
ER
D

C/
CH

L
TR

-1
2-

2

A Practical Guide to Calibration of a GSSHA
Hydrologic Model Using ERDC Automated
Model Calibration Software – Effective and
Efficient Stochastic Global Optimization

Co
as

ta
l a

nd
 H

yd
ra

ul
ic

s
La

bo
ra

to
ry

Brian E. Skahill, Charles W. Downer, and Jeffrey S. Bagget February 2012

Approved for public release; distribution is unlimited.

 ERDC/CHL TR-12-2
February 2012

A Practical Guide to Calibration of a GSSHA
Hydrologic Model Using ERDC Automated Model
Calibration Software – Effective and Efficient
Stochastic Global Optimization
Brian E. Skahill and Charles W. Downer
Coastal and Hydraulics Laboratory
U.S. Army Engineer Research and Development Center
3909 Halls Ferry Road
Vicksburg, MS39180

Jeffrey S. Baggett
University of Wisconsin at La C rosse
1725 State Street
La Cross,WI 54601

Final report
Approved for public release; distribution is unlimited.

Prepared for U.S. Army Corps of Engineers
441 G. Street, NW
Washington, DC 20314-1000

ERDC/CHL TR-12-2 ii

Abstract

The objective of this article is to demonstrate, by way of example(s), how to
use our implementation of the MLSL method for model independent
parameter estimation to calibrate a GSSHA hydrologic model. The purpose
is not to present or focus on the theory which underlies the parameter
estimation method, but rather to carefully describe how to use the ERDC
software implementation of MLSL that accommodates the PEST model
independent interface to calibrate a GSSHA hydrologic model. Given the
computational expense associated with global optimization, we will initially
consider variations of our MLSL implementation on a computationally
efficient test problem in attempts to provide the interested reader with an
intuitive sense of how the method works.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to
be construed as an official Department of the Army position unless so designated by other authorized documents.

DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

ERDC/CHL TR-12-2 iii

Contents
Abstract ... ii

Figures and Tables ... iv

Preface ... v

1 Introduction ... 1

2 Examples ... 8

Example 1 ... 8
Step 01 – Obtain forward model ... 9
Step 02 – Collect observed data ... 10
Step 03 – Prepare instruction file for forward model output file .. 10
Step 04 – Prepare template file for forward model input file.. 11
Step 05 – Prepare preliminary input control file .. 11
Step 06 – Verify control file is functional .. 12
Step 07 – Modify control file for use with ERDC MLSL implementation 12
Step 08 – Calibrate test problem using ERDC MLSL implementation 14

Example 2 ... 15
Step 01 – Prepare 100 MLSL input files to automate execution of 100 MLSL trial
runs ... 16
Step 02 – Prepare batch file for execution of multiple MLSL runs ... 16
Step 03 – Calibrate model 100 times with 100 unique calls to MLSL 17

Example 3 ... 18
Example 4 ... 19

3 Results and Discussion .. 21

4 Summary ... 25

References .. 27

Report Documentation Page

ERDC/CHL TR-12-2 iv

Figures and Tables

Figures

Figure 1. Our implementation of the Multi Level Single Linkage (MLSL) algorithm. 5

Figure 2. Implementation of MLSL with many local minima. ... 8

Figure 3. Terminal display for PESTCHEK execution. .. 12

Figure 4. Terminal display for MLSL method (example 1). ... 15

Figure 5. Terminal display for MLSL method (example 3). ... 19

Figure 6. Terminal display for MLSL method (example 4). ... 20

Figure 7. Plot of transformed observed and simulated flows, associated with the minimum
objective function value identified in Example 3... 23

Figure 8. Plot of transformed observed and simulated flows, associated with the
minimum objective function value identified in Example 4. .. 24

Tables

Table 1. Results from all 13 separate cases of 100 MLSL trial global optimization runs. 17

ERDC/CHL TR-12-2 v

Preface

This report describes, by way of multiple examples, how to use model
independent software to calibrate the physics based, distributed
parameter, hydrologic model Gridded Surface Subsurface Hydrologic
Analysis (GSSHA).

