of high
spatial variations in the belief probability. Alternatively,
consider Figure 1(c-d), where the quadtree is constructed to
a specified initial maximum depth, which highlights the fact
that the uniform grid decomposition is a special case of the
hierarchical quadtree representation. Note that the uniform
grid may not provide the finest granularity necessary for the
search process, i.e., the depth of the initial tree may not equal
D(T ). Moreover, in the framework we propose the searcher
starting with a coarse uniform grid will iteratively refine it to
gather more information in regions where the target is more
likely to be located. On the contrary, approaches based on flat
uniform grids do not refine their representation adaptively.

(a) (c)

(b) (d)
Fig. 1. Illustration of the initial partitioning of the search region and
associated belief probability map using a probabilistic quadtree with (a-b)
maximum initial number of nodes of 300, or with (c-d) maximum initial
depth of the tree, D(T ) = 4.

During the search process the tree will be expanded by
splitting a leaf node into four children, in the spirit of
quadtree representations. The probability values stored in the
children of the node being split follow from the constraints
being enforced and from a uniform sensing assumption. That
is to say that when a leaf node n in a Type1 PQ is split, each
of its children is initialized with a value pni = pn/4. Hence,
by splitting leaf nodes, the search algorithm is able to expand
the depth of the tree in a focused way driven by the sensing
information collected while searching. Pruning a tree is also a
straightforward process because the constraint given by Eq. 1
is always enforced in the tree. Therefore pruning is achieved
by simply removing all descendants of an internal node n.
When this happens, no further probability updates are needed
because n already satisfies Eq. 1 and seamlessly becomes a
leaf. Hence, T may be updated with time complexity O(1).

E. Problem definition
Starting from the elements described above, we can now

formally define the search and decision problem as follows.
Given T , determine a sequence of valid sensing operations
aimed to locate a possible target located in R(T ). The
process shall eventually output either:
• the decision No target present;
• the decision Target present together with node n with
d(n) = D(T ) (i.e., at maximum depth) such that the
target is inside R(n).

Moreover, while doing so we aim to optimize the overall
distance traveled by the sensor while moving between suc-
cessive sensing locations.

IV. SEARCH PLANNING

The objective of planning the searcher’s route through
the discretized search area of interest is to appropriately



identify the presence (and location) or absence of a single
target. Specifically, we wish to maximize the probability of
detecting the target by choice of not only where to gather
observations but also at what resolution.

Consider the initial belief distribution along with an initial
quadtree representation of the probabilistic environment to
be given. The searcher seeks to maneuver to the location
containing the maximal probability of detection, weighted
by the cost to transit between cells as well as the value of
the resolution of observations as measured by depth in the
quadtree structure. These principles lead to the definition of
the objective function, J , to be optimized as

J
4
=
p(n) · 4d(n)

cost(n′, n)
, n, n′ ∈ A(T )

where n′ is the searcher’s current node location and n is the
decision variable over which the optimization occurs.

The inclusion of transit costs cost(n′, n) represents the
challenge of constrained paths for physical robotic sensor
platforms, while the dependence on depth within the tree
captures the challenge of obtaining information at desired
and/or necessary resolutions. In this manner, the transit
cost includes not only the spatial (e.g., Euclidean) distance
between (the centers of) two regions, but also the effect of
moving to lesser or greater depth in the quadtree. Returning
to the example of the UAV search application, additional
costs are incurred if the UAV ascends to a higher altitude
to obtain a broader field of view, while possible benefits
are accrued for descent at the expense of a smaller sensor
footprint. For the purposes of formulating the model, let us
propose a simple measure of the total transit cost given by:

cost (n′, n)
4
=

{
‖n′−n‖+κascent∆(n′, n) if ∆(n′, n)>0,
‖n′−n‖+κdescent∆(n′, n) if ∆(n′, n)≤0.

where ‖n′−n‖ is defined as the Euclidean distance between
the center coordinates of the n-th and n′-th regions, and
∆(n′, n) = d(n′) − d(n) is the net change in quadtree
depth. The scaling parameters, κascent and κdescent, describe
the relative cost or benefit of ascending or descending, re-
spectively, within the quadtree structure. Note that cost(n′, n)
may not be symmetric if the costs to ascend and descend are
not equal. Figure 2 illustrates the determination of transit
costs for an example path including ascent, level transit, and
descent segments.

