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AFIT/GE/ENG/12-33 

Abstract 

The purpose of this research effort is to develop, simulate, and test a new 

algorithm to detect Near Earth Objects (NEOs) using a Likelihood Ratio Test (LRT) 

based on a Poisson statistical model for the arrival of photons.  One detection algorithm 

currently in use is based on a Gaussian approximation of the arrival of photons, and is 

compared to the proposed Poisson model.  The research includes three key components.  

The first is a quantitative analysis of the performance of both algorithms.  The second is a 

system model for simulating detection statistics.  The last component is a collection of 

measured data to apply comparatively to both algorithms.  

A Congressional mandate directs NASA and the DoD to catalogue 90% of all 

NEOs by the year 2020 [1].  Results from this research effort could feasibly be applied 

directly to operations in the Pan-Starrs program to facilitate the accomplishment of the 

Congressional mandate.  Improvements in the size of detectable NEOs and in the 

probability of detecting larger NEOs would increase the state of readiness of the world 

for possible catastrophic impact events.  Improvements in detection probability of 

measured data were as high as a factor of seven, and the expected average improvement 

is 10%. 



v 

 

Acknowledgments 

I would like to express my sincere appreciation to my family and friends for their 

continued support, encouragement and understanding.  I would also like to thank my 

AFIT professors, especially my research advisor, Dr. Stephen Cain for their guidance, 

instruction, and patience throughout my Master’s program and the research process. 

 

       Curtis J. R. Peterson



vi 

 

Table of Contents 

Page 

Abstract .............................................................................................................................. iv 

Table of Contents ............................................................................................................... vi 

List of Figures .................................................................................................................. viii 

List of Tables .......................................................................................................................x 

1 Introduction ..................................................................................................................1 
1.1 General Issue .......................................................................................................1 
1.2 Problem Statement ..............................................................................................3 
1.3 Research Objectives/Focus .................................................................................4 
1.4 Investigative Questions .......................................................................................5 
1.5 Methodology .......................................................................................................5 
1.6 Assumptions/Limitations ....................................................................................5 
1.7 Implications .........................................................................................................6 
1.8 Preview ................................................................................................................6 

2 Literature Review .........................................................................................................7 
2.1 Chapter Overview ...............................................................................................7 
2.2 Previous and Current Programs...........................................................................7 
2.3 Future Programs ..................................................................................................9 
2.4 Pan-Starrs Specifications.....................................................................................9 
2.5 Relevant Research .............................................................................................11 
2.6 Summary ...........................................................................................................13 

3 Methodology ..............................................................................................................14 
3.1 Chapter Overview .............................................................................................14 

3.2 Photon Statistics ................................................................................................14 
3.3 Likelihood Ratio Test ........................................................................................23 
3.4 NEO Magnitude Estimation ..............................................................................30 

3.5 SNR Analysis ....................................................................................................33 
3.6 Monte Carlo Simulations ..................................................................................41 
3.7 System Model ....................................................................................................43 
3.8 Measured Data...................................................................................................48 
3.9 Summary ...........................................................................................................50 

4 Analysis and Results ..................................................................................................51 
4.1 Chapter Overview .............................................................................................51 

4.2 Analytic Results ................................................................................................51 



vii 

 

4.3 Simulation Results.............................................................................................53 
4.4 Measured Data Results ......................................................................................57 
4.5 Summary ...........................................................................................................62 

5 Conclusions and Recommendations ...........................................................................63 
5.1 Chapter Overview .............................................................................................63 
5.2 Conclusions of Research ...................................................................................63 
5.3 Significance of Research ...................................................................................63 
5.4 Recommendations for Action and Future Research ..........................................64 
5.5 Summary ...........................................................................................................64 

Appendix ............................................................................................................................65 
A1.  Simulation MatLab Code....................................................................................65 
A2.  Measured Data MatLab Code .............................................................................70 

Bibliography ......................................................................................................................73 



viii 

 

List of Figures 

Page 

Figure 1.  Frequency of NEOs by Size, Impact Energy, and Magnitude [3] ...................... 2 

Figure 2.  Impact Destruction Radius [4] ............................................................................ 3 

Figure 3.  Total NEO Discoveries [6] ................................................................................. 4 

Figure 4.  Pan-Starrs CCD Structure [11] ......................................................................... 10 

Figure 5.  Average hourly r0 for Haleakala, May-Oct ...................................................... 12 

Figure 6.  Solar Radiation Spectrum [21] ......................................................................... 18 

Figure 7.  SNR of 140 m NEO vs. Star Mag; 28.2 arc-sec Angular Separation ............... 52 

Figure 8.  SNR of 140 m NEO vs. Star Mag; 14.1 arc-sec Angular Separation ............... 52 

Figure 9.  SNR of 400 m NEO vs. Star Mag; 28.2 arc-sec Angular Separation ............... 52 

Figure 10.  SNR of 400 m NEO vs. Star Mag; 0 arc-sec Angular Separation .................. 52 

Figure 11.  Impulse Response for (a) 500 nm, (b) 600 nm, (c) 700nm, and (d) 800 nm 

wavelengths ................................................................................................................ 53 

Figure 12.  ROC Curve; Magnitude 20 Star ..................................................................... 54 

Figure 13.  ROC Curve; Magnitude 10 Star ..................................................................... 54 

Figure 14.  ROC Curve; Magnitude 0 star ........................................................................ 54 

Figure 15. Detection Probability vs. NEO Magnitude ...................................................... 55 

Figure 16. Detection Probability vs. NEO-Star magnitude difference ............................. 56 

Figure 17.  Detection Probability vs. Angular Separation ................................................ 57 

Figure 18.  Sample image of Polaris with short exposure ................................................ 58 

Figure 19.  Average Image of Polaris ............................................................................... 58 



ix 

 

Figure 20.  ROC Curve for Polaris Short Exposure Images ............................................. 59 

Figure 21.  Sample Image of Star with Short Exposure ................................................... 60 

Figure 22.  Average Image of Star .................................................................................... 60 

Figure 23.  ROC Curve of Second Data Set ..................................................................... 61 



x 

 

List of Tables  

Page 

Table 1.  Comparison of current NEO search programs ..................................................... 8 



1 

NEAR EARTH OBJECT DETECTION USING POISSON STATISTICAL 

MODEL FOR DETECTION ON IMAGES FROM THE PANORAMIC SURVEY 

TELESCOPE & RAPID RESPONSE SYSTEM 

 

1 Introduction 

1.1 General Issue 

 In the National Aeronautics and Space Administration (NASA) Multiyear 

Authorization Act of 1990, the United States Congress directed a workshop study to 

define a program to increase the detection rate of asteroids whose trajectory crosses the 

orbital path of Earth.  This lead to NASAs Spaceguard Survey Report in 1992, the 

conclusions of which called for a worldwide network of 4 to 7 telescopes in the 2 to 3 

meter aperture range.  The report predicted that nearly all asteroids and comets over 1 km 

in diameter could be catalogued and tracked with such a network.  The report predicts 

that 10 percent of smaller asteroids and comets between 100 meters and 1 km in diameter 

could be catalogued and tracked with a similar system.  The report outlines the need for 

cooperation with the Department of Defense, particularly with the US Air Force, in the 

search for NEOs [2]. 

 In 1994, the House Committee on Science and Technology directed NASA, in 

coordination with the Department of Defense and other international space agencies to 

discover, catalogue, and track within 10 years, 90 percent of all asteroids and comets 

larger than 1 km within 1.3 Astronomical Units (AU) from the sun whose trajectory 

crosses the orbital path of Earth.  Eleven years later, the NASA Authorization Act of 
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2005 issued a new mandate in which 90% of all NEOs larger than 140 meters in diameter 

must be discovered, catalogued, and tracked by the year 2020.  Congress also directed 

NASA to submit an Analysis of Alternatives (AoA) to the Committee within 120 days of 

enactment of the Act, outlining efforts taken by NASA to detect and characterize the 

hazards of NEOs, as well as an assessment of necessary actions to put in place 

capabilities to expand detection and tracking of NEOs [1].   

 The AoA submitted to Congress by NASA in 2007 details two considered 

terrestrial detectors, and several space-based systems.  The two terrestrial based systems 

are the Large Synoptic Survey Telescope (LSST), and Panoramic Survey Telescope and 

Rapid Response System (Pan-Starrs) [3].  The AoA reported that a program consisting of 

a combination of both ground based systems and some space-based systems was required 

to meet the 2020 deadline for completion.  The AoA also reported that using only one of 

the land-based systems would push the date out to beyond 2030.  The number of NEOs 

estimated by the AoA is depicted in Figure 1, using a constant power law [3].   

 

Figure 1.  Frequency of NEOs by Size, Impact Energy, and Magnitude [3] 
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Figure 2.  Impact Destruction Radius [4] 

 Large NEOs have an impact frequency of one every half a million years, while 

sub-kilometer NEOs impact one in every thousand years [4].  While the probability of an 

impact of a large NEO capable of triggering mass extinctions within a lifetime is small, 

the probability of an impact from a smaller NEO is significantly higher, and as Figure 2 

illustrates, such an impact would cause catastrophic localized damage.  

1.2 Problem Statement 

NASA's budget request for NEO observations rose from $5.8M in FY 2010 to 

$20.4M in FY 2011 and beyond, the largest increase since NASA began searching for 

NEOs [5].  This increase reflects the realization that enough is not being done to 

accomplish the Congressional Mandate outlined in [1].  The cost for the spaced-based 

systems outlined in [3] was forecasted to be more than twice that of the terrestrial-based 

systems, as well as being more complicated to support and maintain.  The cost of the 

terrestrial-based systems was forecasted to be $469M and would not meet the
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Figure 3.  Total NEO Discoveries [6] 

requirements of the mandate until the year 2026 [3].  As of 7 October 2011, fewer than 

900 NEOs larger than 1 km have been discovered, and fewer than 5000 between 100 m 

and 1 km have been discovered, as shown in Figure 3 [6].  With the given operating 

budget for NEO detection, the required budget, and the current progress of the effort to 

complete the Congressional mandate, a solution is needed that improves the detection 

capability of current equipment at minimal costs. 

1.3 Research Objectives/Focus 

The objectives of this research effort will be to develop a new algorithm for 

detecting NEOs using existing hardware, namely Pan-Starrs.  The research will be 

focused on decreasing the detectable size and increasing the probability of detecting 

larger NEOs by changing the post-processing algorithm of image data.  The model for the 

simulations will be greatly simplified from the complex algorithm that is currently in use.  

All of the functionality of Pan-Starrs is not investigated in this report; therefore, only the 

process by which Pan-Starrs takes image data and uses it to flag the detection of a NEO is 
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modeled.  Likewise, the investigated algorithm would likely require additional 

functionality and integration work in order to implement.   

1.4 Investigative Questions 

How does Pan-Starrs currently detect NEOs?  What are the optical capabilities of 

Pan-Starrs?  Given the capabilities of the Pan-Starrs hardware, what detection theory can 

be applied to the post-processing of the image data?  How does any proposed detection 

algorithm compare to the existing detection algorithm?  Can any proposed algorithm 

extend to applications other than Pan-Starrs? 

1.5 Methodology 

Receiver Operating Characteristic (ROC) curves will be generated through Monte 

Carlo simulations based on models of the Pan-Starrs optical characteristics, atmospheric 

characteristics, and NEO characteristics.  Simulations of varying environments such as 

proximity to brighter objects, and the intensity of nearby objects will be investigated.  

Tests in relative environments will be conducted to verify the results of the simulations. 

1.6 Assumptions/Limitations 

Many variables are involved in the ability to detect a NEO.  Without actual data 

from Pan-Starrs, assumptions must be made about the environment in which images will 

be taken.  Average atmospheric conditions, average NEO characteristics, and the average 

optical response of Pan-Starrs will be used in the simulations.  Similarly, without the 

availability of Pan-Starrs hardware, a relative test environment will be derived based on 

the results seen in simulations.  



6 

1.7 Implications 

 Results from this research effort could feasibly be applied directly to operations at 

Pan-Starrs and other programs.  If improvements in the size of detectable NEOs or in the 

probability of detecting larger NEOs are observed, the algorithm could be used to 

facilitate the accomplishment of the Congressional mandate to have 90% of all NEOs 

over 140 m in diameter catalogued by 2020.  Any such notable improvement would 

increase the state of readiness of the world for possible catastrophic impact events. 