Research presented in this technical report was developed under the U.S.
Army Corps of Engineers Flood and Coastal Storm Damage Reduction
Research and Development Program. Dr. William Curtis, Coastal and
Hydraulics Laboratory (CHL), is the director.

The work was performed by Drs. Brian E. Skahill and Charles W. Downer of
the Hydrologic Systems Branch (HF-H) of the Flood and Storm Protection
Division (HF), U.S. Army Engineer Research and Development Center –
Coastal and Hydraulics Laboratory, and Dr. Jeffrey S. Baggett of the
University of Wisconsin – La Crosse. At the time of publication, Earl V.
Edris was Chief, (HF-H); Bruce A. Ebersole was Chief. The Deputy Director
of CHL was Jose E. Sanchez and the Director was Dr. William D. Martin.

COL Kevin J. Wilson was the Commander and Executive Director of
ERDC, and Dr. Jeffery P. Holland was the Director.

ERDC/CHL TR-12-2 1

1 Introduction

Recent research at the U.S. Army Engineer Research and Development
Center (ERDC) has focused on the development of methodologies or
improvement of the efficiency of native algorithms, for the computer-based
calibration of hydrologic and environmental models (wherein by efficiency,
we mean the number of forward model calls necessary for the calibration
algorithm to converge). These include, among others, an accelerated
derivative-based local search algorithm, a stochastic global optimization
algorithm for intelligently sifting through local minima to find a global
minimum and, most recently, a state-of-the-art evolutionary strategy for
global parameter identification of difficult problems with noise or other
features that make derivatives estimation difficult. Minimizing the number
of required model runs is one of the primary factors driving the research
and development activities, such that the resulting optimization tool(s) are
more compatible with the computationally expensive physics-based models
that are becoming more commonly used within the practice community.

In a previous technical report (Skahill et al. 2011) we recently discussed
how to use, by way of example, our implementation of the Levenberg-
Marquardt (LM) local search method (Levenburg, 1944; Marquardt, 1963),
and also the Secant LM (SLM) method, an efficiency enhancement to the
LM method, for computer-based model independent hydrologic model
calibration. The context for this article will be directed to the previously
mentioned stochastic global optimization algorithm, which at present uses
our implementations of the LM/SLM methods for local search. The LM
method has features that make it attractive for model calibration. One
feature is its ability to readily report estimates of parameter uncertainty,
correlation, and (in)sensitivity as a by-product of its use both during and
after the parameter estimation process. Another feature is that it is easily
adapted by the inclusion of various regularization devices to maintain
numerical stability and robustness in the face of potential numerical
problems (that adversely affect all parameter estimation methodologies)
caused by parameter insensitivity and/or parameter correlation (Menke,
1984; de Groot-Hedlin and Constable, 1990; Doherty and Skahill, 2006).
Skahill et al. (2009) and Skahill and Doherty (2006) both provide lengthy
summaries of the LM method.

ERDC/CHL TR-12-2 2

The model independent LM method based parameter estimation software
PEST (Doherty, 2004, 2007a, 2007b), which quantifies model to measure-
ment misfit in the weighted least squares sense, is now widely used to
support hydrologic and environmental model calibration. In addition to its
traditional groundwater model calibration application setting (Zyvoloski et
al., 2003; Tonkin and Doherty, 2005; Moore and Doherty, 2006; Gallagher
and Doherty, 2007a), it is now employed to calibrate ecological models
(Rose et al., 2007), land surface models (Santanello Jr. et al., 2007) and
models in other application areas including nonpoint source pollution
(Baginska et al., 2003; Haydon and Deletic, 2007), surface hydrology
(Doherty and Johnston, 2003; Gutiérrez-Magness and McCuen, 2005;
Kunstmann et al., 2006; Skahill and Doherty, 2006; Doherty and Skahill,
2006; Gallagher and Doherty, 2007b; Goegebeur and Pauwels, 2007; Iskra
and Droste, 2007; Kim et al., 2007; Maneta et al., 2007), and surface water
quality (Rode et al., 2007).

