Developing Signal Processing Blocks for
Software-defined Radios

by Gunjan Verma and Paul Yu

]
ARL-TR-5897 January 2012

Approved for public release; distribution unlimited.

NOTICES
Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or
approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1197

ARL-TR-5897 January 2012

Developing Signal Processing Blocks for
Software-defined Radios

Gunjan Verma and Paul Yu
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE oME NG Dot oes

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
January 2012 Final
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Developing Signal Processing Blocks for Software-defined Radios

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Gunjan Verma and Paul Yu

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
U.S. Army Research Laboratory REPORT NUMBER

ATTN: RDRL-CIN-T ARL-TR-5897

2800 Powder Mill Road

Adelphi, MD 20783-1197

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Software-defined radios (SDRs) provide researchers with a powerful and flexible wireless communications experimentation
platform. GNU Radio is the most popular open-source software toolkit for deploying SDRs, and is frequently used with the
Universal Software Radio Peripheral (USRP). After establishing a USRP testbed, the researcher will need to implement new
signal processing algorithms or modify existing ones. This document describes this process, highlighting those details that
have received minimal attention in the existing documentation.

15. SUBJECT TERMS

Software radios, CHU Radio, USRP Ubuntu

17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
16. SECURITY CLASSIFICATION OF: OF ABSTRACT OF PAGES Gunjan Verma
a. REPORT b. ABSTRACT c. THIS PAGE uu 44 19b. TELEPHONE NUMBER (Include area code)
Unclassified Unclassified Unclassified (301) 394-3102

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

il

Contents

1. Introduction 1
2. Implementation of Blocks 2
2.1 Naming Conventions 2
2.2 Data Types« e 2
2.2.1 Block Signatureso 3

2.2.2 Boost Pointers 4

2.3 Case Study: gr _block 4
2.3.1 Function: general _work() 6

2.3.2 Functions: forecast() and set_history() 7

2.3.3 Field: d_output_multiple 7

2.3.4 Field: d relative rate 8

3. Creation of SWIG Interfaces 8
3.1 Naming Conventions 8
3.1.1 Block Names 9

3.1.2 Boost Pointerso 9

3.2 SWIG Interface File 11

4. Installation of Blocks 12
4.1 Directory 12
4.2 Preparing Makefile.am for Autotools 13
4.3 Installation 14

il

5. Usage of Blocks

5.1 Imvoking from Python
5.2 Debugging

5.3 Simplifying the Build oo

6. Conclusion

A. The gr_block.h Script

B. The blockWizard.py Script

Distribution

iv

15

15

15

16

16

17

25

35

List of Tables

1 Arguments of general _work()

2 Contents of newBlock directory in GNU Radio

INTENTIONALLY LEFT BLANK

Vi

1. Introduction

Software-defined radios (SDRs) provide researchers with a powerful and flexible wireless
communications experimentation platform. GNU Radio is the most popular open-source
software toolkit for deploying. Every SDR is comprised of software and hardware. In this
document, we consider GNU Radio software coupled with Universal Software Radio
Peripheral (USRP) hardware. In GNU Radio, C++ blocks perform specific signal
processing processing tasks, while Python applications connect the blocks together to
form a functional software radio. For example, a basic transmitter can be implemented by
using Python to connect the following C++ blocks (which already exist in the GNU Radio
software library) together: modulator, mixer, and amplifier.

Each block specifies its input and output requirements, both in number and type. For
example, the gr_add_cc block adds two complex input streams and copies the results onto
one complex output stream. Blocks are generally implemented in C++ for computational
efficiency, but other possibilities exist (see below).

After writing a new block, a process is needed to expose these C++ blocks for use by
Python scripts. GNU Radio uses the Simplified Wrapper and Interface Generator (SWIG),
to generate the necessary components to make C+-+ blocks accessible from Python.

From the standpoint of Python applications, each block consumes its input stream(s),
performs a specific task, and generates output stream(s). As long as the connections
between blocks are compatible, there is no restriction to how many blocks can be chained
together. A single output stream can connect to multiple input streams, but multiple
outputs cannot connect to a single input due to ambiguity. A multiplexer can be used in
such a situation by interleaving many inputs onto a single output.

In summary, the stages of block creation in GNU Radio are the following:

1. Implementation of blocks (C++), the
(.h, .cc) files

2. Creation of SWIG interfaces between C++/Python, the
(.i) file

3. Installation of blocks into a shared library

4. Usage of blocks in an application (Python), the
(-py) file

In this report, we detail steps 1-4. This report is an updated and expanded presentation of
the material found in
http://www.gnu.org/software /gnuradio/doc/howto-write-a-block.html.

2. Implementation of Blocks

Before diving into block implementation, we first introduce the naming conventions of
GNU Radio in section 2.1. Section 2.2 introduces the most commonly used data types, and
section 2.3 steps through the essential elements of block creation by using the illustrative
example of gr_block.

2.1 Naming Conventions

There are several strongly followed conventions in GNU Radio, and a familiarity with these
expedites code writing and understanding.

e All words in identifiers are separated by an underscore, e.g., gr_vector_int.
e All types in the GNU Radio package are preceded by gr, e.g., gr_float.
e All class variables are preceded with d_, e.g., d_ min_streams.

e Each classes is implemented in a separate file, e.g., class gr_magic is implemented in
gr_magic.cc with the header file gr_magic.h.

e All signal processing blocks contain their input and output types in their suffixes,
e.g., gr_fft_vcc requires complex inputs and complex outputs. The major types are
float (f), complex (c), short (s), integer (7). Any type may be vectorized (v).

2.2 Data Types

GNU Radio type defines the most commonly used data types to a set of names. The main
purpose of this is to create a common set of conventions for naming of data types. The list
is as follows:

typedef std::complex<float> gr_complex;
typedef std::complex<double> gr_complexd;
typedef std::vector<int> gr_vector_int;
typedef std::vector<float> gr_vector_float;

0 O Ui Wi

NN N N DN o = e e e e e
W HR O OO0 Ok W~ O o

typedef std::vector<double> gr_vector_double;

typedef std::vector<void *> gr_vector_void_star;
typedef std::vector<const void *> gr_vector_const_void_star;
typedef short gr_intl6;

typedef int gr_int32;

typedef unsigned short gr_uintl6;

typedef unsigned int gr_uint32;

2.2.1 Block Signatures

A block signature is simply a specification of the data types that enter and exit a signal
processing block. In list 1, we can examine gr_io_signature.h for more detail.

Listing 1. gr_io_signature.h

class gr_io_signature {

int d_min_ streams;
int d_max_ streams;
std :: vector<int> d_sizeof_ stream_item;

gr_io_signature(int min_streams, int max_streams,
const std::vector<int> &sizeof stream_items);

friend gr_io_signature_ sptr
gr_make_ io_signaturev (int min_streams,
int max_ streams,
const std::vector<int> &sizeof stream_items);

public:
static const int IO_INFINITE = —1;
~gr_io_signature ();
int min_streams () const { return d_min_streams; }
int max_streams () const { return d_max_streams; }

int sizeof stream_item (int index) const;
std :: vector<int> sizeof_stream_items() const;

b

It is important to realize that our block has two signatures, one for the input interface and
one for the output interface. The header file makes it clear that, for a given interface,
gr_io_signature defines the minimum and maximum number of streams flowing through
that interface, as well as the number of bytes in a single element of the stream. Recall that
Python is used to connect multiple signal processing blocks together. The main purpose of
signatures is so Python can raise an error for improper connections.