1.8 Preview 

This research aims to demonstrate that detection theory can be used to implement 

a Likelihood Ratio Test (LRT) to improve upon the current detection algorithm used by 

Pan-Starrs.  Further, it aims to demonstrate that other known electronic filtering 

techniques are based on approximations about the stochastic nature of photon-counting 

and that improved results are possible without making such approximations.  Chapter 2, 

Literature Review, compares the previous, current and planned NEO detection methods 

of multiple NEO detection programs.  Chapter 3, Methodology, details the analytic 

process that led to the proposed algorithm, as well as the approach used to develop 

models, simulations, and tests.  Chapter 4, Analysis and Results, interprets the outcomes 

of the analysis, simulations, and tests.  Chapter 5, Conclusions and Recommendations, 

discusses the validity and performance of the proposed algorithm based on comparisons 

of the analytical, simulation and test outcomes with the performance of current NEO 

detection methods. 
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2 Literature Review 

2.1 Chapter Overview 

The purpose of this chapter is to review past, current, and future NEO detection 

methods.  Beginning in 1984 with the Spacewatch program, through the estimated 2020 

operational date of the Large Synoptic Survey Telescope (LSST) program there have 

been numerous government and academic programs dedicated, at least in part, to the 

discovery and cataloguing of NEOs.  An analysis of the algorithms and system 

capabilities of such programs will show that the proposed algorithm in this research effort 

is a novel approach to the post-processing of astronomical image data.  NEO detection 

programs have employed increasingly more capable and sophisticated optical systems 

and computer processing systems; however, very little has changed in the basic method 

of detecting NEOs.  

2.2 Previous and Current Programs 

In 1984, University of Arizona’s Spacewatch program became the first to use 

Charge-coupled Devices (CCDs) to scan the sky for NEOs.   The Spacewatch team 

developed the tools and methods used by many of the astronomical observing telescopes 

today to automatically detect moving objects using CCDs [7].  The “drift-scan” method 

focuses the telescope at a point slightly leading the targeted area and keeps it stationary, 

allowing the sky to drift across the field of view due to the rotation of the Earth.  The read 

out rate of the CCD is set equal to the drift rate of the sky, providing a very long exposure 

time while keeping any fixed objects in focus.  Objects that are moving fast relative to the 

background sky, as NEOs would be, would appear as streaks in the image.  The “step-
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stare” method uses a mosaic of fast read out CCDs to piece together an image then return 

to the same area of sky a number of times within a small timeframe in order to perform 

some type of change detection between the two images.  NEOs moving faster than the 

background sky, instead of appearing as streaks, will appear in a different location 

relative to the surrounding objects in the image [8]. 

Since the Spacewatch program, at least five subsequent NEO detection programs 

have used, or are using the "step-stare" method in order to detect moving objects.  These 

programs include the Near Earth Asteroid Tracking (NEAT), Lincoln Near Earth 

Asteroid Research (Linear), Lowell Observatory NEO Search (LONEOS), Catalina Sky 

Survey (CSS), and the Japanese Spaceguard Association (JSGA) programs.  Each of 

these programs has offered unique capabilities and contributions, but a detailed review of 

each program is outside of the scope of this document [9]  Table 1 displays a summary 

comparison of the six program telescopes previously discussed [8]. 

Table 1.  Comparison of current NEO search programs 

Program 
Space-
watch1 

Space-
watch2 NEAT-1 NEAT-2 LONEOS LINEAR 

Catalina 
Sky 

Survey JSGA 

Aperture 
(m)  0.9 1.8 1.2 1.2 0.6 1 0.4 0.5 

f #  5.3 2.7 1.9 2.5 1.9 2.2 3 1.9 

Pixel Size 
(mm) 0.024 0.024 0.015 0.015 0.0135 0.024 0.015 0.015 

Pixel Size 
(arcsec)  1 1 1.4 1 2.5 2.25 2.5 3.2 

FOV (deg2)  0.3 0.3 2.5 3.8 8.3 2 8.1 3.1 

Readout 
Mode  drift scan  ds/step stare  

step 
stare  step stare step stare step stare step stare  step stare 

Exposure 
(sec)  150 150 20 60 45 5 60 23 

Revisits 3 3 3 3 4 5 4 - 
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2.3 Future Programs 

As stated in Chapter 1, two proposed future efforts, Pan-Starrs and LSST, were 

detailed in the AoA submitted to Congress by NASA in 2007 [3].  Since the submittal of 

the AoA, plans for both future programs have matured significantly.  The LSST 

scheduled first light is in 2018 and no hardware has yet been delivered [10].  The first of 

four identical pieces of Pan-Starrs, PS1 has been installed on Haleakala, in Hawaii and 

has been officially conducting scientific observations since May 2010.  PS1 will be used 

to test the design and technology being developed for Pan-Starrs.  The second piece, PS2, 

is scheduled for installation in early 2013.  The installation of the remaining pieces is 

currently unscheduled [11].  Pan-Starrs has implemented the first major change in NEO 

detection methods, and no longer looks for moving objects based on two single images 

that are both susceptable to noise.  Instead, Pan-Starrs creates a running average, or 

"master image" of the sky and uses it in an image differencing algorithm.  The 

availability of the master image is the genesis of this research effort and for this reason 

the remainder of the focus of this section will be the review of literature as it pertains to 

the methods and capabilities of Pan-Starrs and how the Pan-Starrs program conducts 

NEO surveillence. 

2.4 Pan-Starrs Specifications 

PS1 has a 1.8 meter diameter concave primary mirror and an effective focal 

length of 8 meters.  The camera on the PS1 is an 8 by 8 array of CCD devices 

approximately 5 cm2 each.  The individual devices are made up of an 8 by 8 array of 

CCD cells with almost 600 by 600 pixels per cell, providing approximately 1.4 Giga-
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Figure 4.  Pan-Starrs CCD Structure [11] 

pixels total, as illustrated in Figure 4.  The pixel resolution of the 10 µm pixels is 

approximately 0.258 arcsec [11]. 

PS1 can utilize one of several filters depending on the application.  For NEO 

observations, a wideband 0.5 to 0.8 µm filter will typically be used.  With the wideband 

filter, sky background noise is expected to be approximately 7 electrons per pixel, while 

the read noise in the CCD cells is expected to be about 5 electrons.  Typical exposure 

times will be 30 seconds, in which about seven square degrees of the sky will be imaged 

[11]. 

When the full Pan-Starrs is operational, images from each of the four telescopes 

will be compared and combined into a composite image providing resilience to cosmic 

rays, error due to gaps between CCD cells, and bad pixels.  Any composite image that is 

found to have no objects of interest will be used to build up the running master image of 

the sky.  New composite images will be analyzed for objects above a certain intensity 

threshold, which will be stored in a database for future reference.  New images may 
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optionally be smoothed with a modeled Point Spread Function (PSF) estimated from the 

image and will be subtracted from the cumulative master image leaving only images of 

objects that have moved or changed intensity [12].  The images remaining will be added 

to a separate database for further review.  Finally, the composite image is discarded to 

free up data storage [11]. 

2.5 Relevant Research 

 Research conducted in 2004 and published in the October 2005 issue of The 

Astronomical Journal, “Matched Filter Processing for Asteroid Detection” described 

methods to implement a matched filter algorithm for the specific application of near 

Earth asteroid detection [13].  The results of this paper showed a 40 percent increase in 

asteroid detection rates compared to the “step stare” and “drift scan” algorithms [13].  A 

paper published in The Astronomical Journal in 2005, “Likelihood-Based Method for 

Detecting Faint Moving Objects” develops a Maximum Likelihood Estimate of the 

magnitude and velocity of dim moving objects given the photon distribution received 

from a 5 minute exposure time [14].  The results of this research showed improvement in 

the detectable magnitude of objects for a given telescope, but the process requires 

extremely long exposure times, multiple images, and a significant amount of 

computational time [14].   

Another research effort, “Detecting Near-Earth Objects Using Cross-Correlation 

with a Point Spread Function” was conducted at AFIT and focused on the Linear program 

telescope [15].  The results of this research found that the Linear program would improve 

detection by using electronic matched filtering and proper sampling [15].  Pan-Starrs has 
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an optional setting to smooth the difference image with a modeled PSF, in other words to 

perform matched filtering.  Sampling turns out not to be an issue with Pan-Starrs as it 

was with Linear.  The Nyquist sampling theorem dictates that the Pan-Starrs detector is 

sampled as 

 
  

 

60.5 10 8
1.11

2 2 1.8s

meters metersf
m

D meters





    , (1) 

where s is the sample spacing,  is the wavelength, f is the focal length, and D  is the 

aperture diameter [16].  Although it appears that the 10 m physical pixel size is under 

sampling by a factor of nearly 10, the cutoff frequency due to the atmosphere is much 

lower.   Fried's seeing parameter, 0r , is a measure of the strength of the turbulence in the 

atmosphere and has the effect of limiting the effective diameter of the system, if the 

diameter is larger than 0r .  As shown in Figure 5, the average 0r at Haleakala, the 

location of PS1, is approximately 9 cm during hours of darkness [17].

 

Figure 5.  Average hourly r0 for Haleakala, May-Oct 
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This means that 0r  is the limiting factor in the spatial resolution of the PS1 system, and 

using 9 cm for D  in Eq. (1) yields a minimum effective spatial sampling of 

  

 

6

0

0.5 10 8
22.2

2 2 0.09s

meters metersf
m

r meters





    , 

which means that the 10 m physical pixel size of PS1 is sampling at a rate about twice 

that which is necessary for the average atmosphere and is fine enough sampling for an 0r  

of up to 20  cm. 

2.6 Summary 

Six of the largest NEO detection programs over the last 25 years all use the same 

fundamental approach.  The newest program, Pan-Starrs, introduces the method of 

producing an average image of the sky and using that image for difference detection in 

order to identify new objects that are not typically in that image.  Not much has been 

reported about the LSST program due to the stage of development.  LSST plans on using 

both the step-stare and image difference detection.  Instead of building their own master 

image, the plan calls for a star chart used in a similar manner as Pan-Starr's master image 

[10].  The availability of Pan-Starr's master image provides a statistical tool, the expected 

value of the sky image, which may be utilized in a classical signal detection approach 

using a Likelihood Ratio Test, a method that has not been applied to the NEO detection 

problem.  The proposed algorithm removes assumptions about the statistical nature of 

photon arrival and implements a LRT detection scheme.  The new algorithm requires the 

master image, but uses it as the statistical mean of an image taken with the Pan-Starrs 

camera as opposed to generating a difference image.   
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3 Methodology 

3.1 Chapter Overview 

The results of [15] showed that a matched filter, or a cross-correlation with the 

PSF, would improve NEO detection using the Linear telescope.  This chapter will show 

that using the PSF smoothing option of the Pan-Starrs system on the differenced image is 

actually applying an assumption that the photon noise is both white and Gaussian.  

Eliminating this assumption is the basis for the research effort.  A detailed explanation 

follows that describes the analytical, simulation, and measurement tools used to develop 

and demonstrate a more effective detection algorithm based on photons having a Poisson 

distribution.  The analytical tools include a derivation of the signal to noise ratio (SNR) 

as a metric to compare the algorithms.  Simulation tools include the development of the 

complete model of the Pan-Starrs equipment, atmosphere and astronomical objects.  

Measured tools include the development of a relative test environment to recreate 

conditions that will be seen in practical applications of the algorithms.   

3.2 Photon Statistics 

 Detecting the presence of an object optically is done by measuring the number of 

photons received at the detector from the object.  There will also be photons arriving 

from the ambient background radiation of the scene.  Detecting the object requires a 

statistical characterization of the arrival of all photons in order to distinguish between 

photons from a target object and those from background radiation.  Assume a total of N  

photons are emitted over time in any one direction from an isotropic source.  The rate, 

 t , at which n  photons arrive in t  seconds at the detector would be
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   n photons
t

st
  . 

The probability, p  of a photon arriving in a time interval  1 2,t t  is simply [18]

 
2

1

t

t
p p t dt  ,   

where  p t  is the probability density, or the photon arrival probability per second.  

Intuitively, the probability density is proportional to the arrival rate for photons, or

    p t t  . 

The probability density must integrate to one; therefore,  

 
 photon arrivingPn

p t
Nt s



 
  

 
 , or 

 
   photon arrivingPt

p t
N s



  
  

 
. 

 The arrival of NK  photons from a source of N photons in a time interval  1 2,t t  

can be characterized as a binomial random variable with N  total experiments, NK

successes, and a probability of success of .p   The probability,  NP K  of NK  photons 

arriving in the interval  1 2,t t  is then, 

  
   1 NN

N KK

N

N
P K p p

K

 
  
 

, (2) 
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   
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K N N
 


             

  . 

The total number of photons emitted from a source, N  can be assumed to be uncountable 

and large; therefore, 

  
   

   
2 2

1 1

1 ... 1 1lim 1
!

N
N

N

N KK
t t

N

N K t tN
N

N N N K
P K t dt t dt

K N N
 





                 
  , (3) 

and when N  is large, [19]   

    
 

2
2 2

1

1 1

1 11 1
t

N

t

N K N
t dtt t

t t
t dt t dt e

N N



 


   

      
   

  .  