Skahill et al. (2011) focused on one drawback associated with LM-based
model independent parameter estimation as implemented in PEST; viz.,
that it requires estimates, based on finite differences, of the derivatives of
the objective function with respect to the model parameters. We briefly
discussed the secant LM method and then presented examples which
demonstrated benefits that can be derived in terms of improved inverse
model run-efficiency when using the SLM method rather than LM for
calibrating a GSSHA hydrologic model deployment for the Goodwin Creek
Experimental Watershed (GCEW).

However, as mentioned, another drawback of the LM method is that it is a
local search method. Thus, if there are different “regions of attraction” in
parameter space, its solution will lead to just one of possibly many objective
function minima, the particular one that is found is dependent upon the
user-supplied set of initial parameter values. Stochastic global optimization
(GO) can be employed as a remedy. Stochastic global optimization
algorithms estimate the global minimum of the objective function by
initiating local searches from global, randomly sampled points. The local
and global phases can be iterated and/or the local searches may be initiated
at some or all of the globally sampled points. Stochastic global optimization
algorithms are guaranteed to converge, with probability one, to the global
minimum as the sample size approaches infinity. Stronger convergence
properties are possible for some stochastic algorithms, as we mention
below. Moreover, probabilistic-based stopping criteria can be developed for

ERDC/CHL TR-12-2 3

stochastic global optimization methods (Rinnooy Kan and Timmer, 1987a,
b; Törn and Žilinskas, 1987); however, an a priori computational budget
may preclude any concern regarding termination criteria.

One would like to utilize stochastic GO methods that are not only reliable
in finding the global minimum, but also efficient in the sense that they
minimize the return to previously visited local minima in parameter space.
A modeler would possibly also like to receive some information on the
locations of non-global minima, especially if these minima are little
different in magnitude from the global minimum, but are widely separate
from it in parameter space. With the understanding that efficient and
reliable optimization methods, possibly constrained by a predetermined
computational budget, that are capable of efficiently finding the locations
of other good minima in addition to an estimate of the global minimum,
are needed to identify hydrologic and/or environmental models, Skahill et
al. (2009) implemented a more efficient and reliable stochastic global
optimization algorithm than what is currently available in PEST.

Ideally, we would like to perform a single local search within the region of
attraction of each local minimum. This would not only ensure that each
local minimum is identified just once, but also that in fact we find all local
minima. But we also want to employ a method that works well if one has a
predetermined computational budget in that for a given effort it compares
favorably with other methods. Clustering methods were designed to
accommodate these requirements. They are variants of Multistart (the
Multistart method samples points from a uniform distribution over the
feasible parameter space and starts a local search from each of the sample
points) and the basic idea behind them is to group close points, sampled
from the feasible parameter space and for which the specified groups
presumably relate to actual regions of attraction in parameter space, and to
apply a single local search procedure within each identified cluster. Either
reduction; wherein sampled points associated with the highest objective
function values are temporarily removed, or concentration; wherein the
sampled points are transformed through application of one or a few
iterations of a local search procedure, is employed to identify a reduced
sample as part of the clustering process in order to provide some assurance
that in fact the specified groups correspond to regions of attraction of actual
local minima. Clustering methods are often iterative in that the global and
local phases are repeated sequentially until a stopping criterion is satisfied.

ERDC/CHL TR-12-2 4

With clustering methods, it is possible that one cluster intersects multiple
regions of attraction; hence, the global minimum could be missed, or that
one region of attraction contains more than one cluster, thus allowing for
the same local minimum to possibly be identified more than once. Multi
Level Single Linkage (MLSL) is a clustering method that was developed to
reduce the probability of not finding a local minimum or of finding a local
minimum more than once (Rinnooy Kan and Timmer, 1987a, b).

MLSL mimics clustering by calculating a critical distance rk at each
iteration, k. This critical distance can be used to build clusters, but instead,
in MLSL, the decision as to whether a local search is to be initiated from a
given reduced sample point is simply based on whether there exists
another reduced sample point within the distance rk of the given point
with a corresponding lower objective function value. The critical distance
rk is reduced at each iteration.

Under certain assumptions, MLSL has stronger convergence properties
than simpler stochastic global optimization algorithms. First, if the
algorithm continues forever, the number of local searches performed is
finite. Second, if rk tends to zero with increasing k, then every local
minimum will be identified in finite time with probability one.