A. Myopic Optimization

The computational complexity of the constrained path
search optimization problem (NP-complete for maximizing
probability of detection or NP-hard for minimizing expected
time till detection) [15] motivates search approaches which
mitigate this computational burden. Consider a myopic op-
timization of the objective function [16], such that the next
cell for the searcher to inspect is

n∗ = arg max
n

J, n ∈ A(T )

The best node to search, n∗, represents the best reward-
to-cost ratio, which in special cases of the discrete object

Fig. 2. Depiction of an illustrative searcher route with path given by
the sequence {n0, n1, . . . , n5}. The leg from node n0 to n1 has a
change in depth of ∆(n0, n1) = 3 (ascent), segment n2n3 incurs only
Euclidean distance cost during level transit, and segments n2n3, n3n4,
and n4n5 correspond to descent legs. The net change in depth of the path
is ∆(n0, n5) = −1, representing descent of one level.

search problem can be shown to be the optimal (e.g., [2])
node to inspect. Further, this search optimization strategy
is adaptive [14], in that the resulting search plan utilizes
the dynamically updated belief probability distribution to
guide the search effort at every time step. Such search
strategies offer robustness to uncertainty in the face of
dynamic environments, and the proposed myopic strategy
additionally offers computational ease in computing the best
node to search.

B. Route Planning

Once the goal node, n∗, has been determined, the searcher
must transit to the desired location; however, the mobile plat-
form is assumed in this work to necessarily travel through ad-
jacent regions en route to the goal. We can straightforwardly
determine the adjacency relationships between the current
location of the searcher and all neighboring regions, where
two regions are considered adjacent if they share (any portion
of) one or more boundaries [7]. By convention, the adjacency
list contains the current node as well as its ancestors and
descendants. The location-dependent adjacencies induce a
weighted graph on the set of active nodes A(T ) in the PQ,
where an edge exists between two active nodes n and n′ iff
they are adjacent, and the edge weight is precisely the transit
cost, that is, cost(n′, n), as defined previously. Leveraging
the adaptive nature of the myopic search optimization, we
consider only the next location en route to the goal node by
selecting a one-step reachable region adjacent to the current
location that possesses minimal transit cost. The searcher
then recomputes the next best location and continues to move
toward it via adjacent nodes until the goal is reached. Only
upon reaching the goal node, n∗, does the searcher make
an observation of the region R(n∗) and update the belief
probabilities according to the sensor and Bayesian update



models described earlier. This assumption that the searcher
does not perform any inspections while in transit stems from
practical considerations, such as diminished information cap-
ture at transiting speeds or operational protocols requiring
immediate and focused response to any positive contact.

V. SEARCH DECISION AND TREE EVOLUTION

The decision process terminates with a negative answer
when pn∅ > Pnull, where Pnull is a predetermined threshold.
The positive answer is instead produced when the probability
of a node at the maximum depth D(T ) exceeds a given
confidence level Pfound, and the region associated with that
node is output as the target location. It is important to stress
that termination with a positive answer occurs only when
high confidence is achieved at the deepest level, so that
a positive answer is associated with a target location at
the highest resolution (i.e., smallest area of the associated
region). A hypothetical high confidence associated with a
node n close to the root will not result in a positive decision
being taken because n is linked to a coarse resolution region.

Finally it is necessary to address how the tree will be
refined during the search process. Every time a sensor
reading Zn is received, the posterior is updated according to
the method outlined in Section III-C. If node n is internal,
then the probability change is recursively propagated to its
descendants according to Eq. 3. However, if Zn = 1 and
n is a leaf with d(n) < D(T ), the node is split and four
children are generated, each initialized with probability pn/4.
This refinement of the tree thus extends the search space
around locations that returned a positive detection. Moreover,
since the newly added children are at a deeper level, the
search space is enriched with locations associated with more
accurate sensor readings, i.e., lower values for α and β. On
the contrary, if n is an internal node and a reading Zn = 0 is
received, the node shall be considered for pruning, provided
that its associated probability falls below a given threshold.
However, rather than removing branches altogether we adopt
a slightly different strategy, i.e., the branch is not pruned but
rather marked as cleared. Cleared nodes are not removed
from the tree, but are not considered part of A(T ) when
searching for a value optimizing J . However, during the
Bayesian update their probabilities are still updated and if
they cross back above the threshold, the cleared mark is
removed from the branch and the nodes come back into the
active tree. We stress that the threshold is level dependent,
with higher values associated with deeper nodes. This choice
aligns with the conservative intuition that it should be harder
declare clear nodes closer to the root, which are associated
with large search regions, and therefore their threshold is
lower and harder to achieve. In the pseudocode we indicate
with B(d) this depth dependent value. By marking nodes
as cleared, rather than removing them altogether, regions
formerly removed from the search space can be reconsidered
as soon as one of its components is not cleared anymore
without having to recreate the structure constructed earlier.
The overall search and decision strategy is sketched in
pseudocode in Algorithm 1.