The following are examples of improper connections:

e Too {many/few} {input/output} connections for a block

e Type mismatch, e.g., gr_complex output connected to gr_int16 input

2.2.2 Boost Pointers

GNU Radio uses Boost smart pointers instead of regular C++ pointers. Boost is a
high-quality software library with many extensions to the basic C++ language. For our
purposes, Boost provides a smart implementation of C++ pointers that offers garbage
collection, i.e., it deletes dynamically allocated objects when they are no longer needed.
This simplifies our implementation efforts and improves block performance. There are
actually many different types of smart pointers, but GNU radio uses just one of them,
called a shared_ptr, which is used specifically when our dynamically allocated object has
ownership shared by several pointers.

In order to declare a regular C++ pointer to an object of type gr_io_signature, we
would use the followig command:
gr _io_signaturex ptr;

Whereas with Boost, we would use this command:

typedef boost::shared ptr<gr_io_signature> gr_io_signature_sptr;
gr _io_signature_sptr ptr;

to declare a Boost shared pointer.

As shown in the above code, GNU Radio uses the convention of type defining Boost smart
pointers to an object of type X as X_sptr. This format makes it explicit to the user that
X_sptr is a Boost smart pointer.

2.3 Case Study: gr_ block

GNU Radio makes extensive use of the notion of “inheritance,” an object oriented (OO)
programming technique. For us, this simply means that every signal processing block is a
specialization of a general, high-level block, which GNU Radio calls gr_block. Our task is
to fill in the details of gr_block (referred to in OO-speak as “deriving from the base

4

70
71
72
73

229
230
231
232

82
105
106
122
123
124
125
157

class”) to create our own custom block. It is prudent to begin our study of writing a new
block by first examining gr_block.h.

The class gr_block is itself derived from the class gr_basic_block.h. We consider a few
of the fields that are of particular interest to programmer and discuss the fields inherited
from gr_basic_block.h and defined gr_block.h (lists 2 and 3). The entire gr_block.h
file is shown in appendix A.

Listing 2. gr basic_ block.h

std ::string d_name;
gr_io_signature_sptr d_input_signature;
gr_io_signature_sptr d_output_signature;
long d__unique_id;

Listing 3. gr_block.h

private:
int d_output__multiple;
double d_relative_rate; // approx output_rate /

input__rate

The fields d_name and d_unique_id are unique identifiers (text and numeral, respectively)
for the block and can be used for debugging. The d_output_multiple and
d_relative_rate fields inform the schedule of the block’s rate of data consumption and
generation (see sections 2.3.3 and 2.3.4).

Note that d_input_signature, d_output_signature, and d_detail are all Boost smart
pointers, the former pointing to gr_io_signature objects, the latter to a
gr_block_detail object. The comments above highlight the purpose of the various fields;
we explain in more detail in what follows.

As seen in list 4, gr_block has the following important functions.

Listing 4. gr block.h

void set__history (unsigned history) { d_history = history; }
virtual void forecast (int noutput_items ,
gr_vector_int &ninput_items_required);

virtual int general work (int noutput_items

gr_vector_int &ninput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items) = 0;
void consume (int which_input, int how_many items);

In the remainder of this section, we detail each of these functions. It is useful to think of
the process of writing a new block as a “two-way street” between our block and the GNU

Radio internals, collectively referred to herein as the scheduler. The scheduler gives us
data from the USRP, on which our block performs signal processing. In turn, our block
tells the scheduler how much processing we’ve done and how much more input we need to
produce more output, so the scheduler knows what data it no longer needs to store, how
much buffer memory to allocate, when to schedule our block to execute next, etc. This, in
turn, determines when the scheduler will invoke our block next and with how much input.

2.3.1 Function: general work()
The general work() function plays a central role in new block creation. It implements the

process of converting the input stream(s) to the output stream(s). Table 1 explains the
purpose of the arguments to this function.

Table 1. Arguments of general work().

Argument | Purpose |

noutput_items | Number of output items to write on each output stream
ninput_ items Number of input items available on each input stream
input__items Vector of pointers to elements of the input stream(s), i.e.,
element 7 of this vector points to the i*" input stream
output_items | Vector of pointers to elements of the output stream(s), i.e.,
element 7 of this vector points to the i*" output stream

Recall that we stated earlier that a signal processing block may have multiple input and/or
output streams. So, ninput_items is vector whose i*" element is the number of available
items on the i*" input stream. However, noutput_items is a scalar, not a vector, because
GNU Radio implementation forces the number of output items to write on each output
stream to be the same. The returned value of general work() is the number of items
actually written to each output stream, or -1 on end of file (EOF).

To create a block, we simply define how to create output_items from input_items,
assuming that all parameters are provided to us. That is, we implement the signal
processing algorithm in this method. The scheduler invokes the concrete
implementation of general work with the appropriate parameters. We do not have to
explicitly invoke general work; we only need to define it.

After we have defined general work for our custom signal processing block, we need to
invoke the consume () function to indicate to the scheduler how many items
(how_many_items) have been processed on each (which_input) input stream. Recall that
the scheduler is providing us all the appropriate parameters for us to write our own block;
we need to provide feedback to the scheduler so it knows which elements have been used,

so it can mark appropriate memory for deletion or reuse, and update pointers to point to
new data. This feedback of our signal processing progress is provided to the scheduler via
the consume function.

2.3.2 Functions: forecast() and set_ history()

The forecast () function is our way of telling the scheduler our estimate of the number of
input elements that will be needed to create an output element. For example, a decimating
filter of order 5 requires five inputs to produce one output. The key argument is
ninput_items_required, which is a vector specifying the number of input items required
on each input stream to produce noutput_items number of outputs on each output
stream. In some cases, like the decimating filter of specified order, we may know this
number exactly. In other cases, we may need to estimate it. When the scheduler
determines it is ready to handle noutput_items more items on the output streams, it
invokes the forecast function to determine whether or not we have enough input items to
call general work. For example, an interpolator will produce multiple outputs for a single
input, while a decimator will produce a single output for multiple inputs. If we have a
10-to-1 decimator but only 9 inputs are available, the scheduler will not call general work
if the forecast function is correctly implemented.

There is an important distinction to make here. Another common requirement, such as for
a moving average filter that averages the five most recent inputs to produce a single
output, is the need to process multiple input samples to yield a single output sample. It
may seem as if our forecast function should specify this. However, in this case, while the
moving average filter uses five inputs to produce one output, it does not require five new
inputs; it still only consumes a single new input to produce a single new output. So, our
forecast function, in this case, would still call for a one-to-one relation of noutput_items
to ninput_items_required. In this case, the fact that we need the five most recent inputs
would be specified to GNU Radio via the set_history(5) function call.

2.3.3 Field: d_ output_ multiple

By now, we have seen that the GNU Radio scheduler is responsible for invoking
general_work and forecast. The forecast () function allows us to signal to the
scheduler to invoke our general work function only when a sufficient number of input
elements are in the input buffer. But we have not seen any such mechanism to control the
number of outputs being produced. Recall the argument noutput_items in the forecast
function. It it specified by the scheduler and contains how many output items to produce
on each stream. While we cannot directly set this value (it is under the scheduler’s
control), there is a variable d_output_multiple that tells the scheduler that the value of

noutput_items must be an integer multiple of d_output_multiple. In other words, the
scheduler only invokes forecast () and general work() if noutput_items is an integer
multiple of d_output_multiple. The default value of d_output_multiple is 1. Suppose,
for instance, we are interested in generating output elements only in 64-element chunks. By
setting d_output_multiple to 64, we can achieve this, but note that we may also get any
multiple of 64, such as 128 or 192, instead.

