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Abstract 

By performing Quadrature Mirror Filter Bank (QMFB) processing with a given 

signal it is possible to obtain Frequency-Time (F-T) outputs that represent signal features 

such as bandwidth (W), center frequency (fc), signal duration (Ts), modulation type (AM, 

FM, BPSK, QAM, etc), frequency content and time allocation. Because of its unique 

structure, two widely used signals based on Orthogonal Frequency Division Multiplexing 

(OFDM) were chosen as signals of interest for demonstration. The general 

implementation of the QMFB process is described along with the basic structure of 

OFDM signals related to the physical layer perspective of 802.11a Wi-Fi and 802.16e 

WiMAX frame structures are described.  

The adopted methodology is aimed at exploiting signal of interest features 

accounting for the effects of signal resampling and zero-padding. Computed simulation 

results are obtained after applying the defined methodology to each signal of interest. 

Initial time domain and frequency domain responses are presented for each input signal 

along with the initial and computed resampled parameters for each case. Results for 

selected QMFB outputs are presented using 2D F-T QMFB plots and 1D average 

frequency and average time plots.  These plots enable qualitative visual assessment such 

as may be used by a human operator. The 1D responses are computed for the input signal 

and output QMFB responses and compared using overlay plots for single burst and 

multiple integrated burst inputs. Resultant time (Δt) and frequency (Δf) resolutions were 

consistent and validate the usefulness of QMFB processing.  
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OFDM-BASED SIGNAL EXPLOTATION USING 

QUADRATURE MIRROR FILTER BANK (QMFB) PROCESSING 

CHAPTER 1.  

Introduction 

This chapter presents the research motivation, research objectives and research 

organization. The research motivation is divided in two subsections aimed to provide the 

operational motivation (Section 1.1.1) and the technical motivation (Section 1.1.2) for the 

research effort.  Research objectives are defined in Section 1.2.3 with a goal of 1) finding 

empirical results aimed at satisfying the research motivation, and 2) finding a graphical 

representation that is useful for highlighting discriminating signal features from an 

operators’ perspective.  Finally, the research organization is presented in Section 1.2.4. 

1.1 Research Motivation 

1.1.1 Operational Motivation 

Previous related work with Quadrature Mirror Filter Bank (QMFB) processing [1, 

3, 4] has demonstrated some practical capability for exploiting a given signal by using 

resultant frequency-time (F-T) plots to highlight some signal’s distinctive characteristics.  

Other signal exploitation procedures using passive methods are given in [8], which is 

based on performing wavelet-based radio frequency (RF) fingerprinting, and [0, 11] 

which is based on performing Gabor-Based RF Distinct Native Attribute (DNA) 

fingerprinting. 

Results in previous works [1, 3, 4] are MATLAB based  simulated signals [1] 

using the QMFB process to evaluate frequency modulated CW (FMCW) and binary 

phase shift keying (BPSK) signals.  Additional work has been done with laboratory based 
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signals [4] using the QMFB process to evaluate noise technology radar (NTR) signals. 

The 802.11a Wi-Fi and 802.16e WiMAX RF communication protocols [9, 12] 

are continuously evolving to provide greater reliability using orthogonal frequency 

division multiplexing (OFDM) techniques to better exploit available communication 

channel resources. Besides the synchronization and other preset component features, 

these signals present a wideband noise-like behavior. This is a result of random symbol 

assignment making detection using burst integration methods more difficult.  This 

provides the motivation to check if QMFB processing is applicable to experimental 

OFDM-based signals, like 802.11a Wi-Fi and 802.16e WiMAX, with an aim to 

determining if useful information exists in QMFB output response that relates to specific 

signal features. 

1.1.2 Technical Motivation 

The technical motivation is aimed at presenting a new approach for signal 

exploitation of OFDM-based signals.  These signals were chosen because of their noise-

like behavior, and specifically the 802.11a Wi-Fi and 802.16e WiMAX signals because 

of the randomness within signal generation.  

The QMFB process is the baseline for conducting this research and when 

implemented according to its definition [1, 3, 4] has demonstrated a consistent approach 

to estimating signal parameters such as bandwidth (W), center frequency (fc), signal 

duration (Ts), modulation type (AM, FM, BPSK, QAM, etc), frequency content and time 

allocation. 

In this research the signal structure for each protocol, specifically the signals’ 
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physical layer, contains details related to transmitted signal characteristics, and those 

details define what the received signal structure should be.  By exploiting the QMFB 

process using an OFDM-based signal input, the goal is to realize the extent that signal 

characteristics can be reliably extracted and how well the extracted features match the 

defined structure [9, 12]. 

1.2 Research Objectives 

The main objective for this research is to perform a qualitative visual assessment 

of OFDM-based signal responses using passive QMFB detection.  This objective was 

divided in two parts, including: 1) reducing the required computation time used in 

previous works [1, 3, 4] to perform QMFB processing, and 2) improving output results 

related to frequency and time resolution for a given signal of interest.  The goal is to 

achieve frequency and time resolution that permits reliable visual assessment to enable 

exploitation of a given signal’s characteristics from an operator’s perspective within an 

reduced computation time. This empirical approach would permit exploitation of signal 

characteristics such as bandwidth (W), center frequency (fc), signal duration (Ts), 

frequency content and time allocation as presented in 2D QMFB F-T plots. 

1.3 Research Organization 

The document includes general descriptions and information for specific cases 

that were used to compute the results according to the research objectives defined in 

previous section. 

Chapter 2 presents the necessary technical background used as a baseline during 

this research effort.  Description about QMFB process is presented along with an OFDM 
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overview and some basic characteristics of the signals of interest with emphasis on 

physical layer characteristics [9, 12]. 

Chapter 3 presents the adopted methodology aimed to compute the necessary 

results to achieve the defined objectives according to the technical background defined in 

previous chapter. A process overview is presented and its decomposition is described.  

The post-collection process is defined first, followed by verification and validation of the 

QMFB process. The input signal parameters are then verified according to the standards 

defined for each case [9, 12]. The QMFB process is described, including the effects of 

signal resampling and zero-padding used for given input signals. Measurable process 

outputs are defined, signal of interest parameters are provided, and the graphical 

presentation format for QMFB results is introduced. 

Chapter 4 presents computed simulation results according to the given 

methodology and comparisons to initial parameters for each signal of interest are 

presented.  Initial conclusions for each case are also presented. The results are presented 

in 2D F-T plots along with corresponding 1D plots for time domain and frequency 

domain responses. Overlay plots are used for initial input signal, output signal and burst 

integrated output signal comparisons. 

Chapter 5 presents the research summary and conclusion.  The motivation, 

methodology and computed versus expected results are discussed.  Recommendations for 

future work are given. Finally, appendices are provided for each signal of interest along 

with the implemented MATLAB code. 
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CHAPTER 2.  

Background 

2.1 Overview 

This chapter provides the technical background established for this research 

effort. This chapter is divided in two main sections aimed at defining a performance 

baseline and providing basic concepts related to the topics and experimental techniques 

exploited during this research. The Quadrature Mirror Filter Bank (QMFB) process is 

described in Section 2.2, which provides general implementation parameters and 

assumptions. Fundamentals of Orthogonal Frequency Division Multiplexing (OFDM) are 

introduced in Section 2.3 which provides the general signal structure as well as key signal 

features.  There were two OFDM-based signals of interest for this research.  The physical 

layer characteristics of each are provided in Section 2.4 for the 802.11a Wi-Fi signal and 

Section 2.5 for the 802.16e WiMAX signal. 

2.2 Quadrature Mirror Filter Bank (QMFB) Processing 

The QMFB is an orthogonal waveform decomposition technique based on 

wavelet filter theory. Each layer output provides input signal frequency and time 

characteristics aimed to estimate and exploit various signal’s features.  Common features 

of interest include signal modulation type, bandwidth, frequency component distribution, 

signal duration as well as time and frequency allocation.  As detailed in Figure 2.1, the 

process adopted here was introduced by Pace [1] and subsequently exploited in additional 

related works of Jarpa and Atienza [3, 4]. Jarpa’s research in [3] was based on verifying 

QMFB response given structured signal inputs, including a single tone, multiple tone, 
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frequency modulated continuous wave (FMCW), and frequency/phase shift keyed 

(FSK/PSK) waveforms. Atienza’s research in [3, 4] analyzed the QMFB response given 

noise-like input signals collected from AFIT’s Noise Technology Radar (NTR) Noise 

Network (NoNET). 

For a given input signal, the QMFB process performs waveform decomposition by 

computing continuous signal decimation in high and lower frequency components using 

the signal structure detailed in Figure 2.1.  The input signal is decomposed into in-phase 

(I) and quadrature (Q) components using modified sinc-shaped filters [1]. 
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Figure 2.1  QMFB process overview [1] 
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The output of each filter “Layer” corresponds to the amplitude (real or complex) 

or magnitude as a function Frequency-Time (F-T) parameters according to the input 

signal.  After each filtering stage, the signal is decimated so further layers can be 

computed.  Because of the decimation process, and the filter input signal being a function 

of the previous layer, the initial time window (duration) is increased by a power of two 

with every computation.  On the other hand, the initial frequency window (bandwidth) 

decreases according to the same power of two.  This creates a tradeoff between the 

different layers which could produce useful data for a given layer.  Given the post-

filtering decimation, the total numbers of available layers (N) is a function of the initial 

number of data samples (Ns) and given by: 

2 sN=log (N )  (2.1) 
 
For a given N, the frequency window extent (∆f) and time window duration (∆t) 

for a given layer (NL) can be computed as follows: 

12(2 1)
s s

N
F

f ff
N−∆ = =

−
 (2.2) 

N N

N 1
s s T

2 2t
f ( 2 1) f N−∆ = =

−
 (2.3) 

 
 
Where  fs is the sampling frequency, NF is a given frequency layer number, and NT 

is a given time layer number. According to (2.2) and (2.3) it can be seen that lower 

numbered layers present shorter time windows compared to higher layers and there is an 

inverse relationship with the frequency window.  

The decimation is computed according to [1], which was proven to work in 
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previous works [3, 4] and it consist in the implementation of a “modified sinc” finite 

impulse response (FIR) given by: 

S n+0.5 N (N-2)h[n]= sinc w[n],      - n  ,
2 C 2 2

  ≤ ≤ 
 

 (2.4) 

 
Where S is the scaling variable, C is the compression variable, N is the number of 

coefficients, and w[n] is a Hamming window weighting. 

These particular filters have a flat bandpass response and pass the maximum 

amount of desired signal energy at each layer. According to [1, 3] with an aim of getting 

“nearly orthogonal filters with cross-correlation of less than 0.001” using N = 512, the 

constant compression and scaling values in (2.4) are C=1.99375872338059 and 

S=1.00618488680080. The Hamming window is use to suppress the effects of Gibb’s 

phenomena resulting from sequence truncation [1, 3]. 

To avoid data sample loss, and because the total number of available layers is 

given by (2.1), the following assumption has been made to compute, as initial 

approximation, the total number of available layers for a given input signal: 

2 sN=ceil[log (N )]  (2.5) 

 
Where N is the total number of available layer, Ns is the number of samples, and 

the ceil[ ] operation ensures zero-padding to the next power of two. 

2.3 Orthogonal Frequency Division Multiplexing (OFDM) signals 

The sub-carrier frequencies in OFDM are chosen to be mutually orthogonal and 

inter-carrier guard bands are not required as in basic modulation process.  This simplifies 

the transmitter and receiver designs; unlike conventional FDM, which requires a separate 

http://en.wikipedia.org/wiki/Orthogonality#Communications�
http://en.wikipedia.org/wiki/Frequency-division_multiplexing�
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filter for each sub-channel. 

Considering the frequency domain, an OFDM symbol is made up multiple 

subcarriers, the number of which determines the Fast Fourier Transform (FFT) size used.  

As illustrated in Figure 2.2 [12] there are three distinct types of subcarriers used.  The 

type of subcarrier and purpose are as follows: 

• Data Subcarriers:  Data Transmission 

• Pilot Subcarriers:  Signal Estimation 

• Null Carriers:  No transmission; guard bands and DC subcarrier. 

