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uncertainty in populations. These alternate formulations, which involve imposing probabilis-
tic structures on a family of deterministic dynamical systems, are shown to yield pointwise
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calculations in inverse problems as well as in forward simulations. Here we derive a class of
stochastic formulations for which such an alternate representation is readily found.

AMS subject classifications: 60J60, 60J22, 35Q84

Key Words: Nonlinear Markov processes, probabilistic structures on deterministic systems,
uncertainty, Fokker-Planck, Forward Kolmogorov, pointwise equivalence.

1



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
06 JUL 2011 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2011 to 00-00-2011  

4. TITLE AND SUBTITLE 
Nonlinear Stochastic Markov Processes and Modeling Uncertainty in 
Populations 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
North Carolina State University,Center for Research in Scientific
Computation,Department of Mathematics,Raleigh,NC,27695-8212 

8. PERFORMING ORGANIZATION
REPORT NUMBER 
CRSC-TR11-02 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
We consider an alternative approach to the use of nonlinear stochastic Markov processes (which have a
Fokker-Planck or Forward Kolmogorov representation for density) in modeling uncertainty in
populations. These alternate formulations, which involve imposing probabilis- tic structures on a family of
deterministic dynamical systems, are shown to yield pointwise equivalent population densities. Moreover,
these alternate formulations lead to fast efficient calculations in inverse problems as well as in forward
simulations. Here we derive a class of stochastic formulations for which such an alternate representation is
readily found. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

31 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



1 Introduction and Motivation

In this paper we consider classes of nonlinear stochastic differential equations (SDE) with
corresponding stochastic process density described by Fokker-Planck (FP) or Forward Kol-
mogorov (FK) equations with nonlinear drift (convective velocity or average transition rate)
terms which dominate the (possibly nonlinear) diffusion (variability in transition rate) terms.
We develop a general algorithmic approach for converting these computationally difficult
nonlinear SDE to an equivalent (in a sense to be made precise below) probabilistic formu-
lation which is much more amenable to fast (and parallel) computations. A major feature
of our approach here is the bidirectional nature of our derivations. That is, we show how
to transform from a given SDE to the corresponding equivalent probabilistic formulation,
and from a given probabilistic formulation to the corresponding SDE. Our results are pre-
sented in two distinct steps. First, we show an equivalence for several classes of nonau-
tonomous affine differential equations (in both scalar and system forms). Then we extend
theses equivalences to rather general classes of nonlinear differential equations using invert-
ible transformation techniques between nonlinear differential equations and the class of affine
differential equations introduced in the first step. We illustrate the ideas with several dif-
ferent nonlinear examples including two important examples with growth or transition rates
encountered frequently in modeling populations, label decay, tumor growth, etc. These are

the popular Verhulst-Pearl logistic growth rate g(x) = rx
(

1 − x

κ

)

and the general tran-

sition rates g(x, t) = (a0(t) − a1(t) ln x)x of which the standard Gompertz growth rates

g(x) = r ln
(κ

x

)

x = r(lnκ − ln x)x are special cases. Motivating ideas and a brief recap of

results from previous efforts on population models are first summarized here and in the next
section.

A fundamental modeling construction in many areas of science is the nonlinear Markov
process as characterized by discrete or continuous time with discrete (e.g., Poisson) or con-
tinuous (e.g., diffusion) state processes [2, 22, 24, 27, 31, 33]. Here we focus on modeling with
a general nonlinear Markov diffusion process with finite mean and variance. Mathematically
this leads to a stochastic differential equation (SDE) of the form

dX(t) = g(X(t), t)dt+ σ(X(t), t)dW (t),

which in turn can be investigated with Fokker-Planck (FP) or Forward Kolmogorov equations

∂u

∂t
(x, t) +

∂

∂x
(g(x, t)u(x, t)) =

1

2

∂2

∂x2
(σ2(x, t)u(x, t)), (1.1)

for the corresponding probability density u. These FP models are ubiquitous in mathematics
and physics (e.g., particle transport, filtering), biology (population models), finance (e.g.,
Black-Scholes equations) among other areas of applications [2, 22, 27, 29]. In many of these
applications one has what is commonly referred to as convection dominated diffusion which
occurs when we have g >> σ. In this case the Fokker-Planck equations are notoriously
difficult to solve especially when g depends on time. This is a serious drawback in forward
simulations but can be untenable in inverse problem calculations [20].
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In these applications one begins with a stochastic Markov diffusion process X(t) with real-
izations x(t) representing a structure variable (level) such as size (length, weight, volume,
etc.), label intensity, chronological or physiological age, spatial location, etc., that changes
according to a mean rate law g(x, t) with mean variance σ2(x, t). Such models also arise
in population biology with class structure [4, 5, 6, 7, 9, 10, 12, 14], complex nodal network
models (in network security, social/insurgency networks, logistic and production networks)
[3, 16], fluorescence intensity of labeled proliferating cell populations [17, 28] and general
hyperbolic transport systems in random or uncertain environments.

To incorporate uncertainty or variability into structured deterministic dynamical models,
several approaches have been considered in the literature. Of those of interest to us here, one
involves a stationary probabilistic structure on a family of structured deterministic dynamical
systems, while the other is constructed based on the assumption that movement from one
structure level to another can be described by a stochastic diffusion process. As noted above,
for computational purposes the latter can be represented mathematically by a Fokker-Planck
equation. Even though these two formulations are conceptually quite different, in this paper
we show for a class of examples (both linear and nonlinear differential equations) that they
are equivalent in terms of corresponding probability density functions. Numerical methods
for the probabilistic formulation are quite fast and lead to alternative methods for solution of
the Fokker-Planck or Forward Kolmogorov equation associated with the stochastic diffusion
process. Thus we establish that there are several classes of Fokker-Planck inverse problems
(which are computationally intensive) that can be readily converted to inverse problems for
probabilistic structures on deterministic systems which can be solved efficiently.

Because we are primarily interested in modeling transition uncertainty in this paper, for
simplicity, we will not consider either sink or source terms in our formulations.

Unless otherwise indicated, a capital letter is used to denote a random variable throughout
the presentation, and a corresponding small letter to denote its realization. We use N (µ, σ2)
to denote a normal distribution with mean µ and variance σ2, N (µ,Σ) for a multivariate
normal distribution with mean vector µ and covariance matrix Σ, and E(Z) for the expecta-
tion of random variable Z. We next give careful detailed formulations of the two approaches
we consider.

1.1 Stochastic Formulation

A stochastic formulation can be motivated by recognizing that local factors (such as environ-
mental or emotional fluctuations) can have a significant influence on the individual transition
or transfer rates from one structure level to another. For example, in [5, 7, 9, 10, 20] the
growth rate of two different marine species (mosquitofish and shrimp) are affected by sev-
eral environmental factors such as temperature, dissolved oxygen level and salinity. In such
examples, the stochastic formulation is constructed under the assumption that movement
from one structure level (size in these examples) to another can be described by a stochastic
diffusion process [2, 20, 24, 31]. Let {X(t) : t ≥ 0} be a Markov diffusion process with X(t)
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representing structure level at time t (i.e., each process realization corresponds to the struc-
ture trajectory of an individual). Then X(t) is described by the Ito stochastic differential
equation (we refer to this equation as the stochastic rate model (SRM))

dX(t) = g(X(t), t)dt+ σ(X(t), t)dW (t), (1.2)

where W (t) is the standard Wiener process [2, 24]. Here g(x, t) denotes the average transition
rate (the first moment of rate of change in structure level) of individuals with structure level
x at time t, and is given by

g(x, t) = lim
∆t→0+

1

∆t
E {∆X(t)|X(t) = x} . (1.3)

The function σ(x, t) represents the variability in the transition rate of individuals (the second
moment of rate of change in structure level) and is given by

σ2(x, t) = lim
∆t→0+

1

∆t
E
{

[∆X(t)]2|X(t) = x
}

. (1.4)

Hence, the transition process (growth in size in the marine examples cited above) of each
individual is stochastic, and each individual changes structure level according to the stochas-
tic rate model (1.2). Thus, for this formulation the transition uncertainty is introduced into
the entire population by the stochastic transition of each individual. In addition, individuals
with the same structure level at the same time have the same uncertainty in transition,
and individuals also have the possibility of reducing their structure level during a transition
period.