The following functions allow us to set and get the value of d_output_multiple:

void gr_block::set_output_multiple (int multiple);
int output_multiple ();

2.3.4 Field: d_relative rate

Recall our description of block creation as involving a "two-way communication” with the
scheduler. The d_relative_rate field is the way we tell the scheduler the approximate
ratio of output rate to input rate at which we expect our signal processing algorithm to
operate. The key purpose of d_relative rate is to allow the scheduler to optimize its use
memory and timings of invocation of general work. For many blocks, d_relative_rate
is 1.0 (the default value), but decimators will have a value less than 1.0 and interpolators
greater than 1.0.

The functions used to set and get the value of d_relative_rate are given below:

void gr_block::set_relative_rate (double relative_rate);
double relative rate ();

3. Creation of SWIG Interfaces

In what follows, we strongly urge the reader to download the file
gr-howto-write-a-block-3.3.0.tar.gz from ftp.gnu.org/gnu/gnuradio/ and extract the
archive. This archive contains sample code related to creating a new block, which we refer
to.

3.1 Naming Conventions

Before getting into the details of block creation, let us start with a note about some
important naming conventions.

3.1.1 Block Names

After we create our new block, the only way we can use it in GNU Radio is to create a
Python script, which loads the package/module containing the block, and then connect our
block into a GNU Radio flowgraph, as usual. This would involve Python code resembling
the following:

from package name import module_name

nb = module name.block name()

There is a key coupling between the module and block names that we invoke in Python,
and the names used in coding blocks in C4++. Namely, GNU Radio expects that all C++
source and header files are in the form [module name| [block name].h and

[module name| [block name].cc. That is, if we decided to name our C++ class
newModule newBlock, then GNU Radio’s build system would make our block available
from Python in module “newModule” and with block name "newBlock” So while in theory
there is no need for such a coupling of naming schemes, in practice, such a coupling does
exist.

3.1.2 Boost Pointers

We have mentioned earlier that all pointers to GNU Radio block objects must use Boost
shared pointers not “regular” C++ pointers. In other words, if we create a new C++
signal processing block called “newModule newBlock”, then GNU radio’s internal
implementation will not work if we use a pointer to newBlock newFunction in our code.
In other words, the command

newModule newBlock* nb = new newModule newBlock()

is not permitted. This is enforced by making all block constructors private and ensures
that a regular C++ pointer can never point to a block object. But if the constructor is
private, how do we create new instance of our block? After all, we need some sort of public
interface for creating new block instances. The solution is to declare a “friend function,”
which acts as a surrogate constructor. This is achieved by first declaring a friend function
of the class, so it has access to all private members, including the private constructor. This
friend function invokes the private constructor and returns a smart pointer to it. Second,
we invoke this friend function every time we want to construct a new object.

Suppose the name of our new signal processing block is newModule newBlock_cc. Then,
we would create a file newModule_newBlock_cc.cc, in which we would include the
following function declaration:

typedef boost::shared_ptr<newModule_newBlock_cc> newModule_newBlock_cc_sptr;
friend newNodule_newBlock cc_sptr newModule make newBlock_cc()

Now, the function newModule _newBlock _make cc() has access to private members of the
class newModule_newBlock_cc. So from within this function, we call the private
constructor of newModule newBlock_cc, in order to create a new instance of our block.
The final step is to cast the returned pointer’s data type from a raw C++ pointer to a
smart pointer

newNodule newBlock cc_sptr newModule make newBlock_cc() () {
return newNodule newBlock cc_sptr (new newModule newBlock cc());

The private constructor (which we cannot invoke directly), on the other hand, would look
something like this.

newNodule newBlock cc () {
gr_block (‘‘newBlock_cc",
gr_make_io_signature (1, 1, sizeof (gr_complex)),
gr_make_io_signature (1, 1, sizeof (gr_complex))

)

So to summarize, the private constructor is actually creating a new gr_block object. The
“friend” constructor, the public interface to the private constructor, acts as a surrogate by
wrapping the new object created by the private constructor into a Boost shared pointer.
This convoluted procedure guarantees that all pointers to blocks are Boost smart pointers.
The public interface to creating objects is not the object constructor

newModule _newBlock_cc, but rather the “surrogate” constructor

newModule newBlock make cc.

Then, in our code, we must create a new block object using the code

10

0 O Uk Wi

newModule newBlock cc_sptr nb = newModule make newBlock cc()

Here is an important point: if one’s block name is newModule newBlock_cc, then the name
of the shared pointer to this block MUST be newModule newBlock_cc_sptr. Any other
choice, such as nb_nf_sptr, would lead to the block not working properly. This has
nothing to do with C++, since any valid name will work. Rather, when this C++ block is
invoked from Python in a GNU Radio program, GNU Radio expects the shared pointer
name to follow directly from the block name with an _sptr added on, or else it will
complain that it cannot find the block.

Also, the surrogate constructor that creates a shared pointer to newModule newBlock_cc
must have signature

newModule newBlock cc_sptr newModule make newBlock_cc()

Note the presence of the word “make” between the newModule and newBlock words. Thus,
consider the naming of shared pointers to block objects, as well as the friend functions
(surrogate constructors) that create them, not as a convention but as rule to be followed.

3.2 SWIG Interface File

Once we have created our .cc and .h files, the next step is to create the SWIG (.i) file, so
we can expose our new block to Python. SWIG is used to generate the necessary “glue,” as
it is often called, to allow Python and C++ to “stick” together in a complete GNU Radio
application. The purpose of the .i file is to tell SWIG how it should go about creating this
glue.

A .ifile is very similar to a .h file in C++ in that it declares various functions. However,
the .i file only declares the functions that we want to access from Python. As a result, the
1 file is typically quite short in length.

We illustrate an actual .i file in list 5, called gr_multiply const_ff.1i.

Listing 5. gr multiply_ const_ ff.i

Ve
x GR_SWIG_BLOCK_MAGICis a function which allows us to invoke our block
x gr_multiply const__ff from Python as gr.multiply const_cc()

x Its first argument, ’gr’, will become the package prefix.
x Its second argument 'multiply const_ff’ will become the object name.
*/

GR_SWIG_BLOCK MAGIC(gr , multiply__const_ ff)

11

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

/%
x gr_make_multiply _const_ff is the surrogate constructor
* i.e. the friend function of class gr__multiply_ const_ ff
«/

gr_multiply_const_ff sptr gr_ make multiply const_ff (float k);

class gr_multiply_const_ff : public gr_sync_block
{
private:

gr_multiply_const_ff (float k); // the "true', private constructor

public:
float k () const { return d_k; }
void set_k (float k) { d_k = k; }
};

There are some important aspects to note from the above choices of names. First, the fact
that we have invoked GR_SWIG_BLOCK_MAGIC with parameters “gr” and
“multiply_const_ff” has direct relevance to how we invoke the block from Python.
Practically, this means that in Python, when we seek to invoke our blocks, we would first
use the command

import gr

When we wish to instantiate our block, we would use the Python command

block = gr.multiply_const ff()

In summary, from within Python, gr is a package and multiply const_ff is a function
within this package. The way we have created the .i file specifies the particular names that
Python ascribes to the package (gr) and function (multiply_const_£f).