We implemented MLSL and it uses the ERDC implementation of the LM or
SLM method for local search. Our MLSL implementation follows that of
Rinnooy Kan and Timmer (1987a, b) with a slight modification to some-
times avoid repeatedly finding the same local minima. Our MLSL
implementation is summarized in Figure 1. The following stopping criteria
were included as part of our MLSL implementation:

1. The objective function has not been lowered over a specified number of
local searches,

2. A specified maximum number of local searches have been performed,
3. The expected number of minima, in the Bayesian sense, exceeds the

number of identified distinct local minima by less than 0.5 (Rinnooy Kan
and Timmer, 1987a, b),

4. A specified maximum number of MLSL iterations have been performed,
5. The objective function has not been lowered over a specified number of

MLSL iterations.

ERDC/CHL TR-12-2 5

Figure 1. Our implementation of the Multi Level Single Linkage (MLSL) algorithm.

An instance of our MLSL implementation stops when any one of the above
criteria are satisfied. It can be utilized by simply appending the MLSL
search parameters to the end of the control data section of a working
SLM_CHL input control file (see Skahill et al. 2011). Hence, as with our
independent LM/SLM implementations, only slight modification to a
working PEST input control file is required to also use our MLSL
implementation.

Skahill et al. (2009) performed an efficiency comparison of our MLSL
implementation with Trajectory Repulsion (Skahill and Doherty, 2006), the

ERDC/CHL TR-12-2 6

Shuffled Complex Evolution (SCE) general purpose global optimization
method (Duan et al. 1992; Duan et al. 1993) and the Covariance Matrix
Adaption Evolutionary Strategy (CMAES) general purpose optimization
method (Hansen and Ostermeier, 2001; Hansen et al. 2003), using an eight
parameter Hydrological Simulation Program-FORTRAN (HSPF) (Bicknell
et al., 2001) hydrologic model, a ten parameter Fast All-season Soil Strength
(FASST) state-of-the-ground model (Frankenstein and Koenig, 2004), and
a sixteen parameter Gridded Surface Subsurface Hydrologic Analysis
(GSSHA) (Downer and Ogden, 2003a, 2003b) hydrologic model. In
particular, using the three previously mentioned environmental models,
Skahill et al. (2009) compared the efficiencies, in terms of the number of
model calls required to achieve a given objective function value, of their
implementations of Trajectory Repulsion and MLSL with that of SCE and
CMAES as implemented in PEST (Doherty, 2004, 2007a, 2007b). To
examine their relative efficiencies, thirty trials of MLSL, Trajectory
Repulsion, CMAES, and SCE were conducted with each of the three distinct
environmental model structures. While PEST includes a Trajectory
Repulsion implementation, our Trajectory Repulsion implementation was
utilized so that the local search implementation (SLM) would be identical to
that employed with MLSL.

Results from the numerical experiments were obtained by computing the
average over thirty trials of the best objective function value obtained after a
specified number of model calls. Skahill et al. (2009) pointed out that they
were very wary of comparing different software packages in this manner, for
a package, and the methodology which it encapsulates, always performs
best when operated by its designers. This is because program settings,
particularly those pertaining to termination and convergence criteria, can
have a huge effect on the performance of a method; a non-expert in the use
of a particular package may not be aware of the optimal settings to use,
especially in difficult cases. Hence, we do not pretend that their results
provide a comprehensive basis for assessment of the comparative
performance of SCE-PEST, CMAES-PEST and MLSL. We hope, however,
that they do provide a basis for at least a “ball park” comparison of the
methods for the particular calibration cases they considered.

Based on the numerical experiments involving thirty trials with each global
optimization method, and for each of the three model structures, Skahill et
al. (2009) recommend MLSL over Trajectory Repulsion for environmental
model independent LM-based stochastic global optimization. Moreover,

ERDC/CHL TR-12-2 7

their results also suggested potential utilization of MLSL over SCE and
CMAES, except for the case where only a very limited computational budget
is available, in which case CMAES might be preferable.