Eq. (3) simplifies to 

  
   

 
 

2
2

1

1

1 ... 1
lim

!

t
N

t

N

K t dtt
N

N K tN
N

N N N K
P K t dt e

K N








            
 ,  

             
 

 
2

2
1

1

1
!

t
N

t

K t dtt

t
N

t dt e
K




 

   . (4) 

The average number of photons, NK  arriving from a source of N  photons in the time 

interval  1 2,t t  is  

  
2

1

t

N
t

K t dt  ; (5) 

therefore, Eq. (4) becomes 

  
!

N NK K

N
N

N

K e
P K

K



 , (6) 
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which is the Probability Mass Function for a Poisson random variable.  This random 

variable is characterized by a single parameter which is equal to both the mean and the 

variance [20].   

The range between the detector and the object, and the source of the photons from 

an object determines how the expected number of photons arriving at the detector is 

estimated.  A NEO, within 1.3 AUs of Earth, is relatively close compared to a distant star 

light-years away.  NEOs are also not the source of photons; rather they reflect photons 

from other sources.  The expected number of photons, NK , received and converted into 

photo-electrons by the detector from a NEO illuminated only by natural light can be 

calculated using  Eq. (7) [16]. 

 
2

24
IB B t a o

N

S A D t
K

R hc

    
  (7) 

where:  

 IBS  is the solar spectral irradiance incident on the NEO in Watts (J/s) per square meter 
per micro-meter, 

  is the bandwidth of the filter in micro-meters, 

 BA is the two-dimensional surface area of the NEO that is normal to the optical axis in 
square meters, 

 t  is the dimensionless reflectivity of the NEO, 

   is the quantum efficiency of the detector in photo-electrons per photon, 

 a  is the dimensionless transmittance of the atmosphere, 

 o  is the dimensionless transmittance of the optical system, 

 D  is the diameter of the receiver aperture in meters, 
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   is the photon wavelength in meters, 

 t  is the exposure time in seconds, 

 R  is the range to the NEO in meters, 

 h  is Planck's constant in Joule seconds per photon, and 

 c  is the speed of light in meters per second. 

 The natural light incident on the NEO is almost entirely from the Sun.  The solar 

spectral irradiance at the top of Earth's atmosphere, shown in Figure 6, is used because it 

closely predicts the irradiance incident on a NEO without an atmosphere in an orbit close 

to the Earth’s.  The bandwidth of the wideband filter typically used for NEO detection by 

Pan-Starrs is 0.3 µm; however, this model will simulate the monochromatic response 

over the range of the filter in 0.1 µm increments, so 0.1 µm is used for  , and

 

Figure 6.  Solar Radiation Spectrum [21] 

0.5 µm, 0.6 µm, 0.7 µm, and 0.8 µm will be used for  .   Four wavelength dependent 

values corresponding to each   found in Figure 6 will be used for IBS .  The irregular and 
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unknown shape of a NEO makes using exact values for BA  impossible; therefore a 

circular surface will be assumed and the equation for the area of a circle with a diameter 

greater than or equal to 140 meters will determine the value used for BA .  This is a 

reasonable assumption because the variation in angular size on the detector plane 

between an irregularly shaped object and a spherical object is not measurable.  NEOs are 

expected to have a reflectivity greater than 3 percent, which provides a lower bound on 

the value of t  [2].  A study done by the Department of Physics at Harvard University 

measured the total effective throughput of Pan-Starrs using a calibrated Silicon 

photodiode and a tunable laser.  At even intervals of the wavelengths of the wideband 

filter, 0.5, 0.6, 0.7 and 0.8 µm, the study found that the optical transmittances for PS1 are 

approximately 0.67, 0.85, 0.99, and 0.95, respectively [22].  These values will be used as 

the values for the product 
o .  The typical exposure time, t , of a Pan-Starrs image 

will be about 30 seconds [11].  The furthest range, R , defining a NEO is 1.3 AUs, or 

approximately 111.9448 10 m  [1].  A complete derivation of Eq. (7) is found in [16].   

 The expected number of photons incident on the aperture over the exposure time 

of the detector for objects making up the background radiation requires a different 

method than Eq. (7).  The AB apparent magnitude system is a measure of the relative 

irradiance of celestial objects.  Alpha Lyr (Vega) is the reference magnitude (zero 

magnitude) on the AB system.  The number of photons received from the object is 

proportional to the irradiance of the object; therefore, if the expected number of photons 

from Vega is calculated, the AB system can be used as a measure of the relative number 
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of photons between two objects [23].  In the AB system, the magnitude of an object, sM  

is 

  10   2.5 log   48.585sM F  , (8) 

where F  is the flux, in 2

ergs

cm
.  The relative difference in magnitude between two objects, 

s N xM M M   equates to a factor of 2.512 xM decrease in irradiance or photons.  Using 

this, the relation between the number of expected photons received between an object of 

interest and the reference Vega is   

s V sM M M  ,

 

2.512 sM V

s

K

K
 ,

 

 
2.512 s

V
s M

K
K  , (9) 

where 0VM  ,  the magnitude of Vega, VK is the expected number of photons received 

from Vega at the detector, sK  is the expected number of photons received from the 

source, and sM  is the magnitude of the source, say a star, on the AB magnitude system 

and can typically be found from a look-up table.   Solving Eq. (9) requires VK , found by 

 
V

F B A t
K

E

  
 , (10) 

where: 

 F  is the flux in Joules per square meter, 
 B  is the bandwidth of the Pan-Starrs wideband filter used in NEO detection in Hz, 
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 A  is the area of the aperture in square meters, 
 t  is the exposure time in seconds, and 
 E  is the energy per photon in Joules per photon. 

 
To find the flux, set 0s VM M   and solve for F in Eq. (8), and then convert the units 

of the flux to equal the units of the flux in Eq. (10): 

2
7 4 2

2 2
0 13.681 03 00 11 ergs J cm

F
cm erg m


   

    
   

 , 

 2
233.6813 10 J

m

  . (11) 

The energy per photon is wavelength dependent, and the wideband filter passes 500 nm 

to 800 nm wavelengths.  A close approximation of the expected number of photons 

received will sum the number of photons received for each of the wavelengths 500 nm, 

600 nm, 700 nm, and 800 nm.  The calculation for each of the wavelengths will divide 

the bandwidth of the wideband filter into four equal bands:  500-575 nm, 575-650 nm, 

650-725 nm, and 725-800 nm.  At 500 nm, each photon has a frequency, f  of roughly

146.0 10 Hz .  The energy in each photon at 500 nm,  E , is   

  34 14

19

   6.626068 10 6.0 10

   3.9756 10

E hf

J s Hz

J







   

 

 

where h  is Plank's constant.  The bandwidth, B , used in Eq. (10) for this wavelength is: 

13

500 575
   7.82609 10

c c
B

nm nm

Hz

 

  , 
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where c  is the speed of light.  The number of expected photons from Vega in the band 

500 to 575 nm, 1VK  received by the 1.8m Pan-Starrs mirror in a 30 second exposure, 

using Eq. (10) is: 

   
213

2

1 19

11

23 7.82609 10 30 0.9

3.9756 10

      5.53215 1

3.6813 10

0

V

J
Hz s m

m
K

J
photon

photons





 
 

 



 



  

Similar calculations for the remaining three wavelengths yields the number of expected 

photons from Vega in the band 575 to 650 nm, 11
2 5.1066 10VK photons  , in the band 

650 to 725 nm, 11
3 4.72506 10VK photons  , and in the band 725 to 800 nm, 

11
4 4.38756 10VK photons  .  The total number of expected photons received in a 30 

second exposure using the wideband filter of Pan-Starrs is the sum of the number of 

photons from each wavelength: 

 1 2 3 4V V V V VK K K K K    , 

 121.97513 10 photons  . (12) 

Now, given the magnitude of a celestial object, Eq. (9), and Eq. (12), it is possible to 

calculate the expected number of photons received by the detector of Pan-Starrs from any 

object.  This will be used to model stars during simulations with varying brightness 

which contribute varying amounts of background radiation in the scene where a very dim 

NEO may be located.  

 Using NK  from Eq. (7), VK  from Eq. (12), and Eq. (9), it is possible to calculate 

the apparent magnitude of the NEO.  By setting s NK K  and s NM M  in Eq. (9) and 
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solving for NM  by taking the natural logarithm of both sides, the apparent magnitude of 

the NEO, NM  is  

 
   

 

ln ln
ln 2.512

V N

N

K K
M


 . (13) 

3.3 Likelihood Ratio Test 

A LRT is a detection test that compares the ratio of two probabilities conditioned 

alternately on two hypotheses to a threshold.  A complete derivation of the LRT can be 

found in [16].  The LRT is defined as 

 
      
      

1

0

1

0

, , 1, |
, , 1, |

H

d

d
H

P d x y x y M H

P d x y x y M H


  
 

  
. (14) 

Recall that dM  is the number of pixels in one dimension of the simulated square detector 

plane.  1H  is the hypothesis that a NEO is present, and 0H  is the hypothesis that a NEO 

is not present.        , , 1, |d iP d x y x y M H   is the probability of the data at the  ,x y  pixel 

given hypothesis  ,  0,1iH i .  The bounds on x  and y  will be assumed for the 

remainder of the document and the notation will be shortened to  , | iP d x y H   .  In 

practical applications, a Neyman-Pearson detection test in which the detection threshold 

is set to a value that produces a desired false alarm rate should be used in NEO detection.  

For purposes of comparing the performance of the current and proposed methods, a 

Bayesian detection test is used in order to sweep through all possible values of thresholds 

and generate a ROC curve.   
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As previously stated, the number of photons reflected from a NEO that are 

converted to photo-electrons by the detector of PS1 has a Poisson distribution with mean 

and variance equal to NK  from Eq. (7), similarly photons from background radiation are 

Poisson with mean and variance equal to SK  from Eq. (9).  Given the properties of 

Poisson random variables, the composite image, or the sum of the photons from all 

objects in the scene is also Poisson.  The current method of detection by Pan-Starrs 

without making simplifying approximations about the distributions of the photons does 

not lend itself to a LRT.  Subtracting the master image, which is the deterministic mean 

of the sky image, from one exposure, which is Poisson distributed, results in a random 

variable whose mean and variance can be calculated, but whose mass function is no 

longer Poisson.  One property of the Poisson random variable that simplifies this problem 

is that the Poisson random variable is well approximated as a Gaussian random variable 

with mean and variance equal to the parameter K , under high illumination conditions.  

The difference between a Gaussian random variable and a deterministic variable is still 

Gaussian, with a shifted mean.  This approximation makes a LRT much more feasible 

and its derivation follows [20]. 

 
 

 

1

0

1

0

, |
, |

H

G

H

P d x y H

P d x y H


    
   

 (15) 

where: 
  

 

2
1

2
0

| ,

| ,

B N S

B S

d H Gaus K K K g

d H Gaus K K h





  

 
, 

 d  is the data, 
 1H  is the hypothesis that a NEO is present in the scene, 
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 0H  is the hypothesis that a NEO is not present in the scene, 
 BK  is the expected number of photons received from background noise, 
 SK  is the expected number of photons received from known objects in the image, 
 NK  is the expected number of photons received from a NEO, 
 g  is the impulse response of the system, 
 2  is the variance (set equal for both hypotheses to reproduce Pan-Starrs detection 

scheme), and 
   is the threshold of detection. 

 

The master image, MI is 

 M B SI K K g   , (16) 

and 

 
   

2
2

1 ,
2

1
1, |

2
B N Sd x y K K K g

x y

P d x y H e 



 
       

     . 

Using properties of convolution,  

  
   

2
2

1 , ,
2

1
1, |

2
M Nd x y I x y K g

x y

P d x y H e 



 
      

     . (17) 

The objects from which photons are arriving can be viewed as a point source (a scaled 

Dirac delta function) due to the fact that the angular size of the objects, ignoring larger 

objects within the solar system, are smaller than one pixel in the detector plane; therefore, 

in general 

   , ,m m m mK g K x y g
 

            , 

  ,m m mK g x y    , (18) 
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where  ,m m   is the location of the point source with magnitude 
mK , the average 

number of photons received from object m .  For the remainder of the document, photon 

source objects will be from stars located at  ,S S   with an average number of received 

photons of 
SK , NEOs located at  ,N N   with an average number of received photons 

of 
NK , and average background photons at each pixel, 

BK . 

Now, Eq. (16) becomes 

    , ,M B S S SI x y K K g x y     , (19) 

and Eq. (17) becomes 

  
     

2
2

1 , , ,
2

1
1, |

2
M N N Nd x y I x y K g x y

x y

P d x y H e
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



 
       

     , (20) 

similarly, 
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   

2
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1 , ,
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Md x y I x y

x y

P d x y H e 
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 
    
     . (21) 

Computing the LRT using Eq. (20) and Eq. (21), Eq. (15) becomes 
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. (22) 

It can be shown that: 
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Eq. (22) simplifies to 
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Next, square the terms of the exponential, combine like terms and simplify: 
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Finally, take the Natural Logarithm of both sides and simplify, noting that 2 0NK


 :
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where the right side of the equation is some constant,   and  ,N N   are the 

hypothesized coordinates of the NEO, and fall within some range    , 1, dM   .   
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H

d I g 


  


. (23) 

Eq. (23), which precisely describes the Pan-Starrs method, shows that using peak 

detection on the convolution of the difference image with the PSF as a detection 

algorithm, has built into it the assumption that the photon data received is Gaussian and 

that the variance of the photon data is equal for both 1H  and 0H .   