DC subcarrierData Subcarriers Pilot subcarriers

ChannelGuard Band Guard Band

 

Figure 2.2  OFDM frequency structure [12] 

 
Considering time domain, an Inverse Fourier Transform (IFT) creates the OFDM 

waveform where the signal time duration (Ts) is the result of the initial Guard Time (Tg) 

plus the useful symbol time (Tb).  A Tg copy of the last useful symbol is added and used 

to correct for multipath.  Therefore, the basic OFDM time structure is given by Figure 

2.3. 
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Tg Tb

Ts
 

Figure 2.3  OFDM time structure [12] 

 
The resultant transmitted signal is given by  

s(t)= Re

⎝

⎛ej2πfct � ckej2πkΔf�t -Tg�

Nused
2

k=-Nused
2 , k≠0 ⎠

⎞ (2.6) 

 
Where fc is the center carrier frequency, Nused is the number of used subcarriers, ck 

is a complex modulation number specifying a point in the QAM signaling constellation, 

Δf is the subcarrier spacing, t is the elapsed time since the beginning of the OFDM 

symbol, and Tg = GxTb with defined G ∈ [1/4, 1/8, 1/16, 1/32] [12]. 

According to the OFDM frequency and time definitions given above, an OFDM-

based signal is generated as given by Figure 2.4 

s(t)
FFT -1

DAC

DAC

90°

X0

XN-1

XN-2

X1 fc

R

C

s[n]

 
Figure 2.4  OFDM-Based Signal Generation Process 
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2.3.1 OFDM-Based 802.11a Wi-Fi Signal 

This OFDM-based signal is widely used in the implementation of wireless local 

area networks (WLAN). According to [9] and related to this research effort, the OFDM 

802.11a signal covers the following frequencies 5.15–5.25 GHz, 5.25–5.35 GHz, and 

5.725–5.825 GHz. This provides a wireless LAN with data payload communication bit 

rates of  Rb ∈ [6, 9, 12, 18, 24, 36, 48, 54] Mbit/s.  The system uses Ns = 52 subcarriers 

that are modulated using binary phase shift keying (BPSK), quadrature phase shift keying 

(QPSK) or 16-ary, 64-ary quadrature amplitude modulation (16-QAM or 64-QAM). The 

defined 802.11a Wi-Fi signal frame format [9] according to the Physical Layer Converge 

Procedure (PLCP) is defined as the PLCP Protocol Data Unit (PPDU) and includes the 

OFDM PLCP preamble, OFDM PLCP header and the PLCP service data unit (PSDU) as 

shown in Figure 2.5. 

PLCP Preamble 
12 Symbols

DATA
Variable Number of OFDM Symbols

SIGNAL
One OFDM Symbol

Coded/OFDM
(RATE is indicated in signal)

Coded/OFDM
(BPSK, r=½)

SERVICE
16 bits PSDU Tail

6 bits Pad BitsTail
6 bits

Parity
1 bit

LENGTH
12 bits

Reserved
1 bit

Rate
4 bits

PLCP Header

 

Figure 2.5 PPDU frame format [9] 

 
The PLCP preamble field is present for the receiver to acquire an incoming 

OFDM signal and synchronize the demodulator. The preamble consists of 12 total 

symbols, including: 1) ten short symbols for establishing automatic gain control (AGC), 
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coarse carrier frequency estimation, and 2) two long symbols for fine frequency 

acquisition in the receiver. The PLCP preamble structure is shown in Figure 2.6. 

 

t1 t10t9t8t7t6t5t4t3t2 GI*2 T1 T2 GI SIGNAL GI Data 2GI Data 1

10 x 0.8 = 8 µs 2 x 0.8 + 2 x 3.2 = 8 µs 0.8+3.2=4 µs 0.8+3.2=4 µs 0.8+3.2=4 µs

  8 + 8 = 16 µs     

Signal Detect, AGC, 
Diversity selection

Coarse Freq.
Offset Estimation
Timing 
Synchronize

Channel and Fine Frequency
Offset Estimation

Rate
Length

Service + Data

 
Figure 2.6  802.11a Wi-Fi Signal preamble structure [9] 

 
2.3.2 OFDM-Based 802.16e WiMAX Signal 

This protocol is aimed to extend wireless range of previous WLAN protocols and 

provide broadband connectivity for data and telecommunications. According to [12] and 

related to this research effort, the OFDM 802.16e signals cover the frequency bands 

below 11GHz.  In this case, each data frame is divided in two subframes, including: 

1) the down link (DL) subframe aimed to transmitting data and control messages to 

specific subscriber station (SS) and 2) the up link (UL) subframe that is used by the 

subscriber to transmit to the Base Station (BS). Each subframe can be modulated using 

BPSK, QPSK, 16-QAM or 64-QAM. The defined 802.16e WiMAX Signal frame can be 

formatted using either time division duplexing (TDD) or frequency division duplexing 

(FDD) techniques. As shown in Figure 2.7 for TDD, the generic 802.16e WiMAX Signal 

frame time duration is obtained by adding each subframe (DL and UL) per SS. 
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Frame nFrame n-1 Frame n+2Frame n+1

DL PHY PDU UL PHY PDU 
from SS#1

Contention Slot 
for BRs

Contention Slot 
for Initial Ranging

UL PHY PDU 
from SS#k

Time

DL Subframe UL Subframe

 

Figure 2.7  OFDM frame structure with TDD [12] 

 
 
As shown in Figure 2.8 for FDD, the generic 802.16e WiMAX Signal frame time 

duration is constant. The subframes (DL and UL) for all SSs use the same time frame but 

with different frequencies. 

 

Frame nFrame n-1 Frame n+2Frame n+1

Time

DL PHY PDU (one or multiple bursts)

UL PHY PDU 
from SS#1

Contention Slot 
for BRs

Contention Slot 
for Initial Ranging

UL PHY PDU 
from SS#n

DL Subframe

UL Subframe

 
Figure 2.8  OFDM frame structure with FDD [12] 
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2.4 Summary 

Technical background for the research effort has been presented, to include a 

discussion of the QMBF process and characteristics. The total number of samples, sample 

frequency and zero padding were described as key parameters aimed to achieve Δf and Δt 

which allow reliable qualitative visual assessment according to the available generated 

layers.  Fundamentals of OFDM were introduced and two specific OFDM-based signals 

of interest described.  This included a discussion of relevant physical layer characteristics 

for 802.11a Wi-Fi and 802.16e WiMAX signals. 
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CHAPTER 3.  

Methodology 

3.1 Introduction 

This chapter discusses the adopted methodology aimed at performing the 

necessary data and simulation management to satisfy defined objectives in this the 

research effort.  Section 3.2 provides the process overview which shows the main flow 

diagram that was used as the baseline process for the research effort.  Section 3.3 

describes the verification and validation (V&V) signals used to ensure the QMFB process 

was implemented correctly.  This is followed by Section 3.4 which describes the OFDM-

based signals considered for demonstrating the exploitation capability of the QMFB 

process.  Implementation of the QMFB process is detailed in Section 3.5, to include the 

effects of signal resampling and zero-padding for a given input signal.  Finally, the 

chapter concludes with Section 3.6, results presentation format, which shows how results 

are presented for each case considered. 

3.2 Process Overview 

The flow diagram in Figure 3.1 was developed to set the sequence of steps aimed 

at achieving the objectives described in Chapter 1 and based on background information 

given in Chapter 2.  The goal was to provide measurable results at every different stage 

of the modeled problem.  For each input, signal characteristics were first verified using 

both time domain and frequency domain power spectral density (PSD) responses.  Once 

verified, the signal was input to the QMFB process and the resulting layer outputs were 

used to exploit features. The exploitation assessment included two steps: 1) Seeing how 
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well resultant QMFB features match the 1-D time and PSD characteristics of the input 

signal, and then 2) Using qualitative visual assessment to see if the 2-D QMFB F-T 

outputs provided an additional insight on features not evident in 1-D responses. 

 

QMFB

Resampling 
and/or Zero 

padding

Signal Verification 
& Validation

Layer Plotting and 
Analysis

Required
Time/Frequency 

Resolution

NO

Qualitative Visual Assessment

Validation and 
Verification signals

802.16e signal

802.11a signal

QMFB 
PROCESS

COLLECTION POST-COLLECTION

RESULTS
YES

 

Figure 3.1  Overview of Research Methodology  
 
3.3 Verification and Validation (V&V) signals 

To ensure the QMFB process was implemented correctly, QMFB output 

responses were looked at using two specific input signals for V&V. The two analytic 

V&V signals included a continuous LFM-modulated signal and a discrete multi-tone 
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signal used for V&V in previous work [1, 3, 4]. The signal’s characteristics presented on 

each V&V signals are aimed to realize differences on the QMFB response due to 

continuous modulation, discrete modulation, and single versus multiple frequencies. 

Signal generation parameters for each of the V&V signal are set to establish identical 

QMFB processing parameters as provided in Table 3.1 

 

Table 3.1  QMFB Parameters for V&V Signal Processing 

Bandwidth 
(KHz) 

Samp Freq 
fs (Hz) 

Duration 
(mSec) 

Number of 
Samples 

40 100 1.6 2428 
 

3.3.1 Continuous Linear FM (LFM) signal 

The LFM V&V signal was used to assess the QMFB response to a continuous 

signal input having a linear frequency and amplitude change during the signal duration 

[2]. The signal time and PSD response is shown in Figure 3.2 were generated using the 

analytic expression in (3.1) with fL = 45 KHz , fH = 95KHz, and 

f∆ = (FL − FH) = −50 KHz. 

 
s1(t) = A1 sin�2πfHt�                             0  <  t  < 0.6 m  
s2(t) = A2(t) sin�2πf∆t2�                 0.6 m ≤  t  < 1.0 m 
s3(t) = A3 sin�2πfLt�                       1.0 m ≤  t  < 1.6 m 

sLFM(t) =� si(t)
3

i=1

 (3.1) 
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Figure 3.2  Analytic LFM V&V signal time domain and PSD responses. 

 
3.3.2 Discrete Multi-Tone (DMT) V&V Signal 

The DMT V&V signal was generated consistent with Szmajda’s V&V signal in 

[7] and was chosen to assess the QMFB response to a discrete modulated signal having 

both single and multiple frequency components across time. The signal time and PSD 

responses are shown in Figure 3.3 and were generated using the analytic expressions in 

(3.2) and tone parameters provided in Table 3.2 

     s1(t) = A1 sin�2πf1t�             0 <  t  <  13  
   s2(t) = A2 sin�2πf2t�            13 <  t  <  25

     s3(t) = 0                              25 <  t  <  37  

   
s4(t) = s1(t)                          37 <  t  <  50
s5(t) = A5 sin�2πf5t�           37 <  t  <  50
s6(t) = A6 sin�2πf6t�             37 <  t  <  50

sDMT(t)=� si(t)
6

i=1

 (3.2) 
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Table 3.2  Discrete Multi-Tone Szmajda Signal Generation Parameters 

Tone s1(t) s2(t) s4(t) s5(t) s6(t) 

Amplitude 230√2 2A1 A1 A1 A1 

Frequency (Hz) 5 5 5 10 40 
 

 
Figure 3.3  Analytic DMT Szmajda V&V signal time domain and frequency responses. 

 

3.4 OFDM-Based Signals 

The QMFB response to the V&V signals described in Section 3.2 and Section 3.3 

provide a baseline for assessing QMFB exploitation potential using two OFDM-based 

signals. Each signal was decomposed according to its specific characteristics in order to 

find, evaluate and exploit different responses. The two signals considered include 

experimentally collected 802.11a Wi-Fi [8] and 802.16e WiMAX [0, 11] signals. 
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3.4.1 802.11a Wi-Fi signal 

This OFDM signal was chosen because of its well-known and structured physical 

layer response as described in Chapter 2. In this case, the signal used corresponds to 

experimental collections taken to support results in [8]. The signal was analyzed in three 

stages using 1) an isolated preamble response, 2) a single burst response and 3) an 

integrated burst response. 