4. Installation of Blocks

4.1 Directory

The next step involves placing various files in the correct locations to ensure a successful
build. We assume that we have finished writing all the necessary files and now make our

12

new blocks accessible from Python. In this section, we outline the key steps needed to
build new signal processing applications in GNU radio.

A sample block is available from the GNU Radio online package archive [?], where each
block is version numbered as X.Y.Z to correspond to the analogous version of GNU Radio.
Download and unpack this block to a directory of your choice, e.g., “newBlock” The
directory structure and significance of each folder is explained in table 2.

Table 2. Contents of newBlock directory in GNU Radio.

| Directory | Contents |
/home/user /newBlock Top level Makefile, documentation
/home/user /newBlock/config | Files for GNU Autotools
/home/user /newBlock/src Top level folder for C++ and Python files
/home/user/newBlock/src/lib | Folder for C++ source/header files

As we write our own blocks, keep in mind that all files (.h, .cc, and .i) for the new signal
processing block should go in the newBlock/src/1ib directory.

4.2 Preparing Makefile.am for Autotools

The final step before compilation is to edit the Makefile.am file (located in the previous
example in the root directory, i.e., /home/user/newBlock). Makefile.am specifies which
libraries to build, the source files that comprise those libraries, and the appropriate flags to
use. This file contains relevant information to configure the build process that is to follow
to correctly compile our code. Open this file and edit two sections. The first, shown below,
identifies the name of SWIG’s .i file:

Specify the .i file below
LOCAL_IFILES = newModule.1i

The next tells SWIG which files to build and what to name them for use by Python:

BUILT SOURCES = \
newModule.cc \
newModule.py

The next set of commands ensures that our new block’s Python code is installed in the
proper location.

13

ourPython_PYTHON = \
newModule.py
ourlib_LTLIBRARIES = _newModule.la

The next set of commands specify which source files are included in the shared library that
SWIG exposes to Python:

_newModule_la_SOURCES = \
newModule.cc \
newModule newBlock cc.cc

The final set of commands specify key flags to ensure that our new signal processing block
shared library compiled and linked correctly against SWIG and the C++ standard library:

_newModule_la_LDFLAGS
_newModule la LIBADD
-lgrswigrunpy \

-lstdc++

newModule.cc newModule.py: newModule.i $(ALL_IFILES)

$(SWIG) $(SWIGCPPPYTHONARGS) -module newModule -o newModule.cc $<

grinclude HEADERS = \

newModule newBlock cc.h

-module -avoid-version

\

4.3 Installation

After we finish coding our block, we need to install it. Fortunately, this process is made
easy by the included makefile in the archive downloaded earlier. With the editing of the
Makefile.am file as above, we are now ready to build our new block. Simply use the
following commands:

./bootstrap

./configure --prefix=prefiz

make

sudo make install

sudo touch install_path/package_mname/__init__.py

Here, “prefix” is the root of our GNU radio installation (default is /usr/local). Also,
“install _path” is the directory where our package is being installed (default is

14

prefiz/lib/Python/ Python-version /site-packages, where Python-version is the version of
Python being used). Finally, "package name” is the name of the Python package under
which our block will be available. This would have been specified in Makefile.am by us
during build time, so we just enter that name here. The creation of an __init__.py file is
necessary since Python expects every directory containing a package to have this file.

If subsequently we make changes to our code, we can repeat the above steps but omit the
bootstrap and configure steps.

5. Usage of Blocks

5.1 Invoking from Python

Our final step is to use our new block from Python as part of a GNU Radio flowgraph.
This is easy using the following commands:.

from gnuradio import newModule

block = newModule.newBlock cc ()

5.2 Debugging

The challenge of debugging our new block is that we are not executing C++ code directly.
Rather, our block, comprised of C++ code, is loaded dynamically into Python and
executed “through” a Python process. Therefore, the most convenient debugging option
involves inserting print statements through the block source code to monitor its status
during execution. For those familiar with GDB (and often, many graphical debuggers use
GDB under the covers), the following code can be used:

from gnuradio import newModule

import os #package providing blocking function

print ’My process id is (pid = %d)’ % (os.getpid(),)

raw_input (’Please attach GDB to this process ID, then hit enter: ’)
now continue using our block

block = newModule.newBlock cc();

15

The idea of this code is simply to discover the process ID of the Python process, which
invokes our new block, and then in another terminal, have GDB attach to this process ID.
Now, GDB can be used as usual (to set breakpoints, watch points, etc.) When we have
configured GDB as we like, we can return to the terminal executing the Python process,
and hit Enter to have it proceed.

5.3 Simplifying the Build

As we have mentioned previously, there are several caveats involved in the creation of a
new signal processing block. Beyond just writing the C++ code, we must create a
Makefile.am file and SWIG .i file, and be careful in the naming of various files and
functions so as to adhere to GNU Radio’s naming rules. These steps are a “one-time cost”
associated with writing a new block. Then, we have to ensure all files are placed in the
correct place, and then invoke a series of commands to compile, build, and deploy our
application. These latter steps are a "recurring cost,” which we must incur each time we go
through the debug-build-test cycle. Overall, the process of building and deploying the
block can be time-consuming and error-prone. To allow us to focus on creating new signal
processing blocks in C++ and avoid dealing directly with the complexities of the build
process and naming rules, we have created a script in Python. After the user has written a
new block in C++, this script automates the rest of the process, ensuring that all naming
rules are adhered to (and renaming accordingly when necessary) and all packages are
properly built and usable from Python. The script is given in the appendix B.

6. Conclusion

In this report, we have provided the details of how to create a new signal processing block
using GNU Radio. We have highlighted important naming conventions; surveyed the
important functions to be overridden in gr_block, such as general work and forecast;
and illustrated the importance of Boost smart pointers. Finally, we have discussed how to
compile a block, deploy it, and invoke it from Python.

16

0O Ttk Wi~

U B B B B R R R R R W W W W WWWWWWNNNDNDNDDNDNDNDNDN —
SO OO JDUU R WO OO Ulk WNDHFE OO Ul W O OO0 Utk — O o

A. The gr_block.h Script

Ve
Ve

¥ OK K K X K X K XK X K X X X X X X X

—k— CcH+ —*k— */
Copyright 2004 ,2007,2009,2010 Free Software Foundation , Inc.
This file is part of GNU Radio

GNU Radio is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation; either wversion 3, or (at your option)
any later version.

GNU Radio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Radio; see the file COPYING. If not, write to

the Free Software Foundation, Inc., 51 Franklin Street,

Boston, MA 02110—1301, USA.

*/

#ifndef INCLUDED GR BLOCK H
#define INCLUDED GR _BLOCK H

#include <gr_ basic_ block .h>

iy

EE SR S I SR S

¥ OK X K X K X X K X X X X X

\brief The abstract base class for all ’terminal’ processing blocks.
\ingroup base_ blk

A signal processing flow is constructed by creating a tree of
hierarchical blocks ,
that actually implement signal processing functions. This is the base
class for all such leaf nodes.

Blocks have a set of input streams and output streams. The
input__signature and output_signature define the number of input
streams and output streams respectively , and the type of the data
items in each stream.

Although blocks may consume data on each input stream at a
different rate, all outputs streams must produce data at the same
rate. That rate may be different from any of the input rates.