 If a Poisson model is used for the noise in the imagery, the log-likelihood ratio 

test is: 
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, (24) 

where, 
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,
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B N S

x y

K K K g e
P d x y H

d x y

   
    

    . 

Using Eq. (16) and Eq. (18): 

 
   
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        , (25) 

similarly, 
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Computing the LRT using Eq. (25) and Eq. (26), Eq. (24) becomes 
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Take the natural logarithm of both sides and simplify, 
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  . 

The threshold,  , for Bayesian detection where the prior probability of a NEO being 

present is equal and uniform costs are assumed, is set equal to one.  It is assumed that the 

prior probability of a NEO being present or not is equal, which would be grossly 

inaccurate; however, the goal is to compare the performance with the use of ROC curves, 

which vary the threshold over all possible values.  The number of photons received from 

a NEO, NK  is unknown.  The simplifying assumption on the prior probability of the 

presence of a NEO, allows the term on the right side of the equation containing NK  to go 

to zero.  It will be shown in the next section that NK , when estimated depends on the 

data received, and therefore should not be on the right side of the equation.  Without any 
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usable data to formulate a value for  , the inaccurate assumption to set it to 1 is 

necessary.  The remainder of the right side of the equation will be set to some constant, 

 in order to sweep through all possible thresholds and create a ROC curve.  As with the 

Gaussian LRT derivation,  ,N N   are the hypothesized coordinates of the NEO, and 

falls within some range,    , 1, dM   .   

  
   

 

1

0

, ,
ln , ln 1

,

H

N

P

x y N M
H

d x y K g x y

K I x y

 
  

    
   

  
  (27) 

It should be noted that Eq. (27) does not estimate the location of a NEO, it merely detects 

the presence of a NEO in the image.  Estimation theory can be applied to estimate 

 ,N N  , the simplest, but not necessarily the optimal estimate would be a peak 

detection on the two dimensional likelihood matrix,  ln ,P   .      

3.4 NEO Magnitude Estimation 

 The total number of photons received in an image, K  is the summation of the 

number of photons received at each pixel, d  

  ,
x y

K d x y . (28) 

The summation of Poisson random variables is Poisson distributed with mean and 

variance equal to the sum of the means and variances of each component random variable 

[20].  The mean of K  is the summation of the expected number of photons received by 
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each source, in this case the photons received by the NEO, NK , the photons received by 

any background stars, SK , and the photons received by background radiation, BK     

 
2

N S B dK K K K M   , (29) 

where dM  is the number of pixels in one dimension of the square detector plane.  Given 

that the PSF is normalized, performing a summation of all of the pixels of the master 

image using Eq. (19) yields, 

   , ,M B S S S

x y x y

I x y K K g x y        , 

 2
B d SK M K  . (30) 

A Generalized LRT (GLRT) is formed when an unknown parameter is replaced by the 

maximum likelihood estimate for that parameter [24].  The maximum likelihood estimate 

of NK , ˆ
NK can be found by  

   ˆ arg max ln |
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N N
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K P K K , 
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  . 
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The argmax can be found by setting the partial derivative of the log-likelihood with 

respect to NK  equal to zero, 

    0 ln , , !N M N M

x y x yN

K K I x y K I x y K
K

    
      
    

  , 

 
 

1ˆ ,N M

x y

K

K I x y
 


, 

  ˆ ,N M

x y

K K I x y  , 

    , ,M

x y i j

d x y I i j   . (31) 

Using this estimate in the implementation of the Poisson GLRT algorithm not only 

introduces additional randomness into the GLRT, but it is dependent on the master 

image.  The effect of this estimate will vary with the magnitude of any background stars 

in the image.  The mean of the estimate is 

 ˆ
N NE K K  

  
 (32) 

The variance of the estimate is 

    ˆ ,N N M

x y

Var K K I x y   (33) 

This shows that the estimator is unbiased and the variance of the estimate will increase 

with the increase in photon counts from the master image.  Analytically, the signal to 

noise ratio (SNR) will be used to predict whether the Poisson-based GLRT or the 

Gaussian-based LRT will perform best.  The SNR will be defined as 
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,
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N N

E H E H
SNR

Var

   

 

        


 (34) 

This definition accounts for the magnitude of separation of the mean between the two 

hypotheses.  This reveals the ability of the algorithm to distinguish the presence of a NEO 

as the LRT is compared to a threshold while also not making false positive detections.  

The further the value of the LRT given 1H  is from the value of the LRT given 0H , the 

more detectable the object is without false positives.  The statistical fluctuation of the 

LRT is indicative of the ability of the noise to drive the LRT value above or below the 

threshold.  This definition of SNR assumes symmetry conditions with the variance of the 

LRT.  While the variance of the LRT given the two hypotheses is not equal, the variance 

given 1H  is treated as an upper bound on the unconditioned LRT and the variance of the 

LRT given 0H  is treated as a lower bound on the unconditioned LRT enabling the use of 

Eq. (34) as the definition of SNR.  The SNR of the LRT as defined is a metric that 

reveals the ability of the algorithm to achieve a high probability of detection and a low 

probability of false alarm.   

3.5 SNR Analysis 

The following analysis compares whether the SNR of the Poisson GLRT is higher 

than the Gaussian-based LRT, the larger SNR will be indicative of the better performing 

algorithm.  First, the elements of Eq. (34) are derived for the Poisson-based GLRT.  

Looking at the logarithmic element of Eq. (27), the first approximation of the Taylor 

Series expansion is 
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for           
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,
1 1

,
N N N
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K g x y

I x y

  
   . 

A photon count of less than zero does not make physical sense; therefore, this 

approximation holds when 
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N

N N

I x y
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g x y 


 
. 

Using the simulated PSF for Pan-Starrs and ranging the magnitudes for the background 

stars from the dimmest measureable star to the brightest star, the required value for 
NK  

for this approximation to hold, regardless of the magnitude of the background image was 

found to be 

 15,000 photonsNK  . 

 Eq. (33) shows that the variance of the maximum likelihood estimate for 
NK  may cause 

this restriction to be exceeded when the background image contains a large number of 

photons.  When this scenario is encountered, the following SNR analysis no longer 

accurately predicts the performance of the LRT. 
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The expected value of the Poisson-based LRT given 1H  is: 
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The expected value of the Poisson-based LRT given 0H  is: 
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The variance of the Poisson-based LRT given 1H  is: 
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The variance of the Poisson-based GLRT given 0H  is: 
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The difference between Eq. (38) and Eq. (39) is the term  
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which is much less than Eq. (39) for small diameter NEOs.  The SNR as defined by Eq. 

(34) is bounded by 
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, (40) 

where the bounds are approximately equal for small NEOs.  Eq. (40) is independent of 

the maximum likelihood estimate, ˆ
NK , which suggests that the value used for ˆ

NK  does 

not affect the performance of the LRT.  Recall that Eq. (40) was derived with the 

approximation in Eq. (35), and that the conditions under which this approximation holds 

can be exceeded if the value used for ˆ
NK  is large.  When the variance of this estimate 

causes the restrictions on the approximation in Eq. (35) to be increasingly exceeded, the 

net effect of using this estimate is an increased variance of the value of the GLRT.  The 

increased variance of the GLRT is due to one of the uses of the estimate being inside a 

logarithmic term and the other being in the denominator outside the logarithmic term.  

The increased variance of the GLRT will cause a decrease in the expected SNR.  Given 

that the SNR does not depend on the value for ˆ
NK  unless it is large, and the variance of 

ˆ
NK  can be very large depending on the background master image, an easy way to 

eliminate the possibility of ˆ
NK  being inaccurately large is to set it equal to a small 

constant rather than its maximum likelihood estimate.  Eq. (40) predicts this approach 
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will yield the best performance for the Poisson LRT under all environmental scenarios; 

therefore, the Poisson-based LRT as opposed to the GLRT will be used with the 

unknown parameter ˆ
NK  set equal to one.  Simulations will be used to verify this 

qualitative analysis.  

A similar derivation produces the SNR for the Gaussian-based Pan-Starrs method.  

The expected value of the Gaussian-based LRT given 1H  is: 

           1, , , , ,G M
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The expected value of the Gaussian-based LRT given 0H  is: 

           0, , , , ,G M
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                 0, 0GE H     . (42) 

The variance of the Gaussian-based LRT given 1H  is: 

                    
2 2
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The variance of the Gaussian-based LRT given 0H  after going through similar steps as in 

the  1H  case is: 

                2
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       2
0, , ,G N N M N N

x y

Var H I x y g x y       . (44) 

As with the variance of the Poisson-based LRT given the two hypotheses, the variance of 

the Gaussian-based LRT given both hypotheses are approximately equal for small NEOs.  

The SNR of the Gaussian-based LRT is bounded by 
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. (45) 

Inspection of Eq. (40) and Eq. (45) indicates that the two algorithms should have close to 

the same level of performance if the background master image is flat and small, meaning 

that no background stars are in the image.  This allows the master image term to be pulled 

out of the summation and distributed through the denominator, which results in the same 

expression for SNR whether Gaussian or Poisson distributions are used for photon 

statistics.  Both expressions of the bounds on the SNRs are completely characterized by 

three parameters:  the number of photons received from the NEO, the background master 
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image, and the PSF.  The next section will introduce models used to simulate these 

parameters for numerical evaluation of the SNR expressions. 

3.6 Monte Carlo Simulations 

 Simulations developed in Matlab® simulation software from Mathworks® will be 

used to verify the feasibility of the proposed Poisson-based LRT compared to the 

Gaussian-based LRT.  The Matlab® code is located in the Appendix and is well 

commented to provide a functional description.  The simulation uses the most detailed 

and accurate specifications available to build a model of the optical system, while making 

appropriate assumptions where necessary.   

  The code first creates the total impulse response, to include a model of PS1 and 

the average effects of the atmosphere.  The code then generates two sets of data, one with 

a simulated NEO present and one without a simulated NEO present using Poisson 

statistics, and finally it calculates the LRT based on Gaussian assumptions as well as with 

Poisson.  The impulse response is used to create simulated images by convolving it with a 

two dimensional Dirac delta function scaled by the expected number of photons for the 

object being represented.  A master image is created in this way, but simulated data is 

created by feeding the average image into a Poisson noise generator.  One thousand trials 

were run to create ROC curves for each of the two algorithms based on images of a 140 

meter diameter NEO separated from a star by 28.21 arc-seconds.  The angular separation 

of 28.21 arc-seconds equates to a 70 pixel on the diagonal separation in the modeled 

detector plain, given that PS1 has an angular resolution of 0.285 arc-seconds [11].  

Different ROC curves were generated for star magnitudes ranging from 0, the relative 
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brightness of Vega to 25, approximately 2.5 times dimmer than a 140 meter diameter 

NEO at 1.3 AU from Earth.  A simple comparison between curves can provide a metric 

of the effectiveness of that algorithm.  The algorithm with a ROC curve with more area 

under the curve is generally a better performing algorithm.   

Simulations also include varying other environmental situations besides the size 

of the NEO.  The magnitude of background stars in the image is varied, as well as the 

angular separation between a NEO and a background star in the image.  Additionally, ten 

thousand trials were run to calculate the probability of false alarm in these environments.  

The increase in the number of trials for false alarm rates provides more precision in 

calculating the false alarm rate.  Limits in computing power prevent Monte Carlo 

simulations as a method to calculate a threshold that would yield extremely small false 

alarm rates, but simulations were used to calculate as precise a rate as possible with the 

ten thousand trials.  False alarm rates smaller than those calculated with Monte Carlo 

simulations can be estimated by assuming the value of the LRT is Gaussian by using the 

Central Limit Theorem [20].  Any false alarm rate may then be estimated by simply 

estimating the mean and variance of the LRT.  Choosing a specific false alarm rate, these 

three plots will be generated:  the probability of detection versus angular separation 

between the NEO and a background star; the probability of detection versus the 

magnitude difference between the NEO and a background star, while the magnitude of 

the NEO is fixed; and the probability of detection versus the magnitude of the NEO while 

the magnitude of the background star is fixed. 
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3.7 System Model 

 If the telescope is assumed to be a linear, space-invariant system, all that is 

needed to model the telescope is its impulse response.  The total impulse response is what 

is imaged when the system is interrogated with a point source.  The system includes the 

atmosphere and the telescope.  The total impulse response is the inverse Fourier 

transform of the product of the average atmospheric transfer function with the optical 

transfer function of the telescope, given by 

       1, , ,tot atm x y opt x yg u v F G f f G f f . (46) 

The first thing to consider when building the system model is proper spatial 

sampling for the detector plane, the aperture plane, and the atmosphere.  If not sampled 

properly, aliasing will cause inaccurate results [16].  The simplest spatial sampling to 

determine is in the detector plane due to the fact that the spatial sampling of the PS1 in 

the detector plane is the size of the actual pixels of the CCD array of PS1, 10d m   

[11]. 