With this assumption on the transition process, we obtain the Fokker-Planck (FP) or forward
Kolmogorov model for the population density u, which was carefully derived in [31] among
numerous other places and subsequently studied in many references (e.g., [2, 20, 24]). The
equation and appropriate boundary conditions are given by

∂u

∂t
(x, t) +

∂

∂x
(g(x, t)u(x, t)) =

1

2

∂2

∂x2
(σ2(x, t)u(x, t)), x ∈ (0, L), t > 0,

g(0, t)u(0, t)− 1

2

∂

∂x
(σ2(x, t)u(x, t))|x=0 = 0,

g(L, t)u(L, t) − 1

2

∂

∂x
(σ2(x, t)u(x, t))|x=L = 0,

u(x, 0) = u0(x).

(1.5)

Here L is the maximum structure level that individuals may attain in any given time period.
Observe that the boundary conditions in (1.5) provide a conservation law for the FP model.
Because both sink (death) and reproduction (birth) rates are assumed zero, the total number

in the population is a constant given by

∫ L

0

u0(x)dx. In addition, we observe that with the

zero-flux boundary condition at zero (minimum structure level) one can equivalently set
X(t) = 0 if X(t) ≤ 0 for the stochastic transition model (1.2) in the sense that both are used
to keep individuals in the system at the boundary levels. This means that if the structure
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level of an individual is decreased to the minimum value, it remains in the system at that
level with the possibility to once again increase its level.

As we have already mentioned, the above equations present formidable computational chal-
lenges when drift (or convection) g dominates. While this is certainly true for forward
simulations, it is even more of a challenge in the inverse problems considered in [20]. Thus
it is of great interest to explore alternative formulations that might lead to modeling repre-
sentations which represent essentially the same transport process at the density/distribution
level and that involve a much more efficient computational implementation. To this end in
the next section we describe an alternative, but in a certain sense (to be made more precise
below) equivalent, formulation for such dynamic processes with uncertainty in transition.

1.2 An Alternative Probabilistic Formulation

To offer an alternative formulation to stochastic Markov processes for populations with
uncertainty in transition rates, we turn to population models (labeled proliferating cells [17],
mosquitofish [7, 14], shrimp [5, 9, 10]) where we have used structured dynamical models with
uncertainty. The probabilistic formulation we present is motivated by the observation that
in populations, intrinsic variables (genetic differences or non-lethal infections of some chronic
disease) can have an effect on individual class transition rates. For example, in many marine
species such as mosquitofish, females grow faster than males, which means that individuals
with the same size may have different growth rates. In labeled cell populations where label
intensity is the structure variable, label decay rates may vary across individuals during
cell proliferation due to variable decay in cell cycle stages. The probabilistic formulation
is constructed based on the assumption that each individual does change according to a

deterministic rate model
dx

dt
(t) = g(x, t) as posited in the Sinko-Streifer [32] formulation,

but that different individuals may have different structure-dependent rates. Based on this
underlying assumption, one partitions the entire population into (possibly a continuum of)
subpopulations where individuals in each subpopulation have the same structure-dependent
transition rates, and then assigns a probability distribution to this partition of possible
transition rates in the population.

To be more precise here we can describe this construction in terms of population growth
models where size (length in mosquitofish, weight in shrimp) is the structure variable. Then
the growth process for individuals in a subpopulation with rate g is assumed to be described
by the dynamics

dx(t; g)

dt
= g(x(t; g), t), g ∈ G, (1.6)

where G is a collection of admissible rates. Model (1.6) combined with the probability
distribution imposed on G will be called the probabilistic rate distribution (PRD) model in
this paper. Hence, we can see that for the probabilistic formulation, the rate uncertainty is
introduced into the entire population by the variability of transition (growth) rates among
subpopulations. In the literature for size-structured population models, it is common to
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assume that growth rate is a nonnegative function, that is, no loss in size occurs. However,
individuals may experience loss in size due to disease or some other involuntary factors.
Hence, we will permit these situations in this formulation, but for simplicity we assume that
growth rate in each subpopulation is either a nonnegative function or a negative function,
that is, the size of each individual may be either nondecreasing or decreasing continuously
in its growth period.

With this assumption of a family of admissible transition rates and an associated probability
distribution (i.e., the PRD model), one can obtain a generalization of the Sinko-Streifer model
for densities as a function of time and structure variables. (This was called the growth rate
distribution or (GRD) model as formulated and studied in [4, 6, 7, 12, 14].) The model,
which here will be called the class rate distribution-Sinko-Streifer (CRDSS) model, consists
of solving

vt(x, t; g) + (g(x, t)v(x, t; g))x = 0, x ∈ (0, L), t > 0,

g(0, t)v(0, t; g) = 0 if g ≥ 0 or g(L, t)v(L, t; g) = 0 if g < 0,

v(x, 0; g) = v0(x; g),

(1.7)

for a given g ∈ G and then “summing” (with respect to the probability) the corresponding
solutions over all g ∈ G. If v(x, t; g) is the population density of individuals with class
structure value x at time t having transition rate g, the expectation of the total population
density for class x at time t is given by

u(x, t) =

∫

g∈G

v(x, t; g)dP(g), (1.8)

where P is a probability measure on G. Hence the CRDSS model consists of the Sinko-
Streifer equation (1.7) with (1.8) to compute the population density u(x, t). Thus, this
probabilistic formulation involves a stationary probabilistic structure on a family of deter-
ministic dynamical systems, and P is the fundamental “parameter” that is to be estimated
by either parametric or nonparametric methods (which depends on the prior information
known about the form for P). As detailed in [7, 12], this class rate distribution model is
sufficiently rich to exhibit a number of phenomena of interest, for example, dispersion and
development of two modes from one. Moreover, of paramount importance to us here, this
formulation offers tremendous computational advantages in that it is what may be accurately
termed embarrassingly parallel [14].

Observe that if all the subpopulations have nonnegative rate functions, then we need to set
g(L, t)v(L, t; g) = 0 for each g ∈ G in order to provide a conservation law for the CRDSS
model. Specifically if L denotes the maximum attainable class value of individuals in a life
time, then it is reasonable to set g(L, t) = 0 (as commonly done in the literature). However, if
we just consider the model in a short time period, then we may choose L sufficiently large so
that v(L, t) is negligible or zero if possible. We observe that if there exist some subpopulations
whose rates are negative, then we can not provide a conservation law for these subpopulations
as g(0, t) < 0. Hence, in this case, once the class value of an individual is decreased to below
the minimum value, then that individual will be removed from the system. In other words,
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we exclude those individuals whose class value go below the minimum size. This effectively
serves as a sink for these subpopulations.

2 Summary of Previous Findings

We compare here the probabilistic formulation approach to incorporating the class rate
uncertainty into a structured population model with the stochastic formulation of Section
1.1.

