
RSA POWER ANALYSIS

OBFUSCATION: A DYNAMIC

FPGA ARCHITECTURE

THESIS

John W. Barron, Captain, USAF

AFIT/GE/ENG/12-02

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense,
or the United States Government. This material is declared a work of the U.S.
Government and is not subject to copyright protection in the United States.

AFIT/GE/ENG/12-02

RSA POWER ANALYSIS

OBFUSCATION: A DYNAMIC

FPGA ARCHITECTURE

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

John W. Barron, B.S.E.E.

Captain, USAF

March 2012

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GE/ENG/12-02

RSA POWER ANALYSIS

OBFUSCATION: A DYNAMIC

FPGA ARCHITECTURE

John W. Barron, B.S.E.E.

Captain, USAF

Approved:

/signed/ 22 Feb 2012

Maj Todd R. Andel, PhD (Chairman) date

/signed/ 22 Feb 2012

Lt Col Jeffrey W. Humphries, PhD
(Member)

date

/signed/ 22 Feb 2012

Maj Mark D. Silvius, PhD (Member) date

AFIT/GE/ENG/12-02

Abstract

The modular exponentiation operation used in popular public key encryption

schemes, such as RSA, has been the focus of many side channel analysis (SCA) at-

tacks in recent years. Current SCA attack countermeasures are largely static. Given

sufficient signal-to-noise ratio and a number of power traces, static countermeasures

can be defeated, as they merely attempt to hide the power consumption of the system

under attack. This research develops a dynamic countermeasure which constantly

varies the timing and power consumption of each operation, making correlation be-

tween traces more difficult than for static countermeasures. By randomizing the

radix of encoding for Booth multiplication and randomizing the window size in ex-

ponentiation, this research produces a SCA countermeasure capable of increasing

RSA SCA attack protection.

iv

Acknowledgements

First, I would like to thank my wife and son for their support during long hours

and sometimes frustrating research. I would like to thank my thesis advisor and

committee for guidance at the many crossroads in my research. I would also like to

thank my fellow researchers in the lab for uncountable ways to waste time watching

YouTube videos, researching tech specs, and “Sketch Lunch Fridays.” Lastly, I

would like to thank the lab SNACO for keeping an almost endless supply of cold

Diet Mountain Dew. Massive amounts of caffeine kept me awake in unbearable 8AM

algorithms class.

John W. Barron

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

List of Figures . x

List of Tables . xiii

I. Introduction . 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Research Objectives and Contributions 2

1.4 Thesis Organization 3

II. Background . 4

2.1 RSA Encryption Algorithm 4

2.1.1 Exponentiation Methods 4

2.2 Side Channel Attacks 8
2.2.1 Simple Power Analysis (SPA) 8

2.2.2 Differential Power Analysis (DPA) 9

2.2.3 Timing Attacks 12

2.2.4 Electromagnetic (EM) Attacks 12

2.2.5 Comparative Power Analysis (CPA) 12

2.2.6 Fault Attacks 15
2.2.7 Big Mac Attack 15

2.3 Countermeasures . 15
2.3.1 Square-And-Multiply-Always 16

2.3.2 Montgomery Powering Ladder 16

2.3.3 Masking . 17

2.3.4 Noise Injection 18

2.3.5 Dual-Rail Logic (DRL) and Wave Dynamic Dif-
ferential Logic (WDDL) 19

2.3.6 Time Delay 19

2.4 Conclusion . 20

vi

Page

III. Methodology . 21

3.1 Problem Definition . 21
3.2 Goals and Hypothesis 21

3.3 Approach . 21

3.3.1 Randomizing Multiplication 21

3.3.2 Randomizing Exponentiation 22

3.4 System Boundaries . 22

3.4.1 FPGA . 22
3.4.2 PowerPC Processor 24
3.4.3 Dynamic RSA Implementation 24

3.5 System Services . 24

3.5.1 RSA encryption 24

3.5.2 SCA obfuscation 24
3.6 Workload Parameters 25

3.6.1 Key Length 25

3.6.2 Constant Versus Random Plaintext 25
3.6.3 Number of Encryption Iterations 26

3.7 Performance Metrics 26
3.7.1 Layout Area 26

3.7.2 Throughput 26

3.7.3 Correlation 26
3.8 System Parameters . 27

3.8.1 Background Noise 27

3.8.2 Randomized Radix Encoding Booth Multiplica-
tion . 27

3.8.3 Exponentiation Method 27

3.8.4 FPGA Model 27
3.8.5 Processor Type 28

3.9 Factors . 29
3.9.1 Booth Multiplication Radix 29

3.9.2 Exponentiation Window Size 29

3.10 Evaluation Technique 29

3.11 Experimental Design 31

3.12 Methodology Summary 31

vii

Page

IV. Countermeasure Design and Results 32

4.1 Basic Hardware Design 32

4.1.1 Booth Multiplication 32

4.1.2 Modular Exponentiation 34

4.2 Dynamic Architectural Countermeasures Design 35

4.2.1 Randomized Radix Encoding Booth Multiplier 35

4.2.2 Variable Window Exponentiator 36

4.3 Simulation Results . 36
4.3.1 Baseline . 36
4.3.2 Randomized Multiplication Simulation 37

4.3.3 Randomized Window Exponentiator 38

4.3.4 Combined Countermeasure Simulation 39
4.4 Hardware Trace Results 40

4.4.1 Baseline Configuration 40

4.4.2 Randomized Radix Encoding Booth Multiplier 42

4.4.3 Random Exponentation Window Configuration 45

4.4.4 Combined Countermeasure Configuration . . . 48

4.5 Hardware Attack Results 51
4.5.1 Attack On Previous AFIT Research 51
4.5.2 Attack on Baseline Configuration 51

4.5.3 Attack On Randomized Radix Encoding Booth
Multiplier Configuration 53

4.5.4 Attack On Random Exponentiation Window Con-
figuration . 54

4.5.5 Attack On Combined Countermeasure Configu-
ration . 54

4.5.6 Comparisons 56

4.6 Metrics . 59
4.6.1 Execution Time (ET) 59

4.6.2 Required FPGA Area 59

4.6.3 Protection . 61
4.7 Conclusions . 64

V. Conclusion . 66
5.1 Completed Objectives 66

5.1.1 Dynamic RSA Design 66

5.1.2 Implementation on FPGA 66

5.1.3 Real World Attacks 67
5.2 Contributions . 67

viii

Page

5.2.1 Developed Theoretical Countermeasure Verified
by Attacks . 67

5.2.2 Developed Custom MATLAB Script for Corre-
lation Power Analysis (CPA) Attacks 67

5.2.3 Developed a Method of Comparison Power Anal-
ysis Attacks 67

5.3 Future Work . 68
5.3.1 Develop Additional Attacks 68

5.3.2 Speeding MATLAB Processing 68

5.3.3 Brute Force Work 68
5.4 Summary . 68

Bibliography . 70

Index . 1

ix

List of Figures
Figure Page

1 RSA Public Key Encryption [1] 4

2 SPA Against Unprotected Binary Exponentiation [1] 9

3 Difference of Means [2] . 10

4 Differential Traces Showing Correct vs. Incorrect Key Guess . 10

5 Example of Dual Rail Logic Block 19

6 System Block Diagram . 23

7 Power Capacitors On Bottom of Virtex-5 ML507 Development

Board . 28

8 Hardware Test Setup for Trace Collection 30

9 Flowchart of Booth Multiplication [3] 33

10 Modular Booth Implementation 34

11 Baseline Configuration Simulation of 146187 (mod 207) = 47 . 37

12 Three Simulations of 146 · 85 (mod 207) = 197 37

13 Random window Configuration Simulation of 146187 (mod 207) =

47 . 38

14 Three Simulations of 146187 (mod 207) = 47 40

15 Baseline Configuration - Raw Trace 41

16 Baseline Configuration - Spectrum Analysis 41

17 Baseline Configuration - Bandpass Filtered Spectrum 41

18 Baseline Configuration - Post Filtering 41

19 Baseline Configuration - Zoomed, Filtered 42

20 Baseline Configuration - Immune to SPA 42

21 Timing Consistencies of the Baseline Configuration 43

22 Randomized Multiplier Configuration - Raw EM Power Trace 44

23 Randomized Multiplier Configuration - Filtered Trace 44

x

Figure Page

24 Randomized Multiplier Configuration - Zoomed, Filtered . . . 44

25 Timing Misalignment of the Randomized Multiplier Configura-

tion . 45

26 Randomized Multiplier Configuration - 10,000 Trace Standard

Deviation . 46

27 Randomized Window Configuration - Raw Power Trace . . . 46

28 Randomized Window Configuration - Filtered Trace 47

29 Comparison of Initial Calculations in Random Window Config-

uration . 47

30 Timing Misalignment of the Randomized Window Configuration 48

31 Randomized Window Configuration - 10,000 Trace Standard

Deviation . 49

32 Combined Countermeasure Configuration - Raw Power Trace 49

33 Combined Countermeasure Configuration - Filtered Trace . . 49

34 Timing Misalignment of the Combined Countermeasure Config-

uration . 50

35 Combined Countermeasure Configuration - 10,000 Trace Stan-

dard Deviation . 50

36 Previous Work’s SPA Susceptible 52

37 Previous Work Broken Using Correlation Power Analysis . . 52

38 Correlation Attack on Baseline Configuration - Correct Guess 53

39 Correlation Attack on Baseline Configuration - Incorrect Guess 53

40 Randomized Multiplier Configuration - Correct Guess 54

41 Correlation Spike on Baseline Y-Axis Scale 54

42 Random Exponentiation Window Configuration - Correct Guess 55

43 Correlation Spike on Baseline Y-Axis Scale 55

44 Combined Countermeasure Configuration - Correct Guess . . 56

45 Correlation Spike on Baseline Y-Axis Scale 56

46 Combined Countermeasure Configuration - 100,000 Trace Attack 56

xi

Figure Page

47 10,000 Trace Correlation Power Analysis Attack Compared . 57

48 10,000 Trace Correlation Power Analysis Attack Compared -

Same Scale . 58

49 Execution Time of Configurations Compared (Running At 12.5

mHz) . 60

50 Baseline - Correlation Vs. Noise Floor 62

51 Randomized Multiplier - Correlation Vs. Noise Floor 62

52 Randomized Window - Correlation Vs. Noise Floor 63

53 Combined Countermeasure - Correlation Vs. Noise Floor . . 64

xii

List of Tables
Table Page

1 Doubling Attack Example . 13

2 Yen’s Attack Example . 14

3 Homma’s Attack Example . 14

4 Factors and Levels . 29

5 Table of Booth Encoding For Given Radix 35

6 Three Computations of 146·85 (mod 207) [Entire Table (mod 207)] 38

7 Three Computations of 146187 (mod 207) [Entire Table (mod 207)] 39

8 Table of Maximum Frequency of Configurations 59

9 Table of FPGA Area Required For Each Configuration 61

10 Table of Number of Traces Required for Successful Attack . . 64

11 Table of Tradeoffs . 64

xiii

RSA POWER ANALYSIS

OBFUSCATION: A DYNAMIC

FPGA ARCHITECTURE

I. Introduction

In the groundbreaking 1999 paper [4], Kocher et al. presented a method to

recover a secret key from cryptographic hardware by monitoring the hardware’s

power consumption. In recent years, these so called side channel analysis (SCA)

attacks have become a focus of the cryptographic community. These attacks are

conducted by collecting power consumption data of the hardware, referred to as

power traces, over many cryptographic cycles, and statistically correlating this data

to the likely cryptographic key. These attacks allow an attacker to recover keys much

faster than traditional cryptanalysis.

The RSA public key encryption algorithm [5] has been the target of many of

these attacks. Current methods of SCA protection fall into two categories: masking

and hiding [6]. Masking introduces randomness into the input text such that there

is no correlation with power consumption. Hiding countermeasures obscure any

correlation by introducing electrical noise or designing the hardware in such a way

that minimizes the signal an attacker wishes to capture, thus making successful

attacks more difficult. The goal of both methods is to lower the signal to noise ratio

(SNR) to a level that makes the attack infeasible.

1.1 Motivation

In today’s ultra-connected society, virtually every facet of life involves the flow

of information over computer networks. From financial transactions through online

banking and Internet purchases, to personal information backed-up on the “cloud,”

1

the need for a secure flow of information is as important as ever. RSA encryption, as

a part of SSL and TLS [7], is a major factor in that security. If a major bank or stock

market exchange were to succumb to attack, untold worldwide financial havoc would

result. Additionally, the United States Government authorizes the RSA algorithm

for electronic transmission of classified data [8]. Thus, protecting RSA encryption

from attack is key to national security.

In recent years side channel attacks have become an increasingly important

design consideration for cryptographic implementations. Observing the power con-

sumption of an RSA implementation can lend information about the operations,

timing, operands, and ultimately the secret keys. With a modest investment in

a digital oscilloscope and third party software, adversaries have the capability to

conduct such attacks with minimal knowledge of the system under attack. This

motivation drives research to develop a implementation resistant to side channel

attacks.