The spatial sampling in the aperture is slightly more difficult to arrive at.  Nyquist 

sampling theorem requires a minimum of two samples per period, implying that the phase 

change in the aperture plane must be less than .  The field at the aperture, af , due to a 

point source a distance z  away from the aperture is defined by 
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where x  and y  are points measured from the center of the aperture.  1R   is the range 

from the point source to the aperture as a function of the location in the aperture, and is 

described by the distance equation  

      
2 2 2

1 , a aR x y x y z     .  (48) 

The spatial sampling of the aperture, a  is 

a

a

D

M
   , 

 D  is the diameter of the aperture, aM  is the number of samples in the simulated 

aperture plane.  The binomial approximation of Eq. (48) is  
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 (49) 

If all of the optics of PS1 are treated as a thin lens, the phase effects of the field through 

the optics of the telescope can be modeled at the aperture with a lens phase screen 
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The phase of the lens phase screen cancels the quadratic term in Eq. (49), leaving the 

third term as the largest contributor to phase change at the aperture.  The phase change of 

the aperture is described by 
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which must be less than   to satisfy Nyquist sampling.  The only element that is variable 

is 
a

a

D

M
  , specifically aM  must be large enough to satisfy the phase requirement.
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Using 500 nm for   because the largest phase difference will occur with the smallest 

wavelength, 8 m for the focal length f , and 1.8 m for the diameter D , 5123aM   was 

found to ensure adequate sampling across the entire aperture [16]. 

The spatial sampling of the atmosphere requires a brief description of the 

atmospheric model.  The largest contributor to phase error due to a turbulent atmosphere 

is tilt.  Tilt can be modeled as a zero mean Gaussian random variable, which is correlated 

over a finite amount of time.  Tilt across a small sample of time is highly correlated, but 
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samples taken over longer periods of time become more and more uncorrelated, until 

there is zero correlation between samples.  The exposure time of one image taken by PS1 

is typically 30 seconds.  Over a 30 second period, the atmosphere at the start of the 

sample time is uncorrelated with the atmosphere at the end of the sample time, and the 

effect of tilt averages to zero.  This allows the effect of tilt to be ignored in this model.  

Other aberrations caused by a turbulent atmosphere can be modeled by an average 

transfer function.  The average transfer function for a long exposure is given by [25]

  
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32 2
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f X Yf f f
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atm x yG f f e

  
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The frequency sampling of the atmosphere is 

1
f

d dM
 


 

where dM  is the number of pixels in one dimension of the simulated square detector 

plane and was chosen to be 100 pixels.  The size of the image of a 140 meter wide object 

at 1.3 AUs with a focal length of 8 meters on the detector can be found using simple 

trigonometry and is approximately 5.6 µm, or just over half of a pixel; therefore, the 

complete image of the NEO will fit well within 100 pixels.  The spatial sampling of the 

atmosphere, 

 
atm f

d d

f
f

M


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
 (53) 

ensures that Eq. (52) has the same number of samples in the frequency spectrum as the 

transfer function of the telescope [16]. 
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Now that the proper sampling, ,  ,  and atm a d    have been determined for the 

model, and the average transfer function for the atmosphere has been developed, the final 

step in obtaining the total impulse response from Eq. (46) is to develop the transfer 

function of the telescope.  The transfer function of the telescope is the Fourier transform 

of the PSF, or the impulse response of the telescope.  This is determined by propagating 

the field at the aperture due to a point source, through the optics of PS1.  First a circular 

array that represents the aperture must be created.  The field at the aperture can be 

modeled as a uniform plane wave.  This is an appropriate approximation to a spherical 

wave (point source) propagated from a long distance [26].  If the field at the aperture is a 

uniform plane wave, then the aperture may be modeled as a binary screen, 1 inside the 

aperture and 0 outside.  The lens phase screen, Eq. (50), is then multiplied to the field at 

the aperture to create the field  ,l m nf x y , which is then propagated to the detector plane, 

located in the focal plane of the telescope system.  The Rayleigh-Sommerfeld diffraction 

integral, propagates the field  ,l m nf x y  a distance f , and the resulting field at the 

detector,  , ,df u v t  is 

  
 
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2
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





  

 

 , (54) 

in which 2R  is the distance between every pixel in the aperture plane and every pixel in 

the detector plane: 

      
2 2 2

2 , , ,m n m a d n a dR x y u v x u y v f          (55) 



48 

The squared magnitude of Eq. (54) is the PSF of the telescope, so [26] 

     2
, , ,opt X Y d d dG f f F f u v t   . (56) 

Now Eq. (46) is used to find the total impulse response of the system which completely 

characterizes the system for an arbitrary input.  The output image due to the incidence of 

any input can be modeled as the convolution of the input with the impulse response [26]. 

3.8 Measured Data 

 Hardware with the capabilities of PS1 is not available to test the proposed 

hypothesis on actual image data; instead a relative test environment is developed to test 

the difference in the performance of the two LRT algorithms.  Having a smaller telescope 

that is not capable to detecting NEOs, a brighter object is used and the integration time of 

the telescope will be adjusted to make the object difficult to detect.  Polaris is chosen 

because its relative fixed location in the sky provides time to collect a large number of 

images without having to readjust the hardware or to register the images.  Also, using a 

bright object that is detectable with the naked eye provides a known truth for hypothesis 

testing.  Reducing the integration time of the CCD device on the telescope reduces the 

detectability of even a bright object.  The integration time will be set to such a level that 

detection is difficult and a statistically significant number of images will be collected, 

ideally a minimum of one thousand images.  These images will be averaged together to 

verify that Polaris is detected in the averaged data.  Each image will be fed into each 

algorithm and ROC curves will be generated and compared as was done in simulations.  
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Background noise images from a location in the image that does not have an object will 

be used as the image data for 0H .   

The CCD in the telescope has a gain factor that converts the photon count to a 

digital count that is not Poisson.  To properly implement the proposed algorithm, the 

digital counts must be converted back into photon counts.  For this conversion, the gain 

factor of the CCD is required.  Consider the following. 

 d I  

where  

 d  is the digital count data, 
   is the CCD gain factor, and 
 I  is the Poisson distributed photon count. 

 

The expected value of the digital count is 

    E d E I , (57) 

and the variance of the digital count is 

     2 2 2Var d E I E I      

    2 2( )Var d Var I E I   . (58) 

The ratio of (58) to (57) results in an expression for the gain factor, 

 
 

 

Var d

E d
 . 
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Both the variance and the expected value of the digital count data can be adequately 

estimated with a reasonable number of sample images.  Converting the digital count back 

into photon count will, however induce some quantization noise [24]. 

3.9 Summary 

 This chapter described the theory supporting the basis for the Poisson-based LRT, 

as well as the methodology for comparing the performance of the Poisson-based LRT to 

the performance of the Gaussian-based LRT.  The methodology addresses the 

comparison of the two algorithms in three ways.  First, analysis is performed on the 

expected SNR of each LRT.  The LRT which has a larger SNR should be indicative of 

the better performing algorithm.  Secondly, Monte Carlo simulations are performed based 

on complex models of hardware and environmental characteristics, in which the two 

algorithms are compared in several different scenarios.  Lastly, measured data is taken in 

a relative test environment and the performance of each algorithm with the measured data 

is compared using ROC curves.  The results of these methods are presented in the next 

chapter.  
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4 Analysis and Results 

4.1 Chapter Overview 

This chapter presents the results of the three approaches described in Chapter 3 to 

comparing the Gaussian-based LRT to the Poisson-based LRT.  The first of these results 

is a numerical analysis of the SNR of each algorithm based on either actual parameters or 

modeled parameters.  The second set of results is simulated data based on models of the 

hardware and environmental characteristics.  The third set of results is measured data 

taken in a relative test environment. 

4.2 Analytic Results 

The SNR analysis requires a model for the PSF, a model for the expected number 

of photons received from a NEO and a model for the master image.  The PSF was 

modeled with a seeing parameter of 8 cm as described in the previous chapter, and details 

of that model are discussed in the next section addressing simulated results.   The 

expected number of photons received by the detector of PS1 from a NEO of a desired 

diameter at a distance of 1.3 AU is calculated using Eq. (7) from Chapter 3.2.  The master 

image is generated by convolving point sources of a desired magnitude with the modeled 

PSF and adding the average background photons.   

The upper and lower bound on the SNR from Eq. (40) and Eq. (45) were 

calculated using modeled inputs for various master images and varied NEO sizes.  The 

following graphs are a demonstrative subset of the results for the varied parameters.  

They display the SNR versus the apparent magnitude of a background star for different 

angular separations between the modeled NEO and star.  In Figure 7 the modeled 
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Figure 7.  SNR of 140 m NEO vs. Star Mag; 

28.2 arc-sec Angular Separation 

 

Figure 8.  SNR of 140 m NEO vs. Star Mag; 

14.1 arc-sec Angular Separation

 

Figure 9.  SNR of 400 m NEO vs. Star Mag; 

28.2 arc-sec Angular Separation 

 

Figure 10.  SNR of 400 m NEO vs. Star Mag; 0 

arc-sec Angular Separation 

NEO is 140 meters in diameter, and the angular separation between the star and the NEO 

is approximately 28.21 arc-seconds.  The star’s apparent magnitude was varied from 0 to 

25.  Figure 8 shows a similar set-up where the only change is the angular separation to 

around 14.11 arc-seconds.  Figure 9 increases the size of the NEO to 400 meters in 

diameter, at an angular separation of 28.21 arc-seconds.  Since the SNR for such a large 

NEO is so large when far enough away from a nearby star, Figure 10 shows the predicted 

SNR when the 400 meter diameter NEO is in the same pixel as a background star, or an 
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angular separation of zero arc-seconds.  These results predict that in a flat, dim 

background the two LRTs should perform equally as well, but the proposed Poisson-

based LRT should outperform the Gaussian-based LRT when there is a bright object 

nearby and the background is not flat.  Chapter 3.5 established that using the GLRT could 

not be analyzed using SNR calculations.  The next section will verify the results 

predicted with the SNR analysis as well as investigate the performance of the GLRT 

through simulations.  

4.3 Simulation Results 

The simulated PSF for each of the four wavelengths used to represent Pan-Starrs’ 

wideband filter is shown in Figure 11.  The wavelength dependent PSFs were simulated 

using a 0r  of 8 cm.  These PSFs were used to simulate images for testing the performance 

of each algorithm.  Simulated images were created by convolving the four PSFs with the 

object, adding the four resulting images together, and adding Poisson random noise. Both 

the Gaussian and the Poisson LRT require the use of the PSF, for this parameter the   

 

Figure 11.  Impulse Response for (a) 500 nm, (b) 600 

nm, (c) 700nm, and (d) 800 nm wavelengths 

(a) (b)

(c) (d)
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average of the four wavelength-dependent PSFs is used.  In all Monte Carlo simulations, 

the NEO was modeled at a distance of 1.3 AUs 

Figure 12 shows the ROC curves generated with a Magnitude 20 star, 28.21 arc-

seconds away from a 140 meter NEO.  These simulated ROC curves support the 

analytically predicted performance of the two LRTs with a dim star in the background, 

where they both perform equally as well.  Also in Figure 12 is verification that for dim 

background stars, the performance of the Poisson-based GLRT where the unknown 

 

Figure 12.  ROC Curve; Magnitude 20 Star 

 

Figure 13.  ROC Curve; Magnitude 10 Star

 

Figure 14.  ROC Curve; Magnitude 0 star 
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parameter 
NK  is estimated is nearly equivalent to the other two LRTs.  If the apparent 

magnitude of the star in the background is decreased, making it brighter, the performance 

of the Gaussian-based LRT should degrade, according to analytical results.  Also, the 

performance of the Poisson-based GLRT should degrade due to the increased variance 

from the maximum likelihood estimate as discussed in Chapter 3.5.  Figure 13 and Figure 

14 demonstrate this phenomenon with the simulated ROC curves for the same NEO at the 

same angular separation, but with a Magnitude 10 and Magnitude 0 star, respectively.   

Figure 15 is a plot of the detection probability versus the apparent magnitude of 

the NEO.  The NEO magnitude was varied from 21.79 (400 m diameter) to 24.8 (100 m 

diameter), the false alarm rate was set to 1x10-4, and the detection probability was 

calculated using 1000 simulated realizations of images with Poisson noise.  There was no 

star simulated in the scene, only background radiation.  Figure 15 shows there is nearly a 

doubling in the detection probability for a magnitude 24 NEO, from 0.291 to 0.589. 