User derived blocks override two methods, forecast and general work,
to implement their signal processing behavior. forecast is called
by the system scheduler to determine how many items are required on
each input stream in order to produce a given number of output
items.

17

which at any level may also contain terminal nodes

51
52
593
54
95
56
o7
o8
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87

88
89
90
91
92
93
94
95
96
97
98
99

100
101
102

*
x general_work is called to perform the signal processing in the block.
x It reads the input items and writes the output items.

*/
class gr_Dblock : public gr_basic_block {
public:

//! Magic return wvalues from general work
enum {

WORK_CAILED PRODUCE = -2,

WORK DONE = —1

};

enum tag propagation_policy t {
TPP_DONT = 0,

TPP_ALL_TO_ALL
TPP_ONE_TO ONE
b

virtual ~gr_block ();

/%!

1
2

)

Assume block computes y i = f(z i, =z i—1, © i—2, x i—3...)

History is the number of z_i’s that are examined to produce omne y_ 1.
This comes in handy for FIR filters , where we use history to

ensure that our input contains the appropriate "history " for the
filter. History should be equal to the number of filter taps.

EE R I

*/
unsigned history () const { return d_ history; }
void set__history (unsigned history) { d_history = history; }

/%!
x |brief Return true if this block has a fized input to output rate.
*

x If true, then fized rate_in_to_out and firzed_rate_out to_in may be called

*/

bool fixed_rate () const { return d_fixed_ rate; }

// override these to define your behavior

//
/%!

x |brief FEstimate input requirements given outpul request

*

x |param noutput_items number of output items to produce

x |param ninput_items_required number of input items required on each
input stream

*

x Given a request to product \p noutput_items, estimate the number of

x data items required on each input stream. The estimate doesn’t have

18

103
104
105
106
107
108
109
110
111

112

113

114

115
116

117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

146
147
148
149

*

*/

to be exact, but should be close.

virtual void forecast (int noutput_items ,

/%!
*

*
*
*

*/

gr_vector_int &ninput_items_required);

\brief compute output items from input items

|param noutput_items
stream
|param ninput__items
stream
|param input_items

number of output items to write on each output
number of input items available on each input

vector of pointers to the input items, one

entry per input stream

|param output_items

vector of pointers to the output items, one

entry per output stream

| returns number of items actually written to each output stream, or —1 on

EOF.

It is OK to return a value less than mnoutput_ items. —1 <= return value

<= noutput_items

general _work must call consume or consume__each to indicate how many items
were consumed on each input stream.

virtual int general work (int noutput_items

¥ Xk X X ¥ X

*/

gr_vector_int &ninput_items,
gr_vector_const_void_star &input_items,
gr_vector_void_star &output_items) = 0;

\brief Called to enable drivers, etc for i/o devices.

This allows a block

to enable an associated driver to begin

transfering data just before we start to execute the scheduler.
The end result is that this reduces latency in the pipeline when
dealing with audio devices, usrps, etc.

virtual bool start ();

/%!

*

*/

\brief Called to disable drivers, etc for i/o devices.

virtual bool stop();

//

/%!

*

EEE R

|brief Constrain the
general_work

set_output__multiple

noutput_items argument passed to forecast and

causes the scheduler to ensure that the noutput_ items

argument passed to forecast and general _work will be an integer multiple

of \param multiple

The default value of output multiple is 1.

19

150
151
152
153
154
155

156
157
158
159
160

161
162
163
164
165

166
167

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

195
196
197
198

*/
void set_output_multiple (int multiple);
int output_multiple () const { return d_output_multiple; }

/%!

x |brief Tell the scheduler \p how_many items of input stream \|p
which__input were consumed .

*/

void consume (int which_input, int how_many items);

/%!

x |brief Tell the scheduler \p how_many items were consumed on each input
stream.

*/

void consume_each (int how_many items);

/%!

x |brief Tell the scheduler \p how_many items were produced on output
stream \p which__output.

*

x If the block’s general work method calls produce, \p general work must

return WORK CALLED PRODUCE.
*/
void produce (int which_ output, int how_many items);

/%!

\brief Set the approximate output rate / input rate

*
*

x Provide a hint to the buffer allocator and scheduler.
x The default relative__rate is 1.0
*
*
*

decimators have relative rates < 1.0
interpolators have relative__rates > 1.0
*/

void set_relative_rate (double relative_ rate);

/%!
x |brief return the approximate output rate / input rate
*/

double relative_rate () const { return d_relative_rate; }

The following two methods provide special case info to the
scheduler in the event that a block has a fized input to output
ratio. gr_sync_block, gr_sync_decimator and gr__sync_ interpolator
override these. If you’re fized rate, subclass one of those.

x |brief Given ninput samples, return number of output samples that will be
produced .

x* N.B. this is only defined if fixed_rate returns true.

x Generally speaking, you don’t need to override this.

*

/

virtual int fixed rate_ ninput_to_noutput(int ninput);

20

199
200
201

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

219
220
221
222
223

224
225
226
227

228
229
230
231
232

233
234
235
236

237
238
239
240
241
242
243
244
245

/%!

x |brief Given noutput samples, return number of input samples required to
produce noutput.

x* N.B. this is only defined if fixed_rate returns true.

x Generally speaking, you don’t need to override this.

*/

virtual int fixed rate_noutput_to_ninput(int noutput);

/%!

x |brief Return the number of items read on input stream which_input

*/

uint64_t nitems_read(unsigned int which_input);

/%!

x |brief Return the number of items written on output stream which__output
*/

uint64_t nitems_written (unsigned int which_output);

/%!

x |brief Asks for the policy used by the scheduler to moved tags downstream

*/

tag_propagation_policy_t tag_ propagation_policy();

/%!

x |brief Set the policy by the scheduler to determine how tags are moved
downstream .

*/

void set_tag_ propagation_ policy (tag_propagation_policy_t p);

//

private:

int d_output__multiple;

double d_relative_rate ; // approx output_rate /
input__rate

gr__block_detail_sptr d_detail; // implementation details

unsigned d_ history ;

bool d_fixed_ rate;

tag_propagation_policy_t d_tag propagation_policy; // policy for moving tags
downstream

protected:

gr_block (const std::string &name,
gr_io_signature_sptr input_signature,
gr_io_signature_sptr output_signature);

void set_fixed_ rate(bool fixed rate){ d_fixed rate = fixed rate; }

21

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

N
*

x |brief Adds a new tag onto the given output buffer.

*

x |param which_output an integer of which output stream to attach the tag
x |param abs__offset a wint64 number of the absolute item number

* assicated with the tag. Can get from nitems__written.
x |param key the tag key as a PMT symbol

x |param wvalue any PMT holding any value for the given key

x |param srcid optional source ID specifier; defaults to PMT F

*
/
void add_item_tag (unsigned int which_output,
uint64_t abs_ offset ,
const pmt::pmt_t &key,
const pmt::pmt_t &value,
const pmt::pmt_t &srcid=pmt::PMT F) ;

!

N
*

x |brief Given a [start,end), returns a vector of all tags in the range.
*

x Range of counts is from start to end—1.

*

x Tags are tuples of:

* (item count, source id, key, wvalue)

*

x |param v a vector reference to return tags into

x |param which_input an integer of which input stream to pull from

x |param abs__start a uintb64 count of the start of the range of interest
x |param abs_end a wint64 count of the end of the range of interest

*

/

void get_tags_in_range(std::vector<pmt::pmt_ t> &v,
unsigned int which_input,
uint64_t abs_ start ,
uint64_t abs_end);

/%!

x |brief Given a [start,end), returns a vector of all tags in the range
x with a given key.