The discussions in Sections 1.1 and 1.2 indicate that these two formulations are conceptually
quite different. One entails imposing a probabilistic structure on the set of possible transition
rates permissible in the entire population while the other involves formulating transition as
a stochastic diffusion process. However, the analysis in [9] reveals that in some cases the
structure distribution (the probability density function of X(t)) obtained from the stochastic
rate model is exactly the same as that obtained from the PRD model. For example, if we
consider the two models

stochastic formulation: dX(t) = b0(X(t) + c0)dt+
√

2tσ0(X(t) + c0)dW (t)

probabilistic formulation:
dx(t; b)

dt
= (b− σ2

0t)(x(t; b) + c0), b ∈ R,

B ∼ N (b0, σ
2
0),

(2.1)

and assume their initial structure distributions are the same, then we obtain at each time
t the same structure distribution from these two distinct formulations. Here b0, σ0 and c0
are positive constants (for application purposes), and B is a normal random variable with
b a realization of B. Moreover, by using the same analysis as in [9] we can show that if we
compare

stochastic formulation: dX(t) = (b0 + σ2
0t)(X(t) + c0)dt+

√
2tσ0(X(t) + c0)dW (t)

probabilistic formulation:
dx(t; b)

dt
= b(x(t; b) + c0), b ∈ R with B ∼ N (b0, σ

2
0)

(2.2)

with the same initial structure distributions, then we can also obtain at each time t the
same structure distribution for these two formulations. In addition, we see that both the
stochastic rate models and the probabilistic rate models in (2.1) and (2.2) reduce to the same
deterministic growth model ẋ = b0(x+ c0) when there is no uncertainty or variability in rate
(i.e., σ0 = 0) even though both models in (2.2) do not satisfy the mean rate dynamics

dE(X(t))

dt
= b0(E(X(t)) + c0) (2.3)

while both models in (2.1) do. This last observation was critical in the early efforts of [9, 10]
which were derived under the additional constraint that (2.3) must hold. This was motivated
by available shrimp data of longitudinal measurements of average shrimp weight (in gms),

7



i.e., an observation of x̄(t) = E(X(t)). In this earlier work it was found that an affine growth

law
dx̄(t)

dt
= g(x̄(t)) = b0(x̄(t) + c0) yields a good fit to this data for early shrimp growth.

This led to a search for equivalent mathematical representations which also satisfied this
extra condition.

More specifically, one can prove that the formulations in (2.1) generate stochastic processes
X(t) which both satisfy the mean rate dynamics (2.3) and yield processes

X(t) = −c0 + (X0 + c0)Y (t),

where
YPRD(t) = exp(Bt− 1

2
σ2

0t
2), where B ∼ N (b0, σ

2
0), (2.4)

YSRM(t) = exp

(

(b0t− 1

2
σ2

0t
2) + σ0

∫ t

0

√
2τdW (τ)

)

. (2.5)

Moreover it was shown that for each time t, both YPRD(t) and YSRM(t) are normally dis-
tributed with identical means and variances. Thus under the additional reasonable assump-
tion (trivially true for non-random initial condition) that the random variables X0 and each
of YPRD(t) and YSRM(t) are independent we find that each of the stochastic processes de-
rived from (2.1) possess at each time t the same distribution. That is, at each time t each of
the processes X(t) have the same probability density. Finally, the two stochastic processes
are NOT the same. This can be seen immediately from (2.4) and (2.5), but also from a
direct calculation of the covariances for YPRD and YSRM which we shall carry out below. In
summary, while the two formulations of (2.1) generally lead to different processes, one can
argue that they are equivalent in the sense that they possess the same probability density
at any time t. For the subsequent discussions in this presentation, we shall refer to this as
pointwise equivalence in density. This density must satisfy the corresponding Fokker-Planck
or Forward Kolmogorov equation for the stochastic formulation in (2.1). Thus if one wishes
to obtain a numerical solution of such a Fokker-Planck equation, one possibility is to consider
the numerical solution of the equivalent but more readily solved CRDSS formulation of (2.1).
For the particular forms of (2.1) and (2.2), this approach was demonstrated to be a compu-
tationally advantageous strategy in [11]. These findings lead to a natural research question:
Are there general classes of Fokker-Planck equations that can be converted to an equivalent
(in the distributional sense described above) CRDSS which can be efficiently solved numer-
ically for the desired probability density function? A positive answer to this question is the
primary focus of this paper and results are given in the next sections. In particular in the
next section we develop general techniques to show equivalence for large classes of affine
differential equations.
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3 Equivalence between Probabilistic and Stochastic For-

mulations with Affine Dynamics

In this section, we turn to several class of examples with affine dynamics for which one
can establish the desired equivalence between the probabilistic and stochastic formulations
given above. The probabilistic formulations we consider here involve a finite-dimensional
parameter family of structure rates of change. For example, if the probabilistic formulation
is governed by scalar differential equations, then we assume that all the subsystems have the
same functional form g(x, t;b) for the structure rates of change but the values of parameters
b = (b0, b1, . . . , bn−1)

T vary across the system.

In establishing our results (and to discuss corresponding covariances below), the following
relationship between normal distribution and log-normal distribution [21, page 109] is heavily
used.

Lemma 3.1 If lnZ ∼ N (µ, σ2), then Z is log-normally distributed, where its probability
density function fZ(z) is defined by

fZ(z) =
1

z
√

2πσ
exp

(

−(ln z − µ)2

2σ2

)

,

and its mean and variance are given as follows

E(Z) = exp(µ+ 1

2
σ2), Var(Z) = [exp(σ2) − 1] exp(2µ+ σ2).

In our subsequent arguments we shall also need the following basic result on the process
generated by Ito integrals of Wiener processes that can be found in [27, Sec 4.3, Thm 4.11].

Lemma 3.2 Let T be any positive constant. Then for a non-random function f ∈ L2(0, T ),

the Ito integrals Q(t) =

∫ t

0

f(s)dW (s) for 0 < t ≤ T yield a Gaussian stochastic process with

pointwise distributions N
(

0,

∫ t

0

f 2(s)ds

)

. Moreover, Cov(Q(t), Q(t+ τ)) =

∫ t

0

f 2(s)ds for

all τ ≥ 0.

3.1 Scalar Differential Equations - Case I

In the first case we derive conditions under which the probabilistic and stochastic formula-
tions generate stochastic processes with the same distributions (normal in the case the initial
condition is a fixed constant) at each time t.
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Probabilistic formulation The probabilistic formulation considered has the following
form

dx(t;b)

dt
= α(t)x(t;b) + γ(t) + b · ̺(t), b = (b0, b1, . . . , bn−1)

T ∈ R
n

Bj ∼ N (µj, σ
2
j ), j = 0, 1, 2, . . . , n− 1, which are mutually independent,

(3.1)

where α, γ and ̺ = (̺0, ̺1, . . . , ̺n−1)
T are non-random functions of t, and b is chosen as

realizations of B = (B0, B1, . . . , Bn−1)
T . Hence, the dynamics of an individual with initial

condition x0 in a subsystem with its rates of change having parameter values b is described
by the deterministic model

dx(t;b)

dt
= α(t)x(t;b) + γ(t) + b · ̺(t), x(0) = x0.

Multiplying both sides of the above equation by the integrating factor exp

(

−
∫ t

0

α(s)ds

)

we find that

d

dt

[

x exp

(

−
∫ t

0

α(s)ds

)]

= γ(t) exp

(

−
∫ t

0

α(s)ds

)

+ b · ̺(t) exp

(

−
∫ t

0

α(s)ds

)

.

We then integrate both sides of the above equation to obtain

x(t; x0,b) = x0 exp

(
∫ t

0

α(s)ds

)

+

∫ t

0

γ(s) exp

(
∫ t

s

α(τ)dτ

)

ds

+b ·
∫ t

0

̺(s) exp

(
∫ t

s

α(τ)dτ

)

ds.

(3.2)

We assume that all the subsystems have the same probability density function for initial
condition X0, which is independent of Bj , j = 0, 1, 2, . . . , n− 1. Let X(t) = x(t;X0,B) and

Y (t) =

∫ t

0

γ(s) exp

(
∫ t

s

α(τ)dτ

)

ds+ B ·
∫ t

0

̺(s) exp

(
∫ t

s

α(τ)dτ

)

ds.