1.2 Problem Statement

Current SCA attack countermeasures are largely static. Given enough time and

a sufficient number of power traces, static countermeasures can be broken as they

merely attempt to increase the difficulty of attack to an infeasible level. However,

countermeasures are constantly changing, as in a dynamic architecture, timing and

power consumption would be a “moving target,” making correlation between traces

much more difficult than static countermeasures.

1.3 Research Objectives and Contributions

The goal of this research is to develop and synthesize an architecture on an

FPGA that is capable of protecting an RSA implementation from SCA attacks. This

dynamic architecture contains randomizations at each level of cryptographic opera-

tions, randomized multiplier used by randomized exponentiator. The hypothesis of

2

this research is that a dynamic circuit is capable of randomizing timing and power

consumption in such a manner that SCA attacks are no more successful than brute

force attacks.

This research provides a VHDL coded dynamic architecture for synthesization

on a Xilinx Virtex-5 FPGA. This architecture provides two-way communication with

Riscure Inspector’s side channel attack software for power trace acquisition and

analysis, as well as custom written MATLAB scripts implementing common side

channel attacks.

1.4 Thesis Organization

This thesis is organized into five sections. Chapter 2 covers the background of

RSA encryption operations, side channel attacks against RSA, and known counter-

measures against side channel attacks. Chapter 3 covers the methodology used to

develop the design of experiments in this research. Chapter 4 covers the design of the

dynamic architecture and results from experimental SCA attacks. Lastly, Chapter 5

summarizes the work accomplished, major contributions, and recommendations for

future work in the area.

3

II. Background

The following chapter covers the background of RSA encryption operations, side

channel attacks against RSA, and known countermeasures against side channel at-

tacks.

2.1 RSA Encryption Algorithm

In contrast to traditional symmetric key ciphers, public key encryption assigns

each member a private (secret) key and public key. The RSA public key encryption

scheme [5] shown in Figure 1 is based on the assumption that factorization of large

integers composed solely of two prime factors (i.e., modulus n) is computationally

infeasible in polynomial bounded time [9].

Figure 1: RSA Public Key Encryption [1]

This research focuses on the modular exponentiation operations of the cryptosystem.

Algorithm 1 shows the operations for encryption and decryption. In this provable

security cryptosystem, it is computationally infeasible, to a polynomial-time bound

attacker, to factor n to determine the private key.

2.1.1 Exponentiation Methods. Modern cryptographic algorithms use very

large integers for keys (e.g., 4096-bit RSA). Many public key cryptographic algo-

rithms, including RSA, rely on the modular exponentiation operation for encryp-

tion. Naively computing me via e− 1 multiplications of m is impractical because of

4

Algorithm 1 RSA Algorithm [10]

Summary: B encrypts a message m for A, which A decrypts.

Encryption: B should do the following:
Obtain A’s authentic public key (n,e).
Represent the message as an integer m in the interval [0, n− 1]
Compute c = me (mod n)
Send the cipertect c to A.

Decryption: To recover the plaintext m from c, A should do the following:
Use the private key d to recover m = cd (mod n)

memory and timing constraints [10]. Therefore, algorithms are required to decrease

storage requirements and the number of steps required for the modular exponen-

tiation operation. These algorithms are known as square-and-multiply algorithms.

The algorithms represent the exponent (i.e., key) in binary and repeatedly compute

modular multiplication operations. These algorithms keep the memory space limited

as they perform modular reduction during exponentiation and complete after log2 d

iterations. Additionally, exponentiation methods can operate on a single bit of the

exponent (binary) or multiple bits of the exponent (k-ary) for a given iteration.

2.1.1.1 Binary Exponentiation Methods. Binary exponentiation is

the most straightforward method for exponentiation; operating on a single bit of

the binary representation of the exponent (key) each iteration. This process can

be performed either from the left-to-right (MSB to LSB) or right-to-left (LSB to

MSB). A square-and-multiply algorithm for left-to-right can be seen in Algorithm

2. Similarly, the square-and-multiply Algorithm 3 is shown for right-to-left binary

exponentiation. Note that the order of squaring and multiplying is reversed since

the exponent is now traversed LSB to MSB. Also note that left-to-right binary ex-

ponentiation only requires a single variable. Since many cryptographic systems are

under tight memory and area constraints (e.g., smart cards), the left-to-right variant

is more popular [11].

5

Algorithm 2 Left-to-Right Binary Exponentiation [10]

INPUT: base m and exponent e = (et, et−1...e1, e0)2

OUTPUT: me

R := 1;
for i = k − 1 downto 0 do
R := R2 (mod N); —Square
if ei = 1 then then
R := R ·m (mod N); —Multiply

end if
end for
return R

Algorithm 3 Right-to-Left Binary Exponentiation [10]

INPUT: base m and exponent e = (et, et−1...e1, e0)2

OUTPUT: me

R0 := 1;R1 := m;
for i = 0 to k − 1 do
if ei = 1 then then
R0 := R0 ·R1 (mod N); —Multiply

end if
R1 := R2

1 (mod N); —Square
end for
return R0

6

2.1.1.2 K-ary (Windowing) Exponentiation Methods. It is also pos-

sible to operate on multiple bits of the exponent at once. For maximum efficiency,

the goal is to compute me using the fewest number of operations, given that it is

only possible to multiply two already computed powers of m [12]. Since multiple

bits are being operated on at once, there are fewer total operations needed. This

approach, referred to as windowing, provides some speedup. This speedup comes as

trade off of higher memory requirements. As seen in Algorithm 4, precomputation

and storage of additional powers of m are needed. The higher the window size k,

the less multiplication operations needed and more memory space required.

Algorithm 4 Constant Window Method [10]

INPUT: base m, window size k, and exponent e = (et, et−1...e1, e0)2

OUTPUT: me

PRECOMPUTE:
m0 := 1;
for i = 1 to 2k − 1 do
mi := mi−1 ·m; — Compute Powers For Window

end for
R := 1;
for i = k − 1 downto 0 do
R := R2k (mod N);
R := R ·mei (mod N); —Use Precomputed Powers

end for
return R

By maximizing the number of 0 exponent strings, it is possible to further min-

imize the number of operations, since 0 exponent bits do not require the additional

multiplication step. The Sliding Window method can be used to further lower the

number of required multiplications. The Sliding Window method is a modification

of Algorithm 4. Instead of choosing a constant window size, choose a maximum

window size k. Select up to k bits to operate on, with the goal being to select the

longest bitstring within the maximum window size with the last bit of the string as a

one. This reduces the number of multiplications and precomputations needed. These

methods have been extended in [13] and [14] with randomized windows to increase

7

obfuscation. Authors in [15], [16], explore optimal choice of high-radix Montgomery

multipliers for speedup and their side channel leakages. Several classical popular

methods for modular exponentiation have been shown. The next section discusses

attacks that exploit side channel leakages specific to each algorithm.

2.2 Side Channel Attacks

Prior to Kocher et al’s paper [4], cryptographers’ primary concern was tradi-

tional cryptanalysis against the primary plaintext to ciphertext information stream.

Nowadays, the security of public key encryption algorithms, including RSA, no longer

rely on only the provable security of the plaintext to ciphertext conversion. Imple-

mentors of cryptographic systems must consider a collection of design and coding

practices such that their implementations are not left open to side channel attacks.

Side channel attacks begin by collecting side channel information such as power con-

sumption or electromagnetic (EM) emissions [17] of the system under attack during

the encryption operation, known as collecting traces. Trace collection usually re-

quires physical access to the device via direct power consumption monitoring or via

EM probes. Side channel attacks can be classified as passive or active. Passive at-

tacks only require power traces and known messages, while active attacks require

chosen plaintext or fault interjection.

2.2.1 Simple Power Analysis (SPA). SPA involves directly observing power

traces to gather information about the secret key [4]. SPA leaks are caused by pro-

gramming conditional branch decisions based on secret keys or intermediate values.

For example, in binary exponentiation as described in Algorithm 2, if there is a

distinguishable difference between a squaring operation and a multiplying operation

(time or power), the implementation is vulnerable to SPA. Figure 2 shows a power

trace that an attacker can easily discern the squaring and multiplying operations of

RSA encryption and visually read the secret key from the power trace. To easily

8

prevent SPA attacks, operations should be kept independent from the secret keys

and intermediates [4].

Figure 2: SPA Against Unprotected Binary Exponentiation [1]

2.2.2 Differential Power Analysis (DPA). Differential power analysis, pre-

sented by Kocher [4], is a very common and very powerful side channel attack. In

contrast to SPA, where few traces are needed to directly infer secret material, DPA

may require hundreds to thousands of traces to statistically correlate operands to key

guesses. Since DPA attacks require little knowledge about the underlying encryption

implementation, they are the most popular type of power attack [6]. Based on key

guesses, an attacker calculates an expected intermediate bit, and checks whether the

difference between the mean traces partitioned according to this bit differ. DPA is

based on the fact that unique operands create different switching activity and power

consumption.

2.2.2.1 Difference of Means. As outlined in [4], an attacker may

create a key hypothesis and selection function to separate the traces into two groups.

These two groups are averaged to eliminate random noise, hoping that there exists

some statistical similarities in both group. Next, subtract the two groups from each

other. This result leaves a differential trace, as seen in Figure 3.

9

Figure 3: Difference of Means [2]

As seen in Figure 4, if the key guess was incorrect the resultant trace will be flat

randomness, but if the key guess was correct the differential trace will contain spikes

at points of correlation verifying the correct key guess.

Figure 4: Differential Traces Showing Correct vs. Incorrect Key Guess

Successful DPA attack depends entirely on being able to distinguish a correlation

spike from the noise floor of the differential trace. Given Equation 1 [4], it is clear

that the differential trace will become less noisy as more traces are collected. This

effect is because uncorrelated events diminish by a factor of 1√
n
.

lim
n→∞

∆D [j] ≈ 0 (1)

Where n is the number of traces collected and ∆D [j] is the differential trace.

10

2.2.2.2 Correlation Power Analysis. Correlation power analysis re-

quires attackers to calculate an expected intermediate value and check for statistical

correlation within the captured power traces. There are many variants of this at-

tack using either the Hamming Weight (HW) of the intermediate value, Hamming

Distance (HD), zero value model, etc [6]. These attacks depend heavily upon being

able to calculate the correct intermediate values, seen in Equation 2 [6].

ri,j =

∑D
d=1(hd,i − h̄i) · (td,j − t̄j)√∑D

d=1(hd,i − h̄i)2 ·
∑D

d=1(td,j − t̄j)2

(2)

Where r is the coefficient of correlation,

D is the number of traces,

h is the HW, h̄ is the average HW,

t is a power trace sample, t̄ is the average power,

i is the number of samples in j power traces.

Using this equation, the correlation coefficient is computed across all i samples within

j power traces for all possible key guesses looking for a spike in correlation. Using

the HW power model usually yields better results than difference of means.

2.2.2.3 Higher Order Differential Power Analysis. Data masking,

as described in section 2.3.3, is an effective way to defeat DPA. However, higher

order differential power analysis is able to defeat masking countermeasures. Second-

order differential power analysis (SODPA) as shown in [18], [19] exploits the power

consumption between two intermediate values sharing the same mask. There is no

direct correlation between input message and masked intermediate value, but there

is correlation between two intermediate values with the same mask. Higher order

differential power analysis’s effectiveness is directly related to the number of masks

11

used and frequency of generating new masks. Since masking is computationally

expensive, SOPDA is usually the highest order attack needed [6].

2.2.3 Timing Attacks. In [20] Kocher shows how observing the time re-

quired for private key operations may allow an attacker to find the secret keys. Much

like power consumption in SPA, if the timing is dependent on the secret key, the time

variance can be calculated and can help in identifying the correct key guess. This

attack can be defeated by making all operations consume an equal amount of time,

but this process is difficult due to cache misses, instruction timing, etc. Kocher

suggests exponent blinding as discussed in Section 2.3.3.

2.2.4 Electromagnetic (EM) Attacks. Electromagnetic Attacks (EM) [17]

exploit electromagnetic radiation that is emitted from the cryptographic system. As

transistors switch and consume power, electrical current traveling along wires emit

EM radiation. EM probes are capable of collecting localized power consumption.

EM attacks are also able to scan and find desired frequency hot spots to avoid other

system noise. Once an attacker has collected EM power traces, they complete SPA

and DPA as previously outlined. These attacks are often referred to as Simple EM

analysis (SEMA) and differential EM analysis (DEMA).

2.2.5 Comparative Power Analysis (CPA). The authors of [21] propose

the new title of “Comparative Power Analysis” for a growing class of power attacks.

These attacks are active chosen message attacks that generate intermediate collisions

during cryptographic operations. By observing the power consumption over several

traces during the collisions, an attacker is able to match trace patterns and infer

which operation was accomplished and thus the secret key.