The objective of this article is to demonstrate, by way of example(s), how
to use our implementation of the MLSL method for model independent
parameter estimation to calibrate a GSSHA hydrologic model. The
purpose is not to present or focus on the theory which underlies the
parameter estimation method, but rather to carefully describe how to use
the ERDC software implementation of MLSL that accommodates the PEST
model independent interface to calibrate a GSSHA hydrologic model.
Given the computational expense associated with global optimization, we
will initially consider variations of our MLSL implementation on a
computationally efficient test problem in attempts to provide the
interested reader with an intuitive sense of how the method works.

ERDC/CHL TR-12-2 8

2 Examples

The steps necessary to use our implementation of the MLSL GO method
will now be demonstrated and documented while applying it to initially
calibrate a computationally efficient test problem and subsequently a
GSSHA hydrologic model for the Goodwin Creek Experimental Watershed
(GCEW) (Senarath et al. 2000; Downer and Ogden, 2003b). The general
approach simply involves slight modification of an existing functional
input control file associated with the ERDC implementation of LM/SLM.
The interested reader is referred to our recent report for details on how to
interface a given forward model with the ERDC LM/SLM implementations
(Skahill, Downer, and Baggett, 2011).

Example 1

In this first example, we will document the steps necessary to use the ERDC
implementation of the MLSL stochastic global optimization method to
calibrate the computationally efficient test problem defined directly below
in Figure 2.

Figure 2. Implementation of MLSL with many local minima.

ERDC/CHL TR-12-2 9

Step 01 – Obtain forward model

The C source code provided directly below, once built (it was named
tp2.exe), computes model generated observations for a given parameter set
((p1,p2)). The program reads in a file named “tp2_parms.txt”, a file with two
floating point data values, one specified on the first row, and the other
specified on the second row of the file, respectively. The first row entry is the
value for the first parameter, p1; whereas, the second row entry is the value
for the second parameter, p2. The 87 model computed observations are
generated and written to a file named “tp2_out.txt”, with one floating point
data value specified per line.

//
//Example Test Problem for testing MLSL code
//
//Author: Brian E. Skahill
//
///

#include "stdio.h"
#include "conio.h"
#include "stdlib.h"
#include "string.h"
#include "ctype.h"
#include "math.h"
#include "time.h"

void main(void)
{
 int i;
 double h[87], value, m[3], x=0.0;
 FILE *data, *read;

 data = fopen("tp2_out.txt", "w");
 read = fopen("tp2_parms.txt", "r");

 //
 //Read the parameter values - m
 //
 for(i = 1; i <= 2; i++)
 {
 value = 0.0;
 fscanf(read, "%lf\n", &value);
 m[i] = value;
 }

ERDC/CHL TR-12-2 10

 //
 //Compute h
 //
 for(i = 0; i <= 86; i++)
 {
 x = 3.1 + 0.15*i;
 h[i] = (sin(m[1]*x)+sin(m[2]*x));
 }

 //
 //Write the computed h to file
 //
 for(i = 0; i <= 86; i++)
 fprintf(data, "%16.14E\n", h[i]);

 fclose(data);
}

Step 02 – Collect observed data

Observations for the test problem can be generated by running the model
executable for the problem, tp2.exe, whose source code was presented and
briefly described in the previous step, with input parameter values set to p1

= 1 and p2 = 2/3, or vice versa. Upon execution of tp2.exe at p1 = 1 and p2 =
2/3 (viz., the global minimum), the (synthetic) observations for the test
problem will be located in the file named “tp2_out.txt”, as mentioned
above. The observations for the test problem will be discussed further below
and clearly noted at that time.

Step 03 – Prepare instruction file for forward model output file

As with the ERDC LM/SLM implementations, our MLSL implementation
is model independent. Hence, there is a need with each forward model call
during an inverse model run to be able to read from one or more model
generated output files the model generated observations relevant to
objective function evaluation. An instruction file is the means to satisfy
this requirement. As was also mentioned in our recent technical report,
our software was written to accommodate the popular PEST model
independent and input control file protocol; hence, the interested reader is
directed to Doherty (2004, 2007a, b, c) for additional details regarding the
PEST model independent interface, and in particular, instruction file
development. The model instruction file for the test problem, named
“tp2_out.ins”, is provided in Appendix 1 (Please note that all of the

ERDC/CHL TR-12-2 11

appendices associated with this technical report are available in a separate
document made publicly available on the GSSHA Knowledge Hub at
https://knowledge.usace.army.mil/). It is the basis for reading model generated
observations from the model (tp2.exe) output file named “tp2_out.txt”.