During the first analysis stage the 802.11a preamble response was isolated and 

only the first 10 short symbols corresponding to the first half of the preamble was 

considered.  During the second analysis stage, the response of a single 802.11a burst was 

set as input to the QMFB process. Finally, burst integration was computed considering 

the mean amplitude response for NB = 500 burst collections. The 802.11a Wi-Fi signal 

parameters for each analysis case are presented in Table 3.3 

Table 3.3  802.11a Wi-Fi Signal Parameters 

Input 
Bandwidth 

(MHz) 
Samp Freq 
fs (MHz) 

Duration 
(µSec) 

Number of 
Samples 

Preamble 8.0 23.75 135 3200 

Burst 9.0 23.75 124 2945 
 

3.4.2 802.16e WiMAX signal 

This signal was chosen to assess the QMFB response using a more complex 

structured OFDM-based signal input.  In this case, the input signal corresponds to 

experimental collections made in support of work in [0, 11]. The process is aimed to 

exploit the physical layer parameters and structure described in Chapter 2 according to 

[12].  The experimental 802.16e WiMAX signal was analyzed in two stages.  First, the 
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range-only mode response was considered as input for two cases, including single burst 

and burst integration using NB ≈ 1400 bursts.  Secondly, the data-only mode response was 

considered as input for two cases, including single burst and burst integration using 

NB ≈ 640 bursts.  The 802.16e WiMAX signal parameters for each case described above 

are presented in Table 3.4 

 
Table 3.4  802.16e WiMAX Signal Parameters 

Mode 
Bandwidth 

(MHz) 
Samp Freq 
fs (MHz) 

Duration 
(mSec) 

Number of 
Samples 

Range-Only 2.0 11.875 0.381 4521 

Data-Only 2.5 11.875 1.61 19125 
 
 

3.5 QMFB Processing 

Aimed to evaluate experimental results according to the available inputs described 

in Section 3.3 and Section 3.4, the QMFB process was first modeled in MATLAB based 

on previous work [1, 3, 4] and according to the process described in Chapter 2.  The 

length of each input signal vector was first checked and zero-padded to the closest integer 

power of 2 to avoid data loss during QMFB processing (2.5).  Then, the first simulation 

trial was completed.  After verifying that the QMFB process was working for every 

available input signal type, multiple trials were completed to check differences and to 

choose the best QMFB layer output response according to the specific input. According 

to the available data format for a given input, up to four different cases were used in the 

modeled QMFB process. The initial simulation parameters used to check QMFB 

performance are shown in Table 3.5 
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Table 3.5. Initial QMFB Configuration 

Input Real (R), Complex(C), Magnitude 
# Filter Coefficients 512 

Window Hamming 
fs Initial Sample Frequency 

Total # QMFB Layers Ceil{log2[length(input)]} 
 
Given an input vector to the QMFB process, the first “Layer” output is computed, 

decimated, stored, and passed to the next layer.  This iterative process repeats and ends 

after the initial vector is decimated according to: 

NL=log2(Data Length)=Total # Available Layers (3.3) 

Because data length is a function of both sampling frequency (fs) and total signal 

duration (Ts), two pre-conditioning steps were included in the QMFB process, henceforth 

referred to as resampling and zero-padding. Thus, each input signal was resampled, zero-

padded and set as input to the QMFB process to achieve the desired frequency and time 

resolution in a given QMFB layer output. According to the QMFB frequency-time 

tradeoff described in Chapter 2, better time resolution is achieved in lower QMFB layers, 

but better frequency resolution is achieved in higher QMFB layers. So the challenge is to 

find a frequency sampling rate (fs) versus signal duration (Ts) aimed to present an 

accurate representation of input signal characteristics. Henceforth, this is called the “the 

most representative layer” which corresponds to the layer which shows frequency and 

signal time allocation that could be useful to exploit input signal features such as signal 

bandwidth (W), signal duration (Ts), time resolution (Δt) and frequency resolution (Δf). 

Figure 3.4 shows a collection of QMFB outputs where “the most representative layer” 

corresponds to layer #20 (Q20) highlighted in the red dashed rectangle. 
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Figure 3.4  QMFB output collection sample 
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3.5.1 Signal Resampling 

By resampling the input signal, the number of available input data samples 

increases without changing the total signal duration Ts. This also increases the effective 

sampling frequency fs and because of the F-T trade-off in QMFB processing, it is 

expected that “the most representative layer” should be located in upper layers, which 

increases required computing time and time resolution Δt for a given input signal. 

3.5.2 Zero Padding  

By zero-padding the input signal, the total effective time duration Ts is increased, 

so better frequency resolution is achieved for a given signal and it is expected that the 

most representative layer is now located in lower layers.  But lower layers present poorer 

signal frequency resolution (increased Δf), therefore by using lower layer analysis results 

could be an inaccurate signal representation. 

3.5.3 Measurable outputs 

Aimed to extract useful data and to reduce computation time of the QMFB 

process, the QMFB process was divided in four steps, named as: 1) layer generation 

minimization, 2) QN matrix formatting, 3) time analysis and 4) frequency analysis. By 

performing Layer Generation Minimization it was possible to reduce the total number of 

generated layers, because higher layers does not improve qualitative visual analysis and 

can be disregarded. The QN matrix formatting is a matrix dimensional reduction aimed to 

disregard irrelevant analysis data such as induced by zero-padding and high frequency 

data falling outside the processed bandwidth of the input signal. In this case, the first 

useful plots can be computed considering three variables, including 1) desired layer 
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number, 2) upper frequency limit, and 3) upper time limit.  The resultant output Q_n.mat 

file was created (were n denotes a given layer number) considering an amplitude (real or 

complex) matrix, a magnitude matrix, Δt and Δf values for a given layer, time vector, 

frequency vector and fs. The time analysis and frequency analysis steps permit 

comparison of input data and QMFB responses in order to realize process accuracy and 

losses due to the signal processing. Figure 3.5 shows all the available measurable outputs 

and their relation to the QMFB computing process. 

Qualitative Visual Assessment

Input 
Signal Layer Generation

Layer Plotting

Q Matrix 
Generation

Amplitude 
Matrix

Magnitude 
Matrix

Time 
Analysis

Frequency 
Analysis

Time 
Response

Frequency 
Response

Overlaid 
Time 

Response

Overlaid 
Frequency 
Response

 
Figure 3.5  Measurable process outputs 

 

3.5.4 Presentation of QMFB Layer Outputs 

Aimed to the objective of providing QMFB qualitative visual assessment, the 

results are presented in frequency versus time (F-T) plots for “the most representative 

layer” along with the average frequency and average time plot of the input processed 
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signal.  The QMFB layer output data can be presented in many formats.  For clarity and 

to enable consistent comparison as the input signal varies, all results presented in 

Chapter 4 use the format presented in Figure 3.6 which includes numbered responses of: 

1. The normalized average frequency response computed as a row-wise average for 

a given QMFB layer data. 

2. “The most representative layer”, corresponds to a 2D QMFB F-T layer output 

plotted using Matlab® pcolor function followed by shading interp. Appendix B 

contains a complete set of 2D F-T for given signal. 

3. The normalized average time response computed as a column-wise average for a 

given QMFB layer data. 

 
Figure 3.6.  Representative Presentation Layout for a given QMFB layer output showing 

(1) 1-D Average Frequency, (2) 2-D QMFB, and 1-D Average Time responses 

Note:  For Chapter 4 results, the plots correspond to three different QMFB layers 
identified as the most representative responses for a given domain. 
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3.5.5 Single Burst vs. Integrated Bursts Overlay Plots 

Aimed to check QMFB response related to a given signal input, average plots for 

both time (Figure 3.7) and PSD (Figure 3.8) responses are provided to assess process 

accuracy and signal processing loses. The following two plots are representative of the 

presentation format used in Chapter 4. 

 
Figure 3.7  Overlay Time responses showing input signal response, QMFB output 

for single and integrated burst  
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Figure 3.8  Overlay Frequency responses showing input signal response, QMFB 

output for single and integrated burst 
 
3.6 Summary 

The methodology presented in this chapter was applied to each of the described 

input signals. To reduce computation time, the QMFB process was decomposed and 

measurable outputs at each stage were defined. Using the designed process flow diagram 

in Figure 3.5, different layers output data are generated, saved and analyzed using 

qualitative visual assessment to characterize QMFB potential for exploiting unknown 

signals. The effectiveness of this method is based on signal parameters such as the 

resampling vector, zero-padding factor, total signal duration, time resolution Δt and 

frequency resolution Δf for each computed QMFB layer. 
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CHAPTER 4.  

Simulation Results and Analysis 

4.1 Introduction 

This chapter presents MATLAB simulation results and data analysis based on 

that was obtained using the methodology discussed in Chapter 3. Baseline verification 

and validation (V&V) performance of the QMFB process is first addressed in Section 4.2 

using the LFM and analytic Szmajda signals described in Chapter 2. Then, OFDM based 

signals described in Chapter 2 are input to the QMFB process to determine if visually 

discernible features are present for estimating signal parameters.  The QMFB results are 

presented in frequency versus time (F-T) plots for a given layer previously defined in 

chapter 3 as “the most representative layer”, along with individual average time and 

frequency responses. Finally, overlaid plots are presented to compare QMFB process 

outputs for single burst and integrated burst responses. 

4.2 Process V&V Signals 

Performance assessment is first performed with the LFM and analytic Szmajda 

signals described in Chapter 2 input to the QMFB process. QMFB performance is 

characterized trough qualitative visual assessment using joint 2D F-T responses as well 

as independent 1D frequency and time responses. 

4.2.1 LFM-Based V&V Signal 

The normalized time and frequency responses for the input LFM-based signal are 

presented in Figure 4.1. The signal was resampled and zero-padded prior to QMFB 

processing according to the values shown in Table 4.1. The LFM signal time response 
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shows that higher frequencies are located in the first half of the signal, after those lower 

frequency responses are present. Related to the PSD response, it can be seen that the 

W−30dB bandwidth is located within the f = 40 KHz to f = 100 KHz range. Two 

frequencies, f = 45 KHz and f = 95 KHz, are present with higher power levels of P = 0 dB 

and P = -4 dB, respectively. For the rest of the frequencies between the two power peaks 

it can be seen that there is an inverse relationship between the frequency and signal 

power, with power decreasing from P = -16 dB to P = -19 dB. 

 
Figure 4.1  LFM V&V signal time domain and PSD responses. 

 

Table 4.1  LFM V&V Signal Parameters 

Input 
Bandwidth 

(Hz) 
Samp Freq 

fs (Hz) 
Duration 

(Sec) 
Number of 
Samples 

Sample 
Rate 

Zero         
Padding 

Original 6.0 x 104 1.5 x 108 1.62 x 10-3 2428 1 N/A 
Resampled 6.0 x 104 1.2 x 1011 3.50 x 10-3 1942400 800 222 
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After pre-processing the LFM signal according to parameters in Table 4.1, the 

signal was input to the QMFB process. Representative QMFB results for Layer #14 are 

presented in Figure 4.2 with the signal’s linear frequency behavior highlighted (yellow 

arrows) and power distributed according to color bar. The estimated frequency and time 

resolution parameters were computed from the F-T plot in Figure 4.2 as Δf  ≈ 36.62 KHz 

and Δt ≈ 1.36x10-5 s. It can be seen that the signal frequency starts and remains at 

f = 95 KHz until t = 0.65 ms, at which time the frequency decreases linearly to t = 1 ms. 

At t = 1 ms the frequency is f = 45 KHz which remains constant until the end of the 

signal.  It also can be seen that the peak signal power is higher in the lower frequency of 

f = 45 KHz and for f = 95 KHz the average power is approximately -3.0 dB compared to 

the maximum signal power. By comparison with analytic signal responses shown in 

Figure 4.1, the QMFB frequency and time averages show that the process, with some 

degradation and signal processing loses due to the computing processing and the instant 

changes of signal frequency, are consistent. 
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Figure 4.2.  QMFB Layer #14 output for LFM V&V signal.  Average PSD plot based on 

Layer #14 as presented and average time plot based on Layer #10. 
 