2.2.5.1 Doubling Attack. This attack [11] is based on the fact that

encrypting messages X (mod N) and X2 (mod N) has the potential to generate

intermediate collisions between encryption cycles. When a collision occurs, the result

12

is the same intermediate value i2 loaded into registers as some other encryption

operation i1. If the power consumption and operation performed on i1 is known, an

attacker is able to tell if the operation performed on i2 was the same or different

(i.e., square or multiply). In Table 1, the grey values show collisions.

Table 1: Doubling Attack Example

i Key Encrypt X Encrypt X2

1 1 (1)2 (1)2

1 ∗X 1 ∗X2

2 0 (X)2 (X2)2

3 0 (X2)2 (X4)2

4 1 (X4)2 (X8)2

X8 ∗X X16 ∗X2

Recall that left-to-right binary exponentiation, Algorithm 2 has an additional

multiply for exponent bits of 1. Table 1 shows that if the i − 1 key bit is 0, a

collisions between X2
i−1 and Xi exists. This process can be repeated to reveal all key

bits. Note that because of the difference in which order the squaring and multiplying

is accomplished in binary exponentiation, this attack only works for left-to-right

implementation. This attack is the first known to distinguish between left-to-right

and right-to-left algorithms.

2.2.5.2 Yen’s Attack. Similarly to the doubling attack, Yen’s attack

[22] also relies on a chosen message pair to create intermediate collisions. This attack

takes the form of choosing a message pair X (mod N) and −X (mod N).

Table 2 shows that when the key bit i is 0 a collision can be observed at i + 1 for

both X and −X operations.

2.2.5.3 Homma et al. Attack. This attack [21] requires a chosen

message pair Y and Z such that Y α ≡ Zβ (mod p) to create intermediate collisions

13

Table 2: Yen’s Attack Example

i Key Encrypt X Encrypt −X
1 1 (1)2 (1)2

1 ∗X 1 ∗ −X
2 0 (X)2 (−X)2

3 0 (X2)2 (X2)2

4 1 (X4)2 (X4)2

X8 ∗X X8 ∗ −X

at arbitrary points in time. Using modular math described in detail in [21], Homma

et al. generate an example message pair Y 24 ≡ Z3 (mod p)

Table 3: Homma’s Attack Example

i Key Encrypt Y Encrypt Z

1 1 (1)2 (1)2

1 ∗ Y 1 ∗ Z
2 1 (Y)2 (Z)2

Y 2 ∗ Y Z2 ∗ Z
3 0 (Y 3)2 (Z3)2

4 0 (Y 6)2 (Z6)2

5 0? (Y 12)2 (Z12)2

6 SorM (Y 24)2 or Y 24 ∗ Y

Table 3 assumes the operation and power consumption for squaring Z at i = 3

is known, and an attacker seeks to compare against Y at i = 6. Since a collision

was generated at Y 24 ≡ Z3 (mod p) at i = 3 and 6, an attacker can discern whether

the power signature at i = 3 matches i = 6 (same operation, key bit is 0) or

power is different (different operation, key bit is 1). Homma et al. present example

of successful attacks on binary (up and down), windowing (constant and sliding),

square-and-multiply-always, Montgomery powering ladder, and other highly regular

algorithms.

14

2.2.6 Fault Attacks. Conducting a fault attack consists of interrupting a

cryptographic device (e.g., clock glitch, induced bit flips, etc.) at a specific point in

time and monitoring its reaction [23]. RSA was the first cryptosystem to be targeted

by fault attacks [24]. One very well known attack is the safe error [25] attack. This

attack is used on countermeasures containing dummy operations, such as the square-

and-multiply always algorithm. By locally inserting a fault before the multiplication

operation, an attacker can check the output to determine if the fault propagated. If

the fault does not propagate, the multiplication operation was a dummy operation

and the key bit is 0. If the fault propagates, the result from multiplication was

taken and the key bit is 1. This attack is viable for all countermeasures that include

dummy operations.

2.2.7 Big Mac Attack. In [26], Walter describes an attack on sliding win-

dow exponentiation. The Big Mac Attack compares the power consumption of each

multiplication operation within a trace against the power consumption of the pre-

computations at the beginning of the algorithm, looking for a match. This attack is

conducted within a single trace, which has inherent advantages. Exponent blinding

countermeasures, as described in Section 2.3.3, are rendered useless since they cre-

ate randomness between traces not within them. Also, since more cross checking is

possible as the key size increases, this attack becomes more viable with larger keys.

2.3 Countermeasures

In general, side channel analysis countermeasures fall into two groups: hiding

and masking [6]. Hiding methods include injecting noise, inserting dummy opera-

tions, inserting delay, shuffling order of operations, dual rail logic, etc. Masking coun-

termeasure integrate some randomness into the data such that they are “masked” to

reduce correlation with the input text. It is the goal of designers to hide the power by

making it completely random or by flattening. In [27], the authors present a power

sensing amplifier able to sense instantaneous power consumed and dissipate power

15

through a shunt to maintain a constant power consumption. There have also been

many modifications to the Montgomery modular multiplication for increased pro-

tection, including [28] and [29]. The remainder of this section discusses six common

countermeasure approaches.

2.3.1 Square-And-Multiply-Always. As described in Section 2.2.1, when

secret material determines branching operations, information is vulnerable to SPA

and timing attacks. Also mentioned previously, an easy way to avoid this leakage is

to ensure encryption programs are written to have a constant execution path. The

simplest method to modify binary exponentiation to include a constant path is with a

Square-And-Multiply-Always algorithm, such as the one seen in Algorithm 5. Notice

that the operations are now independent of the secret material. While this does help

prevent SPA type attacks, the dummy multiplication now make this countermeasure

vulnerable to fault attacks such as safe error. These countermeasures are considered

hiding countermeasures.

Algorithm 5 Square-and-Multiply Always [30]

INPUT: base n and exponent e = (et, et−1...e1, e0)2

OUTPUT: ne

R := 1;
for i = k − 1 downto 0 do
R0 := R ·R (mod N);
R1 := R0 ·X (mod N);
R := Rei

end for
return R0

2.3.2 Montgomery Powering Ladder. Peter Montgomery’s “Power Lad-

der” [31] can be used as an efficient way to speed up exponentiation multiplication.

As seen in Algorithm 6, the powering ladder has the added advantages that it is reg-

ular and contains meaningful multiplication and squaring each cycle (i.e, no dummy

operations). This algorithm is also a great candidate for parallel computing, as

discussed and analyzed in [32].

16

Algorithm 6 Montgomery powering Ladder

INPUT: base n and exponent e = (et, et−1...e1, e0)2

OUTPUT: ne

R0 := 1;R1 := X;
for i = 0 to k − 1 do
if ei = 1 then then
R0 := R0 ·R1 (mod N);
R1 := R1 ·R1 (mod N);

else
R1 := R1 ·R0 (mod N);
R0 := R0 ·R0 (mod N);

end if
end for
return R0

Since the powering ladder is “regular” like square-and-multiply-always, it is protected

from SPA, and since there are no dummy operations, the powering ladder is also

immune to safe error attacks.

Similar to the Montgomery Powering Ladder, Joye presents several highly reg-

ular algorithms in [33]. These algorithms include the same security features of the

Montgomery Powering Ladder, but also being right-to-left algorithms they protect

against the Doubling Attack [11] and Big Mac Attack [26].

2.3.3 Masking. Masking countermeasures seek to create independence be-

tween the power consumption and true operations. To defeat simple power analysis,

one’s goal is to make the execution path constant and independent of the secret keys.

To defeat DPA, a system must additionally create independence between the power

consumption and the message being operated on. This goal can be accomplished by

masking, which combines the input data or secret exponent with some randomness

such that the HW of the intermediate operands will not correlate between traces. A

common method of masking for modular exponentiation is to blind the exponent [6].

This step is accomplished by adding some random multiple of Φ(n) to the secret

17

decryption exponent d. Adding a multiple of Φ(n) will change the operands but the

modular operation will ensure the plaintext is correct.

dmasked = d+ v × Φ(n) (3)

Where v is a random value.

In [34], the authors combine blinding with exponent segmenting for increased

protection. It is also possible to mask the data itself prior to operations with the

secret key. For example, multiply the ciphertext c by some random value v before

decrypting via exponentiation with the private key.

cmasked = v × c (4)

Since ciphertext c is simply me (mod n), this yields:

cmasked ≡ v×me·d (mod n)
decryption⇒ (cmasked)

d ≡ vd ×me·d (mod n)⇒ vd ×m

(mod n).

An attacker can easily pull off vd at the end of the decryption operation, which

leaves the original plaintext m. These masks can also be combined; [35] presents

triple masking where the exponent, input data, and operations are all masked.

Masking does not protect against SPA, and the effectiveness of masking depends

on frequency of mask change and the mask length. Additionally, as you can see in

Algorithms 3 and 4, there are precomputations, additional memory, and post com-

putations required. These requirements makes masking a computationally expensive

countermeasure.

2.3.4 Noise Injection. As seen in Equation 5 [6], adding noise lowers the

SNR thus requiring more traces to successfully mount a power analysis attack.

18

SNR =
V ar(Exploitable Signal)

V ar(Switching Noise + Electrical Noise)
(5)

In [36], Messerges et al. take an in depth look at noise effects. As previously

seen in Equation 1, as the number of traces collected increases the variance of ran-

dom noise decreases. Noise can be generated via random number generators, ring

oscillators, garbage functions, etc. One must ensure that the noise is close to the

cryptographic operation’s clock frequency and spread throughout the circuit. Naive

noise injection attempts can be frequency filtered or bypassed by using EM probes

to pinpoint the true power signal of the cryptographic circuitry.

2.3.5 Dual-Rail Logic (DRL) and Wave Dynamic Differential Logic (WDDL).

DRL and WDDL are logic level countermeasures to balance power consumption.

As seen in Figure 5, this logic takes the inputs a, b and their inverses ā, b̄, then

computes the output q and its inverse q̄.

Figure 5: Example of Dual Rail Logic Block

This logic helps mask by balancing the Hamming Weights of computations by

concurrently computing the complement, thus maximizing Hamming Weight switch-

ing for every operand. Work in [37] and [38] describes how to integrate dual rail logic

into design flows for synthesis. While dual rail logic implementations provide a level

of DPA security, increases in power consumption and area are significant [39].

2.3.6 Time Delay. Since DPA relies on correlation between power samples

at a fixed point in time across all power traces, alignment of traces is very important.

19

A cryptographic designer can use misalignment as a countermeasure. The use of

random delay insertion (RDI), can interrupt a process and vary at what point in

time intermediates are operated on. RDI creates misalignments, lowers correlation,

and drastically increases the number of traces needed for successful attack [40]. Since

inserting delays hurts performance, the maximum delay allowed is usually kept quite

short, [41] discuses methods to choose the optimum delay. When adding delays to

an operation, the total power consumed is spread out over different time periods.

By integrating over these periods instead of correlating on single clock cycles, an

attacker can correlate on the total power consumed each operation, independent of

delays.

2.4 Conclusion

We have shown a variety of attacks and countermeasures from within cur-

rent literature. Although we have focused on RSA, these attacks and countermea-

sures also apply to other public key encryption algorithms using multiply-and-square

(add-and-double) algorithms, such as elliptic curve cryptography, as surveyed in [42].

Given all known attacks, we have seen that implementing a specific countermeasure

may protect from one attack while creating vulnerabilities to another attack. Un-

doubtedly many more attacks and countermeasures will be developed in the future.

Until an implementation is able to create complete independence between operands,

intermediates, and secret keys, attackers will continue to develop successful attacks.

For further reading, [43–45] provide additional in depth analysis of power analysis

attacks.

20

III. Methodology

The following chapter outlines the methodology used for design of experiments, as

well as developing a dynamic architecture capable of resisting SCA attacks.

3.1 Problem Definition

Current SCA attack countermeasures are largely static. Given enough time and

a sufficient number of power traces, static countermeasures can be broken as they

merely attempt to increase the difficulty of attack to an infeasible level. However,

if countermeasures are constantly changing, as in a dynamic algorithm, timing and

power consumption would be a “moving target”, making correlation between traces

much more difficult than static countermeasures.

3.2 Goals and Hypothesis

The goal of this research is to develop and synthesize an architecture on an

FPGA that is capable of protecting an RSA implementation from SCA attacks. The

hypothesis of this research is that a dynamic circuit is capable of randomizing timing

and power consumption in such a manner that SCA attacks are no more successful

than brute force attacks.

3.3 Approach

To accomplish the goals of this research, dynamic architecture is developed to

introduce timing and power randomization into the circuit. This goal is accomplished

via two approaches: randomizing the radix of Booth multiplication and randomizing

the window size in exponentiation.

3.3.1 Randomizing Multiplication. Basic binary multiplication is accom-

plished by repeated iterations of addition and shift operations. In contrast, the

21

Booth Multiplier [46] codes operands in such a way to skip unnecessary addition

steps. By increasing the radix of the Booth Coding, it is possible to shift twice per

cycle, thus halving the required cycles to complete multiplication. This research ex-

ploits this concept by developing a variable radix encoding Booth Multiplier. Driven

by a pseudorandom number generator, this multiplier shifts a random number of bits

each cycle. This random shifting induces randomness in the timing of operand use,

randomizes power consumption, and multiplication completes in a nondeterminis-

tic number of clock cycles. This process also causes alignment of traces to be lost,

making correlation much more difficult.