Step 04 – Prepare template file for forward model input file

For this example, the model input file named “tp2_parms.txt” contains the
two input parameter values that are designated as adjustable. During an
inverse model run (i.e., model calibration), this model input file will need
to be updated every time there is a need to evaluate the model at a new
location in adjustable model parameter space. To support the interface of
the model for this test problem with the independent PEST and ERDC
LM/SLM implementations, a PEST template file was prepared for this
model input file. The contents of the template file named “tp2_parms.tpl”
are shown directly below.

ptf $
$p1 $
$p2 $

Step 05 – Prepare preliminary input control file

We are now ready to generate an input control file, the main input file for
execution of the LM method not only associated with the PEST, but also our
own independent LM/SLM implementation. The path that we take for this
two parameter test problem will be different from the path that we pursued
to generate an input control file for the GSSHA GCEW model, as we docu-
mented in our recent technical report (Skahill et al. 2011). In this case, we
will simply take an existing working control file and manually modify it in a
text editor so that it is specific to our two parameter test problem being
considered in this example. In particular, we will manually modify the
control file listed in Appendix 10 of our recent technical report (Skahill et al.
2011). Relevant changes to the control file will be mentioned so that the
reader can interpret and follow the necessary changes. The final working
input control file for this example problem, named tp2_1.pst, is listed in
Appendix 2. As was mentioned in our recent technical report, the interested
reader is referred to the PEST documentation for explanations related to
control files. The second row of the control data section of the control file is
changed from “16 233 16 0 1“ to “2 87 2 0 1” because we now have two
adjustable model parameters, two parameter groups, and 87 observations

ERDC/CHL TR-12-2 12

rather than 16 adjustable model parameters, 16 parameter groups, and
233 observations. Interpreting the parameter groups and parameter data
sections of the input control file is relatively straight forward, and the
interested reader is directed to the PEST documentation and also our recent
report (Skahill et al. 2011) for specific details related thereof. The name of
the one observation group is now obsgroup1 rather than tmf. The 87
observed data points are listed in the observation data section of the input
control file, and they are all equally assigned a weight of one. The model
command line section of the control file lists the model for this example
and, as previously noted, it is tp2.exe. And the two relevant input and
output files, also previously discussed, are listed in the model input/output
section at the very end of the control file.

Step 06 – Verify control file is functional

One can check to see if there are any errors with the input control file as
now prepared by typing the following at the command prompt and pressing
enter:

PESTCHEK tp2_1

In so doing, one would see the following record of PESTCHEK execution at
the command prompt (Figure 3):

Figure 3. Terminal display for PESTCHEK execution.

Step 07 – Modify control file for use with ERDC MLSL implementation

To employ our ERDC MLSL implementation, two additional rows of input
data are appended to the end of the control data section of the control file
tp2_1.pst, as shown below. The four entries on the first row appended (now,
the next to last row of the control data section) to the end of the control data

ERDC/CHL TR-12-2 13

section of the control file are specific to our independent ERDC SLM
implementation, and the description and function for each of the four
entries is provided in Step 10 of Example 1 in our recent report (Skahill et al.
2011). So, as was indicated earlier in this report, with our MLSL
implementation, one can either employ LM or SLM for local search. The
first entry on the second row appended (now, the last row of the control
data section) to the end of the control data section of the control file is a
floating point value specifying a distance threshold that is used for
comparison during execution of our implementation of MLSL. In particular,
if during a given local search with MLSL, the distance computed between
the current location in adjustable model parameter space and any of the
previously computed parameter upgrade vectors, obtained either during the
existing or with any of the previously performed local searches, is less than
this specified threshold value, then the current local search is prematurely
terminated with the assumption that it has progressed into a region of
attraction of a previously visited local minimum. The impact of this input
entry has not been explored with much detail, and it is often set to zero, as it
is specified below. Further exploration for the specification of this input
value is encouraged, not only for MLSL, but also for the stochastic GO
method Trajectory Repulsion (Skahill and Doherty, 2006). The subsequent
four entries on the second row appended (now, the last row of the control
data section) to the end of the control data section of the control file are all
specific to our ERDC MLSL implementation. Relative to our specification of
our MLSL implementation outlined in Figure 1 above, the following four
input values are N, γ, σ, and d2, respectively. N is an integer input value;
whereas, the remaining three are floating point values. N, γ, and σ impact
the efficiency and effectiveness of MLSL. The second example in this report
will explore their impact using the computationally efficient test problem
from this first example.