Algorithm 1 Overall search and decision algorithm
T ←InitializeTree(Prior)
pn∅ ← 1− P (root(T ))
loop
n← arg maxn J, n ∈ A(T )
Determine route and move to node n
Zt
n ← SensorReading

Update posterior and pn∅

for all n ∈ N(T ) do
if pn ≥ B(d(n))) and n is cleared then

Remove clear mark from n and all its descendants
if pn∅ > Pnull then

Output No target present. Stop
else if d(n) = D(T ) and pn > Pfound then

Output Target found at location R(n). Stop
if Zt

n = 1 and n is a leaf and d(n) < D(T ) then
Expand T by splitting node n

if Zt
n = 0 and n is internal and p(n) < B(d(n)) then

Mark as cleared all its descendants

VI. EXPERIMENTAL RESULTS

Define an L × L search area of interest, where L is the
length of the side of the square search area R(T ), assuming
unit length for the side of region R(n) for nodes at maximum
depth. Consider the search area illustrated in Figure 1, which
will be used for demonstrating the proposed search formula-
tion and methodology using the probabilistic quadtree. The
PQ T in this case has L=256, or in other words, D(T )=8.
Throughout the numerical experiments conducted, the search
parameters associated with the sensor characteristics, search
decision thresholds, transit cost factors, etc., are held fixed
such that the randomness introduced in the replications is due
to the imperfect sensor observations. The initial aggregate
belief is 0.75, and the search mission duration is 1000 time
steps, in that the decision process reports ”No target present”
if after 1000 time steps no cell at the deepest level crossed
the threshold Pfound. Recall that the sensor characteristics as
well as the search decision thresholds are dependent on the
depth within the quadtree, such that for d = 0, . . . , D(T ),
the false positive and negative detection error probabilities
are given by α(d) = 0.2−0.01d and β(d) = 0.3−0.02d,
respectively. Similarly, the lower search decision thresholds
is B(d) = 0.0+0.01d, and Pfound = 0.9. For transiting, the
ascent and descent factors are κascent = 1000 and κdescent = 0.
Finally, the searcher commences its search by observing the
search area initially at the quadtree’s root node. Exploration
of the factor space and the sensitivities therein is subject of
future investigations.

A. Belief Evolution and Trajectory

The evolution of the aggregate belief describes the dy-
namic change in the probability that the target is present
in the search area. An illustrative evolution of this search
process is depicted in Figure 3, with Figures 4(a)-(d) provid-
ing snapshots of the searcher’s trajectory through the search
region. Starting at the root node and with an initial belief



Fig. 3. An example of the evolution of the aggregate belief, namely the
probability of target presence in the search region, R(T ). The initial belief
value is 0.75, and the search process concludes at time step t = 377
correctly locating the target at maximum resolution (i.e., at maximum depth
in the quadtree). The time step labels correspond to the snapshots of the
searcher’s trajectory shown in Figure 4(a)-(d).

of 0.75 that the target is present, the searcher employs the
myopic search strategy, leading it to relatively nearby regions
of high likelihood of finding the target. In Figure 4(a), the
searcher begins to inspect the nearby peak (eastern region),
but upon mostly clearing that area, finds it beneficial to
transit and search the southwestern peak (shown in (b)). Only
after a thorough but unsuccessful search, illustrated by the
searcher track in (c), does the searcher revisit the eastern
section, where it finally arrives at the true target location
and investigates more deeply until declaring completion of
the search process. An accompanying video shows how the
posterior is updated during the search and how it drives the
search process2.

Numerical studies with 1000 replications of the simulation
yields an approximate probability distribution, illustrated in
Figure 5, of the time till the correct search decision is made,
with expected number of time steps E[TTD] ≈ 419. Note
that for these simulation experiments, the stationary target is
located at c(n)=(200.5, 200.5), for the region at maximum
depth, i.e., a 1× 1 unit area.

B. Computational benefit of hierarchical structure

In addition to the advantages offered by the PQ rep-
resentation for improving the search performance, another
benefit is in the reduction of computational overhead in data
storage and maintenance. In order to achieve the desired
search objective at the required resolution (i.e., detection
of a target within unit area), the state space for a uniform
grid is necessarily L × L, or in the presented example,
2562 = 65, 536 nodes.