3.3.2 Randomizing Exponentiation. As binary multiplication can be seen

as repeated addition operations, binary exponentiation can be seen as repeated mul-

tiplication. Using multiple bit exponentiation in a windowing fashion [10] randomizes

how many key bits are used for exponentiation at each step. This approach adds

another layer of randomness in timing and power consumption.

3.4 System Boundaries

The dynamic RSA encryption hardware is the System Under Test (SUT),

shown in Figure 6. The SUT is composed of four major components: a Field Pro-

grammable Gate Array (FPGA), the RSA encryption algorithm, a processor used for

peripheral communication, and the dynamic RSA implementation. The Component

Under Test (CUT) is the dynamic RSA implementation. This dynamic hardware is

synthesized from VHDL onto a Xilinx Virtex-5 FPGA. The built in hardcore Pow-

erPC 440 processor is used for communication with the third party Riscure Inspector

software for plaintext/ciphertext exchange.

3.4.1 FPGA. The hardware platform used for this research is a the Xil-

inx Virtex-5 FX FPGA. VHDL code is synthesized using the Xilinx design suite

and downloaded to the board for hardware configuration. The characteristic of an

22

Figure 6: System Block Diagram

23

FPGA make it an ideal research platform. FPGAs are easily reconfigured with new

iterations of hardware configurations and allow for rapid development.

3.4.2 PowerPC Processor. The Xilinx Virtex-5 FX series used in this

research includes an on chip hardcore PowerPC440 processor. This processor is used

to run C code for communication between Riscure Inspector software to pass the

modulus, keys, and messages to the cryptographic system. This processor receives

the data and commands from Inspector and loads/reads the registers of the dynamic

RSA implementation.

3.4.3 Dynamic RSA Implementation. The dynamic RSA implementation

is the CUT. This implementation consists of a variable shift multiplier and variable

window size modular exponentiator, as introduced in Section 3.3. These subcom-

ponents randomize the timing and power consumption of cryptographic operations,

presumably making SCA attacks much more difficult. This research implements

the RSA encryption algorithm with various hardware changes in attempts to better

secure the implementation from SCA attacks.

3.5 System Services

The system in this research supplies two services: RSA encryption and SCA

obfuscation.

3.5.1 RSA encryption. This system completes RSA encryption on a plain-

text message given a modulus and key. This service is easily measured as pass/fail

via verifying correct ciphertext/plaintext pairs.

3.5.2 SCA obfuscation. The obfuscation service is a randomization of

timing and power consumption. This service is successful if the obfuscated power

trace results in less correlation than the baseline implementation. Any increase in

24

protection is defined as successful service. The level of increased protection is later

evaluated and compared against other experimental runs.

3.6 Workload Parameters

The workload parameters of this system are: key length, constant versus ran-

dom plaintext, and the chosen number of encryption iterations.

3.6.1 Key Length. Key length drives the number of operations in modu-

lar exponentiation. Keys of longer length cause RSA encryption to compute more

multiplication steps and decrease throughput. SCA attacks bypass the functional

security of RSA. Which means an increase in key length results in only a linear in-

crease in SCA difficulty, as opposed to the exponential increase in brute force attack

difficulty when using a longer key. For ease of trace collection and processing, this

research implements 512-bit RSA with a 32-bit key. Since each key bit is attacked

individually, attacking this configuration is identical to attacking the first 32-bits of

larger key implementations.

3.6.2 Constant Versus Random Plaintext. Continuous identical messages

being encrypted is not realistic. However, in a research context, constant plain-

text messages allows for additional analysis. Given static SCA countermeasures,

the power signature and timing of two identical messages may be extremely similar.

This would allow an adversary to average out background noise. However, a dynamic

SCA countermeasure is capable of much different power signatures and timing when

encrypting two identical messages. Constant plaintext encryption also allows for the

standard deviation of various countermeasures to be compared, revealing which has

the most variability for identical messages, and allowing for experimental repeata-

bility.

25

3.6.3 Number of Encryption Iterations. The probability of success for

many SCA attacks is a function of the number of message/power trace pairs cap-

tured. Increasing the pool of message/power trace pairs lowers noise and increases

correlation, both of which are critical for successful attack. Based on pilot studies,

the number of encryption iterations are chosen such that attacks are possible, but

without making successful attacks trivial. Setting a benchmark for number of encryp-

tion iterations is critical for useful analysis when comparing different experiments

and multiple hardware setups.

3.7 Performance Metrics

This research uses four performance metrics: layout area, encryption through-

put, and SCA correlation.

3.7.1 Layout Area. Many public key encryption systems are implemented

on smart cards and other constrained systems. These constrained systems drive

the need for small implementations. While this research is focused on protecting

an encryption system from SCA attacks, it is useless to develop a system that is

unrealizable. Therefore, the baseline implementation of RSA is compared against

the dynamic protection system to determine the area increase.

3.7.2 Throughput. Much like the area overhead metric, a protection

method that renders an encryption system too slow is also not practical. There-

fore, the throughput of encryption is also measured and compared to the baseline

implementation.

3.7.3 Correlation. The primary focus of this research is SCA protection

of an encryption system. Since obfuscation and protection are qualitative measure-

ments, a quantitative measurement of correlation is used to characterizes protection.

Correlation is a metric of how well an attempted attack is able to map key guesses

26

to power traces. This metric is also used to compare against the baseline implemen-

tation.

3.8 System Parameters

System parameters are characteristics within the system boundary that affect

the performance metrics. The parameters of the SUT are background noise, maxi-

mum shift in multiplication, exponentiation window size, FPGA type, and processor

type.

3.8.1 Background Noise. With any experiment there is measurement noise.

Background noise is particularly important when conducting SCA attacks. This

research uses an inductive probe to non-invasively measure the power consumption

of the encryption system. These measurements are particularly sensitive to input

power supply noise, clock generating circuits, and ambient electromagnetic white

noise at the measured frequencies.

3.8.2 Randomized Radix Encoding Booth Multiplication. A primary ele-

ment of the CUT is a randomized radix encoding Booth multiplication. When the

radix is not randomized the multiplier operates as a normal Booth Multiplier. How-

ever, when radix of multiplication is randomized, it randomizes power and timing,

thus decreasing the correlation and increasing the obfuscation.

3.8.3 Exponentiation Method. The baseline implementation of the encryp-

tion hardware uses simple binary exponentiation. To increase obfuscation, multiple

bit windowing exponentiation methods are implemented.

3.8.4 FPGA Model. This research is conducted on a Xilinx Virtex-5

FPGA. Although this parameter is within the system boundary and remains con-

stant throughout this research, different FPGA families or manufacturers can affect

system performance metrics. Changes in underlying FPGA hardware may increase

27

(or decrease) side channel leakage. This change in leakage is particularly true on the

Xilinx Virtex-5. As seen in Figure 3.8.4, several power capacitors on the bottom the

ML507 evaluation board produce a particularly clear power signal. Smaller power

signature changes could also be caused by using other FPGA manufacturers since

their proprietary tools will implement different place and route algorithms during

design synthesis.

Figure 7: Power Capacitors On Bottom of Virtex-5 ML507 Development Board

3.8.5 Processor Type. For communication, this research uses the hardcore

PowerPC440 processor on the physical Virtex-5 FX. Although this also remains a

constant throughout this research, different processors have the ability to affect power

signatures. Simply choosing another processor with a clock frequency significantly

different from the encryption CUT’s clock frequency allows an attacker to filter out

the processor noise, thus leaving a cleaner power signature of the CUT.

28

3.9 Factors

This experiment uses two factors each with two levels. These factors and levels

are summarized in Table 4. The combination of static radix Booth multiplication

and binary exponentiation represent the baseline configuration for this research.

Table 4: Factors and Levels
Factors Levels

Multiplication Radix Static & Randomized

Exponentiation Window Size Binary & Randomized

As the levels of each factor are varied from static to randomized, the expected

result is an increase in randomization in power and timing. However, this is a trade

off since randomizing multiplication radix and increasing exponentiation window

size require more precomputations and increasingly complex hardware, decreasing

throughput and increasing power consumption.

3.9.1 Booth Multiplication Radix. To maximize randomization in timing

and power consumption, the radix of Booth encoding is changed within each mul-

tiplication operation. This factor is tested at two levels: static 2-radix (standard

Booth multiplication) and randomized radix.

3.9.2 Exponentiation Window Size. To build upon the randomized mul-

tiplier, a variable modular exponentiator introduces further randomness in timing

and power. The levels of windowing size of this exponentiator are standard binary

exponentiation and randomized window.

3.10 Evaluation Technique

The evaluation method of this research is direct measurement. The SUT is

coded in VHDL and synthesized onto a Xilinx Virtex-5 FPGA for each configuration.

Using Riscure’s Inspector SCA software as a driver, modulus, keys, and messages are

29

sent via RS-232 to the SUT hardware on FPGA. At the beginning of the encryption

cycle, the SUT triggers a Lecroy WavePro 725zi oscilloscope to begin sampling a

Willtek 1207 inductive probe that is mounted directly above the FPGA. These power

traces are transfered from the oscilloscope to the Inspector software via Ethernet.

This setup is shown in Figure 8.

Figure 8: Hardware Test Setup for Trace Collection

These power traces are imported into MATLAB for statistical analysis. Custom

software is run in MATLAB to compute correlation values and attempt a Hamming

Weight model Differential Power Analysis (DPA) attack. This method implements

a very common and powerful DPA attack to evaluate each experimental run. The

evaluation technique is validated on the baseline implementation. Results from the

DPA attack on the baseline implementation are compared against the known secret

key to validate successful attack. Subsequent experimental runs compare attack

results with their known secret keys to determine success of attack. Correlation

values are also compared against the baseline implementation to measure success

toward the protection goals and measures of obfuscation.

30

3.11 Experimental Design

This research includes a full factorial design of experiments. Defining two

factors with two levels each yields four total experiments. These experiments are

replicated three times resulting in 12 total experiments. A 95% confidence interval

is used to evaluate this research. This confidence interval is chosen because it allows

for sufficient differentiation between experimental configurations.

3.12 Methodology Summary

The goal of this research is to determine whether a dynamic architecture on

an FPGA is capable of protecting an RSA implementation from SCA attacks. This

goal is accomplished by randomizing timing and power consumption through a vari-

able radix multiplier and variable window size exponentiator. By feeding the system

representative workload parameters, verifying system services fulfillment, and mon-

itoring system metrics, the results are indicative of the CUT’s performance. Using

two factors varied by two levels, four experiments are run in a full factorial experi-

ment. Each experiment is evaluated by a hardware test using real time encryption

and physical side channel collections. These results are validated against the base-

line implementation to determine the effectiveness of the dynamic architecture as a

defense against SCA attacks.

31

IV. Countermeasure Design and Results

The following chapter outlines the design, simulation results, and results from real

world attacks on the dynamic architectural countermeasure developed in this re-

search.

4.1 Basic Hardware Design

In order to achieve the goals of of this research, to develop and synthesize an

architecture capable of protecting an RSA implementation against power analysis

attacks, the modular exponentiation operation is obfuscated. This obfuscation is

achieved by dynamic algorithms that randomize the power consumption and timing

of each calculation. Randomization is introduced at two levels within the architec-

ture, multiplication and exponentiation window size.

4.1.1 Booth Multiplication. Basic binary multiplication is accomplished by

repeated addition and shift operations. In contrast, Booth encoded multiplication

[46] recodes operands in such a way to reduce the number of costly addition steps.

Booth multiplication was chosen as the base multiplication architecture because it

allows for multiple bits to be encoded and operated on in a single iteration. As shown

in the flowchart in Figure 9, Booth multiplication tests the LSBs of the multiplier to

determine whether adding or subtracting the multiplicand is needed in each iteration.

Booth’s approach has a speedup benefit since arithmetic logic unit (ALU) operation

is only required on 0-to-1 and 1-to-0 transitions. For each iteration, the LSBs of the

multiplier are tested, ALU operation is completed (if needed), and multiplier and

product registers are shifted.

4.1.1.1 Modular Reduction. To complete modular multiplication, the

product of Booth multiplication must be reduced via a modulo operation. There are

two main classes of reduction techniques for modular multiplication: multiply-then-

32

reduce and reduce-as-you-go [47]. This research implements the reduce-as-you-go

approach. Using the simple reduction method outlined in Algorithm 7 keeps the

product within the bounds of the modulus. This reduction algorithm is left-to-

right (MSB to LSB), which forces Booth encoding to also be preformed left-to-right.

Although it is not implemented in this research, this architecture does not prevent

implementing the popular Montgomery reduction [48].