Then we have that

X(t) = X0 exp

(
∫ t

0

α(s)ds

)

+ Y (t). (3.3)

Note that Bj ∼ N (µj, σ
2
j ), and Bj , j = 0, 1, 2, . . . , n− 1, are mutually independent. Hence,

we find that for any fixed t, Y (t) is normally distributed with mean defined by

∫ t

0

(γ(s) + µ · ̺(s)) exp

(
∫ t

s

α(τ)dτ

)

ds, (3.4)

where µ = (µ0, µ1, . . . , µn−1)
T , and variance defined by

n−1
∑

j=0

σ2
j

[
∫ t

0

̺j(s) exp

(
∫ t

s

α(τ)dτ

)

ds

]2

. (3.5)
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Stochastic formulation Based on the above discussions of the probabilistic formulation
(3.1) we see that if all the individuals in the entire system have the same fixed initial condition
x0, then X(t) is also normally distributed for any fixed time t. Based on this piece of
information, the stochastic model is chosen to have the form

dX(t) = [α(t)X(t) + ξ(t)]dt+ η(t)dW (t), X(0) = X0, (3.6)

where α, ξ and η are non-random functions of t, and X0 is independent of W (t). Multiplying

both sides of the above equation by exp

(

−
∫ t

0

α(s)ds

)

we find that

d

[

X(t) exp

(

−
∫ t

0

α(s)ds

)]

= ξ(t) exp

(

−
∫ t

0

α(s)ds

)

dt+ η(t) exp

(

−
∫ t

0

α(s)ds

)

dW (t).

Integrating both sides of the above equation we obtain that

X(t) = X0 exp

(
∫ t

0

α(s)ds

)

+ Y (t), (3.7)

where Y (t) is defined by

Y (t) =

∫ t

0

ξ(s) exp

(
∫ t

s

α(τ)dτ

)

ds+exp

(
∫ t

0

α(τ)dτ

)
∫ t

0

η(s) exp

(

−
∫ s

0

α(τ)dτ

)

dW (s).

By Lemma 3.2, for any fixed t we have that
∫ t

0

η(s) exp

(

−
∫ s

0

α(τ)dτ

)

dW (s) ∼ N
(

0,

∫ t

0

[

η(s) exp

(

−
∫ s

0

α(τ)dτ

)]2

ds

)

.

Thus, we find that

Y (t) ∼ N
(

∫ t

0

ξ(s) exp

(
∫ t

s

α(τ)dτ

)

ds,

∫ t

0

[

η(s) exp

(
∫ t

s

α(τ)dτ

)]2

ds

)

. (3.8)

Equivalent conditions By (3.3), (3.4), (3.5), (3.7) and (3.8), we know that if functions
ξ, η and ̺j , and constants µj, σj and n satisfy the following two equalities

∫ t

0

ξ(s) exp

(
∫ t

s

α(τ)dτ

)

ds =

∫ t

0

[γ(s) + µ · ̺(s)] exp

(
∫ t

s

α(τ)dτ

)

ds (3.9)

and
∫ t

0

[

η(s) exp

(
∫ t

s

α(τ)dτ

)]2

ds =

n−1
∑

j=0

σ2
j

[
∫ t

0

̺j(s) exp

(
∫ t

s

α(τ)dτ

)

ds

]2

, (3.10)

then the probabilistic formulation (3.1) and the stochastic formulation (3.6) yield stochastic
processes that are pointwise equivalent in density.

Based on the equivalent conditions (3.9) and (3.10), we will derive the specific forms of the
functional parameters and/or values of the parameters of the corresponding pointwise equiv-
alent (stochastic/probabilistic) formulation in terms of the functional parameters and/or
parameters of the known (probabilistic/stochastic) formulation.
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3.1.1 Probabilistic Formulation to Stochastic Formulation

Here we assume that probabilistic formulation (3.1) is known, and we want to determine its
corresponding stochastic formulation. In other words, we need to determine functions ξ and
η in terms of functions γ and ̺j, and constants µj, σj and n. By (3.9), it is obvious that if
function ξ is chosen to be

ξ(t) = γ(t) + µ · ̺(t),

then (3.9) holds. Differentiating both sides of (3.10) with respect to t yields that

η2(t) + 2α(t)
n−1
∑

j=0

σ2
j

[
∫ t

0

̺j(s) exp

(
∫ t

s

α(τ)dτ

)

ds

]2

= 2

n−1
∑

j=0

σ2
j

[

̺j(t) + α(t)

∫ t

0

̺j(s) exp

(
∫ t

s

α(τ)dτ

)

ds

]
∫ t

0

̺j(s) exp

(
∫ t

s

α(τ)dτ

)

ds,

which can be simplified as follows

η2(t) = 2

n−1
∑

j=0

σ2
j ̺j(t)

∫ t

0

̺j(s) exp

(
∫ t

s

α(τ)dτ

)

ds.

Hence, if ̺ is assumed to have the property that the right-hand-side of the above equation
is nonnegative for any t ≥ 0, then we can choose η to be

η(t) =

[

2

n−1
∑

j=0

σ2
j ̺j(t)

∫ t

0

̺j(s) exp

(
∫ t

s

α(τ)dτ

)

ds

]

1

2

so that (3.10) holds.

3.1.2 Stochastic Formulation to Probabilistic Formulation

Next we assume that stochastic formulation (3.6) is known, and we wish to determine its
corresponding probabilistic formulation. In other words, we need to determine functions γ
and ρj , and constants µj, σj and n in terms of functions ξ and η. It is obvious that if we set

γ(t) + µ · ̺(t) = ξ(t), (3.11)

then (3.9) holds. By (3.11) and (3.10) we know that we have numerous different choices for
the probabilistic formulation. Here we illustrate two of them.

Choice 1 One of the simple choices is to choose

n = 2, γ ≡ 0, µ0 = 1, µ1 = 0, ̺0(t) = ξ(t). (3.12)

12



Then by the above equalities and (3.10) we have

σ2
1

[
∫ t

0

̺1(s) exp

(
∫ t

s

α(τ)dτ

)

ds

]2

=

∫ t

0

η2(s) exp

(

2

∫ t

s

α(τ)dτ

)

ds− σ2
0

[
∫ t

0

ξ(s) exp

(
∫ t

s

α(τ)dτ

)

ds

]2

,

(3.13)

which implies that we need to choose σ0 sufficiently small such that its right-hand side is
greater than 0. Now by (3.13) we have

σ1

∫ t

0

̺1(s) exp

(
∫ t

s

α(τ)dτ

)

ds

=

[

∫ t

0

η2(s) exp

(

2

∫ t

s

α(τ)dτ

)

ds− σ2
0

(
∫ t

0

ξ(s) exp

(
∫ t

s

α(τ)dτ

)

ds

)2
]

1

2

.

Differentiating both sides of the above equation with respect to t we obtain that

σ1̺1(t) =
d

dt

[

∫ t

0

η2(s) exp

(

2

∫ t

s

α(τ)dτ

)

ds− σ2
0

(
∫ t

0

ξ(s) exp

(
∫ t

s

α(τ)dτ

)

ds

)2
]

1

2

−α(t)

[

∫ t

0

η2(s) exp

(

2

∫ t

s

α(τ)dτ

)

ds− σ2
0

(
∫ t

0

ξ(s) exp

(
∫ t

s

α(τ)dτ

)

ds

)2
]

1

2

.

Hence, we can just assign any positive value for σ1, and then use the above equality to
determine function ̺1. Hence, one simple choice of the corresponding pointwise equivalent
probabilistic formulation for (3.6) is as follows

dx(t; b0, b1)

dt
= α(t)x(t; b0, b1) + b0ξ(t) + b1̺1(t), b0, b1 ∈ R,

B0 ∼ N (1, σ2
0), B1 ∼ N (0, σ2

1),

where σ0, σ1 and ̺1 are chosen according to the above discussions.

Choice 2 Another simple choice is to choose

n = 1, γ(t) = ξ(t), µ0 = 0, σ0 = 1.

Thus, by the above equalities and (3.10) we find

∫ t

0

̺0(s) exp

(
∫ t

s

α(τ)dτ

)

ds =

(
∫ t

0

η2(s) exp

(

2

∫ t

s

α(τ)dτ

)

ds

)

1

2

. (3.14)
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Differentiating both sides of the above equation with respect to t we have that

̺0(t) =
d

dt





(
∫ t

0

η2(s) exp

(

2

∫ t

s

α(τ)dτ

)

ds

)

1

2





−α(t)

[
∫ t

0

η2(s) exp

(

2

∫ t

s

α(τ)dτ

)]

1

2

.