4.2.2 Analytic Szmajda V&V Signal 

The normalized time and frequency responses for the analytic Szmajda signal are 

presented in Figure 4.3. The signal was resampled and zero-padded prior to QMFB 

processing according to the values shown in Table 4.2. Related to the time response, four 

different signal magnitudes can be seen. Besides the absence of a signal response in the 

t = 25 s to t = 37 s interval, no other noticeable parameters can be identified. Related to 

the PSD response, it can be seen that considering the W−30dB bandwidth, three carrier 

frequencies are present, including fc = 5 Hz, fc = 10 Hz and fc = 40 Hz.  The signal 
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component located at fc = 5 Hz contains the higher power of (P = 0 dB) compared to the 

equal power components located at fc = 10 Hz and fc = 40 Hz (P = -8 dB, each). 

 

Figure 4.3  Szmajda V&V signal time domain and frequency responses 

Table 4.2. Szmajda V&V Signal Parameters 

Input 
Bandwidth 

(Hz) 
Samp Freq 

fs (Hz) 
Duration 

(Sec) 
Number of 
Samples 

Sample 
Rate 

Zero         
Padding 

Original 4.00x104 1.00x102 5.00x101 5000 1 N/A 
Resampled 4.00x104 3.00x105 1.12x102 15000000 3000 225 

 

After pre-processing the Szmajda signal according to parameters in Table 4.2, the 

signal was input to the QMFB process. Representative QMFB results for Layer #18 are 

presented in Figure 4.4 which shows the discrete frequency responses in the signal. It can 

be seen that the signal started at f = 5.0 KHz and increased its power in the interval 

13.0 < t < 25.0 s. For the interval 25.0 < t < 37.0 s there is no signal present, followed by 
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the interval 37.0 < t < 50.0 s from 37 s to 50 s when three frequencies are present 

(f = 5.0 KHz, f = 10.0 KHz, and f = 40.0 KHz). The estimated frequency and time 

resolution parameters were computed from the F-T plot in Figure 4.4 as Δf  ≈ 0.57 KHz 

and Δt ≈ 0.88 s. For the average frequency and time plots, the parameters are 

Δf  ≈ 0.57 KHz and Δt ≈ 13.65 ms, respectively. By comparing analytic signal responses 

in Figure 4.3, both the average frequency and time responses from the QMFB process, 

with some degradation and loses due to the computing processing, was consistent. 

 

Figure 4.4.  QMFB Layer #18 output for Szmajda V&V signal.  Average PSD plot based 
on Layer #18 as presented and average time plot based on Layer #12. 
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After processing and analyzing QMFB performance using the V&V signals, it 

was concluded that the QMFB process is able to effectively process different types of 

signals and produce outputs matching theoretical expected results. However, some pre-

QMFB filtering artifacts appeared due to the effects of instantaneous frequency on filter 

performance. Beside the artifacts, the QMFB results presented an acceptable response in 

frequency and time allocation within the middle layers. 

4.3 OFDM-Based Signal Performance 

The two OFDM-based signals described in Chapter 2 were used as input to the 

QMFB process and simulation performed according to the methodology explained in 

Chapter 3. Results for 802.11a Wi-Fi and 802.16e WiMAX OFDM-based signals are 

presented and QMFB output reliability assessed relative to input signal features. Overlay 

plots are computed to compare input signal and QMFB output responses for single burst 

and integrated burst response cases. 

4.3.1 Experimental 802.11a Wi-Fi Signal 

Experimental 802.11a Wi-Fi signal assessment was performed using data 

collected in support of previous work detailed in [8]. Collections were made using 

AFIT’s RFSICS with the Wi-Fi devices operating in an anechoic chamber environment. 

According to the structure of this signal described in Chapter 2, the 802.11a signal is 

composed of two distinct regions. The preamble region is used for network 

synchronization, timing, control, etc., and the payload region is used for transferring user 

data. Per IEEE standards for 802.11a implementation [9], the preamble is further divided 

into two distinct regions, with the first half containing 10 short OFDM symbols and the 
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second half containing 2 long OFDM symbols. The 10 short OFDM symbols region is 

selected here for demonstration with a single burst sent to the QMFB process first and 

then an integrated collection of bursts sent to the QMFB process.  

4.3.1.1 802.11a Wi-Fi Preamble 

The normalized time and PSD responses for 802.11a Wi-Fi preamble are shown 

in Figure 4.5. The first ten symbols of the preamble were isolated, resampled and zero-

padded prior to QMFB processing according to the values shown in Table 4.3. Related to 

the time response, the signal duration is approximate T = 8 µs and it can be seen that 10 

peaks are very noticeable. Considering the W−30dB bandwidth, the PSD response shows 

twelve distinct frequency components that match the 802.11a signal structure described 

in Chapter 2. 

 
Figure 4.5  Time and PSD responses for 10 short symbols 802.11a Wi-Fi preamble. 
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Table 4.3. 802.11a 10 short symbols set as input to QMFB 

Input 
Bandwidth 

(Hz) 
Samp Freq 

fs (Hz) 
Duration 

(Sec) 
Number of 
Samples 

Sample 
Rate 

Zero         
Padding 

Original 8.00x106 2.38x107 1.35x10-4 3200 1 N/A 
Resampled 8.00x106 2.38x1011 1.41x10-4 32000000 10000 225 

 
The QMFB output for Layer #19 is shown in Figure 4.6. The allocations of twelve 

frequency components seen in Figure 4.5 are present. The estimated frequency and time 

resolution parameters were computed from the F-T plot in Figure 4.6 as Δf  ≈ 113.25 

KHz and Δt ≈ 4.56 µs. For the average frequency and time plots, the parameters are 

Δf  ≈ 56.6 KHz and Δt ≈ 0.069 µs, respectively. Appendix C.1 presents a table of 

computed Δf and Δt resolutions as function of fs for a given layer. It can be seen that the 

frequencies are allocated within the expected interval (f = 1 MHz to f = 8 MHz). The 

average time plot was computed using Layer #14 due to the F-T trade-off explained in 

Chapter 2 with better time resolution obtained in lower QMFB layers. The expected ten 

peaks are noticeable in the average time plot and are located approximately at the same 

expected times. However, the output signal magnitude response is between 1.0 and 

2.0 dB lower when compared to the input signal in Figure 4.5. 
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Figure 4.6  QMFB Layer #20 output for 10 short symbols of 802.11a Wi-Fi preamble.  
Average PSD based on Layer #21 as presented and average time based on Layer #14. 

 
 
4.3.1.2 802.11a Wi-Fi Single Burst Response 

The normalized time and PSD responses using a single 802.11a Wi-Fi burst are 

shown in Figure 4.7. The signal was resampled and zero-padded prior to QMFB 

processing according to the values shown in Table 4.4. Related to the time response, the 

signal duration is approximate T = 11.6 ms with ten visible peaks corresponding to the 

first half of the preamble. It can be seen that the rest of the signal presents a noise like 

behavior. The PSD response shows that the signal’s frequency components, considering 

the W−30dB baseband bandwidth, the dominant frequency responses are located from f = 0 
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to f = 10 MHz. These initial results matched the signal structure described in Chapter 2. 

 
Figure 4.7  Time and PSD responses for single 802.11a Wi-Fi burst. 

 

Table 4.4. 802.11a single burst signal values set as input to QMFB 

Input Bandwidth 
(Hz) 

Samp Freq 
fs (Hz) 

Duration 
(Sec) 

Number of 
Samples 

Sample 
Rate 

Zero         
Padding 

Original 9.00x106 2.38x107 1.24x10-4 2945 1 N/A 
Resampled 9.00x106 2.38x1010 1.77x10-4 2945000 1000 222 

 
The QMFB output for Layer #16 is shown in Figure 4.8.  The allocations of 

multiple frequency components seen in Figure 4.7 are present. The estimated frequency 

and time resolution parameters were computed from the F-T plot in Figure 4.8  as 

Δf  ≈ 181.12 KHz and Δt ≈ 2.8 µs. For the average frequency and time plots, the 

parameters are Δf  ≈ 11.3 KHz and Δt ≈ 21.56 ns, respectively. Appendix C.2 presents a 

table of computed Δf and Δt resolutions as function of fs for a given layer. It can be seen 

that frequencies are allocated within the expected interval (f = 1 MHz to f = 10 MHz). 
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The first half of the preamble response is still noticeable and is located approximately at 

the same expected times compared to the input shown in Figure 4.7.  

According to the 802.11a signal parameters described in Chapter 2, there are 

some signal features that can be extracted through qualitative visual assessment of the 

QMFB output shown in Figure 4.8: 

• The 10 short symbols shown in the left-hand red dashed rectangle 

• The guard Interval shown in the right-hand red dashed rectangle 

 
Figure 4.8  QMFB Layer #16 output for single 802.11a Wi-Fi burst.  Average PSD based 

on Layer #20 as presented and average time based on Layer #9. 
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4.3.1.3 Wi-Fi Integrated Burst Response 

 The normalized time and PSD responses for integrated 802.11a bursts are 

shown in Figure 4.9. In this case, a total of NB = 500 802.11a burst responses were 

integrated to create a new input to the QMFB process. The signal was resampled and 

zero-padded prior to QMFB processing according to the values shown in Table 4.5. 

Related to the time response, the signal duration is approximate T = 11.6 ms with ten 

visible peaks corresponding to the first half of the preamble and the rest of the signal 

presents a noise like behavior. The PSD response shows that the signal’s frequency 

components, considering the W−30dB baseband bandwidth, the dominant frequency 

responses are located from f = 0 to f = 10 MHz. These results match the signal structure 

described in Chapter 2.  It also can be seen that the first ten symbols show a uniform 

magnitude, with the peak located at approximately at t = 2.4 µs corresponding to the 

guard interval described in Chapter 2. The part of the signal corresponding to the payload 

(user data) shows a magnitude reduction due to randomness of the symbol assignment. 
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Figure 4.9  Time and PSD responses for NB = 500 integrated bursts 802.11a Wi-Fi. 

 

Table 4.5. 802.11a signal values for NB = 500 integrated bursts as input to QMFB 

Input 
Bandwidth 

(Hz) 
Samp Freq 

fs (Hz) 
Duration 

(Sec) 
Number of 
Samples 

Sample 
Rate 

Zero         
Padding 

Original 9.00x106 2.38x107 1.24x10-4 2945 1 N/A 
Resampled 9.00x106 2.38x1010 1.77x10-4 2945000 1000 222 

 
The QMFB output for Layer #16 is shown in Figure 4.10for integration of 

NB = 500 bursts.  The allocation of multiple frequencies components seen in Figure 4.9 is 

present. The estimated frequency and time resolution parameters were computed from the 

F-T plot in Figure 4.10 as Δf  ≈ 181.12 KHz and Δt ≈ 2.8 µs.  For the average frequency 

and time plots, the parameters are Δf  ≈ 22.6 KHz and Δt ≈ 0.173 µs, respectively. 

Appendix C.2 presents a table of computed Δf and Δt resolutions as function of fs for a 

given layer. The first half of the preamble response is still noticeable and is located 

approximately at the same expected times compared to the input shown in Figure 4.9.  
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According to the 802.11a signal parameters described in Chapter 2, there are 

some signal features that can be extracted through qualitative visual assessment of the 

QMFB output shown in Figure 4.10: 

• The 10 short symbols shown in the left-hand red dashed rectangle 

• Lower correlation in the payload (user data) region in the right-hand red 

dashed rectangle 

• Average signal power below -5.0 dB for the payload (user data) region 

highlighted by a red arrow in the average time plot. 

 
Figure 4.10  QMFB Layer #16 output for NB = 500 integrated Wi-Fi bursts.  Average 
PSD plot based on Layer #19 as presented and average time plot based on Layer #12. 
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4.3.1.4 802.11a Wi-Fi Preamble:  Single vs. Integrated Response 

 To assess the QMFB response relative to signal input features, average time and 

frequency plots are provided in Figure 4.11 to Figure 4.14 for single burst and integrated 

burst QMFP processing.  Related to the overlaid time responses in Figure 4.11 and Figure 

4.12, it can be seen that the QMFB output envelope matches the input time response for 

both single and integrated burst cases. Therefore, the F-T plots computed during the 

process are reliable for revealing 802.11a Wi-Fi signal characteristics. In the payload 

(user data) region of the average time response (t > 200 µs), the power reduction for burst 

integration is evident given the random signal structure in this region. Related to the 

average PSD response presented in Figure 4.13 and Figure 4.14, the burst integration 

resulted in gain of approximate G ≈ 3.0 dB when compared to the input signal or single 

burst QMFB responses. 