Figure 9: Flowchart of Booth Multiplication [3]

The resultant modular Booth multiplier design is shown in Figure 10. The

Booth multiplier hardware concurrently computes all possible encoding results and

uses a multiplexer to choose the correct result based on the Booth encoding of the

MSBs of the multiplier. This result is fed into the modular reducer section of the

hardware. Here, all possible reductions are computed concurrently and the MSB of

33

Algorithm 7 Modular Reduction

INPUT: Multiplier A, Multiplicand B, Modulus N
OUTPUT: A ·B (mod N)
Double the product register
If product register is > |N | modulus, Add/subtract to adjust
Add/Subtract via Booth operation
If product register is > |N | modulus, Add/subtract to adjust

the results determine the correct reduction. Using 2’s complement arithmetic, a MSB

of 1 represents negative numbers while MSB of 0 represents positive numbers. The

modular reducer selects the smallest nonnegative result. Therefore, this architecture

implements combinational logic that computes all possible Booth results, selects

the correct Booth result, computes all possible modular reductions, and selects the

correct modular reduction all in a single clock cycle.

Figure 10: Modular Booth Implementation

4.1.2 Modular Exponentiation. As reviewed in the multiply-and-square

algorithms presented in Section 2.1.1, exponentiation can be performed via multiple

modular multiplication steps. In order to complete the modular multiplications

R2 (mod N) and R · m (mod N), repeated operations using the modular Booth

multiplier hardware is used. This paper focuses on a modification of the Booth

34

concept to dynamically randomize the calculation, which provides a level of SCA

protection to RSA.

4.2 Dynamic Architectural Countermeasures Design

The following sections outline the design of the dynamic architectural counter-

measure.

4.2.1 Randomized Radix Encoding Booth Multiplier. This research pro-

poses a custom design for a Booth multiplier with randomized radix encoding. In-

creasing the radix of Booth encoding causes more bits to be encoded each cycle,

thus further decreases the number of required cycles to complete multiplication.

The Booth encoding for radix 2, 4, and 8 are shown in Table 5. Note that all mul-

tiples of the multiplier M are trivial (i.e., shifts and 2’s complements) except the

multiple of three. However, the multiple of three is easily precomputed and stored

for later use.

Table 5: Table of Booth Encoding For Given Radix

Radix-2 M Radix-4 M Radix-8 M
00 0 000, 111 0 0000, 1111 0
01 M 001, 010 M 0001, 0010 M
10 −M 011 2M 0011, 0100 2M
11 0 100 −2M 0101, 0110 3M

101, 110 −M 0111 4M
1000 −4M

1001, 1010 −3M
1011, 1100 −2M
1101, 1110 −M

The radix of Booth encoding is randomly varied to provide protection against

SCA. Driven by a pseudorandom number generator, henceforth referred to as ran-

dom, the multiplier hardware randomly selects a radix at each iteration. This dy-

namic architecture induces randomness into the timing of operand use, randomizes

intermediate operands, randomizes power consumption, and multiplication com-

35

pletes in a nondeterministic number of clock cycles. This randomization causes

alignment of traces to be lost, making correlation much more difficult.

4.2.2 Variable Window Exponentiator. Building upon the randomness in-

troduced via the randomized radix encoding Booth multiplier, the window size of the

exponentiator is also randomized. Starting with the general windowing Algorithm

4 from Section 2.1.1.2, the precomputations needed for a maximum window size of

3 are computed. Continuing into the second loop of the algorithm, the window size

k is randomly varied between 1, 2, or 3 each iteration. If window size 1 is chosen,

the algorithm simplifies to simple binary exponentiation. If a window size of 2 (or

3) is chosen, R = R4(R = R8) is computed and R = R · cdi is calculated using

the precomputed powers of c. Similar to randomizing the radix in Booth multi-

plication, randomizing the window size in exponentiation further introduces timing

randomness, operations randomness, and randomness in calculated intermediate val-

ues. Although this research presents an architecture with window sizes of 1, 2, and 3,

it is possible to increase the window size further for added randomization. However,

increasing window size is a trade off since increasing the window size exponentially

increases the number of precomputations and storage needed for very large integers.

4.3 Simulation Results

The discussed design is developed in VHDL and simulated using Mentor Graph-

ics ModelSim. The following sections discuss simulated execution of the randomized

radix encoding Booth multiplier, variable window exponentiator, and the combined

countermeasure.

4.3.1 Baseline. The baseline configuration consists of traditional Radix-2

Booth multiplication and simple binary exponentiation. Figure 11 shows a calcu-

lation of 146187 (mod 207) = 47. Note that timing is constant and all modular

multiplication operations take 11 cycles. This consistency is a best case scenario

36

for an attacker. Calculating intermediate values based on a correct key guesses will

easily generate a correlation spike as all traces are aligned.

Figure 11: Baseline Configuration Simulation of 146187 (mod 207) = 47

4.3.2 Randomized Multiplication Simulation. Three computations of 146 ·

85 (mod 207) were simulated to show the induced randomness in timing and oper-

ations. The simulation results are presented in Figure 12. It is clearly seen that all

three modular multiplication computations’ output arrive at the correct answer of

146·85 (mod 207) = 197. However, the simulations complete in 9, 5, and 6 iterations

respectively.

Figure 12: Three Simulations of 146 · 85 (mod 207) = 197

Table 6 presents the computations in tabular form in order to show the ran-

domness in the calculations, where the multiplier 85 is represented in binary. Notice

as each computation traverses from MSB to LSB of the multiplier, horizontal sepa-

rating lines show which bit(s) each cell operates on. Notice where cells end on the

same bit (horizontal lines line up), the calculated intermediate value is the same,

but where iterations end on different bits of the multiplier (horizontal lines do not

37

Table 6: Three Computations of 146 · 85 (mod 207) [Entire Table (mod 207)]
Multiplier 1st Run Radix 2nd Run Radix 3rd Run Radix

MSB 0 P = 0 P = 0
22 · P = 22 · 0 = 0 4 = 000 P = 0 22 · P = 22 · 0 = 0 4 = 000

0 P + 0 = 0 23 · P = 23 · 0 = 0 8 = 0001 P + 0 = 0
P +M = 146

0 22 · P = 22 · 0 = 0
23 · P = 23 · 0 = 0 P +M = 0 + 146 = 146 4 = 010

1 P + 3M = 0 + 3 · 146 = 24 8 = 0101
23 · P = 23 · 146 = 133

0 P − 3M = 133− 3 · 146 = 109 8 = 1010
2 · P = 2 · 24 = 48 23 · P = 23 · 146 = 133

1 P −M = 48− 146 = 109 2 = 10 P + 3M = 133 + 3 · 146 = 157 8 = 0101
2 · P = 2 · 109 = 11

0 P +M = 11 + 146 = 157 2 = 01
2 · P = 2 · 157 = 107 23 · P = 23 · 109 = 44

1 P −M = 107− 146 = 168 2 = 10 P + 3M = 44 + 3 · 146 = 68 8 = 0101 2 · P = 22 · 157 = 7
P −M = 7− 146 = 68 4 = 101

0 22 · P = 2 · 168 = 51
P +M = 51 + 146 = 197 4 = 010 2 · P = 2 · 68 = 136 2 · P = 2 · 68 = 136

LSB 1 P −M = 136− 146 = 197 2 = 10 P −M = 136− 146 = 197 2 = 10

line up) the addition operation and results are different. This effect is significant

because although the algorithm is computing the same answer, the power signature

will be vastly different not only because of the induced timing variance, but also the

switching activity from different operands in each iteration.

4.3.3 Randomized Window Exponentiator. A simulation of three calcula-

tions of 146187 (mod 207) are presented in Figure 13. First, all three iterations are

verified to arrive at the correct answer of 146187 (mod 207) = 47. Multiplication is

held constant, 11 cycles to complete, and the only variability is from the randomized

window. The timing variance of the randomized exponentiation leads to completion

in 231, 220, and 242 cycles respectively.

Figure 13: Random window Configuration Simulation of 146187 (mod 207) = 47

38

Table 7: Three Computations of 146187 (mod 207) [Entire Table (mod 207)]
Exponent 1st Run Window 2nd Run Window 3rd Run Window

R = 1
MSB 0 R = 1 R = 1 R2 = 12 = 1

R2 = 12 = 1 R2 = 12 = 1 R2 = 12 = 1 2
0 R2 = 12 = 1 3 R2 = 12 = 1 3

R2 = 12 = 1 R2 = 12 = 1 R2 = 12 = 1
1 R ·M = 1 · 146 = 146 R ·M = 1 · 146 = 146 R ·M = 1 · 146 = 146 1

0 R2 = 1462 = 202 R2 = 1462 = 202 1 R2 = 1462 = 202
R2 = 2022 = 25 R2 = 2022 = 25 R2 = 2022 = 25 2

1 R2 = 252 = 4 3 R ·M = 25 · 146 = 131 1 R ·M = 25 · 146 = 131
R ·M3 = 4 · 98 = 185 R2 = 1312 = 187 R2 = 1312 = 187

1 R2 = 1872 = 193 R ·M = 187 · 146 = 185 1
R2 = 1852 = 70 R ·M3 = 193 · 98 = 77 2

1 R ·M = 70 · 146 = 77 1 R2 = 1852 = 70
R2 = 702 = 139 2

0 R2 = 772 = 135 R2 = 772 = 133 1 R ·M2 = 139 · 202 = 133
R2 = 1352 = 94 2 R2 = 1332 = 94

1 R ·M1 = 94 · 146 = 62 R2 = 1332 = 94 R ·M = 94 · 146 = 62 1
R2 = 622 = 118 R2 = 942 = 142 2 R2 = 622 = 118

LSB 1 R ·M = 118 · 146 = 47 1 R ·M3 = 142 · 98 = 47 R ·M = 118 · 146 = 47 1

More interestingly, the tabular calculation shown in Table 7 is inspected to

see the countermeasure’s effect on intermediate calculations. Because intermediate

calculations, power consumption, and timing are of such importance to DPA attacks,

this randomized modular exponentiation architecture is a countermeasure to defeat

SCA attacks. Again take notice where cells end on the same bit (horizontal lines

line up), the calculated intermediate value is the same, but where iterations end on

different bits of the exponent (horizontal lines do not line up) results are different.

4.3.4 Combined Countermeasure Simulation. To maximize the power and

timing randomization of the countermeasure, the randomized Booth multiplier and

the randomized exponentiator are combined. Three calculations of 146187 (mod 207)

are once again simulated and presented in Figure 14. First, the simulations are

again verified to have computed the correct answer of 146187 (mod 207) = 47. This

configuration combines the timing variance from both the previous countermeasures.

The combined timing variance of the randomized multiplication and exponentiation

lead to completion in 117, 106, and 119 cycles respectively. These results validate

via simulation that this proposed dynamic architectural countermeasure successfully

39

randomizes timing, randomizes intermediate values, and causes large misalignment

in traces. These randomizations all increase SCA attack difficulty.

Figure 14: Three Simulations of 146187 (mod 207) = 47

4.4 Hardware Trace Results

The simulation results from the previous sections are the result of VHDL code.

This code was subsequently synthesized onto a Xilinx Virtix-5 FPGA using Xilinx’s

XPS Design Suite. As previously described in depth in Section 3.10, the crypto-

graphic hardware on the FPGA interfaces with the Riscure Inspector’s 3rd party

software and a Lecroy Oscilloscope to collect power traces. All configurations are

synthesized as 512-bit RSA cryptosystems. To aid in the speed of trace collection

and processing, only a 32-bit key is used. The smaller key does not effect the method

binary multiplication. It only reduces the number of modular multiplications and

shortens the overall encryption time for testing purposes.

4.4.1 Baseline Configuration. The first configuration to be tested is the

baseline configuration. Figure 15 shows the raw power trace. Because the traces are

collected via EM probe, they are very noisy. Figure 16 shows the frequency spectrum

of the raw trace. Clearly, the traces are riddled with higher harmonics of the 12.5

mHz clock frequency. Using DSP, the noisy traces are filtered with a bandpass filter

centered on the 12.5 mHz clock frequency (10.5-14.5 mHz bandpass). Figure 17

presents the post processed frequency spectrum, and Figure 18 shows the resultant

trace with much less noise. Notice how the beginning and end of the filtered trace

40

show very little power consumption, while the unfiltered trace shows unrelated noise

at those times.

Figure 15: Baseline Configuration - Raw Trace

Figure 16: Baseline Configuration - Spectrum Analysis

Figure 17: Baseline Configuration - Bandpass Filtered Spectrum

Figure 18: Baseline Configuration - Post Filtering

Zooming in to the processing of the first few bits, it is possible to clearly define each

block of execution in the filtered trace, Figure 19. Figure 20 shows several bits from

41

two encryption operations with the same plaintext but different keys. Notice there is

no discernible timing or power difference in the squaring or multiplying operations.

This validates that the implementation is resistant to Simple Power Analysis (SPA).

However the baseline configuration is still very susceptible to Differential Power

Analysis (DPA).