(3.15)

Hence, another simple choice of the corresponding pointwise equivalent probabilistic formu-
lation for (3.6) is as follows

dx(t; b)

dt
= α(t)x(t; b) + ξ(t) + b̺0(t), b ∈ R,

B ∼ N (0, 1),

where ̺0 is defined by (3.15).

3.2 Scalar Differential Equations - Case II

In this section, we consider examples where the probabilistic and stochastic formulations lead
to processes that have pointwise equivalent densities (either log-normal or shifted log-normal,
depending on the value of the parameter (see details below), when the initial condition is a
fixed constant).

Probabilistic formulation The probabilistic formulation considered has the form

dx(t;b)

dt
= (b · ρ(t) + γ(t))(x(t;b) + c), b = (b0, b1, . . . , bn−1)

T ∈ R
n

Bj ∼ N (µj, σ
2
j ), j = 0, 1, 2, . . . , n− 1, which are mutually independent,

(3.16)

where b is a realization of B = (B0, B1, . . . , Bn−1)
T , ρ = (ρ0, ρ1, . . . , ρn−1)

T is a non-random
vector functions of t, γ is a non-random function of t, and c is a given constant. Hence, it is
easy to see that the solution to the first equation of (3.16) with initial condition x(0) = x0

is given by

x(t; x0,b) = −c+ (x0 + c) exp

(

b ·
∫ t

0

ρ(s)ds+

∫ t

0

γ(s)ds

)

. (3.17)

Assume that all the subsystems have the same probability density function for initial condi-
tion X0, which is independent of Bj, j = 0, 1, 2, . . . , n− 1. Let X(t) = x(t;X0,B) and

Y (t) = B ·
∫ t

0

ρ(s)ds+

∫ t

0

γ(s)ds.

Then we have
X(t) = −c+ (X0 + c) exp(Y (t)). (3.18)
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Since Bj ∼ N (µj, σ
2
j ), and Bj, j = 0, 1, 2, . . . , n− 1, are mutually independent, we find that

Y (t) ∼ N
(

∫ t

0

(µ · ρ(s) + γ(s)) ds,
n−1
∑

j=0

σ2
j

(
∫ t

0

ρj(s)ds

)2
)

. (3.19)

Stochastic formulation By the above discussions on the probabilistic formulation (3.16),
we see that if all the individuals in the entire system have the same fixed initial condition x0,
then for any fixed t, X(t) has a log-normal distribution when c = 0, and a shifted log-normal
distribution when c is nonzero. Based on this information, the stochastic model is chosen to
have the form

dX(t) = ξ(t)(X(t) + c)dt+ η(t)(X(t) + c)dW (t), X(0) = X0, (3.20)

where both ξ and η are non-random functions of t, and X0 is independent of W (t). Let
h(x, t) = ln(x+ c). Then we have

ht(x, t) = 0, hx(x, t) =
1

x+ c
, hxx(x, t) = − 1

(x+ c)2
.

Hence, by Ito’s formula, we have

dh(X(t), t) = (ξ(t) − 1

2
η2(t))dt+ η(t)dW (t).

Integrating both sides we have

X(t) = −c+ (X0 + c) exp(Y (t)). (3.21)

where Y (t) =

∫ t

0

(ξ(s)− 1

2
η2(s))ds+

∫ t

0

η(s)dW (s). By Lemma 3.2, for any fixed t we have

that
∫ t

0

η(s)dW (s) ∼ N
(

0,

∫ t

0

η2(s)ds

)

.

Hence, we find that for any fixed t we have

Y (t) ∼ N
(
∫ t

0

(ξ(s) − 1

2
η2(s))ds,

∫ t

0

η2(s)ds

)

. (3.22)

Equivalent conditions By (3.18), (3.19), (3.21), and (3.22), we see that if functions ξ, η
and ρj , and constants µj, σj and n satisfy the following two equalities

∫ t

0

(ξ(s) − 1

2
η2(s))ds =

∫ t

0

(µ · ρ(s) + γ(s)) ds (3.23)

and
∫ t

0

η2(s)ds =

n−1
∑

j=0

σ2
j

(
∫ t

0

ρj(s)ds

)2

, (3.24)
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then probabilistic formulation (3.16) and stochastic formulation (3.20) yield processes that
are pointwise equivalent in density.

Based on the above equivalent conditions, we next derive the specific forms of the func-
tional parameters and/or values of the parameters of the corresponding pointwise equivalent
(stochastic/probabilistic) formulation in terms of the functional parameters and/or param-
eters of the known (probabilistic/stochastic) formulation.

3.2.1 Probabilistic Formulation to Stochastic Formulation

Here we assume that probabilistic formulation (3.16) is known, and we wish to determine
its corresponding pointwise equivalent stochastic formulation. Differentiating both sides of
(3.24) with respect to t we have

η2(t) = 2
n−1
∑

j=0

σ2
j ρj(t)

(
∫ t

0

ρj(s)ds

)

.

Hence, if we assume that ρj(t), j = 0, 1, 2, . . . , n− 1 have the property that the right-hand-
side of the above equation is nonnegative for any t ≥ 0, then we can always find η such that
(3.24) holds, and it is given by

η(t) =

[

2
n−1
∑

j=0

σ2
jρj(t)

(
∫ t

0

ρj(s)ds

)

]

1

2

. (3.25)

By (3.23) and (3.24) we find that

∫ t

0

ξ(s)ds =

∫ t

0

(µ · ρ(s) + γ(s)) ds+
1

2

n−1
∑

j=0

σ2
j

(
∫ t

0

ρj(s)ds

)2

.

Differentiating both sides of the above equation with respect to t yields

ξ(t) = µ · ρ(t) + γ(t) +
n−1
∑

j=0

σ2
jρj(t)

(
∫ t

0

ρj(s)ds

)

. (3.26)

Thus, if ξ and η are chosen as those in (3.26) and (3.25), then both (3.23) and (3.24) hold.

3.2.2 Stochastic Formulation to Probabilistic Formulation

Now we assume that stochastic formulation (3.20) is known, and we wish to determine its
corresponding probabilistic formulation. It is obvious that if we set

µ · ρ(t) + γ(t) = ξ(t) − 1

2
η2(t), (3.27)

then (3.23) holds. By (3.27) and (3.24) we know that we have lots of different choices for
the probabilistic formulation. Here we illustrate two of them.
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Choice 1 One simple choice is to choose

n = 2, γ ≡ 0, µ0 = 1, µ1 = 0, ρ0(t) = ξ(t) − 1

2
η2(t). (3.28)

Then by the above equalities, (3.24) and (3.27) we obtain that

σ2
1

(
∫ t

0

ρ1(s)ds

)2

=

∫ t

0

η2(s)ds− σ2
0

(
∫ t

0

(ξ(s) − 1

2
η2(s))ds

)2

, (3.29)

which implies that we need to choose σ0 sufficiently small such that its right-hand side is
greater than 0. Now by (3.29) we have

σ1

∫ t

0

ρ1(s)ds =

[

∫ t

0

η2(s)ds− σ2
0

(
∫ t

0

(ξ(s) − 1

2
η2(s))ds

)2
]

1

2

.

Differentiating both sides of above equation with respect to t we obtain that

σ1ρ1(t) =
d

dt

[

∫ t

0

η2(s)ds− σ2
0

(
∫ t

0

(ξ(s) − 1

2
η2(s))ds

)2
]

1

2

.

Hence, we can just assign any positive value for σ1, and then use the above equality to
determine function ρ1. Thus, one simple choice of the corresponding pointwise equivalent
probabilistic formulation for the stochastic formulation (3.20) is as follows

dx(t; b0, b1)

dt
=
[

b0
(

ξ(t) − 1

2
η2(t)

)

+ b1ρ1(t)
]

(x(t; b0, b1) + c), b0, b1 ∈ R,

B0 ∼ N (1, σ2
0), B1 ∼ N (0, σ2

1),

where σ0, σ1 and ̺1 are chosen according to the above discussions.