*

x Range of counts is from start to end—1.

*

x Tags are tuples of:

* (item count, source id, key, wvalue)

*

x |param v a vector reference to return tags into

x |param which_input an integer of which input stream to pull from

x |param abs__start a uintb64 count of the start of the range of interest
x |param abs_end a wint64 count of the end of the range of interest
x |param key a PMT symbol key to filter only tags of this key

*

/

void get_tags_in_range(std::vector<pmt::pmt_ t> &v,
unsigned int which_input,
uint64_t abs_ start ,
uint64_t abs_end,

22

300 const pmt::pmt_t &key);
301
302 // These are really only for internal wuse, but leaving them public avoids
303 // having to work up an ever—wvarying list of friends

304
305 | public:

306 gr_block_detail sptr detail () const { return d_detail; }

307 void set_detail (gr_block detail sptr detail) { d_detail = detail; }
308 | };

309
310 |typedef std::vector<gr_block_ sptr> gr_block_vector_t;

311 |typedef std::vector<gr_ block_ sptr>::iterator gr_block_ viter_t;
312
313 |inline gr_block_ sptr cast_to_block_ sptr(gr_basic_block sptr p)
314 | {
315 return boost::dynamic_pointer_cast<gr_block, gr_basic_block>(p);
316 |}
317
318
319 |std ::ostreamé&

320 |operator << (std::ostream& os, const gr_block =m);
321
322 |#endif /x INCLUDED GR BLOCK H x/

23

INTENTIONALLY LEFT BLANK

24

[\]

10
11
12
13
14
15
16

17

18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

B. The blockWizard.py Script

#!/usr /bin/env python

#This code simplifies the process of writing new blocks. Simply download the
archive "gr—howto—write—a—block —8.3.0.tar.gz" from

#ftp://ftp.gnu.org/gnu/gnuradio/gr—howto—write—a—block —3.8.0. tar. gz , extract
it to a directory "topdir",

#and create your custom block in C++ , placing it in topdir/src/lib . Then
run this script.

#The user only needs to implement the block, for example

#particularly "general work" and "forecast" functions. It handles installation
of shared library,

#and ensures various mnaming "conventions
of surrogate friend constructor
#expected by the build system are followed. It handles the proper creation of

the swig file.

"

(really rigid rules), such as name

import os
import re
import sys

print "\n!!!"

print "This wizard, helps build, (multiple), signal processing, blocks, and places
them ,in a single module of ja single package'

print "You,only really need to use this the first stime you, create a new block;
ithen , for ;subsequent code changes to that same block, just use make and,
sudo_ make install"

print "This script, will delete old autotools related files from this directory
jand generate new ones; if you have any concerns , back up beforey
proceeding"

print "!!!"

raw_input (" Press enter to continue , Ctrl-C to_ abort:")

print ("\n Cleaning files from aborted previous runs...")
os .system ("make clean")

os.system ("rm —rf src/lib/Makefile.am")

os.system ("rm —rf src/lib/Makefile")

os.system ("rm —rf src/lib/Makefile.in")

os.system ("rm, —rf src/lib /.deps")

os.system ("rm —rf src/lib /%.i")

os.system ("rm —rf src/lib/Makefile.swig.gen")

src__headers = list ()
src_source = list ()

class_inheritance = dict ()

friend__constructor = dict ()

constructor = dict () #maps header files to the signature of their constructors
destructor = dict () #maps header files to the signature of their destructors

25

40
41

42
43
44
45
46

47
48
49
50
51

52
93

54
95
56
o7
o8
99
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7

78
79
80
81
82

83
84
85
86

prefix = raw_input(’\n\nSpecify prefix: [prefix]/lib/python[version]/site—
packages (default = /usr/local):,")

if len(prefix) = 0:
prefix="/usr/local"’

version = raw_input(’\n\nSpecify python version: ,’ + prefix + ’/lib/python]|
version]/site —packages (default =,2.6):,")

if len(version) = 0:
version="2.6"

install _path = prefix + "/lib/python" + version + "/site—packages"
install _path_alt = prefix + "/lib/python" + version + "/dist —packages"' #
installation may occur to here instead

print ('\nThe python command to import this, block, will be: from [package_name]
import, [module_name])
package_name = raw_input(’'Enter desired package name (default=testpackage):)
if len (package_name) = 0:
package_name="testpackage"

module_name = raw_input(’Enter desired module_name (default=testmodule): ")
if len (module_name) = 0:
module _name="testmodule"

all_files=os.listdir (os.getcwd () + "/src/lib")

#create lists of the .h files and the .cc files
for filename in all_ files:
#header_ _pattern = re.compile(' [\w]+.h’)
#suffiz_pattern = re.compile(' [\w]+.cc’)

if ".h" in filename:
src__headers.append(filename)
if ".cc" in filename:
src_source . append(filename)

print (’\n\nThe python command to create this block will be: object =" +
module_name 4+ ’.[block_name] () ’)
i=0

block_names={} #dictionary mapping header file to block name
for filename in src_headers:

i=1i+1

block__name = raw__input(’Enter, desired, block_name corresponding to, block,
implemented in,,’ + filename[: —2] + ' (default=test__block’ 4+ str(i) + ’
,u0 for mone):)

if len(block_name) = 0:
block__name="test__block" + str (i)
if block name — 0:
block name=""

26

87
88
89
90
91

92
93
94
95
96
97

98

99
100
101
102
103
104
105
106
107

108
109
110
111
112
113
114
115
116
117

118
119

120
121
122

123
124
125
126
127
128

129
130

131
132

block_names|filename] = block_ name

#figure out which classes inherit from which blocks (e.g. from gr_block or
gr__sync_block (allow for helper classes which do not inherit at all)
class__dec_pattern = re.compile (’'[\s]*xclass[\s\w]+:")
for filename in src_headers:
f = open(os.getcwd () + "/src/lib/" + filename, ’'r’)
for line in f:
if class_dec_pattern.match(line):
m = re.search (’[\s]+[\w]+$’, line) #find the name of the class
that is inherited
if m:
class_inheritance [filename] = m.group().strip ()
else:
class_inheritance [filename] =

f.close ()

#figure out the signature of the constructor from each .h file
key idea is to look for string of the form "filename (" (where
filename is without the .h)
for filename in src_headers:
constructor__string=""
constructor__name=filename [: —2] #everything but the .h
multi_ line=0

f = open(os.getcwd () + "/src/lib/" + filename, ’'r’)

for line in f:
if ((constructor_name + "(") in line) or ((constructor_name + ", (") in
line): #this line contains a constructor declaration
constructor__string=line
if ("public" in previous_line) or ("private" in previous_line) or
("protected " in previous_line):

constructor_string = previous_line + constructor_string
if ";" in line: #the constructor declaration is all on one line
multi_line=0 #does the constructor declaration span multiple
lines?
break
else:
multi_ line=1
continue
if multi_line = 1: #the constructor declaration is over multiple
lines
constructor__string = constructor_string + line
if ";" in line: #look for end of this constructor declaration, i.e
a semicolon
break