Figure 19: Baseline Configuration - Zoomed, Filtered

Figure 20: Baseline Configuration - Immune to SPA

Lastly, Figure 21 shows the ending of five power traces. Notice that the timing is

perfectly aligned. The aligned power spikes create a very favorable condition for SCA

attacks. Figure 21 is used as a benchmark to gauge other configurations’ timing.

4.4.2 Randomized Radix Encoding Booth Multiplier. This section presents

hardware test results from the randomized radix encoding Booth multiplier. The

42

Figure 21: Timing Consistencies of the Baseline Configuration

randomized radix encoding Booth multiplier configuration uses static binary expo-

nentiation built upon a Booth multiplier that randomly selects between radix of 2,

4, or 8. The raw trace shown in Figure 22 has higher power spikes than the base-

line configuration. This higher power consumption is due to multiple copies of the

ALU hardware needed to compute the additional operands seen in the higher radix

columns of Table 5. These power spikes can be seen more easily in Figure 23 after

removing noise from the trace via a bandpass filter centered on the 12.5 mHz clock

frequency. Zooming in to examine the first few bits of encryption, shown in Figure

24, the power spikes clearly show the hardware is front loaded and high switching

activity draws more power as soon as new operands are shifted into the registers.

In order to show the misalignment of traces, Figure 25 presents the ending

times of five power traces of the randomized multiplier configuration. In this sample

of traces, the misalignment is very apparent when compared to the baseline ending

times previously shown in Figure 21. Taking the standard deviation of 10,000 col-

43

Figure 22: Randomized Multiplier Configuration - Raw EM Power Trace

Figure 23: Randomized Multiplier Configuration - Filtered Trace

Figure 24: Randomized Multiplier Configuration - Zoomed, Filtered

44

lected traces, Figure 26 shows a normal distribution of ending times from 1, 027µs to

1, 043µs. This distribution is as expected and reflects the system randomly selecting

a radix each iteration. The majority of traces have a mixture of high radix and low

radix iterations, while few traces randomly select mostly high radix (i.e., shorter

overall runtime) or mostly low radix (i.e., longer overall runtime). Thus, a normal

distribution of end times is expected.

Figure 25: Timing Misalignment of the Randomized Multiplier Configuration

4.4.3 Random Exponentation Window Configuration. The next section de-

tails the hardware test for the variable windowing configuration. This configuration

uses static 2-radix Booth multiplication, but varies the exponentiation window size

between 1, 2, or 3. The raw power trace, shown in Figure 27, appears to be more sim-

45

Figure 26: Randomized Multiplier Configuration - 10,000 Trace Standard Devia-
tion

ilar to the baseline configuration than the randomized multiplier configuration. This

similarity is due to the underlying hardware. The random window configuration,

like the baseline configuration, contains only radix-2 Booth multiplier hardware. It

is expected that the random window power trace is most similar to the baseline

configuration since the random window countermeasure implements randomization

at the finite state machine (FSM) level, not at the low level multiplication hard-

ware. After applying the same bandpass filter to reduce noise, Figure 28 shows the

resultant power trace. Notice the dip in power consumption starting at 250µs. The

operations before this dip are the precalculations (i.e., the first loop of Algorithm 4).

The dip in power is due to the first few operations following initializing the variable

R = 1. Squaring R at this point drives very little switching activity, thus draws very

little power consumption (e.g., R2 = R ∗R = 1∗ 1 = 1). This effect can more clearly

be seen in Figure 29. Note that window size of 1 requires R2 before multiplying,

where window sizes of 2 and 3 require calculating R4 and R8 respectively. Figure 29

also displays the randomness in window size selection.

Figure 27: Randomized Window Configuration - Raw Power Trace

46

Figure 28: Randomized Window Configuration - Filtered Trace

Figure 29: Comparison of Initial Calculations in Random Window Configuration

47

Once again, it is interesting to examine the ending times of this configuration.

Figure 30 shows the much increased timing variance of this configuration. Notice

that while the ending times are different, there is no misalignment; the deep down-

ward power spikes are all aligned. However, the number of execution “blocks” the

traces takes to complete is randomized. Looking at the standard deviation of 10,000

collected traces, Figure 31 shows a normal distribution of ending times from 2, 060µs

to 2, 350µs. Notice the randomized window configuration has a timing variance of

300µs where as the randomized multiplier only generates 15µs of variance. This

increased timing variance will make alignment and correlation more difficult in SCA

attacks.

Figure 30: Timing Misalignment of the Randomized Window Configuration

4.4.4 Combined Countermeasure Configuration. This dynamic counter-

measure combines the randomized radix encoding Booth multiplier hardware with

the randomized exponentiation window architecture. The raw power trace shown

in Figure 32 looks similar to both the independent countermeasures. It exhibits

48

Figure 31: Randomized Window Configuration - 10,000 Trace Standard Deviation

higher power spikes from the increased randomized Booth hardware, as well as a dip

in power immediately following the precomputations. These attributes can be seen

more clearly in the filtered power trace in Figure 33.

Figure 32: Combined Countermeasure Configuration - Raw Power Trace

Figure 33: Combined Countermeasure Configuration - Filtered Trace

Once again, the ending times of several power traces are examined to comment

on trace misalignment and timing variance. Figure 34 presents the ending times

of the combined countermeasure. While ending times appear very similar to the

variable window configuration, the addition of the randomized multiplier has added

low level trace misalignment. Notice that the large power spikes are no longer aligned

as they were with only the random window configuration. Similarly to previously

shown, the standard deviation of 10,000 traces yields a normal distribution of ending

49

times and can be seen in Figure 35. While the combined countermeasure produces a

large variance in ending times like the random window configuration, the addition of

the randomized multiplier “smooths” the edges such that bell curve is more evenly

distributed.

Figure 34: Timing Misalignment of the Combined Countermeasure Configuration

Figure 35: Combined Countermeasure Configuration - 10,000 Trace Standard De-
viation

50

4.5 Hardware Attack Results

The following section details the development and results from conducting a

real world side channel power analysis attack. This attack is a correlation power

analysis attack, as previously described in Section 2.2.2.2. First, a collection of

10,000 power traces with random ciphertexts are decrypted. During decryption, EM

probes are used to collect emissions related to power consumption. These emissions

and ciphertexts are saved for processing the attack. This attack setup is identical for

each configuration under attack. Next, a key bit guess is made, and an intermediate

value is calculated based on this key guess. The Hamming Weight (HW) of 8-bits

of the resultant intermediate guess is calculated. These 10,000 8-bit HW guesses

are statistically correlated to the collected EM power traces using Equation 2 from

Section 2.2.2.2. If the resultant correlation trace contains a correlation spike, the

power consumption matches the HW values and the key guess is verified as correct.

If no correlation spike is seen, the key bit guess is incorrect.

4.5.1 Attack On Previous AFIT Research. This research is a continuation

of previous work [1]. To begin working with SCA, the previous work was attacked

and broken to prove attack validity. A power trace from the previous research’s

implementation is shown in Figure 36. Note that this implementation is also vulner-

able to simple power analysis. The result of the correlation power analysis attack

on the previous research’s implementation can be seen in Figure 37. This attack

generates a very large correlation spike many times larger than the noise floor. This

very successful attack gives an attacker high confidence that the correct bit has been

guessed.

4.5.2 Attack on Baseline Configuration. The first implementation from

this research to be attacked is the baseline configuration. As expected, correlation

power analysis is able to easily recover the key. Without any randomizations of

intermediate values, randomizations in power, or trace misalignments, the attack is

51

Figure 36: Previous Work’s SPA Susceptible

Figure 37: Previous Work Broken Using Correlation Power Analysis

52

successful as seen in Figure 38. To provide the reader an idea of an unsuccessful

attack, Figure 39 presents the correlation trace with an incorrect key guess. Notice

the noise floor remains the same but a correlation spike is not present. Therefore,

the baseline configuration is not protected against correlation power analysis.

Figure 38: Correlation Attack on Baseline Configuration - Correct Guess

Figure 39: Correlation Attack on Baseline Configuration - Incorrect Guess

4.5.3 Attack On Randomized Radix Encoding Booth Multiplier Configuration.

Since the randomized multiplier configuration has elements of low level misalign-

ment and randomization, the effectiveness of the SCA attack is expected to be de-

graded. Looking at Figure 40, the attack still generates a correlation spike. However,

since there is timing randomness the correlation is spread out among many clock cy-

cles. This causes the correlation spike to be shorter and wider instead of the narrow

tall spike seen in the attack against the baseline configuration. For an “apples to

apples” comparison, the correlation trace is set to same y-axis scale as the baseline

attack, Figure 41. It is now much more apparent that the spike is smaller than the

baseline attack. Although the randomized multiplier countermeasure significantly re-

duced the correlation spike, the spike is still much larger than the noise floor. Thus,

53

the attack is successful and this countermeasure is not protected against correlation

power analysis attacks.

Figure 40: Randomized Multiplier Configuration - Correct Guess

Figure 41: Correlation Spike on Baseline Y-Axis Scale

4.5.4 Attack On Random Exponentiation Window Configuration. Based on

the ending times variance examined previously, the random window configuration is

expected to provide increased protection. Figure 42 shows a small area of increased

correlation near the 1, 200µs mark. This correlation area is much more disperse than

the previous two configurations, indicating that the random window configuration

provides the best protection so far. Comparing the attack results on the same y-axis

scale of the baseline attack, Figure 43 shows it is extremely difficult to make out

the correlation near the 1, 200µs mark. While this configuration is still considered

vulnerable in this 10,000 trace correlation power analysis attack, the configuration

would be considered protected if it were possible to limit the amount of power traces

an attacker could collect to a smaller number.

4.5.5 Attack On Combined Countermeasure Configuration. Combining the

low level randomness of the random multiplier with the architectural randomness of

54

Figure 42: Random Exponentiation Window Configuration - Correct Guess

Figure 43: Correlation Spike on Baseline Y-Axis Scale

the random window exponentiatior proves to be the best chance at protection. Figure

44 presents the results from attacking the combined countermeasure configuration.

There is no correlation discernible from the noise floor as expected near the 500µs

mark. Because the correlation cannot be distinguished from the noise floor in the

correlation trace, this configuration is considered protected in this attack. Further-

more, when compared on the same y-axis scale of the baseline attack (Figure 45),

this result looks nearly identical to the incorrect key guess trace previously shown in

Figure 39, indicating the implementation is protected. This configuration is declared

protected against the 10,000 trace correlation power analysis attack. In an effort to

uncover the breaking point of this countermeasure the number of traces collected

was increased by an order of magnitude. Requiring about 48 hours of constant CPU

processor time, 100,000 traces were collected, filtered, and attacked. The results

from this 100,000 trace correlation power analysis attack are shown in Figure 46.

There is no discernible difference in the correct vs. incorrect key guess in this at-

tack. Therefore, the combined countermeasure is also considered protected against a

100,000 trace correlation power analysis attack. However, an attacker able to collect

55

many orders of magnitude more traces may be able to reduce the noise floor such

that the correlation is discernible, and the combined countermeasure configuration

is no longer protected. Although, collection of traces can be limited to reasonable

amounts with sufficiently often key changes.

Figure 44: Combined Countermeasure Configuration - Correct Guess

Figure 45: Correlation Spike on Baseline Y-Axis Scale

Figure 46: Combined Countermeasure Configuration - 100,000 Trace Attack

4.5.6 Comparisons. In order to clearly see each configuration’s effect on

the attack, Figures 47 and 48 compare the results of attacks on independent and

56

identical y-axis scales, respectively. While the correlation is not discernible in these

countermeasures, it is not hidden; the correlation is simply misaligned. This research

seeks to force attackers to attempt a brute force type correlation attack. If an

attacker knew each random window size and radix, they could easily align/filter

traces to reveal the correlation. Because these windows and radixes are randomized,

an attacker would be forced to attempt correlation on all possible combinations of

window sizes and radixes (i.e., brute force) for each key bit. Future advances in the

field could produce a countermeasure with side channel brute force security better

than the brute force security of the underlying encryption scheme.

Figure 47: 10,000 Trace Correlation Power Analysis Attack Compared

57

Figure 48: 10,000 Trace Correlation Power Analysis Attack Compared - Same
Scale

58

4.6 Metrics

Regardless of a countermeasure’s security, no implementation is realizable if

it does not meet the users needs. A perfectly secure system is useless if it is too

large to be manufactured or cannot provide the deciphered information in a timely

manner. This section presents the results of the following metrics: execution time,

FPGA area size, and level of increased protection.

4.6.1 Execution Time (ET). The first metric examined is execution time.

Any countermeasure that increases encryption/decryption execution time decreases

throughput. All configurations in this research are synthesized and running at 12.5

mHz. Although Table 8 shows that the randomized multiplier and combined coun-

termeasure contain more path delays and must be run at the slower clock rate, there

is actually very little performance penalties involved for these countermeasures. Tak-

ing into account the execution times shown in Figure 49, the 55% speedup achieved

by the randomized multiplier and combined countermeasure offset the 50% decrease

in clock frequency.