Choice 2 Another simple choice is to choose

n = 1, γ(t) = ξ(t) − 1

2
η2(t), µ0 = 0, σ0 = 1.

Then by the above equalities and (3.24) we obtain that

∫ t

0

ρ0(s)ds =

(
∫ t

0

η2(s)ds

)

1

2

. (3.30)

Hence, if we set

ρ0(t) =
d

dt





(
∫ t

0

η2(s)ds

)

1

2



 , (3.31)

then (3.30) holds. Thus, another simple choice of the corresponding pointwise equivalent
probabilistic formulation for the stochastic formulation (3.20) is as follows

dx(t; b)

dt
=
(

bρ0(t) + ξ(t) − 1

2
η2(t)

)

(x(t; b) + c), b ∈ R,

B ∼ N (0, 1),

where function ρ0 is defined by (3.31).
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3.3 System of Differential Equations

In this section, we derive the conditions for the systems under which the probabilistic and
stochastic formulations have the same distribution (multivariate normal in the case the initial
condition is a constant vector) at each time t.

Probabilistic formulation The probabilistic formulation considered has the following
form

dx(t;b)

dt
= A(t)x(t;b) + γ(t) + H(t)b, b ∈ R

n,

B ∼ N (µ
B
,ΣB),

(3.32)

where A is a non-random m×m matrix functions of t, γ is a non-random m vector functions
of t, H is a non-random m×n matrix functions of t, and b is a realization of B. The solution
to the first equation of (3.32) with initial conditions x(0) = x0 is given by

x(t;x0,b) = Φ(t)x0 + Φ(t)

[
∫ t

0

Φ−1(s)γ(s)ds+

∫ t

0

Φ−1(s)H(s)bds

]

. (3.33)

Here Φ(t) is the solution of deterministic initial value problem

dΦ(t)

dt
= A(t)Φ(t), Φ(0) = Im, (3.34)

where Im is m ×m identity matrix. Assume that all the subsystems have the same proba-
bility density function for initial condition X0, which is independent of B, and let X(t) =
x(t;X0,B) and

Y(t) = Φ(t)

[
∫ t

0

Φ−1(s)γ(s)ds+

∫ t

0

Φ−1(s)H(s)Bds

]

.

Then we have that
X(t) = Φ(t)X0 + Y(t). (3.35)

Note that B ∼ N (µ
B
,ΣB). Hence, we find that for any fixed t we have

Y(t) ∼ N
(

Φ(t)

∫ t

0

Φ−1(s) (γ(s) + H(s)µ
B
) ds,Φ(t)Πp(t)(Φ(t))T

)

, (3.36)

where

Πp(t) =

[
∫ t

0

Φ−1(s)H(s)ds

]

ΣB

[
∫ t

0

Φ−1(s)H(s)ds

]T

.
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Stochastic formulation By the above discussions on the probabilistic formulation (3.32),
we see that if all the individuals in the entire system have the same fixed initial condition
x0, then X(t) is multivariate normal distributed for any fixed time t. Based on this piece of
information, the stochastic model is chosen to have the following form:

dX(t) = [A(t)X(t) + ξ(t)]dt+ F(t)dW(t), X(0) = X0, (3.37)

where ξ is a non-random m vector functions of t, F is a non-random m× l matrix function of
t, and W(t) = (W1(t),W2(t), . . . ,Wl(t))

T is a l-vector standard Wiener process independent
of initial vector X0. Then the solution to (3.37) is given by (e.g., see [26, Section 5.6])

X(t) = Φ(t)X0 + Y(t), (3.38)

where Y(t) is defined by

Y(t) = Φ(t)

[
∫ t

0

Φ−1(s)ξ(s)ds+

∫ t

0

Φ−1(s)F(s)dW(s)

]

.

In addition, for any fixed t we have (e.g., see [26, Section 5.6])

Y(t) ∼ N
(

Φ(t)

∫ t

0

Φ−1(s)ξ(s)ds, Φ(t)Πs(t)(Φ(t))T

)

, (3.39)

where

Πs(t) =

∫ t

0

Φ−1(s)F(s)
(

Φ−1(s)F(s)
)T
ds.

Equivalent conditions By (3.35), (3.36), (3.38) and (3.39), we know that if functions ξ,
F , γ, H, µ

B
and ΣB satisfy the following two equalities

∫ t

0

Φ−1(s) (γ(s) + H(s)µ
B
) ds =

∫ t

0

Φ−1(s)ξ(s)ds, (3.40)

and Πp(t) = Πs(t), that is,

[
∫ t

0

Φ−1(s)H(s)ds

]

ΣB

[
∫ t

0

Φ−1(s)H(s)ds

]T

=

∫ t

0

Φ−1(s)F(s)
(

Φ−1(s)F(s)
)T
ds,

(3.41)
then probabilistic formulation (3.32) and stochastic formulation (3.37) are pointwise equiv-
alent in density.

Next we will derive the specific forms of the functional parameters and/or values of the pa-
rameters of the corresponding pointwise equivalent (stochastic/probabilistic) formulation in
terms of the functional parameters and/or parameters of the known (probabilistic/stochastic)
formulation based on the equivalent conditions (3.40) and (3.41).
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3.3.1 Probabilistic Formulation to Stochastic Formulation

Here we assume that probabilistic formulation (3.32) is known, and we want to determine
its corresponding pointwise stochastic formulation. By (3.40), it is obvious that if function
ξ is chosen to be

ξ(t) = γ(t) + H(t)µ
B
,

then (3.40) holds. Differentiating both sides of (3.41) with respect to t we find that

F(t)FT (t) = Φ(t)Π̇p(t)(Φ(t))T . (3.42)

Hence, if we assume Πp have the property that Φ(t)Π̇p(t)(Φ(t))T is a positive-semidefinite
matrix for any t ≥ 0, then we can always find F such that (3.42) holds.

3.3.2 Stochastic Formulation to Probabilistic Formulation

Now we assume that stochastic formulation (3.37) is known, and we want to determine its
corresponding pointwise equivalent probabilistic formulation. It is obvious if γ, H and µ

B

are chosen such that
γ(t) + H(t)µ

B
= ξ(t),

then (3.40) holds. Note that H also needs to be properly chosen to satisfy (3.41). Hence,
for simplicity, we choose

γ(t) = ξ(t), µ
B

= 0. (3.43)

Note that for any t ≥ 0, Πs(t) is a positive-semidefinite matrix. Hence, there exists a m×m
matrix function Λ(t) such that

Πs(t) = Λ(t)(Λ(t))T .

Thus, if we choose
n = m, ΣB = Im, H(t) = Φ(t)Λ̇(t), (3.44)

then (3.41) holds. Therefore, one of the simple choices of the corresponding pointwise equiv-
alent probabilistic formulation for the stochastic formulation (3.37) is as follows

dx(t;b)

dt
= A(t)x(t;b) + ξ(t) + Φ(t)Λ̇(t)b, b ∈ R

m,

B ∼ N (0, Im).

(3.45)

4 Computing Covariances

As we have already stated, the procedures above lead to pointwise equivalent in density
systems that are not described by the same stochastic processes. We revisit the examples
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of (2.1) to illustrate this by comparing covariances of the two processes. We proceed to use
the Lemmas 3.1 and 3.2 to find the covariance function of the stochastic processes YPRD(t)
in the probabilistic formulation (2.4) and YSRM(t) in the stochastic formulations (2.5).

Probabilistic formulation: Note that for this case YPRD is given by

YPRD(t) = exp(Bt− 1

2
σ2

0t
2), where B ∼ N (b0, σ

2
0).