27

133

134
135

136
137
138
139
140
141
142
143
144
145
146
147
148

149
150
151
152
153
154
155
156
157
158

159
160

161
162
163

164
165
166
167
168
169
170
171

172
173
174

175
176

177

previous_line = line #save the previous line for future use in case we
need to look back

constructor [filename] = constructor_string #there is one constructor per
class obviously

f.close ()

#figure out the signature of the destructor from each .h file

key idea is to look for string of the form "~filename "
filename is without the .h)

for filename in src_headers:

(where

destructor_string=
destructor__name=filename [: —2] #everything but the .h
multi_ line=0

f = open(os.getcwd () + "/src/lib/" + filename, ’'r’)

for line in f:
if ("~" + destructor_name) in line: #this line contains a destructor
declaration
destructor_string=line
if ("public" in previous_line) or ("private" in previous_line) or
("protected " in previous_line):

destructor_string = previous_line 4+ destructor_string
if ";" in line: #the destructor declaration is all on one line
multi_line=0 #does the destructor declaration span multiple
lines?
break
else:
multi_ line=1
continue
if multi_line = 1: #the destructor declaration is over multiple lines
destructor_string = destructor_string + line
if ";" in line: #look for end of this destructor declaration, i.e
a semicolon
break
previous_line = line #save the previous line for future use in case we

need to look back

destructor [filename] = destructor_string #there is one constructor per
class obviously

28

178
179
180
181
182
183
184
185
186

187
188
189
190
191
192
193
194
195
196
197

198

199
200
201
202
203
204
205

206
207
208
209
210
211
212
213
214

215
216
217
218
219
220
221
222
223
224

f.close ()

#figure out the friend function (from .h file) acting as the public interface
for object construction (allow for helper classes that do not have this)
for filename in src_headers:

friend=
target="+) (*x&NHANNKSIAHFIUWEROIWEALSKJFD "

multi_ line=0
f = open(os.getcwd () + "/src/lib/" + filename, ’'r’)

for line in f:
if "boost::shared_ ptr" in line: #this line contains a typedef, we want
to know the mame of the alias so we can find its declaration
target = line.strip ().split(",")[—=1][:—=1] #get the last word, then
drop the semicolon of that last word
continue

if target in line:

#friends . append (line. strip ())
friend=line

if ";" in line: #the friend declaration is all on one line

multi_line=0 #does the friend declaration span multiple lines?
no

break

else:
multi_ line=1
continue

if multi_line = 1: #the friend declaration is over multiple lines

#friends . append (line. strip ())
friend = friend + line

if ";" in line: #look for end of this friend declaration, i.e a
semicolon
break
friend__constructor[filename] = friend
f.close ()
print
print '

>k 3k sk ok sk ok sk ok ok sk ok sk sk sk ok ok skok sk skok sk sk ok sk sk sk sk sk ok ok sk sk sk sk ok sk ok ok Sk sk sk sk ok skokosk ok Sk sk sk Sk ok ok skok ok sk sk sk sk ok skok ok skoskok ok sk ok
n

29

>k ok ok ok ok ok ok ok ok ok ok

225

226
227
228
229

230
231
232
233
234
235
236
237
238
239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

257

258
259
260
261

262
263
264
265
266
267
268
269
270
271

print ! BlOCk\ \Will\ \be\ \imported\ \in\ \python\ as ;! UL UL DU L LU \fI"OHl \“ + packageiname
+ "gimport," + module name

for value in block_names. values () :
if len(value) > 1:

print "New objects in python, will be made as: ,ouuuuuuuuobject = " +
module_name + "." + value + " ()"
print "Detected block header files jare: uuuoouuuooouun', sre_headers
print "Detected blocksource files jare: uuuuuuouuuuuuy', srec_source
print "Block classes inherit gnuradio base classes as: ", class_inheritance
print "Class,constructors are: ,uuouuuuuLLLLLLLLLLLLLLLL ', constructor
print "Class,destructors are: uuuuouuuuuuuuuuuuouououuoun ', destructor
print "Friend, public ,constructors are: . uuuuoouuuuoooa' , friend__constructor
print ! IHStall\\path\\Of\\thisupaCkageuiS CLULLLLLLLLLLULUUL 5 inStallipath

print

>k ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok ok ok ok ok ok sk sk sk ok sk sk ok sk sk ok ok ok Sk ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk ok ok sk sk ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok
n

raw__input(’\nPress enter to, continue , or, Ctrl C to abort’)

#create .1 file
swig_i_file = open(os.getcwd () + "/src/lib/" + module_name + ".i", 'w’)
swig_i_file.write (/% —*— c+h —*—01x/ ")
swig_i_file. write ("\n%include "gnuradio.i"’)
swig_i_file. write ("\n%{")
for filename in src_headers:
swig_i_file. write (’\n#include,"’ + filename + ")
swig_i_file.write ('\n%}")

for filename in src_headers:

if (block_names][filename] != '07): #check that this really corresponds to
a block implementation and not helper files
swig_i_file.write (’\n\nGR_SWIG BLOCK MAGIC(’ 4+ module_name + ’,’ +

block_names|[filename] + 7);7)
swig_i_file.write(’\n\n’ 4+ friend__constructor[filename])

#write the class definition and constructors/destructors in it

swig_i_file.write(’\n\n’ + ’class,,’ + filename [:—2] + ' : public,’ +
class__inheritance [filename])

swig_i_file. write(’\n{’)

swig_i_file.write(’\n\n’ + constructor[filename])

swig_i_file. write(’\n\n’ + destructor [filename])

swig_i_file.write(’\n};")

swig_i_file.close ()

#create Makefile .am file in /src/lib
Makefile am file = open(os.getcwd () + "/src/lib/Makefile.am", 'w’)

30

>k ok ok ok ok ok ok ok ok ok ok

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

311
312
313
314
315
316
317
318

319

Makefile_am_ file . write (’include $(top_srcdir)/Makefile.common’)
Makefile_am_ file . write (’\n\ngrinclude. HEADERS = \\")

i=0
for filename in src_headers:
i=1i+1

Makefile_am_ file.write (’\n\t’ + filename)
if (i < len(src_headers)):
Makefile_am_ file. write ("0 \y ")

Makefile_am_ file . write (’\n\n\nTOP_SWIG_IFILES = \\’)
Makefile_am_ file.write (’\n\t’ + module_name + ’.i7)
Makefile_am_ file . write (’\n\n’ + module_name + ’
Makefile_am_ file.write (’\n\t’ + package_ name)

pythondir category, = \\")

Makefile_am_ file.write (’\n\n’ + module_name + ’_la_swig_sources.=,\\")
i=0
for filename in src_source:

i=1i+1

Makefile_am_ file.write (’\n\t’ + filename)
if (i < len(src_source)):
Makefile_am_ file. write ("0 \y ")

Makefile_am_ file.write (’\n\ninclude $(top_srcdir)/Makefile.swig’)
Makefile_am_ file . write (’\n\nBUILT SOURCES = $(swig_ built_sources)’)
Makefile_am_ file.write (’\n\nno_ dist_files, = ,$(swig_built_sources)’)

Makefile_am_ file . close ()

#create Makefile .am in /src/python

Makefile_am_ file = open(os.getcwd () + "/src/python/Makefile.am",
Makefile_am_ file . write (’include, $(top_srcdir)/Makefile.common’)
Makefile_am_ file . close ()

’W’)