Table 8: Table of Maximum Frequency of Configurations

Configuration Maxiumum Frequency
Baseline 25.2 mHz
Random Multiplier 12.9 mHz
Random Window 26.4 mHz
Combined Countermeasure 13.7 mHz

4.6.2 Required FPGA Area. The next metric discussed is FPGA area re-

quired. Area and execution time are common inverse tradeoffs. A system may be

designed to operate quicker with parallel hardware, but this comes at an increased

layout area size for the additional hardware. As detailed in Table 9, the random-

ized multiplier and randomized window countermeasure affect different aspects of

area. Because the randomized multiplier has many additional ALUs, the multiplier

requires many more look up tables (LUTs) to make these calculations. However, the

59

Figure 49: Execution Time of Configurations Compared (Running At 12.5 mHz)

60

randomized window countermeasure requires additional precomputations and stor-

age. This increased storage drives an increase in flip flops (FFs). As expected, the

combined countermeasure contains the combined increases in both FFs and LUTs.

Table 9: Table of FPGA Area Required For Each Configuration

Configuration Flip-Flops LUTs Increased FF Increased LUTs
Baseline 10425 14791 N/A N/A
Random Multiplier 10462 29827 0.4% 101%
Random Window 13576 18075 30% 22%
Combined Countermeasure 13613 34156 31% 131%

4.6.3 Protection. Protection, as defined for this research, is measured as the

number of power traces required to recover secret key bits. Based on the 10,000 trace

correlation power analysis attack presented in the last section, the following graphs

detail how the correlation spike and noise floor change as more traces are collected.

Recalling the relationship presented in Equation 1 from Section 2.2.2.1, increasing

the number of traces collected decreases noise and increases SNR of the desired

leakages. Examining the baseline configuration, Figure 50 reveals that beyond 30

traces the noise floor is reduced to a level that reveals the correlation. Attacks

attempted with less than 30 traces will be unsuccessful as it will be impossible to

discern the correlation spike from the noise floor. However, attacks with greater than

30 traces will be successful because an attacker can distinguish the correlation spike

in correct key bit guesses. Also notice that the correlation spike neither increases

nor decreases as excess power traces are collected, the noise floor simply shrinks

further. This reduction is due to the static nature of the implementation. There is a

constant amount of leakage. An attacker only needs to collect enough traces to lower

the noise floor to a level that allows distinguishment of the correlation spike. This

demonstrated inherent weakness plagues all static countermeasures, such as dual-rail

logic.

61

Figure 50: Baseline - Correlation Vs. Noise Floor

The next configuration inspected is the randomized multiplier. Figure 51 shows

some increased protection. This configuration requires 80 power traces for successful

attack. Notice how the correlation no longer remains at a constant level as more

traces are collected. The changing power consumption and misalignments introduced

by the random multiplier continually decrease correlation. Although the noise floor

was able to be reduced at a steeper slope, revealing the correlation, this tenet of

dynamic countermeasures highlights the promise of their use for SCA obfuscations.

Figure 51: Randomized Multiplier - Correlation Vs. Noise Floor

62

Moving on to the randomized window configuration, Figure 52 presents the

results of the attack. It is immediately apparent that the randomized window con-

figuration is able to maintain correlation below the noise floor up until 2,000 traces.

The increased timing variance previously shown in Figure 31 allows this configuration

to spread the correlation over a larger time frame, which decreases its impact.

Figure 52: Randomized Window - Correlation Vs. Noise Floor

Next, the results of an attack on the combined countermeasure are examined,

Figure 53. Within the original 10,000 trace attack, it is not possible to distinguish

the correlation. Even when the attack was increased by an order of magnitude to

100,000 traces, no correlation was revealed. For the attack setups presented in this

research, the combined countermeasure is considered protected. However, if the

amount of traces used in the attack was greatly increased, it would likely reveal the

correlation at some point.

Finally, Table 10 is presented to summarize the increased levels of protection

of each configuration. This research concludes that the only major trade off penalty

for this countermeasure’s increased protection is over doubling the required LUTs.

Notice that the increase in FFs and LUTs for the combined countermeasure is only

a summation of the two individual countermeasure, but the increase in protection

is many times greater than their summation. Combining the two forms of random-

63

Figure 53: Combined Countermeasure - Correlation Vs. Noise Floor

ness (low level hardware randomness and FSM randomness) creates an synergistic

increase in protection.

Table 10: Table of Number of Traces Required for Successful Attack

Configuration Number of Traces Increased Protection
Baseline 30 N/A
Random Multiplier 80 166%
Random Window 2,000 6,500%
Combined Countermeasure +100,000 +300,000%

4.7 Conclusions

Table 11 is presented to summarize the increased protection and associated

trade-offs of each configuration.

Table 11: Table of Tradeoffs
Configuration Increased FFs Increased LUTS Increased ET Increased Protection
Baseline N/A N/A N/A N/A
Random Multiplier 0.4% 101% Negligible 166%
Random Window 30% 22% Negligible 6,500%
Combined Countermeasure 31% 131% Negligible +300,000%

As stated previously, this research is driven by the fact that current static

SCA countermeasures rely on hiding the signals, not protecting them. These coun-

64

termeasures’ success are based upon the quality of equipment and quality of signal

an attacker is able to capture. In contrast to the existing countermeasures, the dy-

namic architectural countermeasure presented in this paper does not rely on hiding

signals among noise. This approach is much more in line with Kerckhoffs’s princi-

ple [10], which states that a cryptosystem should be secure even if everything about

the system, except the key, is public knowledge. The new countermeasure presented

in this paper makes no attempt to hide power consumption, only to randomize it.

Because the signal is not hidden beneath noise, the probability of successful attack is

not determined by the sophistication of an attacker’s equipment or quality of signal

they capture. This randomized approach forces an attacker into a brute force side

channel attack in which the attacker must calculate every possible combination of

intermediate values for every trace. Therefore, this research lays a foundation for

exponential difficulty side channel attack protection. Assuming the correct trade off

choices are made with respect to performance and hardware area, it is conceivable

that large enough pools of radixes and window sizes could lead to a future system

with brute force side channel attack difficulty no worse than the underlying encryp-

tion algorithm’s brute force security, thus rendering side channel attacks impractical.

65

V. Conclusion

The following chapter summarizes this research’s completed objectives, contributions

to the field of study, and options for future work.

5.1 Completed Objectives

The objectives laid out for this research are obtained as follows:

5.1.1 Dynamic RSA Design. The primary objective of this research is

to further the side channel attack countermeasure field of study. This objective

is achieved through design of a dynamic architectural countermeasure to protect

RSA encryption against side channel attacks. Unlike many popular static counter-

measures that merely hide the leakage beneath noise, this dynamic countermeasure

randomizes timing and power consumption such that correlation is much more dif-

ficult. A randomized radix encoding Booth multiplier induces lower level hardware

timing misalignments and randomizes power. Building upon the randomized multi-

plication, a randomized window exponentiatior further misaligns the traces and ran-

domizes intermediate calculated values. The combined countermeasures produced

by this research lay a foundation for future SCA countermeasures that may have

side channel attack difficulty of at least the brute force security of the underlying

encryption scheme, thus rendering SCA attacks useless.

5.1.2 Implementation on FPGA. The newly designed dynamic counter-

measure was implemented to prove viability and testing. This implementation was

completed on a Xilinx Virtix-5 FPGA. VHDL code was synthesized using Xilinx’s

XPS design suite and downloaded to the FPGA. The 3rd party Riscure Inspector

software was used to facilitate key passing and random plaintext generation. Traces

were compared against the key values and resulting ciphertext to verify correct im-

plementation and encryption results.

66

5.1.3 Real World Attacks. The last objective of this research is to conduct

real world attacks on the countermeasures. These attacks are the ultimate veri-

fication and provide quantifiable levels of increased protection. Correlation power

analysis attacks were conducted and the results verify the increases in protection for

each countermeasure designed.

5.2 Contributions

The completed research objectives provide numerous contributions to the field

of side channel attack protection.

5.2.1 Developed Theoretical Countermeasure Verified by Attacks. This

research lays the groundwork for new dynamic algorithm class of SCA countermea-

sures. Not only developing a theoretical model for the countermeasure, but also

implementing them and conducting real world attacks to verify their validity.

5.2.2 Developed Custom MATLAB Script for Correlation Power Analysis

(CPA) Attacks. This research developed custom MATLAB scripts capable of

extracting secret keys. This contribution provides a method of SCA attack without

relying on licensing of the 3rd party Riscure Inspector software. These MATLAB

scripts not only mirror Inspector’s capabilities, but also exceed them in attack au-

tomation.

5.2.3 Developed a Method of Comparison Power Analysis Attacks. A pro-

cess of trace collection and post processing was developed to conduct CPA attacks.

This contribution allows for another class of real world side channel attacks to be

executed on in house implementations for testing.

67

5.3 Future Work

5.3.1 Develop Additional Attacks. Developing the capability to execute

additional real world attacks in house would allow for more thorough validation

of new countermeasures. Procuring the needed testbed to induce hardware faults

would also allow future in house research to characterize fault attack tolerance of

new countermeasures.

5.3.2 Speeding MATLAB Processing. Although the MATLAB scripts de-

veloped by this research are capable of completing attacks, the scripts run painfully

slow. Riscure Inspector software uses Java classes optimized for very large integer

(i.e. 512-bit) manipulation and uses CUDA cores on video cards to increase through-

put. Mirroring the calculation speed of Inspector in MATLAB would allow for faster

processing enabling more attacks to be attempted.

5.3.3 Brute Force Work. A major argument in favor of this dynamic

countermeasure is the need for brute force search to realign the power traces for

successful attack. A modified implementation of the countermeasure that could

record all randomized selections would allow for a simulated brute force attack.

Knowing each random choice at the time of attack would enable research into the

exponential security of these countermeasures.

5.4 Summary

This research has designed, implemented, and validated a dynamic architec-

tural countermeasures to increase protection of RSA encryption from side channel

power analysis attacks. The combined countermeasure increases the number of traces

required for successful attack (i.e., increases protection) by over 300,000% without

suffering any throughput penalties. The cost for this tradeoff is only increased FPGA

area. This research provides a foundation for future SCA countermeasures based on

dyanimcally randomizing power at all levels of an implementation’s architecture

68

that may one day provide side channel attack protection greater than the underly-

ing encryption algorithm’s brute force security, thus rendering side channel attacks

impractical.

69

Bibliography

1. Falkinburg, J., Dynamic Polymorphic Reconfiguration To Effectively Cloak A
Circuit’s Function, Master’s thesis, Air Force Institute of Technology, 2010.

2. Riscure, Inspector Training Slides .

3. Patterson, D. A. and Hennessy, J. L., Computer organization & design: the
hardware/software interface, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1993.

4. Kocher, P., Jaffe, J., and Jun, B., “Differential Power Analysis,” Advances in
Cryptology CRYPTO 99 , edited by M. Wiener, Vol. 1666 of Lecture Notes in
Computer Science, Springer-Verlag, 1999, pp. 388–397.

5. Rivest, R. L., Shamir, A., and Adleman, L., “A method for obtaining digital
signatures and public-key cryptosystems,” Commun. ACM , Vol. 21, February
1978, pp. 120–126.

6. Mangard, S., Oswald, E., and Popp, T., Power Analysis Attacks: Revealing
the Secrets of Smart Cards (Advances in Information Security), Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2007.

7. Dierks, T., “Request for Comments: 5246,” The Transport Layer Security (TLS)
Protocol Version 1.2.

8. NSA, “NSA Suite B Cryptography,” http://www.nsa.gov/ia/programs/suiteb
cryptography/index.shtml.

9. Trappe, W. and Washington, L. C., Introduction to Cryptography: With Coding
Theory , Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd ed., 2006.

10. Menezes, A. J., Oorschot, P. C. V., Vanstone, S. A., and Rivest, R. L., Handbook
of Applied Cryptography , 1997.

11. Fouque, P. A. and Valette, F., “The Doubling Attack Why Upwards is Better
Than Downwards,” Workshop on Cryptographic Hardware and Embedded Sys-
tems 2003 (CHES 2003), LNCS 2779 , Springer-Verlag, 2003, pp. 269–280.

12. Nedjah, N. and Mourelle, L., “Efficient Hardware for Modular Exponentiation
using the Sliding-Window Method with Variable-Length Partitioning,” Proc. 9th
Int. Conf. for Young Computer Scientists ICYCS 2008 , 2008, pp. 1980–1985.

13. Itoh, K., Yajima, J., Takenaka, M., and Torii, N., “DPA Countermeasures by Im-
proving the Window Method,” Revised Papers from the 4th International Work-
shop on Cryptographic Hardware and Embedded Systems , CHES ’02, Springer-
Verlag, London, UK, UK, 2003, pp. 303–317.

70

14. Walter, C., “MIST : An Efficient, Randomized Exponentiation Algorithm for
Resisting Power Analysis,” Topics in Cryptology CT-RSA 2002 , edited by
B. Preneel, Vol. 2271 of Lecture Notes in Computer Science, Springer Berlin
/ Heidelberg, 2002, pp. 142–174, 10.1007/3-540-45760-7 5.