Hence, by Lemma 3.1 we find immediately

E(YPRD(t)) = exp(b0t). (4.1)

Then using Lemma 3.1 and (4.1) we find the covariance function for the process {Y (t)} =
{YPRD(t)} given by

Cov(Y (t), Y (s)) = E(Y (t)Y (s)) − E(Y (t))E(Y (s))

= E
{

exp
(

B(t+ s) − 1

2
σ2

0(t
2 + s2)

)}

− exp(b0(t + s))

= exp
(

b0(t+ s) − 1

2
σ2

0(t
2 + s2) + 1

2
σ2

0(t + s)2
)

− exp(b0(t + s))

= exp
(

b0(t+ s) + stσ2
0

)

− exp(b0(t+ s))

= exp(b0(t + s))
[

exp
(

stσ2
0

)

− 1
]

.

Stochastic formulation: In this case we have

YSRM(t) = exp

(

(b0t− 1

2
σ2

0t
2) + σ0

∫ t

0

√
2τdW (τ)

)

.

Let Q(t) = σ0

∫ t

0

√
2τdW (τ). Then by Lemma 3.2, we have that {Q(t)} is a Gaussian

process with zero mean and covariance function given by

Cov(Q(t), Q(s)) = σ2
0 min{t2, s2}. (4.2)

Using Lemma 3.1 and (4.2) we find that

E(YSRM(t)) = exp(b0t). (4.3)

By Lemma 3.2 we know that {Q(t)} is a Gaussian process. Hence, Q(t)+Q(s) has a Gaussian
distribution with zero mean and variance defined by

Var(Q(t) +Q(s)) = Var(Q(t)) + Var(Q(s)) + 2Cov(Q(t), Q(s))

= σ2
0

(

t2 + s2 + 2 min{t2, s2}
)

.
(4.4)
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Now we use Lemma 3.1, along with equations (4.3) and (4.4) to find the covariance function
of {Y (t)} = {YSRM(t)}.

Cov(Y (t), Y (s))

= E(Y (t)Y (s)) − E(Y (t))E(Y (s))

= E
{

exp
(

b0(t + s) − 1

2
σ2

0(t
2 + s2) +Q(t) +Q(s)

)}

− exp(b0(t+ s))

= exp
(

b0(t+ s) − 1

2
σ2

0(t
2 + s2) + 1

2
σ2

0

(

t2 + s2 + 2 min{t2, s2}
))

− exp(b0(t+ s))

= exp
(

b0(t+ s) + σ2
0 min{t2, s2}

)

− exp(b0(t+ s))

= exp(b0(t+ s))
[

exp
(

σ2
0 min{t2, s2}

)

− 1
]

.

Thus we see that {YPRD(t)} and {YSRM(t)} have different covariance functions and hence
are not the same stochastic process.

5 Equivalence between Probabilistic and Stochastic For-

mulations with Nonlinear Dynamics

In this section we turn to nonlinear stochastic differential equations which can be shown
equivalent to a PRD formulation with nonlinear dynamics. In summary of our results to date,
based on the discussions in Sections 3.1 and 3.2, we see that we can find the corresponding
pointwise equivalent probabilistic formulation for two types of scalar stochastic differential
equations:

dX(t) = [α(t)X(t) + ξ(t)]dt+ η(t)dW (t),

and
dX(t) = ξ(t)(X(t) + c)dt+ η(t)(X(t) + c)dW (t),

where ξ, η, and α are all deterministic functions of t, and c is a given constant. In addition,
we can find the corresponding pointwise equivalent probabilistic formulation for the following
linear system of stochastic differential equations (see Section 3.3)

dX(t) = [A(t)X(t) + ξ(t)]dt+ F(t)dW(t),

where A is a non-random m×m matrix functions of t, ξ is a non-random m vector functions
of t, F is a non-random m× l matrix function of t, and W(t) = (W1(t),W2(t), . . . ,Wl(t))

T is
a l-vector standard Wiener process. Hence, if a nonlinear stochastic differential equation (or
system of stochastic differential equations) can be reduced to one of the above forms by some
invertible transformation, then one can find its corresponding probabilistic formulation. The
same thing is true for the probabilistic formulation.
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5.1 Reducible Nonlinear Stochastic Differential Equations

First we will consider several special cases of nonlinear stochastic differential equations that
can be reduced to linear stochastic differential equations after some invertible transformation.
Proofs are given in [24, Section 4.1].

Theorem 5.1 Consider the stochastic differential equation

dX(t) = g(X(t), t)dt+ σ(X(t), t)dW (t), (5.1)

where g and σ are non-random functions of x and t. If the equality

∂

∂x

{

σ(x, t)

[

1

σ2(x, t)

∂σ

∂t
(x, t) − ∂

∂x

( g

σ

)

(x, t) +
1

2

∂2σ

∂x2
(x, t)

]}

= 0

holds, then the nonzero deterministic function σ̄(t) can be determined from

σ̄′(t) = σ̄(t)σ(x, t)

[

1

σ2(x, t)

∂σ

∂t
(x, t) − ∂

∂x

(g

σ

)

(x, t) +
1

2

∂2σ

∂x2
(x, t)

]

,

and some smooth invertible function h(x, t) can be computed from

∂h

∂x
(x, t) =

σ̄(t)

σ(x, t)
.

Moreover, (5.1) can be reduced to the linear stochastic differential equation

dZ(t) = ḡ(t)dt+ σ̄(t)dW (t),

where Z(t) = h(X(t), t) and the deterministic function ḡ(t) can be computed from

ḡ(t) =
∂h

∂t
(x, t) +

∂h

∂x
(x, t)g(x, t) +

1

2

∂2h

∂x2
(x, t)σ2(x, t).

Theorem 5.2 The autonomous stochastic differential equation

dX(t) = g(X(t))dt+ σ(X(t))dW (t)

can be reduced to the linear stochastic differential equation

dZ(t) = (λ0 + λ1Z(t))dt+ (ν0 + ν1Z(t))dW (t)

if and only if

ψ′(x) = 0 or

(

(σψ′)′

ψ′

)′

(x) = 0. (5.2)

Here g and σ are non-random functions of x, λ0, λ1, ν0 and ν1 are some constants, ψ(x) =
g(x)

σ(x)
− 1

2
σ′(x), and Z(t) = h(X(t)), where h is some invertible transformation.
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If the latter part of (5.2) is satisfied, then we set ν1 = −(σψ′)′

ψ′
. If ν1 6= 0, then we can

choose

h(x) = c exp

(

ν1

∫ x

a

1

σ(τ)
dτ

)

,

where c is some constant. If ν1 = 0, then we can choose

h(x) = ν0

∫ x

a

1

σ(τ)
dτ + c.

Remark 5.3 For a general nonlinear system of stochastic differential equations, it is difficult
to obtain the explicit form for the invertible transformation (as it strongly depends on the
specific form of the system). Hence, we do not pursue this effort in this paper.

5.2 Examples

We next use several examples to illustrate this transformation method to find the correspond-
ing equivalent probabilistic/stochastic formulations for stochastic/probabilistic formulations.

Example 5.1 (Exponential Modulated Growth in the Drift)

In this example, we use the transformation method to find the equivalent probabilistic for-
mulation for the following nonlinear stochastic differential equation

dX =

[

1 − 1

2
exp(−2X)

]

dt+ exp(−X)dW.

Note here that g(x) = 1− 1

2
exp (−2x). Let Z = exp(X). Then by Ito’s formula we find that

dZ = exp(X)

{[

1 − 1

2
exp(−2X)

]

dt+ exp(−X)dW

}

+
1

2
exp(X) exp(−2X)dt

= Zdt+ dW.

By the discussions in Section 3.1.2 we find the equivalent probabilistic formulation for the
above linear stochastic differential equation is

dz(t; b)

dt
= z(t; b) + bρ(t), b ∈ R; B ∼ N (0, 1),

where ρ(t) =
exp(2t)

√

2[exp(2t) − 1]
−
√

exp(2t) − 1

2
. Let x = ln(z). Then we have

dx

dt
=

1

z
(z + bρ(t)) = 1 + bρ(t) exp(−x).
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Thus, the following two formulations

dX =

[

1 − 1

2
exp(−2X)

]

dt+ exp(−X)dW

and

dx(t; b)

dt
= 1 + b

[

exp(2t)
√

2[exp(2t) − 1]
−
√

exp(2t) − 1

2

]

exp(−x(t; b)), b ∈ R,

B ∼ N (0, 1)

are pointwise equivalent in density.