 
Figure 4.11  Average time responses for 802.11a Wi-Fi signal. 
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Figure 4.12  Average time responses for 802.11a Wi-Fi signal expanded region for 

0 < t < 200 µs. 
 

 
Figure 4.13  Average PSD responses for 802.11a Wi-Fi signal. 
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Figure 4.14  Average PSD responses for 802.11a Wi-Fi signal expanded region for 

0 < f < 3 MHz. 
 

4.3.2 Experimental 802.16e WiMAX Signal 

Experimental 802.16e WiMAX signal assessment was performed using data 

collected in support of previous work detailed in [0, 11]. The collections were obtained 

using AFIT’s RFSICS with Alvarion BreezeMAX 5000 Mobile Subscriber (MS) devices 

operating in a typical office environment [13]. According to the structure of this signal 

described in Chapter 2, and experimental observations noted in [0, 11], the analysis was 

divided in two parts. The first part only considers WiMAX range-only burst responses 

and the second part considers only WiMAX data-only burst responses. For each of these 

cases, QMFB processing is conducted using single burst and integrated burst responses. 
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4.3.2.1 WiMAX Range-Only Burst:  Single Response 

 The normalized time and PSD responses using a single range-only WiMAX 

burst are shown in Figure 4.15.  The signal was resampled and zero-padded prior to 

QMFB processing according to the values shown in Table 4.6. Related to the time 

response, the signal duration is approximately T = 0.4 ms and, considering the W−30dB 

bandwidth, the PSD response clearly shows some frequency components located in three 

spectral regions, including: 0 < f < 0.4 MHz, 0.6 < f < 1.0 MHz and 1.6 < f < 2.0 MHz. 

 
Figure 4.15. Time and PSD responses for single 802.16e WiMAX range-only burst. 

 

Table 4.6. 802.16e WiMAX range-only single burst parameters 

Input Bandwidth 
(Hz) 

Samp Freq 
fs (Hz) 

Duration 
(Sec) 

Number of 
Samples 

Sample 
Rate 

Zero         
Padding 

Original 2.00x106 1.19x107 3.81x10-4 4521 1 N/A 
Resampled 2.00x106 3.56x1010 9.42x10-4 13563000 3000 225 
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The QMFB output for Layer #18 is shown in Figure 4.16 for single 802.16e 

WiMAX range-only burst. The allocation of six frequencies components seen in Figure 

4.15 is present. The estimated frequency and time resolution parameters were computed 

from the F-T plot in Figure 4.16 as Δf  ≈ 67.9 KHz and Δt ≈ 7.4 µs.  For the average 

frequency and time plots, the parameters are Δf  ≈ 16.9 KHz and Δt ≈ 0.115 µs, 

respectively. Appendix C.3 presents a table of computed Δf and Δt resolutions as function 

of fs for a given layer. It can be seen that frequencies are allocated within the three 

expected intervals (0 < f < 0.4, 0.6 < f < 1.0, and 1.6 < f < 2.0 MHz), are distributed in 

three pairs, and span the bandwidth shown in Figure 4.15. Within each pair of 

frequencies a transition is seen between a certain numbers of transmitted symbols. 
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Figure 4.16  QMFB Layer #18 output for single 802.16e WiMAX range-only burst.  
Average PSD plot based on Layer #20 and average time plot based on Layer #12. 

 
 
4.3.2.2 WiMAX Range-Only Burst:  Integrated Response 

 The normalized time and PSD responses using integrated range-only WiMAX 

bursts are shown in Figure 4.17.  In this case, a total of NB = 1400 802.16e burst 

responses were integrated to create a new input to the QMFB process. The range-only 

integrated burst signal was resampled and zero-padded prior to QMFB processing 

according to the same values previously shown in Table 4.6. Related to the time 

response, the signal duration is approximately T = 0.4 ms and, considering the W−30dB 
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bandwidth, the PSD response contains the same frequency components as the single burst 

response (0 < f < 0.4 MHz, 0.6 < f < 1.0 MHz and 1.6 < f < 2.0 MHz) plus some 

additional frequency components below the P = -20 dB level. 

 
Figure 4.17. Time and PSD responses for NB = 1400 integrated 802.16e WiMAX range-

only bursts. 
 
 The QMFB output for Layer #18 is shown in Figure 4.18 for NB = 1400 

integrated 802.16e WiMAX range-only bursts. The allocation of six frequencies 

components seen in Figure 4.17 is present.  The estimated frequency and time resolution 

parameters were computed from the F-T plot in Figure 4.18 as Δf  ≈ 67.9 KHz and 

Δt ≈ 7.4 µs.  For the average frequency and time plots, the parameters are Δf  ≈ 16.9 KHz 

and Δt ≈ 0.115 µs, respectively. Appendix C.3 presents a table of computed Δf and Δt 

resolutions as function of fs for a given layer. It can be seen that frequencies are allocated 

within the three expected intervals (0 < f < 0.4, 0.6 < f < 1.0, and 1.6 < f < 2.0 MHz), are 
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distributed in three pairs, and span the bandwidth shown in Figure 4.17.  In this case, the 

middle pair of frequencies presented the higher power correlation compared to the other 

frequency components. 

 

Figure 4.18  QMFB Layer #18 output for NB = 1400 integrated 802.16e WiMAX range-
only bursts.  Average PSD based on Layer #20 and average time based on Layer #12. 

 
4.3.2.3 WiMAX Range-Only Burst:  Single vs. Integrated Response 

 To assess the QMFB response relative to input signal features, average time and 

frequency plots are provided in Figure 4.19 to Figure 4.22 for single burst and integrated 

burst QMFP processing. Related to the overlay time response in Figure 4.19 and Figure 

4.20, the integrated burst QMFB output show less energy in the time response due to 
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integration of random symbol assignment within and across every integrated burst.  

Related to overlay PSD responses in Figure 4.21 and Figure 4.22, it can be seen that the 

W−30dB bandwidth remains constant and that burst integration resulted in “thinner” 

responses for the six frequency components. 

 
Figure 4.19  Average time responses for 802.16e WiMAX range-only burst. 
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Figure 4.20  Average time responses for 802.16e WiMAX range-only burst. Expanded 

region for 0 < t < 200 µs. 
 

 
Figure 4.21  Average PSD responses for 802.16e WiMAX range-only burst. 
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Figure 4.22  Average PSD responses for 802.16e WiMAX range-only burst. Expanded 
region for 0 < f < 0.5 MHz. 

 
4.3.2.4 802.16e WiMAX Data-Only Burst:  Single Response 

 The normalized time and PSD responses using a single data-only 802.16e 

WiMAX burst is shown in Figure 4.23. The signal was resampled and zero-padded prior 

to QMFB processing according to the values shown in Table 4.7. Related to the time 

response, the signal duration is approximate T = 1.6 ms and the noise like behavior of the 

signal is seen in both time and frequency responses. 
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Figure 4.23  Time and PSD responses for single 802.16e WiMAX data-only burst. 

 

Table 4.7. 802. 16e WiMAX data-only single burst parameters 

Input Bandwidth 
(Hz) 

Samp Freq 
fs (Hz) 

Duration 
(Sec) 

Number of 
Samples 

Sample 
Rate 

Zero         
Padding 

Original 2.50x106 1.19x107 1.61x10-3 19125 1 N/A 
Resampled 2.50x106 1.19x1010 2.83x10-3 19125000 1000 225 

 
 
 The QMFB output for Layer #16 is shown in Figure 4.24 for a single 802.16e 

WiMAX range-only burst. The multiple frequency allocations shown in Figure 4.23 are 

present.  The estimated frequency and time resolution parameters were computed from 

the F-T plot in Figure 4.24 as Δf  ≈ 90.6 KHz and Δt ≈ 5.53 µs.  For the average 

frequency and time plots, the parameters are Δf  ≈ 5.66 KHz and Δt ≈ 0.345 µs, 

respectively. Appendix C.3 presents a table of computed Δf and Δt resolutions as function 
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of fs for a given layer. Other than bandwidth (W-30dB ≈ 2.25 MHz) and signal duration 

(T ≈ 1.6 ms), no signal structure can be extracted from the F-T plot. 

 
Figure 4.24  QMFB Layer #16 output for single 802.16e WiMAX data-only burst.  

Average PSD based on Layer #20 and average time based on Layer #12. 
 
4.3.2.5 802.16e WiMAX Data-Only Burst:  Integrated Response 

 The normalized time and PSD responses for integrated data-only WiMAX 

bursts are shown in Figure 4.25. The signal was resampled and zero-padded prior to 

QMFB processing according to the values previously shown in Table 4.7.  Related to the 

time response, the signal duration is approximate 1.6 ms and it can be seen the noise like 

behavior of the signal in both time and frequency responses. 
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Figure 4.25  Time and PSD responses for NB = 640 integrated 802.16e WiMAX data-

only bursts. 
 

The QMFB output for Layer #16 is shown in Figure 4.26 for NB = 640 integrated 

802.16e WiMAX data-only bursts. The allocation of multiple frequencies components 

seen in Figure 4.25 is present.  The estimated frequency and time resolution parameters 

were computed from the F-T plot in Figure 4.26 as Δf  ≈ 90.6 KHz and Δt ≈ 5.53 µs.  For 

the average frequency and time plots, the parameters are Δf  ≈ 5.66 KHz and Δt ≈ 0.345 

µs, respectively. Appendix C.3 presents a table of computed Δf and Δt resolutions as 

function of fs for a given layer. Other than bandwidth (W-30dB ≈ 2.25 MHz) and signal 

duration (T ≈ 1.6 ms), no signal structure can be extracted from the F-T plot. 
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Figure 4.26  QMFB Layer #16 output for NB = 640 integrated 802.16e WiMAX data-
only bursts.  Average PSD based on Layer #20 and average time based on Layer #12. 

 
4.3.2.6 802.16e WiMAX Range-Only Burst:  Single vs. Integrated Response 

 To assess the QMFB response relative to input signal features, average time and 

frequency plots are provided in Figure 4.27 to Figure 4.30 for single burst and integrated 

burst QMFP processing.  Related to the overlaid time responses in Figure 4.27 and Figure 

4.28 the integrated burst QMFB output shows less energy in the time response due to 

integration of random symbol assignment within and across every integrated burst.  

Related to the PSD responses in Figure 4.29 and Figure 4.30, it can be seen that the 

bandwidth is constant along the burst integration. 
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Figure 4.27  Average time responses for 802.16e WiMAX data-only burst 

 

 
Figure 4.28  Average time responses for 802.16e WiMAX data-only burst. Expanded 

region for 0 < t < 200 µs (Bottom). 
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Figure 4.29  Average PSD responses for 802.16e WiMAX data-only burst. 

 

 
Figure 4.30  Average PSD responses for 802.16e WiMAX data-only burst. Expanded 

region for 0 < f < 1.0 MHz. 
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4.4 Summary 

The results presented in this chapter enabled qualitative visual assessment of 

QMFB performance using each signal of interest. Related to the LFM and Szmajda V&V 

signals, it was seen that the QMFB output offers reliable estimation of frequency and 

time characteristics. Once the baseline was defined, verified and validated, experimental 

OFDM-based signals were introduced and QMFB performance assessed. MATLAB 

simulation results and qualitative visual analysis were sufficient for identifying some 

signal features such as signal duration (TS) and bandwidth (W−30dB) while highlighting 

relative signal structure. 

Related to the analyzed 802.11a Wi-Fi signal, the preamble structure revealed by 

QMFB processing is consistent with the theoretical description in Chapter 2. Using burst 

integration, the effect of random symbol assignment during the payload (user data) region 

became evident as lower magnitude responses in Figure 4.10. The average time and 

average frequency plot showed that the QMFB output envelope followed the original 

signal behavior, but average loses of approximate 1.0 dB for burst integration and 2.0 dB 

for single burst were observed. 