15. Miyamoto, A., Homma, N., Aoki, T., and Satoh, A., “Systematic Design of RSA
Processors Based on High-Radix Montgomery Multipliers.” IEEE Trans. VLSI
Syst., Vol. 19, No. 7, 2011, pp. 1136–1146.

16. Miyamoto, A., Homma, N., Aoki, T., and Satoh, A., “SPA against an FPGA-
Based RSA Implementation with a High-Radix Montgomery Multiplier,” Proc.
IEEE Int. Symp. Circuits and Systems ISCAS 2007 , 2007, pp. 1847–1850.

17. Homma, N., Aoki, T., and Satoh, A., “Electromagnetic information leakage for
side-channel analysis of cryptographic modules,” Proc. IEEE Int Electromagnetic
Compatibility (EMC) Symp, 2010, pp. 97–102.

18. Messerges, T., “Using Second-Order Power Analysis to Attack DPA Resistant
Software,” Cryptographic Hardware and Embedded Systems CHES 2000 , edited
by e. Ko and C. Paar, Vol. 1965 of Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, 2000, pp. 27–78, 10.1007/3-540-44499-8 19.

19. Joye, M., Paillier, P., and Schoenmakers, B., “On Second-Order Differential
Power Analysis,” Cryptographic Hardware and Embedded Systems CHES 2005 ,
edited by J. Rao and B. Sunar, Vol. 3659 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, 2005, pp. 293–308, 10.1007/11545262 22.

20. Kocher, P. C., “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems,” Springer-Verlag, 1996, pp. 104–113.

21. Homma, N., Miyamoto, A., Aoki, T., Satoh, A., and Samir, A., “Comparative
Power Analysis of Modular Exponentiation Algorithms,” IEEE Trans. Comput.,
Vol. 59, June 2010, pp. 795–807.

22. Yen, S.-M., Lien, W.-C., Moon, S., and Ha, J., “Power Analysis by Exploiting
Chosen Message and Internal Collisions Vulnerability of Checking Mechanism
for RSA-Decryption,” Progress in Cryptology Mycrypt 2005 , edited by E. Daw-
son and S. Vaudenay, Vol. 3715 of Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, 2005, pp. 183–195, 10.1007/11554868 13.

23. Giraud, C., “An RSA Implementation Resistant to Fault Attacks and to Simple
Power Analysis,” IEEE Trans. Comput., Vol. 55, September 2006, pp. 1116–
1120.

24. Boneh, D., DeMillo, R. A., and Lipton, R. J., “On the importance of check-
ing cryptographic protocols for faults,” Proceedings of the 16th annual interna-
tional conference on Theory and application of cryptographic techniques , EURO-
CRYPT’97, Springer-Verlag, Berlin, Heidelberg, 1997, pp. 37–51.

71

25. Yen, S.-M. and Joye, M., “Checking before output may not be enough against
fault-based cryptanalysis,” Computers, IEEE Transactions on, Vol. 49, No. 9,
sep 2000, pp. 967 –970.

26. Walter, C., “Sliding Windows Succumbs to Big Mac Attack,” Cryptographic
Hardware and Embedded Systems CHES 2001 , edited by e. Ko, D. Naccache,
and C. Paar, Vol. 2162 of Lecture Notes in Computer Science, Springer Berlin /
Heidelberg, 2001, pp. 286–299, 10.1007/3-540-44709-1 24.

27. Ratanpal, G., Williams, R., and Blalock, T., “An on-chip signal suppression
countermeasure to power analysis attacks,” Dependable and Secure Computing,
IEEE Transactions on, Vol. 1, No. 3, july-sept. 2004, pp. 179 – 189.

28. Bayam, K. A. and Ors, B., “Differential Power Analysis resistant hardware im-
plementation of the RSA cryptosystem,” Proc. IEEE Int. Symp. Circuits and
Systems ISCAS 2008 , 2008, pp. 3314–3317.

29. Fournaris, A. P., “Fault and simple power attack resistant RSA using Mont-
gomery modular multiplication,” Proc. IEEE Int Circuits and Systems (ISCAS)
Symp, 2010, pp. 1875–1878.

30. Coron, J.-S., “Resistance Against Differential Power Analysis For Elliptic Curve
Cryptosystems,” Cryptographic Hardware and Embedded Systems , edited by
e. Ko and C. Paar, Vol. 1717 of Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, 1999, pp. 725–725, 10.1007/3-540-48059-5 25.

31. Montgomery, P. L., “Speeding the Pollard and Elliptic Curve Methods of Fac-
torization,” Math. Comp., Vol. 48, No. 177, 1987, pp. 243–264.

32. Joye, M., Koc, C. K., Paar, C., and Yen, S.-M., “The Montgomery Powering
Ladder,” 2002.

33. Joye, M., “Highly Regular Right-to-Left Algorithms for Scalar Multiplication,”
Cryptographic Hardware and Embedded Systems - CHES 2007 , edited by P. Pail-
lier and I. Verbauwhede, Vol. 4727 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, 2007, pp. 135–147, 10.1007/978-3-540-74735-2 10.

34. Zhang, Y., Zheng, X., and Peng, B., “A side-channel attack countermeasure
based on segmented modular exponent randomizing in RSA cryptosystem,”
Proc. 11th IEEE Singapore Int. Conf. Communication Systems ICCS 2008 ,
2008, pp. 148–151.

35. fang Jin, J., hong Lu, E., and wei Gao, X., “Resistance DPA of RSA on Smart-
card,” Proc. Fifth Int. Conf. Information Assurance and Security IAS ’09 , Vol. 2,
2009, pp. 406–409.

36. Messerges, T. S., Dabbish, E. A., and Sloan, R. H., “Investigations Of
Power Analysis Attacks On Smartcards,” Proceedings of the USENIX Work-

72

shop on Smartcard Technology on USENIX Workshop on Smartcard Technology ,
USENIX Association, Berkeley, CA, USA, 1999, pp. 17–17.

37. Tiri, K. and Verbauwhede, I., “A digital design flow for secure integrated cir-
cuits,” Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, Vol. 25, No. 7, july 2006, pp. 1197 –1208.

38. Mokari, A., Ghavami, B., and Pedram, H., “SCAR-FPGA : A Novel Side-
Channel Attack Resistant FPGA,” Proc. SPL Programmable Logic 5th Southern
Conf , 2009, pp. 177–182.

39. Popp, T. and Mangard, S., “Implementation aspects of the DPA-resistant logic
style MDPL,” Proc. IEEE Int. Symp. Circuits and Systems ISCAS 2006 , 2006.

40. Clavier, C., Coron, J.-S., and Dabbous, N., “Differential Power Analysis in the
Presence of Hardware Countermeasures,” Proceedings of the Second Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems , CHES ’00,
Springer-Verlag, London, UK, 2000, pp. 252–263.

41. Lu, Y., O’Neill, M. P., and McCanny, J. V., “FPGA implementation and anal-
ysis of random delay insertion countermeasure against DPA,” Proc. Int. Conf.
ICECE Technology FPT 2008 , 2008, pp. 201–208.

42. Fan, J., Guo, X., De Mulder, E., Schaumont, P., Preneel, B., and Verbauwhede,
I., “State-of-the-art of secure ECC implementations: a survey on known side-
channel attacks and countermeasures,” Proc. IEEE Int Hardware-Oriented Se-
curity and Trust (HOST) Symp, 2010, pp. 76–87.

43. Messerges, T. S., Dabbish, E. A., and Sloan, R. H., “Examining Smart-Card
Security under the Threat of Power Analysis Attacks,” IEEE Trans. Comput.,
Vol. 51, May 2002, pp. 541–552.

44. Popp, T., Oswald, E., and Mangard, S., “Power Analysis Attacks and Counter-
measures,” IEEE Design & Test of Computers , Vol. 24, No. 6, 2007, pp. 535–543.

45. Standaert, O.-X., Peeters, E., Rouvroy, G., and Quisquater, J.-J., “An Overview
of Power Analysis Attacks Against Field Programmable Gate Arrays,” Proceed-
ings of the IEEE , Vol. 94, No. 2, feb. 2006, pp. 383 –394.

46. Booth, A. D., “A Signed Binary Multiplication Technique,” The Quarterly Jour-
nal of Mechanics and Applied Mathematics , Vol. 4, No. 2, 1951, pp. 236–240.

47. Daly, A. and Marnane, W., “Efficient architectures for implementing mont-
gomery modular multiplication and RSA modular exponentiation on reconfig-
urable logic,” Proceedings of the 2002 ACM/SIGDA tenth international sym-
posium on Field-programmable gate arrays , FPGA ’02, ACM, New York, NY,
USA, 2002, pp. 40–49.

48. Montgomery, P. L., “Modular Multiplication Without Trial Division,” Math.
Computation, Vol. 44, 1985, pp. 519–521.

73

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

22–03–2012 Master’s Thesis Aug 2010 — Mar 2012

RSA Power Analysis Obfuscation: A Dynamic FPGA Architecture

12G292O

Barron, John W., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GE/ENG/12-02

Dr. Robert L. Herklotz
Program Manager - Information Operations and Security Air Force Office of
Scientific Research (AFOSR/RSL)
875 N. Randolph Street, Suite 325, Room 3113
Arlington, VA 22203-1768
(703) 696-6565 robert.herklotz@afosr.af.mil

AFOSR/RSL

Approval for public release; distribution is unlimited.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

The modular exponentiation operation used in popular public key encryption schemes, such as RSA, has been the focus of many side
channel analysis (SCA) attacks in recent years. Current SCA attack countermeasures are largely static. Given sufficient signal-to-noise ratio
and a number of power traces, static countermeasures can be defeated, as they merely attempt to hide the power consumption of the
system under attack. This research develops a dynamic countermeasure which constantly varies the timing and power consumption of each
operation, making correlation between traces more difficult than for static countermeasures. By randomizing the radix of encoding for
Booth multiplication and randomizing the window size in exponentiation, this research produces a SCA countermeasure capable of
increasing RSA SCA attack protection.

RSA Encryption, Countermeasures, Differential Power Analysis, Encryption, FPGA, Side-Channel Analysis

U U U UU 88

Maj Todd Andel, USAF (ENG)

(937) 255–3636, ext 4901; todd.andel afit.edu

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Research Objectives and Contributions
	Thesis Organization

	Background
	RSA Encryption Algorithm
	Exponentiation Methods

	Side Channel Attacks
	Simple Power Analysis (SPA)
	Differential Power Analysis (DPA)
	Timing Attacks
	Electromagnetic (EM) Attacks
	Comparative Power Analysis (CPA)
	Fault Attacks
	Big Mac Attack

	Countermeasures
	Square-And-Multiply-Always
	Montgomery Powering Ladder
	Masking
	Noise Injection
	Dual-Rail Logic (DRL) and Wave Dynamic Differential Logic (WDDL)
	Time Delay

	Conclusion

	Methodology
	Problem Definition
	Goals and Hypothesis
	Approach
	Randomizing Multiplication
	Randomizing Exponentiation

	System Boundaries
	FPGA
	PowerPC Processor
	Dynamic RSA Implementation

	System Services
	RSA encryption
	SCA obfuscation

	Workload Parameters
	Key Length
	Constant Versus Random Plaintext
	Number of Encryption Iterations

	Performance Metrics
	Layout Area
	Throughput
	Correlation

	System Parameters
	Background Noise
	Randomized Radix Encoding Booth Multiplication
	Exponentiation Method
	FPGA Model
	Processor Type

	Factors
	Booth Multiplication Radix
	Exponentiation Window Size

	Evaluation Technique
	Experimental Design
	Methodology Summary

	Countermeasure Design and Results
	Basic Hardware Design
	Booth Multiplication
	Modular Exponentiation

	Dynamic Architectural Countermeasures Design
	Randomized Radix Encoding Booth Multiplier
	Variable Window Exponentiator

	Simulation Results
	Baseline
	Randomized Multiplication Simulation
	Randomized Window Exponentiator
	Combined Countermeasure Simulation

	Hardware Trace Results
	Baseline Configuration
	Randomized Radix Encoding Booth Multiplier
	Random Exponentation Window Configuration
	Combined Countermeasure Configuration

	Hardware Attack Results
	Attack On Previous AFIT Research
	Attack on Baseline Configuration
	Attack On Randomized Radix Encoding Booth Multiplier Configuration
	Attack On Random Exponentiation Window Configuration
	Attack On Combined Countermeasure Configuration
	Comparisons

	Metrics
	Execution Time (ET)
	Required FPGA Area
	Protection

	Conclusions

	Conclusion
	Completed Objectives
	Dynamic RSA Design
	Implementation on FPGA
	Real World Attacks

	Contributions
	Developed Theoretical Countermeasure Verified by Attacks
	Developed Custom MATLAB Script for Correlation Power Analysis (CPA) Attacks
	Developed a Method of Comparison Power Analysis Attacks

	Future Work
	Develop Additional Attacks
	Speeding MATLAB Processing
	Brute Force Work

	Summary

	Bibliography
	Index