Example 5.2 (Logistics Growth Dynamics with Uncertainty)

We begin with logistic growth in the probabilistic formulation and derive its equivalent
stochastic formulation. Consider the deterministic logistic equation

dx

dt
= bx

(

1 − x

κ

)

, x(0) = x0, (5.3)

where b is some constant representing the intrinsic growth rate, and κ is a given constant

representing the carrying capacity. Let z =
1

x
. Then it is easy to find that

dz

dt
= −b

(

z − 1

κ

)

.

By the discussions in Section 3.2.1, we know that for probabilistic formulation

dz(t; b)

dt
= −b

(

z(t; b) − 1

κ

)

, b ∈ R; B ∼ N (µ0, σ
2
0),

its equivalent form of stochastic formulation is given by

dZ(t) = (−µ0 + σ2
0t)

(

Z − 1

κ

)

dt+
√

2tσ0

(

Z − 1

κ

)

dW (t).

Let X(t) =
1

Z(t)
. Then by Ito’s formula we find that

dX(t) = − 1

Z2(t)

[

(−µ0 + σ2
0t)

(

Z − 1

κ

)

dt+
√

2tσ0

(

Z − 1

κ

)

dW (t)

]

+
1

Z3(t)

[√
2tσ0

(

Z − 1

κ

)]2

dt

= X

[

(µ0 − σ2
0t)

(

1 − X

κ

)

+ 2tσ2
0

(

1 − X

κ

)2
]

dt−
√

2tσ0X

(

1 − X

κ

)

dW (t).
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Thus, the probabilistic formulation

dx(t; b)

dt
= bx(t; b)

(

1 − x(t; b)

κ

)

, b ∈ R; B ∼ N (µ0, σ
2
0) (5.4)

and the stochastic formulation

dX(t) = X

[

(µ0 − σ2
0t)

(

1 − X

κ

)

+ 2tσ2
0

(

1 − X

κ

)2
]

dt−
√

2tσ0X

(

1 − X

κ

)

dW (t)

(5.5)
are pointwise equivalent in density. Figure 1 depicts the probability density function p(x, t)
at different times t for the probabilistic formulation (5.4) and the stochastic formulation
(5.5) with κ = 100, x0 = 10, µ0 = 1 and σ0 = 0.1, where p(x, t) is obtained by simulating
105 sample paths for each formulation. Here for the probabilistic formulation (5.4), we
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Figure 1: Probability density function p(x, t) are obtained by simulating 105 sample paths
for probabilistic formulation (5.4) and stochastic formulation (5.5) at t = 1, 2, 3 and 4, where
∆t = 0.004 is used in (5.6), and T = 4.

analytically solve each deterministic differential equation (5.3) with b being a realization of
B, which follows a normal distribution N (1, 0.01). This solution is given by

x(t; b) =
x0κ exp(bt)

κ + x0(exp(bt) − 1)
.
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Thus implementation of the probabilistic formulation (PRD) is extremely rapid (essentially
a function evaluation). This is not true for the SRM and hence the PRD formulation
requires much less (orders of magnitude) implementation time than does the SRM. Even in
examples where both methods require numerical integration, the PRD is highly preferred
to the SRM in implementation of inverse problems (e.g., see [11, 14, 20]). We use an Euler
explicit method (crude but sufficient for our purposes here since our main objective is to
demonstrate our theoretical equivalence results with a numerical example) to numerically
approximate the sample paths for the stochastic differential equation (5.5). Let T denote
the final time, and m be the number of mesh points interval. Then the mesh time points
are given by tk = k∆t, k = 0, 1, 2, . . . , m, where ∆t = T/m. Denote by Xk the numerical
solution for X(tk); then we have the following numerical scheme:

Xk+1 = Xk +Xk

[

(µ0 − σ2
0tk)

(

1 − Xk

κ

)

+ 2tkσ
2
0

(

1 − Xk

κ

)2
]

∆t

−
√

2tkσ0X
k

(

1 − Xk

κ

)

Ek, k = 1, 2, . . . , m− 1.

(5.6)

where Ek is a random variable following a normal distribution N (0,∆t). From Figure 1 we
see that we obtain the same probability density function for the probabilistic formulation
(5.4) and the stochastic formulation (5.5), which nicely illustrates our earlier theoretical
results.

Example 5.3 (Gompertz Growth in the Drift)

In this example, we consider the following nonlinear stochastic differential equation

dX(t) = [a0(t) − a1(t) ln(X(t))]X(t)dt+
√

2d0(t)X(t)dW (t), (5.7)

where a0, a1 and d0 are some deterministic functions of t, and a1 and d0 are assumed
to be positive. This equation is a stochastic version of the generalized Gompertz model
ẋ = (a0(t)− a1(t) lnx)x, which has been extensively used in biological and medical research
to describe population dynamics such as tumor growth in humans and animals either with
or without treatment (e.g., [1, 23] and the references therein) as well in cell proliferations
models [18]. Next we use the transformation method to find an equivalent probabilistic
formulation for (5.7). Let Z = ln(X). Then by Ito’s formula and (5.7) we have

dZ(t) =
1

X(t)

{

[a0(t) − a1(t) ln(X(t))]X(t)dt+
√

2d0(t)X(t)dW (t)
}

− 1

2X2(t)

[

2d0(t)X
2(t)
]

dt

= [−a1(t)Z(t) + (a0(t) − d0(t))] dt+
√

2d0(t)dW (t).

By the discussions in Section 3.1.2 we find that a pointwise equivalent probabilistic formu-
lation for the above linear stochastic differential equation is given by

dz(t; b)

dt
= −a1(t)z(t; b) + a0(t) − d0(t) + bρ(t), b ∈ R,

B ∼ N (0, 1).

(5.8)
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Here b is a realization of B, and ρ is given by

ρ(t) =
d

dt

(

√

ϕ(t)
)

+ a1(t)
√

ϕ(t).

where

ϕ(t) =

∫ t

0

2d0(s) exp

(

−2

∫ t

s

a1(τ)dτ

)

ds.

Let x = exp(z). Then by (5.8) we find

dx(t; b)

dt
= exp(z(t; b)) [−a1(t)z(t; b) + a0(t) − d0(t) + bρ(t)]

= x(t; b) [−a1(t) ln(x(t; b)) + a0(t) − d0(t) + bρ(t)] .

Thus, the following two formulations

dX(t) = [a0(t) − a1(t) ln(X(t))]X(t)dt+
√

2d0(t)X(t)dW (t)

and
dx(t; b)

dt
= x(t; b) [−a1(t) ln(x(t; b)) + a0(t) − d0(t) + bρ(t)] , b ∈ R

B ∼ N (0, 1)

are pointwise equivalent in density.

6 Concluding Remarks

In summary, we have derived several classes of examples with affine dynamics for which
we can establish pointwise equivalence in density for the corresponding probabilistic and
stochastic formulations. We then argue that a large class of nonlinear SDE can be reduced
by invertible transformation to one of the affine cases. We presented several examples of non-
linear SDE arising frequently in applications that can be transformed to the more readily
computed probabilistic formulation. It has been well documented (e.g., see [20, 25] and ref-
erences therein) that difficulties arise in numerically solving Fokker-Planck equations such as
(1.1) when the drift g dominates the diffusion σ2. This motivated our efforts and the results
here lead to alternative methods that can be fast and efficient in numerically solving (1.1)
by employing its pointwise equivalent in density probabilistic formulation. Future efforts in-
clude investigation of the approximate equivalent probabilistic formulations for non-reducible
nonlinear stochastic differential equations by the linearization method as well investigation
of applications of our methodology to the control of systems with uncertainty.
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