Related to the analyzed 802.16e WiMAX signal, the results are consistent with 

the framework defined in Chapter 2 and the QMFB output for both the ranging-on and 

data-only cases enabled qualitative visual assessment and provided some exploitation 

benefit.  Some key signal features such as bandwidth, frequency and time allocation were 

extractable, and after further layer analysis approximations to symbol duration and 

channel bandwidth were available. 
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CHAPTER 5.  

Summary, Conclusions and Recommendations 

This chapter presents a summary and conclusions of research findings along with 

some recommendations for future work that have been extracted as result of this research 

effort. The chapter is divided in three subsections: 1) Section 5.1 presents a summary 

review related to the topics of interest covered during the research with some key 

exploitation concepts highlighted relative to the overall process; 2) Section 5.2 presents 

conclusions extracted from results after applying the adopted methodology in Chapter 3 

and the baseline definitions given in chapter 2; and, 3) Section 5.3 is aimed at identifying 

other applications for QMFB exploitation providing recommendations for future work. 

5.1 Summary 

Chapter 1 presented the operational and technical motivation along with the 

research objectives. Related to the operational motivation, the approach was to provide a 

qualitative visual assessment process for a given signal from an operator’s perspective. 

By performing QMFB processing with a given signal it is possible to obtain frequency-

time (F-T) plots [1, 3, 4] having features that represent signal features such as bandwidth 

(W), center frequency (fc), signal duration (Ts), modulation type (AM, FM, BPSK, QAM, 

etc), frequency content and time allocation. Because of its unique structure, two widely 

used signals based on Orthogonal Frequency Division Multiplexing (OFDM) were 

chosen as signals of interest for demonstration. The operational motivation relies on 

optimizing the QMFB process for the two signals of interest having defined structure 

according to [9, 12]. 
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Chapter 2 presented the necessary technical background aimed at describing the 

topics of interest related to the operational and technical motivation. The general 

implementation of the QMFB process was described and implementation parameters and 

assumptions were made. The basic structure of OFDM signals was introduced next 

related to the physical layer perspective of 802.011a Wi-Fi and 802.16e WiMAX frame 

structures.  

Chapter 3 presented the adopted methodology aimed at satisfying the defined 

research objectives using the technical details described in Chapter 2. An overall process 

overview was presented and the Verification and Validation (V&V) signals were 

described [2, 7]. The 802.011a Wi-Fi and 802.16e WiMAX experimental signals 

parameters were addressed [8, 0, 11, 13] and the initial QMFB configuration was 

established. The effect of resampling and zero-padding was described and measurable 

outputs were defined. Finally, the graphical presentation format for QMFB results was 

introduced. 

Chapter 4 presented computed simulation results that were obtained after applying 

the defined methodology to each signal of interest. Initial time domain and frequency 

domain responses were presented for each input signal along with the initial and 

computed resampled parameters for each case. Results for selected QMFB outputs were 

presented according to the process introduced in Chapter 3 using 2D T-F QMFB plots 

and 1D average frequency and average time plots. Overlay plots of the 1D responses 

were computed and the input signal and output QMFB responses compared using a single 

burst and multiple integrated bursts. Time window resolution (Δt) and frequency window 
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resolution (Δf) parameters were extracted from each computed QMFB layer output. 

5.2 Conclusions 

Computed QMFB outputs were generated for all interest signals according to the 

adopted methodology. The QMFB process was implemented and decomposed 

successfully according to the defined measurable outputs. The following conclusions are 

presented based on the defined measurable outputs presented in Chapter 3: 

1. Layer Generation Minimization 

Because higher number QMFB layers did not improve qualitative analysis, 

or did not give any additional information due to coarser Δt resolution 

when compared with lower numbered layers, the last three QMFB layers 

were not computed.  Related to complete layer processing, this reduced 

overall computation time by approximate 78% when NQ = 22 total layers 

were available (Ns = 222 total input signal samples) and 83% when NQ = 25 

total layers were available (Ns = 225 total input signal samples).  

Representative average computing times are shown in Table 5.1 

Table 5.1  Average Layer Computing Time 
Layer 

# 
C.T. 
(min) 

Layer 
# 

C.T. 
(min) 

Layer 
# 

C.T. 
(min) 

Layer 
# 

C.T. 
(min) 

Layer 
# 

C.T. 
(min) 

1 6 6 21 11 36 16 54 21 138 
2 9 7 24 12 39 17 59 22 213 
3 12 8 27 13 42 18 66 23 360 
4 15 9 30 14 46 19 78 24 655 
5 18 10 33 15 49 20 99 25 1242 
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2. Output Matrix QN Formatting 

After computing this measurable output data corresponding to Δt and Δf, 

sample frequency, signal amplitude (real or complex) or magnitude values 

were successfully save for further analysis and the results were consistent 

with studied input signals. As result of a given QN matrix a 2D F-T plot 

was computed which permitted to visually assess input signal 

characteristics such as bandwidth (W−30dB), signal duration (Ts), time and 

frequency allocation. 

3. Time Resolution (Δt) Analysis 

This output was used to ensure consistency between the average QMFB 

time vector extracted from a given QN matrix and the input signal time 

response. This was done using a 1D overlay plot of the averaged QMFB 

output response and the input signal’s time response. 

4. Frequency Resolution (Δf) Analysis 

This output was used to ensure consistency between the average QMFB 

frequency vector extracted from a given QN matrix and the input signal 

frequency domain (PSD) response.  This was done using a 1D overlay plot 

of the averaged QMFB output response and the input signal’s PSD 

response. 

After evaluating the overall performance of the QMFB process with the signals of 

interest, it can be concluded that it is possible to perform reliable qualitative visual 

assessment of OFDM-based signals. Using this passive method some distinctive signal 
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parameters can be extracted such as bandwidth (W), center frequency (fc), signal duration 

(Ts), frequency content and time allocation.   

Related to the 802.11a Wi-Fi signal, the 10 short preamble symbols were 

successfully computed and results of the QMFB output matched the standard definition 

given in [9]. The guard interval between the preamble and the payload was also 

indentified using both single and integrated burst inputs. After performing burst 

integration, the QMFB output visually matched the expected results using 2D F-T plots, 

with lower energy observed in the data payload region due to random symbol assignment. 

Related to the 802.16e WiMAX signal, the single burst range-only and data-only 

responses were successfully processed and matched the standard definition given in [12]. 

Even though presenting noise-like signal behavior in the 2D F-T plots, QMFB responses 

for both cased were sufficient to note differences in frequency and time allocations. 

Responses using integrated burst inputs were similar as those computed for the 802.11a 

Wi-Fi signal. Key signal features of center frequency (fc), frequency content and time 

allocation were easily extractable. With further layer analysis, approximations to symbol 

duration (Ts) and bandwidth (W) were available as well. 

The main research objective was met and the QMFB process presents an 

acceptable response for extracting some key features from 802.011a Wi-Fi and 802.16e 

WiMAX signals. This empirical approach permitted exploitation of OFDM-based signals 

using qualitative visual assessment such as may benefit human analysts. 

5.3 Recommendations for Future Research 

Further exploitation of the passive QMFB process should be considered in future 
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work based on different QMFB modification and decompositions. Benefit may be 

realized using QMFB processing aimed to accomplish automatic signal detection, 

channel estimation or signal fingerprinting analysis. Some specific future research 

activities could include: 

1. OFDM-Based Signal Detection Using Correlation Methods 

Create a signal data base according to IEEE standard definitions for specific 

signals. Simulated data base features could be correlated with experimental 

QMFB exploited features with a goal of finding distinctive characteristics.  

2. RF Signal Fingerprinting Using QMFB Features 

Assess the use of experimental 2D QMFB (complex or real) outputs to 

generate features for discriminating between signals from different devices 

using RF fingerprints. This process has been previously demonstrated using 

2D Gabor Transform (GT) features [0, 11] and could be considered for 

expanding the applicability of QMFB processing. 

3. Compare 2D QMFB Outputs with Other 2D Transform Outputs 

Improved signal exploitation may be possible using different 2D transforms, 

e.g., Gabor-based [0, 11]. Performance and computation time could be 

compared with QMFB processing as implemented here. 

4. Consider G-M Transformed QMFB Processing 

Detection and estimation may be improved using QMFB outputs and 

transformation methods investigated previously by [4] which used the 

Grohholz-Mims (G-M) 2D transformation methods for non-cooperative 
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multi-channel detection [5, 6]. These methods have not been applied to 

OFDM-based signals such as done here with QMFB processing and results 

in [4] suggests that G-M transformed QMFB processing may be well-suited 

for additional investigation. 
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APPENDIX A – Simulation Code 

This appendix presents the implemented MATLAB  code according to the 

adopted methodology and the defined measurable outputs. 

A.1 Time and Frequency Input Signal Responses 

% Original file: SigPSD_V2 Function 
% Created by:    Dr. Michael A. Temple 
% Modified by:   Felipe E. Garrido, CAP. Chilean Air Force 
% Last update:   02/16/2012 
% 
% ====================== SigPSD_V3 Function ========================== 
% 
%   function [SigPsd,Fscale,SigPow] = 
%       SigPSD_V3(SigIn,Fsamp,SAve,NAve,SNorm,SPlot,t_lim,f_lim,dB_lim) 
% 
%   Calculates Row-Wise Power Spectral Density (PSD) as the Magnitude 
%   of Fourier Transform Coefficients Squared.  Resultant PSD (SigPsd) 
%   and Average Power Estimate (SigPow) are output. 
% 
%   Created:  Apr 06, MAT 
%   Modified: 19 Apr 11, MAT .. Enable Matrix Input/Output 
%   Modified: 7 Sep 11, MAT ... Minor Change to Plotting Output 
%   Modified: 14 Dec 11, MAT .. Save time and frequency responses as 
%                               vector. 
% 
%   NOTE:  Outputs Verified/Consistent with Matlab's 'PSD' Function for 
%          BOTH Complex and Real-Valued Input Signal (10 Dec 08). 
% 
%   Inputs: 
%   SigIn   Nrow x NCol Matrix: NCol = Time Domain Signal Samples 
%   Fsamp   Sample Frequency (Samples/Sec) 
%   SAve    PSD Averaging Control Variable (Sliding Window Average) 
%           (1 = Average Applied, 0 = No Average Applied) 
%   NAve    Number of Points Averaged Across 
%           (Odd Number Required if Save = 1, Else, Doesn't Matter) 
%   SNorm   Normalization Control Variable 
%           (1 = Normalized, 0 = UnNormalized) 
%   SPlot   Plot Control Variable (1 = Plot, 0 = No Plot).  Two plots  
%           are generated for SPlot=1: A) Time Domain Waveform  
%           (amplitude for SigIn Real and Magnitude for SigIn Complex), 
%           B) SigIn PSD (spanning -Fsamp/2 < f < Fsamp/2 for SigIn  
%           Real and 0 < f < Fsamp for SigIn Complex). 
%   t_lim   Time window = to plot time response [0,t_lim] 
%   f_lim   Frequency window = to plot frequency response [0,f_lim] 
%   dB_lim  Magnitude window = Defines min dB level to plot [dB_lim,0] 
% 
%   Outputs: 
%   SigPsd  PSD of Input Signal Calc as |Fourier{SigIn}|^2 
%   Fscale  Resultant Frequency Scale for Output PSD 
%   SigPow  Estimated Power Estimate Calc as Sum of PSD Components 
% ==================================================================== 
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function [SigPsd,Fscale,SigPow] = 
SigPSD_V3(SigIn,Fsamp,SAve,NAve,SNorm,SPlot,t_lim,f_lim,dB_lim) 
  
[NrowIn,NcolIn]=size(SigIn); 
  
if NcolIn==1 % Column Vector Input  Transpose & Process as Row Vector 
    SigIn=SigIn.'; 
    [Nrow,Ncol]=size(SigIn); 
else 
    Nrow=NrowIn; 
    Ncol=NcolIn; 
end 
  
SigVal = isreal(SigIn(1,1)); % SigVal=1 (Real) or SigVal=0 (Complex) 
  