In contrast, the proposed approach in this paper leverages
the exponential character of the probabilistic quadtree to
dramatically reduce the state space, which also benefits the
search optimization and Bayesian update subroutines. Exam-
ining Figure 6, we see that on average over 1000 simulation
trials, the size of the PQ is two orders of magnitude less than
that of a flat data structure representing a uniform grid (i.e.,∼
600�∼65, 000 nodes). Additional computational advantage

2Matlab R© code producing these results is available for download at
http://robotics.ucmerced.edu.

(a) (b)

(c) (d)
Fig. 4. Illustration of an example search trajectory, with the searcher
starting at the root node (i.e., center location). Panels (a)-(d) correspond to
time steps, t = 45, 160, 240, 377, resp. (also shown in Figure 3). Note that
the searcher first inspects one region of high target probability, then transits
to another peak, before returning to the first region, where it successfully
detects and localizes the target at maximal resolution.

Fig. 5. Probability distribution of the time till correct decision for the
probabilistic quadtree T initialized with a maximum of 300 nodes. The
expected time for a correct search decision is E[TTD] ≈ 419 time steps.

is obtained by including the clearing and/or pruning of nodes
during the evolution of the search process.

Alternatively, suppose the searcher has limited compu-
tational resources and must restrict the state space of its
representation of the belief. The trade off in this case is
with the achievable resolution of the search. For example,
in order for a uniform grid over a 256× 256 search area to
have a comparable number of nodes as the PQ construction,
the searcher is limited to localizing the target to no better
than within an 8× 8 grid cell, which requires a state space
of 1024, versus accuracy to a 1× 1 area with the PQ.

Another computational trade off can also be considered in
the context of search performance. If the search process is
required to terminate within a fixed time budget, which is
often the case for many operational scenarios, we can also
study the expected time until the correct search decision is



Fig. 6. Evolution of the total number of nodes in the quadtree (initially
restricted to a maximum of 300 nodes). The upper curve represents
the growth of the quadtree size without clearing low probability nodes,
whereas the lower curve shows the number of nodes cleared from the tree,
representing the amount of search area cleared. The shaded region between
these curves represent the number of active nodes A(T ) in the PQ, i.e., the
size of the state space of the search problem. Thin bounding lines represent
3σ error intervals over 1000 simulation runs.

Fig. 7. Decision time probability distributions for search on a uniform
grid. Three different resolutions, corresponding to equivalent PQ depths 4,
5, and 6, are represented, with mean decision times of t ≈ 193, 451, 687,
resp. Averages were taken across N = 100 simulation runs for depth 4 and
5, and across N = 10 runs for depth 6.

made for uniform grids of varying resolution. Figure 7 shows
the probability distribution of the decision times for different
uniform discretizations of the search area. Equivalent to a
PQ at depths 4, 5, and 6, the uniform region resolutions
are 16 × 16, 8 × 8, and 4 × 4, respectively. The resultant
probability distributions on search decision times show that
if the search must be completed in, for example, ∼ 500 time
steps (c.f. Figure 5(a)), then the hierarchical structure is once
again superior. In other words, within the specified mission
duration, the PQ approach enables localization of the target
down to the maximum 1 × 1 resolution, whereas one must
use a uniform grid with an inferior 8 × 8 resolution (i.e.,
depth 5) to meet the time limit.

VII. CONCLUSIONS

This paper proposed a novel probabilistic framework for
the spatial search of a stationary target using a single searcher
with imperfect sensors. We introduced the concept of proba-
bilistic quadtrees which provide an efficient computational
data structure for representing the search region and the
corresponding belief probability map of target presence at
multiple resolutions or spatial scales. In addition to ad-
dressing the Bayesian update expressions for integrating

possibly erroneous detection observations on the quadtree,
we proposed myopic search optimization and route planning
algorithms to provide autonomous and adaptive search to
best accomplish the search objective. Various benefits of the
proposed hierarchical approach in terms of both search per-
formance and computational advantages over uniform grid
representations were highlighted via results from simulation
studies.

There are numerous avenues for future exploration. Vari-
ous analyses on the effect of different initialization schemes
for the probabilistic quadtree are appropriate, including de-
pendence of the search performance on the initial number
of nodes in the PQ. Exploration of different transit cost
measures, including sensitivities to changing ascent and
descent costs, are also of interest, which can incorporate
realistic constraints such as fuel or time late to goal. Ad-
ditionally, extension to multiple searchers with different
sensing and motion capabilities will offer new insights into
multi-agent search. Calibration of physical depth-dependent
sensor characteristics, e.g., computer vision detection algo-
rithms for a UAV-borne camera, is forthcoming in live field
experimentation efforts at facilities located at Camp Roberts,
CA. Other elements can further be implemented for live-fly
field experiments demonstrating the efficacy and operational
relevance of the proposed work.
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