* control data
restart estimation
 2 87 2 0 1
 1 1 single point 1 0 0
 5.0 2.0 0.3 0.03 10
100000.0 3.0 0.001 0
 0.1 noaui
30 0.001 4 4 0.001 4
 1 1 1
0 0 1.0 0
0 40 0.10 4 0.1

ERDC/CHL TR-12-2 14

Step 08 – Calibrate test problem using ERDC MLSL implementation

Our implementation of MLSL was employed to calibrate the computa-
tionally efficient two parameter test problem, in a model independent
manner, using the prepared input control file tp2_1.pst (and the related
input files), by typing the following at the command prompt and pressing
enter:

chl_mlsl

Upon execution of our current implementation of MLSL, the user is
subsequently prompted for additional input parameters. Figure 4
summarizes its complete execution. In particular, upon execution of our
implementation of MLSL, the user is asked for, in sequence,

1. The name of the modified input control file,
2. Whether the program is to write or read (thus enabling the reproduction of

past efforts) the file named “RandomNumberSeeds.prn”, which contains
random numbers used during program execution,

3. An unsigned long that provides the basis for computation of the previously
mentioned random numbers,

4. The maximum number of iterations to perform during MLSL execution,
5. The maximum number of local searches to perform during MLSL

execution,
6. The maximum number of local searches to perform with no objective

function improvement,
7. The maximum number of MLSL iterations to perform with no objective

function improvement, and
8. The value which determines whether the previous and current computed

best objective function value estimates are to be treated as effectively the
same, or distinct.

The MLSL generated output file that will be of most interest to the user is
named “ct_mlsl.rec”, and its contents for this example are listed in
Appendix 3. Examining its contents, we see that the file includes an echo
of the MLSL input parameters, and then for each MLSL iteration,

1. A listing of the sampling phase,
2. The reduced sample set,
3. The value for the critical distance threshold (named alpha in the file),
4. A summary of the treatment of each member of the reduced sample set,

ERDC/CHL TR-12-2 15

and then the file ends with a summary of the stochastic GO run, including
the number of local searches that were performed, the number of local
searches that yielded distinct local minima, the number of MLSL
iterations, the minimum objective function value identified, at what point
during MLSL execution the minimum objective function value was
identified, the total number of forward model calls, and the reason for
terminating MLSL execution. For example, with this computationally
efficient two parameter test problem, MLSL, with the input as specified
above and also listed in Appendix 3, identified the global minimum in the
first iteration of its execution with the first local search, and it terminated
execution after five additional MLSL iterations (and one additional local
search that yielded another local minimum) yielded no further objective
function improvement. One hundred and seventy-six forward model calls
were required to find the global minimum.

Figure 4. Terminal display for MLSL method (example 1).

Example 2

In this example, we will further examine MLSL execution using the
computationally efficient two parameter test problem that was presented
in the previous example. In particular, we will examine the impact of the
input parameters N, γ, and σ on the performance of MLSL; viz., its
efficiency (summarized by the average and standard deviation of total

ERDC/CHL TR-12-2 16

model calls for 100 MLSL trial runs) and effectiveness (summarized by the
number of failures to find the global minimum among 100 MLSL trial
runs). We will do so by performing 100 trials for 13 unique N, γ, and σ
permutations. Since all 13 100 MLSL trial runs are very similar in terms of
execution, we will discuss how to do, by way of example, one instance, and
then summarize the results for all 13 100 MLSL trial runs in the table we
present below.