 

Figure 15. Detection Probability vs. NEO Magnitude 
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Figure 16. Detection Probability vs. NEO-Star magnitude difference 

Figure 16 is a plot of the detection probability versus the difference in magnitude 

between the simulated NEO and the simulated star at an angular distance of 28.21.  The 

magnitude of the NEO was held constant at 24, while the magnitude of the star was 

varied from 0 to 25.  Note that a difference of 5 in apparent magnitude equates to a 

difference in relative brightness of a factor of 100.  Figure 16 shows that the detection 

probability is marginally improved by the proposed algorithm when the magnitude of the 

star is less than 100 times as bright as the NEO.  When the magnitude of the star is 

between 100 times and roughly 25,000 times as bright as the NEO, the detection 

probability is approximately doubled by the proposed algorithm.  When the magnitude of 

the star is greater than roughly 25,000 times as bright as the NEO, the improvement in 

detection probability by the proposed algorithm is over a factor of 4.  A star that is 25,000 

times as bright as a NEO may sound like an unlikely encounter, but this is only a 

difference in magnitude of 11, and in this example the star’s magnitude is 14.  There are 

15.5 million stars as bright as or brighter than a magnitude 14.    
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Figure 17.  Detection Probability vs. Angular Separation 

The final simulated environment varied the angular separation of a 200 meter 

diameter NEO and a magnitude 15 star from 0 to 28.21 arc-seconds.  Again, the detection 

threshold in this simulation was set to provide a false alarm rate of 41 10 .  Figure 17 is 

a plot of detection probability versus angular separation and shows that a NEO of this 

size can be detected with a probability greater than 0.9 approximately 3 arc-seconds 

closer to a magnitude 15 star with the proposed Poisson-based algorithm than with the 

current Gaussian-based algorithm. 

4.4 Measured Data Results 
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Figure 18.  Sample image of Polaris with short 

exposure 

 

Figure 19.  Average Image of Polaris 

well as by its stationary location relative to the rotation of the Earth.  Once Polaris was 

lined up, 347 images were taken at a 1 second exposure time.  These long exposures were 

used to estimate the average PSF of the telescope and CCD.  The integration time of the 

CCD was then reduced to 10 s , the point at which Polaris was difficult to detect, and 

253 images were taken before hardware malfunctions prevented further data collection 

for this test.  The gain factor was calculated by subtracting the average background noise 

from each image and creating an average “super-pixel” around the location of Polaris in 

the image.  The mean and variance of this super-pixel was then used to calculate the 

estimated gain factor of 0.7103, indicating that this particular CCD is not operating in 

avalanche mode, and it takes more than one photon to produce an electron.  This gain 

factor was removed from the data.  Figure 18 shows a sample image taken with the 

integration time of the CCD set to 10 s .  Figure 19 shows the average of the 253 images 

taken at that exposure time, and indicates the presence of Polaris.   
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Figure 20.  ROC Curve for Polaris Short Exposure Images 

Figure 20 shows the ROC curve developed by using the 10 s exposure images in 

the two algorithms.  As with the simulated data, the test data depicts an increase in 

performance by using the proposed algorithm.  The detection probability with the 

Poisson-based LRT at the smallest measureable false alarm rate is 0.5785, while the 

detection probability with the Gaussian-based LRT for the same false alarm rate is 

0.0807.  Based on this limited sample set, the increase in detection probability for very 

small false alarm rates is by a factor of seven. 
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this was Polaris.  A series of 46 images at 1 second exposure time and 1179 images at 10 

s  exposure times were taken.  Once the data was processed, there was doubt that this 

star was Polaris because there was some steady movement of the star.  This required that 

the images be registered before they could be.  Another issue discovered after post-

processing the data, was that the long exposure images saturated the CCD, this means 

that these 46 images were not the shape of the PSF.  Instead the cross-section of the 

intensity of these images resembled what is commonly referred to as a “Top-Hat” 

function where the top portion of the image intensity data was cut off.  These images 

were used to estimate the PSF by creating a simulated PSF that had the same shape and 

width as the base of the average of these 46 images.  In a similar manner as with the first 

set of data, the estimated gain factor was found to be 1.1932, indicating that this CCD is 

operating in avalanche mode and more than one electron is produced for every photon.  

This gain factor was removed from the data.  Figure 21 shows a sample image taken with 

the integration time of the CCD set to 10 s .  Figure 22 shows the average of the 1179 

images taken at that exposure time, and indicates the presence of the star.   

 

Figure 21.  Sample Image of Star with Short 

Exposure 

 

Figure 22.  Average Image of Star
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Figure 23.  ROC Curve of Second Data Set 

Figure 23 shows the ROC curve developed by using the 10 s exposure images 

with the Poisson LRT, the Poisson GLRT, and the Gaussian LRT.  The improvement is 

not as significant as with the first set of data and there are several possible contributing 
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of Pan-Starrs predicted the performance of the LRTs and the GLRT should be 

approximately the same given that Polaris was the only thing in the image.  The detection 

probability with the Poisson LRT at the smallest measureable false alarm rate is 0.9101, 

while the detection probability with the Gaussian LRT for the same false alarm rate is 
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indicate the resilience of the proposed Poisson-based LRT to other sources of noise not 

accounted for in simulations and SNR analysis.  One such source of noise is scintillation 

in which the PSF fluctuates over time.  The 10 s  integration time for the measured data 

would see a larger fluctuation in the shape of the PSF than the 30 seconds modeled for 

Pan-Starrs simulations, the PSF of which would more closely resemble the average PSF.  

Further research is required to definitively characterize the realized improvement in this 

data set versus the expected performance based on simulations and analysis.  

4.5 Summary 

This chapter presented the numerical and graphical results of the analysis, 

simulation, and measurement of the performance of the proposed algorithm in 

comparison with the existing matched filter, or Gaussian-based algorithm.  The results in 

all cases studied demonstrate an improved performance by the proposed algorithm over 

the matched filter. 
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5 Conclusions and Recommendations 

5.1 Chapter Overview 

This chapter presents conclusions and recommendations derived from performing 

this research effort.  The chapter begins by summarizing conclusions drawn from the 

results presented in Chapter 4.  Next, the significance and impact of the inferred 

conclusions are projected.  Finally, recommendations are made for immediate action and 

for future work.  

5.2 Conclusions of Research 

The Poisson-based LRT algorithm proposed by this research produced increases 

in probability of detection as high as a factor of seven over the existing algorithm for 

measured data.  In all simulated conditions explored, the proposed algorithm performed 

as well as the current matched filter algorithm.  In certain simulated conditions such as a 

dim NEO near a bright star, the detection rate for small false alarm rates was more than a 

factor of four.   Little has changed in the past few decades with regard to the basic image 

signal processing theory used in the detection of dim astronomical objects.  The optical 

systems have increasingly become more capable and functional, but how the data 

received from the optical systems are processed remains fundamentally the same, with 

the exception of the Pan-Starrs program and the projected LSST program.   

5.3 Significance of Research 

The significance of this research is potentially very important to the astronomical 

community.  The research demonstrated improvement in binary detection applications 

through theoretical analysis, simulated hardware used in NEO detection, and with real 
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images taken with two different cameras on a much smaller telescope than would feasibly 

be used for NEO detection.  This leads to the conclusion that the proposed algorithm has 

utility across all applications of detecting the presence of any dim astronomical object 

using terrestrial-based optical systems.  Potential significance of the research ranges from 

an increased capability of tracking debris in orbit, to detecting a previously undetectable 

asteroid or comet on a collision course with Earth early enough to establish an effective 

plan of action to save millions of lives. 

5.4 Recommendations for Action and Future Research 

The research conducted here was unfunded; however, based on preliminary 

results prior to the completion of this research, interest from one particular survey 

program was expressed in the potential impacts of this research.  There are a few 

challenges remaining before the proposed algorithm is easily incorporated to existing 

hardware.  A thorough study of calibration issues, hardware specific parameters, and any 

other engineering challenges in order to optimize the algorithm is required.  A method is 

needed that determines the threshold of detection, which varies from one location in the 

sky to another due to the background image, and is also hardware specific.  Once these 

challenges are overcome, the research should be extended to measure the actual gain 

realized on more sophisticated astronomical imaging equipment.      

5.5 Summary 

In the final chapter, conclusions drawn from the research conducted are presented.  

Potential significance of the results reported is forecasted and recommendations for 

actions based on this research as well as future research to be conducted are presented. 
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Appendix 

A1.  Simulation MatLab Code 

%Capt Curtis Peterson MatLab M-Code 
%Pan-Starrs model and Simulations 
  
%% Adjustable Parameters 
Target_radius = 70;     % NEO radius in meters 
trials = 1000;          % number of trials for Monte Carlo Simulations 
rho_t = .03;             % Target reflectivity 
r_0 = 0.08;              % atmospheric seeing parameter in meters 
Star_Mag = 10;          % Apparent Magnitude (AM) in AB system of nearby star 
NEO_position = [15 15];     % Pixel location (x,y) of the NEO 
star_position = [85 85];     % Pixel location (x,y) of nearby star 
master_images = 100;     %number of images to average for the master image 
run_ps1_psf = 0;        % 1 == run code to develop psf of ps1 (very time  
                        % consuming), 0 == skip this section of code (if you 
                         % have previously run it and saved the psf.mat) 
estimate_K_N = 1;       % 1 == run code to estimate the K_N parameter in the  
                         % Poisson LRT, 0 == set K_N equal to 1. 
%% Fixed Parameters 
M_a = 5123;               % number of samples in aperture 
M_d = 100;                % number of samples (pixels) in the simulated detector 
D = 1.8;                   % diameter of the mirror (aperture) in meters 
f = 8;                     % focal length of the system in meters 
dx = D/M_a;               % sample size in the aperture in meters 
dy = dx; 
dxx = 10e-6;              % sample size in the detector in meters 
dyy = dxx; 
AU = 1.495978707e11;      % 1 AU in meters 
Target_Range = 1.3*AU;    % range to target in meters (definition of NEO)  
h = 6.626e-34;            % Planck's constant 
delta_lam = .1;           % Bandwidth of receiver in units of micrometers 
delta_t = 30;             % exposure time of PS1 in seconds 
K_B = 7;                   % average background photo-electrons per pixel 
r1 = M_a/2; 
r2 = 0; 
total_imp_resp = zeros(M_d,M_d,4);  % allocate space for impulse response 
ps1_psf = total_imp_resp;     % allocate space for psf 
K_N = zeros(1,4);              % allocate space for expected number of  
                                % photo-electrons received from NEO 
vega = [5.53215e11 5.1066e11 4.72506e11 4.38756e11]; %photons received by  
                                                      %1.8 m aperture from 
                                                      %Vega per wavelength 
K_S = vega/(2.512^Star_Mag);  %photo-electrons received from nearby star per  
                               %wavelength 
angluar_separation = norm(star_position-NEO_position)*0.285; %star to NEO  
                                                   %separation in arc-seconds 
for wavelength = 1:4; 
%% Create Impulse Response 
        % select the wavelength dependent parameters 
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            if wavelength == 1 
                lam = 0.5e-6;            %wavelength in meters 
                S_irr = 2e3;             %solar spectral irradiance (W/m/um) 
                tau_opt = 0.67;          %optical transmittance of ps1 
                tau_atm = .98;           %atmospheric optical transmittance 
            elseif wavelength == 2 
                lam = 0.6e-6; 
                S_irr = 1.8e3; 
                tau_opt = 0.85; 
                tau_atm = .99; 
            elseif wavelength == 3 
                lam = 0.7e-6; 
                S_irr = 1.4e3; 
                tau_opt = 0.99; 
                tau_atm = .9; 
            else lam = 0.8e-6; 
                 S_irr = 1e3; 
                 tau_opt = 0.95; 
                 tau_atm = .9; 
            end 
  
    if run_ps1_psf==1 
        %create M_a by M_a aperture array with a circular binary screen equal to the 
        %size of the mirror 
        mi = floor(r1) + 1; 
        aperture_array = zeros(M_a,M_a); 
            for ii = 1:M_a          
                for jj = 1:M_a 
                    dist = sqrt((ii-mi)^2+(jj-mi)^2); 
                    if(dist <= r1) 
                        if(dist >= r2) 
                             aperture_array(ii,jj)=1; 
                        end 
                    end 
                end 
            end 
        x = dx*(-floor(r1):floor(r1)); 
        xx_mat = ones(M_a,1)*x; %create matrices for vectorizing the  