SigFFT=(fft(real(SigIn.')).'/Ncol); 
SigPsd=abs(SigFFT).^2; % Non-Shifted PSD 
  
SigPow=sum(SigPsd.'); 
  
if(SAve==1) % Apply Row-Wise Averaging/Smoothing to PSD 
    NTest = mod(NAve,2); % Check/Adjust NAve to be an Odd Number 
    if NTest==0 % Even NAve Input 
        NAve=NAve+1; % Adjust NAve to be Odd 
    end; 
    for j=1:Nrow 
        %TmpPsd=SigPsd(j,:); 
        SigPsd(j,:)=smooth(SigPsd(j,:),NAve); 
    end 
end 
  
PSDmax=max(SigPsd.'); 
PSDfloor=PSDmax/10000; % Set PSD Floor Level to -40 dB Below Max Value 
  
for j=1:Nrow % Threshold / Set PSD Floor Values 
    for k=1:Ncol 
        if SigPsd(j,k)<PSDfloor(j) 
            SigPsd(j,k)=PSDfloor(j); 
        end 
    end 
end 
  
PSDmax=max(SigPsd.'); % Update PSDmax 
if SNorm==1 % Normalize PSD if Selected  
    SigPsd=SigPsd./repmat(PSDmax.',1,Ncol); 
end 
  
if NcolIn==1 % Return Output to Column Vector 
    SigPsd=SigPsd.'; 
end 
  
delf=Fsamp/(Ncol-1); % Freq Plot Step Size 
Fscale=0:delf:(Ncol-1)*delf; % Output PSD Freq Scale 
  
if SPlot==1 % Produce Output Plots 
     
    disp(' ') 
    disp('Generating Plot') 
    disp(' ') 
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    if (Nrow==1||Ncol==1 ) 
        SigPlot=(abs(SigIn)).^2; 
        SigPlot=SigPlot/max(SigPlot); 
        PsdPlot=SigPsd; 
    else % Use 1st Row of SigIn & SigPsd Matrix for Plot Default 
        SigPlot=(abs(SigIn(1,:))).^2; 
        PsdPlot=SigPsd(1,:); 
    end 
     
    figure 
    subplot(2,1,1) % Top Time Plot 
    tscale=linspace(0,Ncol/Fsamp,Ncol); 
    SigPlot_dB=10*log10(SigPlot); 
  
    if SigVal==1 % SigIn is Real 
        plot(tscale,SigPlot_dB); 
        grid; 
        set(gca,'XLim',[0 t_lim]); 
        set(gca,'YLim',[dB_lim 0]); 
        xlabel('Time [s]') 
        ylabel('Magnitude') 
    else % SigIn is Complex ... Plot Amplitude as Abs(SigIn) 
        plot(tscale,SigPlot_dB); 
        grid; 
        set(gca,'XLim',[0 t_lim]); 
        set(gca,'YLim',[dB_lim 0]); 
        xlabel('Time [s]') 
        ylabel('Magnitude') 
    end 
  
    save('Time_response','SigPlot_dB','tscale'); 
      
    subplot(2,1,2) % Select Middle PSD Figure 
     
    if SigVal==1 % SigIn Real: Plot FFTshift{PSD} for -Fs/2 < f < Fs/2 
        fpos=(0:delf:delf*(ceil(Ncol/2)-1)); 
        fneg= -fliplr( (delf:delf:delf*(Ncol-ceil(Ncol/2))) ); 
        FrqPlot=[fneg fpos]; 
        FrqPlot_dB=10*log10(fftshift(PsdPlot)); 
        plot(FrqPlot,FrqPlot_dB); % PSD Shifted 
         
    else % SigIn Complex: Plot PSD for 0 < f < Fsamp 
        FrqPlot=0:delf:(Ncol-1)*delf; 
        FrqPlot_dB=10*log10(PsdPlot); 
        plot(FrqPlot, FrqPlot_dB); % FFT Shifted 
         
    end 
  
    save('PSD_signal','FrqPlot_dB','FrqPlot'); 
     
    % Adjust X & Y Axis Limits 
    set(gca,'YLim',[dB_lim 0]); 
    set(gca,'XLim',[0 f_lim]); 
    xlabel('Frequency [Hz]') 
    ylabel('| FFT |^ 2') 
    grid 
end 
% ====================== End SigPSD_V3 Function======================= 
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A.2 QMFB Process Code 

% QMFB PROCESS 
% Original file: qmfb.m 
% Created by   : Phillip E. Pace 
% Modified by  : Felipe Garrido, CAP. Chilean Air Force. 
% Last update  : 02/02/2012. 
% This code is used to create the layers and the neccesary output data  
% to processing them according to the desired time-frequency plot 
% This code call the function tsinc.m that creates de coefficients 
% according to the especified filter created for Phillip E. Pace. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear all 
close all 
tic 
% Files Loading 
load preamble_res_10000_25.mat 
% -- Input data -- 
c0=[preamble_res_10000_25]';  % Input signal padded with zeros 
[d1, c1] = tsinc(c0);    % Sinc Modified Filter function 
% -- Number of Layers to Compute -- 
f=c0;                        % Input signal 
n = floor(log2(length(f)));  % Determine the amount of layers from the length 
of the signal 
N = n;                       % number of layers 
% -- Formatting the Signal -- (to pass the signal through the filter bank) 
I(1:2^n,1) = f(1:2^n);   
out = I; 
  
% -- Generating the Output Layers -- 
  
% Decompose the function 
W = waitbar(0,'Computing Layers...'); 
for lay = 1:N   % layer 
  %disp(lay)     % Show what layer is been generated 
  waitbar(lay/(N+1),W) 
  flag = 1;     % Flag used to set up the columns in the output matrix 
  
  % Reshape the output matrix 
  [r,c] = size(out); 
  out = zeros(r./2, c.*2);   
  
  for i = 1:2 ^(lay-1)        % column of I (low to high) 
    [G,H] = tsinc(I(:,i));    % Evaluate the filter (sinc modified)  
                              % over the signal going by columns 
     
    % Setting the output matrix (Layer) by High Pass (G) and Low Pass (H) 
filtering output 
    if flag 
        out(:, i.*2-1) = H;   % Low Pass Branch of QMFB Tree 
        out(:, i.*2) = G;     % High Pass Branch of QMFB Tree 
    else 
        out(:, i.*2-1) = G;   % High Pass Branch of QMFB Tree 
        out(:, i.*2) = H;     % Low Pass Branch of QMFB Tree 
    end; 
        flag = ~flag;         % Change in the flag value 
  end; 
   
  % Output Matrix and data to work with 
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  I = out;         % Output matrix (signal already filtered) 
  R = real(I);     % Real part of the filtered signal 
  Q = imag(I);     % Imaginary part of the filtered signal 
   
  % Saving the data to the same directory 
  save(['layer',int2str(lay)],'R','Q'); 
end; 
close (W) 
toc 
%======================End of QMFB Process================================== 
 
function [d1, c1] = tsinc(c0)   % Sinc Modified Filter function 
  
% [d1, c1] = tsinc(c0)   
% Sinc Modified Filter function. It use truncated sinc modified filter  
% coefficients to decompose the column vector c0 into a (high frequency)  
% column vector d1 and (low frequency) column vector c1. 
%====================================================================== 
% -- Sinc Modified Filter Formula Application -- 
N = 512; % Number of filters coefficients pairs. 
C = 1.99375872328059; % Value to get cross corr of less than   0.001 
S = 1.00618488680080; % Value to get cross corr of less than 0.001 
x = (-floor(N./2):(floor(N./2)-1))'; % Vector coefficients 
h = sqrt(S./2).*sinc((x + .5)./C); % Coefficients filter formula 
w = hamming(N); % Hamming Window 
h = w.*h; % Low Pass Filter Coefficients 
g = h; % High Pass Filter Coefficients 
g(2:2:N) = -h(2:2:N); % Alternating the sign of the coefficients 
%====================================================================== 
% -- Setting the Signal -- 
N = length(c0);              % Length of the signal  
%                              (from qmfb function "c0" is a column) 
pad3 = length(h)./2 + 1;     % pad with zeros to clear out filter 
c0 = [c0; zeros(pad3,1)];    % padding with zeros 
%====================================================================== 
% Decompose the column vector c0 
i = pad3:2:(N+pad3-2);                % i will decimate by 2 
  
% c1 low frequency column vector 
c1 = filter(fliplr(h),1,c0);          % compute c1 
c1 = c1(i);                           % decimate 
  
% d1 high frequency column vector d1  
d1 = filter(fliplr(g),1,c0);          % compute d1 
d1 = d1(i);                           % decimate 
%====================================================================== 
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A.3 QN Matrix Generation Code 

% Qn Matrix generation and Plotting 
% Original file  : qmfb.m 
% Created by     : Phillip E. Pace 
% modified by    : Capt Felipe E. Garrido 01/04/2012 
% Last update    : 02/16/2012 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% This code allows to choose which layers do you want to plot 
% and save the matrix with useful data as Q_xx.mat,xx= layer number 
%  
% Input variables are the following: 
% L= lower layer to plot (Min layer=1) 
% H= higher layer to plot (Max layer= N) 
% fs= Sampling frequency of the input data (Fsamp_XX) 
% freq_limit= max frequency in window 
% Time_limit= max time in window 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear all 
close all 
%% Warning: 
% Check you are loading the correct data file 
load preamble_res_10000_25.mat; 
  
%% Set the appropiate parameters 
  
fs=Fsamp_10000;         % Sample frequency according to the 
                        % resampled data  
L=2;                    % Lower layer to plot 
H=24;                   % Higher layer to plot 
freq_limit=9e6;         % Y axis limit 
Time_limit=2.5e-5;      % X axis limit  
  
  
%% Plotting 
for yy=L:H 
     
    load (['layer',num2str(yy),'.mat']); 
    % Formating the Layer 
    layer = abs(R + 1i*Q);             % absolute value of the layer 
    layer = (layer/max(max(layer))).^2;% Normalizing the layer 
    M = layer;                         % Set values to dB 
    [m,n]=size(M);                     % Set axis sizes 
    T=1/fs;                            % Sampling period 
    f=linspace(0,fs/2,n);              % Setting the frequency axis 
    NUM_SAMPLES = m*n;                 % Length of the new signal 
    time=linspace(0,NUM_SAMPLES*T,m);  % Setting the time axis 
    dt=(NUM_SAMPLES*T)/(m-1);          % delta t 
    df=(fs/(2*(n-1)));                 % delta f 
        
    t_max=ceil(Time_limit/dt)+1;        
    f_max=ceil(freq_limit/df)+1; 
     
    new_Q=(M(1:(t_max),1:(f_max))).'; 
    new_layer=(R(1:(t_max),1:(f_max)) + 1i*Q(1:(t_max),1:(f_max))).'; 
    n_t=time(1:t_max); 
    n_f=f(1:f_max); 
    Q_dB=10*log10(new_Q.^2); 
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    clear layer;        % clear current layer matrix from the workspace 
     
    % Color Plots 
    figure; 
    %pcolor(time(1:t_max),f(1:f_max),Q_dB') 
    pcolor(n_t,n_f,Q_dB) 
%     title(['"Time - Frequency Plane Layer ',... 
%            num2str(yy),' with   \Deltat=',num2str(dt),... 
%            ' and  \Deltaf=',num2str(df),'"']) 
    xlabel('Time [s]'),ylabel('Frequency [Hz]') 
    colorbar,colormap(jet) 
    caxis([-30,0]) 
    shading interp 
     
%     figure; 
%     %pcolor(time(1:t_max),f(1:f_max),Q_dB') 
%     pcolor(n_t,n_f,Q_dB) 
% %      title(['"Time - Frequency Plane Layer ',... 
% %            num2str(yy),' with   \Deltat=',num2str(dt),... 
% %            ' and  \Deltaf=',num2str(df),'"']) 
%     xlabel('Time [sec]'),ylabel('Frequency [Hz]') 
%     colorbar,colormap(jet) 
%     caxis([-30,0]) 
%     shading flat 
     
    save(['Q_',int2str(yy)],'Q_dB','new_Q','time','f','dt','df',... 
          'fs','t_max','f_max','new_layer'); 
end 
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A.4 Input/Output Frequency-Time (F-T) Analysis Code 