#create Makefile.swig. gen

os.system ("cpsrc/lib/Makefile.swig.gen . TEMPLATE ;src/lib /Makefile.swig.gen")

module_command = "sed —i,s/testmodule/" 4+ module_name + "/gI src/lib/Makefile.
swig .gen"

package_command = "sed —iys/gnuradio/" 4 package_name + "/gI_ src/lib/Makefile.
swig .gen"

os .system (module_command)

os .system (package_command)

#The build system expects source files to be of the form [module_name] [
block_name].h or [module_name] [block _name]. cc

#This is based off a gnu radio convention. If our files are NOT in this form,
copy them over into that form

#It also expects the friend public constructor to be of the form [module_name]
__make_ [block_name]

#create source files that are named according to gnu radio convention , i.e.
modulename__blockname.h and .cc (in case they don’t exist) so that make is

31

320

321
322
323
324
325
326
327
328
329
330
331

332

333
334
335
336
337

338
339
340
341

342

343

344
345
346
347
348
349

350
351
352
353
354
355
356

357
358

359
360
361

happy

conforming_ source_files = list () #list of source files conforming to proper
gnu radio naming convention

swig_i_file = "src/lib/" 4+ module_name + ".i'

Makefile_am_ file = "src/lib/Makefile.am’

for f in block_names.keys (): #loop over all source files
make_ function=""
ideal make function=""

filename = "src/lib/" + f

ideal_name = "src/lib/" + module_name + "_" + block_names[{f]

if (not os.path.isfile (ideal_name + ".h")): #the conforming, conventional

name does mnot exist; create it

raw__input ("\nSource names do not conform to GNU,radio convention!
Press enter to_continue with auto—renaming \n")

tmp_ file = ideal _name + ".h"

emd = "cp" + filename[: —2] + ".h," + tmp_ file

os .system (cmd)

conforming_ source_ files.append(tmp_ file)

rename__command = "sed —iys/" + f[:—=2] + "/" + module_name + "_" +
block names[f] + "/gI," + tmp_file

o0s . system (rename__command)

#correct the friend public interface name to conform to gnu radio
if len(friend__constructor[f]) > 0: #this file has a friend
constructor
tokens=friend constructor[f].split () #splits on any whitespace,
even consecutive whitespaces which are treated as a single
whitespace, which we want
make_ function=tokens [1].strip () #the name of the public interface
friend constructor

if "();" in make_function:
make_ function=make_ function [: —3]
elif "()" in make_function:
make_ function=make_ function [: —2]
ideal make_ function = module_name + " _make " + block_ names][f]
rename__command = "sed —i, s/" + make_function + "/" +

ideal _make_function + "/gI," + tmp_ file
0s . system (rename__command)
tmp_ file = ideal _name + ".cc"
cmd = "cp " + filename[: —2] +
os .system (cmd)
conforming_ source_ files.append(tmp_ file)
rename__command = "sed —iys/" + f[:—=2] + "/" + module_name + "_" +
block names[f] + "/gI," + tmp_file
os . system (rename__command)
rename__command = "sed —iys/" + make_function + "/" +
ideal _make_ function + "/gI," + tmp_ file
o0s . system (rename__command)

.cc" + tmp_ file

#the swig .1 file needs to be updated to reflect this name change as

32

362

363
364

365
366
367

368

369
370

371
372
373
374
375

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

397
398

399
400
401

402
403
404

well

rename__command = "sed —iys/" + f[:—=2] + "/" + module_name + "_" +
block names[f] + "/gI." + swig i file

os . system (rename__command)

rename__command = "sed —iys/" + make_function + "/" +
ideal _make_ function + "/gI," + swig_ i file

os . system (rename__command)

#the Makefile .am file needs to be updated to reflect this mame change
as well

rename__command = "sed —iys/" + f[:—=2] + "/" + module_name + "_" +
block_names[f] + "/gI," + Makefile_am_ file

os . system (rename_command)

rename__command = "sed —iy s/" + make_function + "/" +
ideal make_function + "/gI " + Makefile _am_ file

os . system (rename__command)

raw__input(’Requisite, files for autotools have been created . Press enter to,
COntinue\\WithubOOtStrap ,HCOIlfigure ,\\make,”make”install ,uor \Ctrl\\CHtOHabOrt

")

print ("\n\nRunning bootstrap ")
os.system("./bootstrap")

print ("\n\nRunning configure..... ")
os.system("./configure —prefix=" + prefix)
print ("\n\nRunning make..... ")

os .system ("make")

print ("\n\nRunning sudo make install ")
os .system ("sudo make install")

print ("\n\nMaking " + package name + " a_ proper python package..... ")

if os.path.isdir(install _path + "/" + package name):
os.system("sudo touch " + install path + "/" + package name + "/__ init_

py")
else:
os.system ("sudo touch,," + install path_alt + "/" + package name + "/
__init__ .py")
cleanup = raw_input("Do,you, ,want, to erase all temporary makefiles and swig,,
files? (default=yes)")
if ("y" in cleanup) or ('Y" in cleanup) or (len(cleanup) = 0):
print ("\n\nDoing final cleanup ")

os.system ("make clean")

33

405
406
407
408
409
410
411
412
413

414
415
416
417
418
419
420
421
422

os.system ("rm —rf src/lib/Makefile")
os.system (—rf src/lib/Makefile.am")
0s.system (—rfsrc/lib/Makefile.in")
os.system ("rm —rf src/lib/.deps")
0s.system (—rf src/lib /*x.1")

("rm —

0s.system rf src/lib/Makefile.swig.gen")

if len(conforming source_files) > 0:

cleanup = raw_input("Do you want, to erase all renamed source files? /(
default=yes)")
if ("y" in cleanup) or ('Y" in cleanup) or (len(cleanup) = 0):

#remove re—named source files , they are no longer needed
for f in conforming_ source_ files:

cmd = "rm —rf," + f

os.system (cmd)

print ("\n\nYour block is ready. to. use")

34

NO. OF
COPIES ORGANIZATION

1 ADMNSTR
ELEC DEFNS TECHL INFO CTR
ATTN DTIC OCP
8725 JOHN J KINGMAN RD STE 0944
FT BELVOIR VA 22060-6218

1 US ARMY RSRCH DEV AND ENGRG CMND
ARMAMENT RSRCH DEV & ENGRG CTR
ARMAMENT ENGRG & TECHNLGY CTR
ATTN AMSRD AAR AEFT J MATTS
BLDG 305
ABERDEEN PROVING GROUND MD 21005-5001

1 US ARMY INFO SYS ENGRG CMND
ATTN AMSEL IE TD A RIVERA
FT HUACHUCA AZ 85613-5300

1 COMMANDER
US ARMY RDECOM
ATTN AMSRD AMR W C MCCORKLE
5400 FOWLER RD
REDSTONE ARSENAL AL 35898-5000

1 US GOVERNMENT PRINT OFF
DEPOSITORY RECEIVING SECTION
ATTN MAIL STOP IDAD J TATE
732 NORTH CAPITOL ST NW
WASHINGTON DC 20402

8 US ARMY RSRCH LAB
ATTN IMNE ALC HRR MAIL & RECORDS MGMT
ATTN RDRL CI J PELLEGRINO
ATTN RDRL CIN A KOTT
ATTN RDRL CINT B RIVERA
ATTN RDRLCINT G VERMA
ATTN RDRLCINT P YU
ATTN RDRL CIO LL TECHL LIB
ATTN RDRL CIO MT TECHL PUB
ADELPHI MD 20783-1197

35

INTENTIONALLY LEFT BLANK.

36