%lens phase and field propagation  
%math in the next two steps  

        yy_mat = x'*ones(1,M_a); 
        %Treat the telescope as a single thin lens with focal length f and  
        %apply the lens phase to the aperture 
        lens_phase = -pi*(xx_mat.^2 + yy_mat.^2)/(f*lam); 
        source_array = aperture_array.*exp(1j.*lens_phase);  
        %Propagate the aperture field to the receiver array using the  
        %Rayleigh-Sommerfeld diffraction integral 
        receiver_array = zeros(M_d,M_d); 
            for xx = 1:M_d            
                xxc = (xx - ceil(M_d/2))*dxx; 
                for yy = 1:M_d 
                    yyc = (yy - ceil(M_d/2))*dyy; 
                    R = (f^2 + (xx_mat-xxc).^2 + (yy_mat-yyc).^2).^(0.5); 
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                    receiver_array(yy,xx) = sum(sum(dx*dy*source_array.*... 
                        exp(2*pi*1j.*R./lam)))./(lam*1j*f);  
                end 
            end 
        %find the point spread function  of PS1, which is normalized 
        ps1_psf(:,:,wavelength) = abs(receiver_array).^2; 
        ps1_psf(:,:,wavelength) = ps1_psf(:,:,wavelength)/... 
                                    sum(sum(ps1_psf(:,:,wavelength))); 
    end 
     % Find the average atmospheric transfer function for a long exposure  
     % and multiply it by the transfer function of PS1 in order to get the 
     % total transfer function.  Take the inverse Fourier transform of the  
     % total transfer function in order to find the total impulse response 
    dx_otf = lam*f/(M_d*dxx); 
    avg_otf = zeros(M_d,M_d);   
    mii = floor(M_d/2)+1; 
    for i = 1:M_d 
        for j = 1:M_d 
            dist = sqrt((i-mii)^2+(j-mii)^2); 
            if(dist<=2*(D/2)/dx_otf) 
                avg_otf(i,j)=exp(-3.44*((dist/(r_0/(dx_otf)))^(5/3))); 
            end 
        end 
    end 
    tot_otf = fftshift(avg_otf).*(fft2(fftshift(ps1_psf(:,:,wavelength)))); 
    total_imp_resp(:,:,wavelength) = abs(ifftshift(ifft2(tot_otf))); 
  
%% Calculate Expected number of photons from NEO for each wavelength 
    v = 3e8/lam;     %frequency 
    %dA is the smallest of the IFOV and the area of the target 
    IFOV = (dxx/f*Target_Range)^2; 
    A_B = Target_radius^2*pi; 
    if IFOV < A_B 
        dA = IFOV; 
    else 
        dA = A_B; 
    end 
  
    K_N(wavelength) = S_irr*delta_lam*dA*rho_t*tau_atm*tau_opt*D^2*... 
                delta_t/(4*Target_Range^2*h*v); 
end 
%% SNR Calculations 
%the following variables and expressions occur in the SNR calculations 
psf_avg = mean(total_imp_resp,3);   % average, non-wavelength dependent psf 
R_h = max(max(xcorr2(psf_avg)));    % zero lag auto correlation of psf 
KN = sum(K_N);      %total expected photo-electrons from NEO 
IM_h2 = sum(sum(I_M.*(circshift(psf_avg,NEO_position-50).^2)));      
h2_IM = sum(sum((circshift(psf_avg,NEO_position-50).^2)./I_M));      
KN_h3 = sum(sum(KN*psf_avg.^3));      
h3_IM = sum(sum((KN*circshift(psf_avg,NEO_position-50).^3)./(I_M.^2)));      
Var_Gaus_H1 = KN_h3 + IM_h2; 
Var_Gaus_H0 = IM_h2; 
Var_Pois_H1 = h3_IM + h2_IM; 
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Var_Pois_H0 = h2_IM; 
SNR_Gaus_upper(NEOsize,starsize) = (KN*R_h)/sqrt(Var_Gaus_H0); 
SNR_Gaus_lower(NEOsize,starsize) = (KN*R_h)/sqrt(Var_Gaus_H1);  
SNR_Pois_upper(NEOsize,starsize) = (KN*h2_IM)/sqrt(Var_Pois_H0); 
SNR_Pois_lower(NEOsize,starsize) = (KN*h2_IM)/sqrt(Var_Pois_H1); 
 

%% Find Probabilities of detection and Probabilities of false alarm for the  
%given NEO Magnitude, Star Magnitude, Angular Separation 
NEO_mag = log(sum(vega)/sum(K_N))/log(2.512); %Apparent Magnitude of NEO 
NEO = zeros(M_d,M_d,4); 
NEO(NEO_position(1),NEO_position(2),:) = K_N; 
  
%conv2 is used below to create the image of the NEO (similarly to create the  
%image of the star) though the PS1 optics as opposed to using fft2 due to the  
%periodicity of the fft2 function which caused edge effects and inaccurate  
%results when either the star or the NEO was placed close to the edge of the  
%simulated image 
NEO_image = conv2(NEO(:,:,1),total_imp_resp(:,:,1),'same') + ... 
    conv2(NEO(:,:,2),total_imp_resp(:,:,2),'same') + ... 
    conv2(NEO(:,:,3),total_imp_resp(:,:,3),'same') + ... 
    conv2(NEO(:,:,4),total_imp_resp(:,:,4),'same'); 
  
[col row] = find(NEO_image==max(max(NEO_image))); 
 
if estimate_K_N == 0; 
    eta_pois = 0:1e-4:3; %Poisson LRT range of thresholds 
elseif estimate_K_N == 1; 
    eta_pois = [0:.001:10 10:.1:100 100:1000 1e3:10:1e4 1e4:1e2:1e5 ... 
        1e5:1e3:1e6 1e6:1e4:1e7]; 
end 
 
 eta_gaus = -100+200/length(eta_pois):... 
                200/length(eta_pois):100; %Gaussian LRT range of thresholds  
det_pois = zeros(length(eta_pois),trials); 
fa_pois = det_pois; 
fa_gaus = det_pois; 
det_gaus = det_pois; 
  
star = zeros(size(total_imp_resp));  
star(star_position(1),star_position(2),:) = K_S;  
  
star_image = conv2(star(:,:,1),total_imp_resp(:,:,1),'same') + ... 
    conv2(star(:,:,2),total_imp_resp(:,:,2),'same') + ... 
    conv2(star(:,:,3),total_imp_resp(:,:,3),'same') + ... 
    conv2(star(:,:,4),total_imp_resp(:,:,4),'same'); 
I_M = (star_image + K_B); 
 
  
%the variable fx below is a fixed value for all trials and is placed outside of the for loop  
%of trials below in order to reduce run time 
fx= circshift(psf_avg,[col-50 row-50])./I_M; 
  
for trial = 1:trials; 
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    d_0 = poissrnd(I_M);         % noisy image data with H0 
    d_1 = poissrnd(I_M + NEO_image);      %noisy image data with H1 
    if estimate_K_N == 1; 
        K_N_hat_H0 = sum(sum((d_0-I_M).*((d_0-I_M)>0))); 
        K_N_hat_H1 = sum(sum((d_1-I_M).*((d_1-I_M)>0))); 
    elseif estimate_K_N == 0; 
        K_N_hat_H0 = 1; 
        K_N_hat_H1 = 1; 
    end 
     
%calculate the Poisson LRT values for both hypotheses 
            Poisson_LRT_H1 = sum(sum((d_1/ K_N_hat_H1) .* log(1 + K_N_hat_H1*fx))); 
            Poisson_LRT_H0 = sum(sum((d_0 / K_N_hat_H0).* log(1 + K_N_hat_H0*fx))); 
%calculate the Gaussian LRT values for both hypotheses 
    Gaussian_LRT_H0 = conv2(d_0-I_M,psf_avg,'same'); 
    Gaussian_LRT_H0 = Gaussian_LRT_H0(col-1,row-1); 
 

    Gaussian_LRT_H1 = conv2(d_1-I_M,psf_avg,'same'); 
    Gaussian_LRT_H1 = Gaussian_LRT_H1(col-1,row-1); 
 %determine false alarms and detections for the range of thresholds 
    for k = 1:length(eta_pois) 
        fa_gaus(k,trial) = Gaussian_LRT_H0 >= eta_gaus(k); 
        det_gaus(k,trial) = Gaussian_LRT_H1 >= eta_gaus(k); 
        fa_pois(k,trial) = Poisson_LRT_H0 >= eta_pois(k); 
        det_pois(k,trial) = Poisson_LRT_H1 >= eta_pois(k); 
    end 
end 
%Calculate the Probabilities of False Alarm and Detection for the given 
%number of trials 
Pd_Pois = sum(det_pois,2)/trials; 
Pd_Gaus = sum(det_gaus,2)/trials; 
Pfa_Pois = sum(fa_pois,2)/trials; 
Pfa_Gaus = sum(fa_gaus,2)/trials;  
exit 
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A2.  Measured Data MatLab Code 

%Capt Curtis Peterson 
%Thesis Measured Data MatLab M-code 
%Compare Poisson Based LRT to Gaussian Based LRT with images of Polaris 
%taken at a 10us exposure time. 
  
estimate_K_N = 1; %choose whether to estimate the value of K_N  

      %(1==estimate) 
 

%% Import .jpg image data (modify for other image formats) 
  
%Create NxMxdummy array "A" which is an array of registered and %resolved two dimensional 
intensity images of Polaris from a long %integration time. This will be used to estimate the PSF of the 
%telescope. 
psf_jpegs = dir(['<filename>','*.jpg']);  
[N,M,dummy]=size(imread(psf_jpegs(1).name)); 
psf_numfiles = length(psf_jpegs); 
A = zeros(N,M,psf_numfiles); 
  
for k = 1:psf_numfiles 
    I = imread(psf_jpegs(k).name); 
    I = mean(I,3); 
    A(:,:,k) = mat2gray(I); 
end 
  
%Create N1xM1xdummy1 array "images" which is an array of registered %unresolved two 
dimensional intensity images of Polaris from a short %integration time. This will be used as a noisy 
data image for LRT %detection 
images_jpegs = dir(['<filename>','*.jpg']);  
[N1,M1,dummy1]=size(imread(images_jpegs(1).name)); 
images_numfiles = length(images_jpegs); 
images = zeros(N,M,images_numfiles); 
  
for k = 1:images_numfiles 
    I1 = imread(images_jpegs(k).name); 
    images(:,:,k)=mean(I1,3); 
end 
 
%% Estimate the telescope PSF 
  
%find the max of the average PSF and shift it to the zero lag, or the 
%center of the image, then create a 40x40 image of the PSF less the average 
%background noise, and normalize it, this is the estimated PSF.  A 40x40 
%array is used because that is the size of the region of the image that 
%will be searched for an "object" (Polaris) from the noisy data images 
average_psf = mean(A,3); %the average resolved image of Polaris has the  
                         %general shape of the PSF 
m=max(max(average_psf)); 
[col,row]=find(average_psf==m); 
shiftR = N/2 - col + 1; 
shiftD = M/2 - row + 1; 
avg_noise = mean2(average_psf(:,1:row-100)); 
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psf_temp = circshift(average_psf,[shiftR,shiftD]); 
psf_test = psf_temp(N/2-20:N/2+19,M/2-20:M/2+19); 
psf_test = (psf_test - avg_noise).*((psf_test - avg_noise)>0); 
psf_test = psf_test/max(max(psf_test)); 
 
%find the location of Polaris in the noisy data set by averaging them 
%together and finding the peak.  A 40x40 region around the location of 
%Polaris will be used as the search region 
average_image = mean(images,3); 
m1=max(max(average_image)); 
[col1,row1]=find(average_image==m1); 
  
shift_a = col1 - 20:col1 + 19; 
shift_b = row1 - 20:row1 + 19; 
 
%% Calculate the CCD Gain factor 
  
% the gain factor is estimated as the average gain over the 40 pixels  
% of interest which is the mean over all the images of the average  
% value of the 40x40 pixels minus the mean background noise for the  
% same pixels divided by the variance of the same 
images1=mean(mean(images(shift_a,shift_b,:),1),2); 
for k = 1:images_numfiles 
    noise(k)=mean2(images(:,1:row1 - 100,k)); 
end 
images2(1,:) = images1(1,1,:); 
images2 = images2 - noise; 
Gain = mean(images2)./var(images2); 
images = images.*Gain; 
 
%% Calculate the Poisson and Gaussian LRTs for H1 and H0 
 
Poisson_LRT_H1 = zeros(length(shift_a),length(shift_b),size(images,3)); 
    Poisson_LRT_H0 = Poisson_LRT_H1; 
    Gaussian_LRT_H1 = zeros(1,size(images,3)); 
    Gaussian_LRT_H0 = Gaussian_LRT_H1; 
    Poisson_LRT_H1_Max = Gaussian_LRT_H1; 
    Poisson_LRT_H0_Max = Gaussian_LRT_H1; 
     
for im_num = 1:size(images,3) 
  
    d_1 = images(shift_a,shift_b,im_num); %data for H1 for image number  

%im_num 
    d_0 = images(shift_a + 150,shift_b - 150,im_num); %data for H0 for  

%image number im_num, using 
%background noise from some 
%offset from the location of %Polaris 