% TIME AND FREQUENCY ANALYSIS 
%  
% Created by  : Felipe E. Garrido, CAP. Chilean Air Force 
% Last update : 02/16/2012 
% 
% This code computes and save Normalized Average Time  
% and Normalized Average frequency vector for a given layer 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Warning 
% 1.- The file Layer_plotting, must be run before running this code to 
%     generate a given Q_XX.mat file. 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 
% Input variables are the following: 
% layer = number of the layer you want to plot (Min layer=1) 
% sel   = variable to choose between time or frequency 
% Choose: 
% Time plot      ===> sel=1 
% Frequency plot ===> sel=2 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear all 
close all 
  
layer=13;                  % Choose the layer to plot 
load (['Q_',num2str(layer),'.mat']); 
 
 
sel=1;                     % Time plot=1, Frequency plot=2 
  
%     n_t=time(1:t_max); 
%     n_f=f(1:f_max); 
%     Q_dB=10*log10(new_Q.^2); 
  
if sel==1; 
    t=mean(new_Q,1); 
    t2=t/max(t); 
    t2_dB=10*log10(t2(1:t_max)); 
    tt=time(1:t_max); 
    figure; 
    plot(tt,t2_dB) 
%     title(['"Normalized Average Time plot for Layer ',... 
%            num2str(layer),' with   \Deltat=',num2str(dt),'"']) 
    %xlabel('Time [s]') 
    ylabel('dB') 
    ylim([-30 0]) 
    xlim([0 Time_limit]) 
    grid on 
     
    save(['ave_t_',int2str(layer)],'t2_dB','tt'); 
     
elseif sel==2; 
    nf=mean(new_Q,2); 
    f2=nf/max(nf); 
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    f2_dB=10*log10(f2(1:f_max)); 
    w=f(1:f_max); 
    figure; 
    plot(f2_dB,w) 
%     title(['"Normalized Average frequency plot for Layer ',... 
%            num2str(layer),' with   \Deltaf=',num2str(df),'"']) 
    %ylabel('Frequency [Hz]') 
    xlabel('dB') 
    xlim([-30 0]) 
    ylim([0 freq_limit]) 
    grid on 
     
    save(['ave_f_',int2str(layer)],'f2_dB','w'); 
     
else 
    disp('ERROR:') 
    disp('Choose: 1=Plot Average Time or 2=Plot Average Frequency') 
end 
%=====================End of Time/Frequency analysis code==================== 
 
 
% OVERLAY FREQUENCY RESPONSE PLOT 
% 
% Created by  : Felipe E. Garrido, CAP. Chilean Air Force 
% Last update : 02/16/2012 
% 
% This code computes overlay frequency response according to input 
% signal and two chosen layers 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Input variables are the following: 
% PSD_signal.mat = initial signal frequency response 
% ave_f_20.mat   = single burst frequency response 
% ave_f_19.mat   = burst integration frequency response 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear all 
close all 
  
load PSD_signal.mat 
figure 
plot (FrqPlot,FrqPlot_dB,'b') 
hold on 
  
load ave_f_20.mat 
plot(w,f2_dB,'r') 
  
hold on 
load ave_f_19.mat 
plot(w,f2_dB,'k') 
  
grid on 
legend('Input','Single Burst','Burst Integration','location','South') 
xlim([0 2e6]) 
ylim([-30 0]) 
xlabel('Frequency [Hz]') 
ylabel('Magnitude [dB]') 
 
%=====================End of Overlay FREQUENCY response====================== 
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% OVERLAY TIME RESPONSE PLOT 
% 
% Created by  : Felipe E. Garrido, CAP. Chilean Air Force 
% Last update : 02/16/2012 
% 
% This code computes overlay frequency response according to input 
% signal and two chosen layers 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Input variables are the following: 
% Time_response.mat = initial signal frequency response 
% ave_t_13.mat   = single burst frequency response 
% ave_t_12.mat   = burst integration frequency response 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
  
clear all 
close all 
  
load Time_response.mat 
figure 
plot (tscale,SigPlot_dB,'b') 
hold on 
  
load ave_t_13.mat 
plot(tt,t2_dB,'r') 
  
hold on 
load ave_t_12.mat 
plot(tt,t2_dB,'k') 
  
grid on 
legend('Input','Single Burst','Burst Integration','location','south') 
xlim([0 0.1e-3]) 
ylim([-30 0]) 
xlabel('Time [s]') 
ylabel('Magnitude [dB]') 
 
%=====================End of Overlay TIME response====================== 
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APPENDIX B – QMFB Outputs for 802.11a Wi-Fi Preamble Signal 

This appendix presents a complete set of available layer outputs (QN) for the 802.11a 

signal analyzed in Section 4.2 according to computed QMFB outputs. 

QMFB Layer Q3 
 

QMFB Layer Q5 
 

 

QMFB Layer Q2 

QMFB Layer Q4 
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QMFB Layer Q7 
 

 

QMFB Layer Q9 
 

 

QMFB Layer Q11 
 

 

QMFB Layer Q6 

QMFB Layer Q8 

QMFB Layer Q10 
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QMFB Layer Q13 
 

 

QMFB Layer Q15 
 

 

QMFB Layer Q17 
 

 

QMFB Layer Q12 

QMFB Layer Q14 

QMFB Layer Q16 
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QMFB Layer Q19 
 

 

QMFB Layer Q21 
 

 

QMFB Layer Q23 
 

 

QMFB Layer Q18 

QMFB Layer Q20 

QMFB Layer Q22 
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QMFB Layer Q24 
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APPENDIX C. Time (Δt) and Frequency (Δf) Resolution Tables 

C.1 802.11a Wi-Fi Signal: Preamble Only (Section 4.2.1) 

Sampling 
Frequency 

fs  [Hz] 
fs = 5.94x1010 fs = 1.19x1011 fs = 2.38 x1011 

Layer 

# 

Δf 

[Hz] 

Δt 

[s] 

Δf 

[Hz] 

Δt 

[s] 

Δf 

[Hz] 

Δt 

[s] 

6 4.71x108 1.08x10-9 9.43x108 5.39x10-10 1.89x109 2.70x10-10 

7 2.33x108 2.16x10-9 4.68x108 1.08x10-9 9.35x108 5.39x10-10 

8 1.16x108 4.31x10-9 2.33x108 2.16x10-9 4.66x108 1.08x10-9 

9 5.81x107 8.62x10-9 1.16x108 4.31x10-9 2.32x108 2.16x10-9 

10 2.90x107 1.73x10-8 5.80x107 8.62x10-9 1.16x108 4.31x10-9 

11 1.45x107 3.45x10-8 2.90x107 1.73x10-8 5.80x107 8.62x10-9 

12 7.25x106 6.90x10-8 1.45x107 3.45x10-8 2.90x107 1.73x10-8 

13 3.62x106 1.38x10-7 7.25x106 6.90x10-8 1.45x107 3.45x10-8 

14 1.81x106 2.76x10-7 3.62x106 1.38x10-7 7.25x106 6.90x10-8 

15 9.06x105 5.52x10-7 1.81x106 2.76x10-7 3.62x106 1.38x10-7 

16 4.53x105 1.11x10-6 9.06x105 5.53x10-7 1.81x106 2.77x10-7 

17 2.27x105 2.22x10-6 4.53x105 1.11x10-6 9.06x105 5.56x10-7 

18 1.13x105 4.45x10-6 2.26x105 2.23x10-6 4.53x105 1.11x10-6 

19 5.66x104 8.97x10-6 1.13x105 4.49x10-6 2.27x105 2.25x10-6 

20 2.83x104 1.82x10-5 5.66x104 9.12x10-6 1.13x105 4.56x10-6 

21 1.42x104 3.77x10-5 2.83x104 1.88x10-5 5.66x104 9.42x10-6 
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C.2 802.11a Wi-Fi Signal: Complete Burst (Section 4.2.2) 

  

Sampling 
Frequency 

fs  [Hz] 
fs = 2.38x1010 fs = 5.94 x1010 fs = 1.31 x1011 

Layer 

# 

Δf 

[Hz] 

Δt 

[s] 

Δf 

[Hz] 

Δt 

[s] 

Δf 

[Hz] 

Δt 

[s] 

6 1.88x108 2.69x10-9 4.71x108 1.08x10-9 1.04x109 4.90x10-10 

7 9.35x107 5.39x10-9 2.33x108 2.16x10-9 5.14x108 9.80x10-10 

8 4.66x107 1.08x10-8 1.16x108 4.31x10-9 2.56x108 1.96x10-9 

9 2.32x107 2.16x10-8 5.81x107 8.62x10-9 1.27x108 3.92x10-9 

10 1.15x107 4.31x10-8 2.90x107 1.73x10-8 6.38x107 7.84x10-9 

11 5.80x106 8.63x10-8 1.45x107 3.45x10-8 3.19x107 1.57x10-8 

12 2.89x106 1.73x10-7 7.25x106 6.90x10-8 1.59x107 3.14x10-8 

13 1.44x106 3.45x10-7 3.62x106 1.38x10-7 7.97x106 6.27x10-8 

14 7.25x105 6.93x10-7 1.81x106 2.76x10-7 3.99x106 1.25x10-7 

15 3.62x106 1.39x10-6 9.06x105 5.52x10-7 1.99x106 2.51x10-7 

16 1.81x105 2.80x10-6 4.53x105 1.11x10-6 9.97x106 5.03x10-7 

17 9.06x104 5.70x10-6 2.27x105 2.22x10-6 4.98x105 1.01x10-6 

18 4.53x104 1.18x10-5 1.13x105 4.45x10-6 2.49x105 2.02x10-6 

19 2.26x104 2.52x10-5 5.66x104 8.97x10-6 1.25x105 4.08x10-6 

20 1.13x104 5.89x10-5 2.83x104 1.82x10-5 6.23x104 8.29x10-6 

21 5.63x103 1.21x10-4 1.42x104 3.77x10-5 3.11x104 1.71x10-5 
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C.3 802.16e WiMAX Signal 

  

Sampling 
Frequency 

fs  [Hz] 

Both Modes 

fs = 1.19x109 

Data-Only 

fs = 1.18x1010 

Range-Only 

fs = 3.56 x1010 

Layer 

# 

Δf 

[Hz] 

Δt 

[s] 

Δf 

[Hz] 

Δt 

[s] 

Δf 

[Hz] 

Δt 

[s] 

6 9.42x106 5.39x10-8 9.42x107 5.39x10-9 2.83x108 1.80x10-9 

7 4.68x106 1.08x10-7 4.68x107 1.08x10-8 1.40x108 3.59x10-9 

8 2.32x106 2.16x10-7 3.33x107 2.16x10-8 6.99x107 7.19x10-9 

9 1.15x106 4.31x10-7 1.16x107 4.31x10-8 3.49x107 1.44x10-8 

10 5.80x105 8.62x10-7 5.80x106 8.62x10-8 1.74x107 2.87x10-8 

11 2.90x105 1.72x10-6 2.90x106 1.72x10-7 8.70x106 5.75x10-8 

12 1.45x105 3.45x10-6 1.45x106 3.45x10-7 4.34x106 1.15x10-7 

13 7.24x104 6.90x10-6 7.25x105 6.90x10-7 2.16x106 2.31x10-7 

14 3.62x104 1.38x10-5 3.62x105 1.38x10-6 1.09x106 4.60x10-7 

15 1.81x104 2.76x10-5 1.81x105 2.76x10-6 5.44x105 9.21x10-7 

16 9.06x103 5.53x10-5 9.06x104 5.53x10-6 2.71x105 1.84x10-6 

17 4.53x103 1.11x10-4 4.53x104 1.11x10-5 1.36x105 3.69x10-6 

18 2.27x103 2.33x10-4 2.27x104 2.22x10-5 6.80x104 7.42x10-6 

19 1.13x102 4.75x10-4 1.13x104 4.45x10-5 3.39x104 1.50x10-5 

20 5.63x101 1.02x10-3 5.66x103 8.97x10-5 1.69x104 3.03x10-5 

21 2.84x101 2.11x10-3 2.83x103 1.82x10-4 8.58x103 6.04x10-5 
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