    I_M = mean2(d_0)*ones(size(d_0)); %the "master Image" is a constant  
                                      %equal to the average background 
                                      %noise 
    if estimate_K_N == 1; 
        K_N_hat_H0 = sum(sum((d_0-I_M).*((d_0-I_M)>0))); 
        K_N_hat_H1 = sum(sum((d_1-I_M).*((d_1-I_M)>0))); 
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    elseif estimate_K_N == 0; 
        K_N_hat_H0 = 1; 
        K_N_hat_H1 = 1; 
    end 
        for alpha = 1:length(shift_a); 
            for beta = 1:length(shift_b); 
                %shift the PSF through every pixel in the image,  

    %calculate the LRT and then find the max value of the  
    %LRT and compare it to a threshold 

                f = (circshift(psf_test,... 
                    [shift_a(alpha)-20 shift_b(beta)-20]))./I_M; 
                Poisson_LRT_H1(alpha,beta,im_num) = sum(sum((d_1/K_N_hat_H1).*... 
                                             log(1+K_N_hat_H1*f))); 
                 
                Poisson_LRT_H0(alpha,beta,im_num) = sum(sum((d_0/K_N_hat_H0).*... 
                                             log(1+K_N_hat_H0*f))); 
             end 
        end 
        %max Pois LRT value for H1 data: 
    Poisson_LRT_H1_Max(im_num) =max(max(Poisson_LRT_H1(:,:,im_num))); 
  
        %max Pois LRT value for H0 data, and estimating G: 
    Poisson_LRT_H0_Max(im_num) = max(max(Poisson_LRT_H0(:,:,im_num))); 
         
        %max Gaus LRT value for H1 data: 
    Gaussian_LRT_H1(im_num)=max(max(conv2((d_1-I_M),psf_test,'same'))); 
  
        %max Gaus LRT value for H0 data: 
    Gaussian_LRT_H0(im_num)=max(max(conv2((d_0-I_M),psf_test,'same'))); 
end 
eta_gaus = 0:.1:6000; %range of threshold for Gaussian LRT 
if estimate_K_N == 0; 
    eta_pois = 240:140/length(eta_gaus):380-140/length(eta_gaus);  

%Poisson LRT range of %thresholds 
elseif estimate_K_N == 1; 
    eta_pois = 1.2e5:3e5/length(eta_gaus):4.51e5-3e5/length(eta_gaus);  

%range of threshold for %Poisson LRT 
with K_N %estimated 

end 
  
%allocate space for probabilities of detection & false alarms for all %tests 
pd = zeros(1,length(eta_gaus)); 
pfa = pd; 
pd_g = pd; 
pfa_g = pd; 
%compare peak detection of the tests to a varying threshold to build a 
%ROC curve 
for k = 1:length(eta_gaus) 
 pd(k)=sum(Poisson_LRT_H1_Max>eta_pois(k))/length(Poisson_LRT_H1_Max); 
 pfa(k)=sum(Poisson_LRT_H0_Max>eta_pois(k))/length(Poisson_LRT_H0_Max); 
 pd_g(k) = sum(Gaussian_LRT_H1>eta_gaus(k))/length(Gaussian_LRT_H1); 
 pfa_g(k) = sum(Gaussian_LRT_H0>eta_gaus(k))/length(Gaussian_LRT_H0); 
end  



73 

Bibliography 

1. Congress, United States 109th. Public Law 109–155. s.l. : United States Government, 
2005. United States Legislation. 

2. National Aeronautics and Space Administration. Spaceguard Survey; Asteroid and 

Comet Impact Hazards. s.l. : United States Government, 1992. Survey. 

3. —. Near-Earth Object Survey and Deflection Analysis of Alternatives Report to 

Congress. 2007. 

4. —. Study to Determine the Feasibility of Extending the Search for Near-. 2003. 

5. —. NASA Budgets and Plans. NASA. [Online] [Cited: July 25, 2011.] 
http://www.nasa.gov/pdf/428154main_Planetary_Science.pdf. 

6. —. NEO Discovery Statistics. Near Earth Objects Program. [Online] [Cited: January 
5, 2012.] http://neo.jpl.nasa.gov/stats/. 

7. University of Arizona. SpaceWatch. [Online] [Cited: 08 09, 2011.] 
http://spacewatch.lpl.arizona.edu/index.html. 

8. Stokes, Grant H., Evans, Jenifer B. and Larson, Stephen M. Near-Earth Asteroid 

Search Programs. s.l. : University of Arizona Press and the Lunar and Planetary 
Institute. 

9. National Aeronautics and Space Administration. Near Earth Object Program. 
NASA. [Online] [Cited: 08 14, 2011.] http://neo.jpl.nasa.gov/programs/. 

10. LSST Corporation. Large Synoptic Survey Telescope. LSST REFERENCE 

DESIGN. [Online] 06 04, 2011. [Cited: 08 14, 2011.] 
http://www.lsst.org/files/docs/overviewV2.0.pdf. arXiv:0805.2366 Version 2.0.9. 

11. Pan-Starrs. [Online] 2005. [Cited: 03 02, 2011.] http://pan-
starrs.ifa.hawaii.edu/public/. 

12. Magnier, Eugene. PSPhot Sofware Design Description, The Pan-STARRS IPP 
Object Photometry Tool. University of Hawaii at Manoa. [Online] 2007. [Cited: 08 
14, 2011.] http://ipp0222.ifa.hawaii.edu/ippData/manuals/psphot.pdf. PSDC-430-021-
DR. 



74 

13. Gural, Peter S., Larsen, Jeffrey A. and Gleason, Arianna E. Matched Filter 
Processing for Asteroid Detection. The Astronomical Journal. 2005, Vol. 130, 4. 

14. Likelihood-Based Method for Detecting Faint Moving Objetcs. Miura, Noriaki, 

Itagaki, Kazuyuki and Baba, Naoshi. 3, s.l. : The Astronomical Journal, 2005, Vol. 
130. doi:10.1086/431955. 

15. O'Dell, Anthony. Detecting Near-Earth Objects Using Cross-Correlation With A 

Point Spread Function. Wright Patterson AFB, OH : Air Force Institute of 
Technology, 2009. AFIT/GE/ENG/09-30. 

16. Richmond, Richard D. and Cain, Stephen C. Direct-Detection LADAR Systems. 

Bellingham, Washington : SPIE, 2010. 978-0-8194-8072-9. 

17. Alliss, Randall J. and Felton, Billy D. Validation of Optical Turbulence Simulation 

from a Numerical Weather Prediction Model in Support of Adaptive Optics Design. 

Chantilly, VA : Northrop Grumman Information Systems/TASC. 

18. Goodman, Joseph W. Statistical Optics. New York : John Wiley & Sons, 1985. 0-
471-01502-4. 

19. Thomas, George B., Jr. and Finney, Ross L. Calculus and Analytic Geometry, 9th 

Edition. Reading, Massachusetts : Addison-Wesley Publishing Company, 1996. 0-
201-53174-7. 

20. Kay, Steven. Intuitive Probability and Random Processes Using MATLAB. New 
York : Springer Science+Business Media, Inc., 2006. 978-0-387-24157-9. 

21. Rohde, Robert A. Solar Radiation Spectrum. Global Warming Art, s.l. : s.n. 

22. Christopher W. Stubbs, Peter Doherty, Claire Cramer,Gautham Narayan, 

Yorke J. Brown. Precise Throughput Determination of the PanSTARRS Telescope 
and the Gigapixel Imager using a Calibrated Silicon Photodiode and a Tunable Laser: 
Initial Results. Cornell University Library. [Online] 03 17, 2010. [Cited: 03 02, 
2011.] http://arxiv.org/abs/1003.3465v1. 

23. Hecht, Eugene. Optics, 4th Edition. San Francisco : Pearson Education, Inc., 2002. 
0-8053-8566-5. 

24. Kay, Steven M. Fundamentals of Statistical Signal Processing-Volume 1 Estimation 

Theory. Castleton, NY : Prentice-Hall, Inc., 2010. 0-13-345711-7. 



75 

25. Hardy, John W. Adaptive optics for astronomical telescopes (page 92). s.l. : Oxford 
University Press, 1998. 9780195090192. 

26. Goodman, Joseph W. Introduction to Fourier Optics. Greenwood Village, CO : 
Roberts & Company Publishers, 2005. 0-9747077-2-4. 

 



 

REPORT DOCUMENTATION PAGE 
Form Approved 
OMB No. 074-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments 
regarding this burden estimate or any other aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, 
Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, 
VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty for failing to comply 
with a collection of information if it does not display a currently valid OMB control number.   

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

22-03-2012 
2. REPORT TYPE  

Master’s Thesis  

3. DATES COVERED (From – To) 

August 2010 – March 2012 

TITLE AND SUBTITLE 

Near Earth Object Detection Using A Poisson Statistical Model For 
Detection On Images Modeled From The Panoramic Survey Telescope & 
Rapid Response System 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 
 

5c.  PROGRAM ELEMENT NUMBER 

6.  AUTHOR(S) 
 

Peterson, Curtis J. R., Captain, USAF 
 

5d.  PROJECT NUMBER 
 

5e.  TASK NUMBER 

5f.  WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 

  Air Force Institute of Technology 
 Graduate School of Engineering and Management (AFIT/ENG) 
 2950 Hobson Way, Building 640 
 WPAFB OH 45433-8865 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 

     AFIT/GE/ENG/12-33 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 Air Force Research Laboratory Detachment 15 
    535 Lipoa Pkwy Ste 200 
    Kihei, HI  96753 
    (808) 891-7762 
    POC:  Mark Bolden;  mark.bolden@maui.afmc.af.mil 

10. SPONSOR/MONITOR’S 
ACRONYM(S) 
AFRL/RDSM 

11.  SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
     APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

13. SUPPLEMENTARY NOTES  

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United 
States. 
14. ABSTRACT:  

The purpose of this research effort is to develop, simulate, and test a new algorithm to detect Near Earth 
Objects (NEOs) using a Likelihood Ratio Test (LRT) based on a Poisson statistical model for the arrival of photons.  
One detection algorithm currently in use is based on a Gaussian approximation of the arrival of photons, and is 
compared to the proposed Poisson model.  The research includes three key components.  The first is a quantitative 
analysis of the performance of both algorithms.  The second is a system model for simulating detection statistics.  
The last component is a collection of measured data to apply comparatively to both algorithms.  

A Congressional mandate directs NASA and the DoD to catalogue 90% of all NEOs by the year 2020. [1]  
Results from this research effort could feasibly be applied directly to operations in the Pan-Starrs program to 
facilitate the accomplishment of the Congressional mandate.  Improvements in the size of detectable NEOs and in 
the probability of detecting larger NEOs would increase the state of readiness of the world for possible catastrophic 
impact events.  Improvements in detection probability of measured data were as high as a factor of seven, and the 
expected average improvement is around 10%. 

15. SUBJECT TERMS 

   NEO Detection; Astronomical Image Processing 

16. SECURITY CLASSIFICATION 
OF:  

17. LIMITATION 
OF  
     ABSTRACT 

 

UU 

18. 
NUMBER  
OF PAGES 
 

87 

19a.  NAME OF RESPONSIBLE PERSON 

Stephen Cain, PhD (ENG) 
a. 
REPORT 
 

U 

b. 
ABSTRACT 
 

U 

c. THIS 
PAGE 

 

U 

19b.  TELEPHONE NUMBER (Include area code) 

(937) 255-3636, ext 4716 
(Stephen.cain@afit.edu) 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 


	ZEqnNum622396
	ZEqnNum176373
	ZEqnNum400400
	ZEqnNum781176
	ZEqnNum710877
	ZEqnNum320739
	ZEqnNum187084
	ZEqnNum563739
	ZEqnNum535943
	ZEqnNum279540
	ZEqnNum405357
	ZEqnNum728030
	ZEqnNum669963
	ZEqnNum313543
	ZEqnNum212120
	ZEqnNum802978
	ZEqnNum588270
	ZEqnNum319086
	ZEqnNum252020
	ZEqnNum959196
	ZEqnNum296400
	ZEqnNum118337
	ZEqnNum440957
	ZEqnNum645230
	ZEqnNum380106
	ZEqnNum986840
	ZEqnNum962982
	ZEqnNum248861
	ZEqnNum870901
	ZEqnNum828686
	ZEqnNum898647
	ZEqnNum299614
	ZEqnNum351940
	ZEqnNum851086
	ZEqnNum310722
	ZEqnNum395844
	ZEqnNum390557
	ZEqnNum268358
	ZEqnNum445526
	ZEqnNum292073
	ZEqnNum595411
	ZEqnNum815206
	ZEqnNum514726