Step 01 – Prepare 100 MLSL input files to automate execution of 100
MLSL trial runs

To enable the automatic execution of 100 MLSL trial runs, 100 MLSL
input files were prepared whose contents are like what is shown below.
The only difference between each separate input file is the third input
value within each file; viz., the unsigned long that provides the basis for
computation of the random numbers which impact the sampling phase
which occurs in each iteration of MLSL execution. One hundred files were
prepared with contents like what is shown below and the 100 files were
numbered in the following manner: tp2_1_1.in, tp2_1_2.in, tp2_1_3.in,
…, tp2_1_99.in, and tp2_1_100.in.

tp2_1
Y
4063522982
50
100
99
5
0.0025

Step 02 – Prepare batch file for execution of multiple MLSL runs

A batch file named chl_mlsl_all.bat was prepared and its contents are
listed directly below. It supports the execution of multiple MLSL runs.

@ECHO ON
IF [%1]==[] GOTO INPUTERROR
::
Set Count=
::
:LOOP {The count advances one each time through the LOOP}
::
::

ERDC/CHL TR-12-2 17

:: Start Counted process.
::
Set /A Count += 1
@echo %Count%
::
::
chl_mlsl tp2_1.pst < tp2_1_%Count%.in
copy RandomNumberSeeds.prn RandomNumberSeeds_%Count%.prn
copy ct_mlsl.rec ct_mlsl_%Count%.rec
copy tp2_1.rec tp2_1_%Count%.rec
::
::
IF NOT [%Count%]==[%1] GOTO LOOP
::
Goto END
::
:INPUTERROR
@ECHO USAGE: TPL {Number of runs}
@ECHO.
::
:END

Step 03 – Calibrate model 100 times with 100 unique calls to MLSL

The computationally efficient two parameter test problem was calibrated
100 times by way of 100 MLSL trial runs that were performed by typing
the following at the command prompt and pressing enter:

chl_mlsl_all 100

Table 1 summarizes the results from all 13 separate (calibration) cases of
100 MLSL trial global optimization runs. The observed differences for
each case are completely a function of the MLSL input parameters N, γ,
and σ.

Table 1. Results from all 13 separate cases of 100 MLSL trial global optimization runs.

ERDC/CHL TR-12-2 18

Example 3

In this example, we will describe the steps necessary to perform a MLSL GO
run to calibrate a GSSHA hydrologic model for the GCEW. The noted
GSSHA GCEW hydrologic model is the same model that was also
considered in the examples in our recent report which documented how to
use our independent implementations of the LM/SLM local search methods
for model calibration (Skahill et al. 2011). To that end, before continuing
any further with this example, wherein we will discuss how to use the
stochastic GO method MLSL to calibrate the GSSHA GCEW hydrologic
model, the active reader is first directed to complete the first and third
examples in our recent report (Skahill et al. 2011). In particular, the point of
departure, relative to completion of example 1 and example 3 from our
recent report, and our intent to use MLSL, is to simply augment the control
data section of the input control file from example 3 in our recent report
(Skahill et al. 2011); viz., the input control file gc_1_bu2.pst, as shown
below. The four new additions, which are relevant to MLSL execution, are
highlighted yellow, and the one edit, which most likely will effectively not
allow there to be a full update of the model Jacobian during any of the local
searches, is highlighted orange.

* control data
restart estimation
 16 233 16 0 1
 1 1 single point 1 0 0
5.0 2.0 0.3 0.03 10
5.0 5.0 1.0e-3
0.1 noaui
30 .005 4 4 .005 4
1 1 1
1 0 100000000000.0 0
0 20 0.05 4 0.1

After the slight alteration to the input control file noted above, all that is
now required is to call MLSL at the command prompt

chl_mlsl

The inputs that were further specified at the command prompt for MLSL
execution are shown below (Figure 5). And the contents of the file
ct_mlsl.rec, which summarize the salient aspects of the MLSL GO run to
calibrate the GSSHA GCEW hydrologic model, are listed in Appendix 4.

ERDC/CHL TR-12-2 19

Figure 5. Terminal display for MLSL method (example 3).

Example 4

A second calibration run for the GSSHA hydrologic model for the GCEW
was also performed using our MLSL implementation, this time with the
MLSL input parameter σ set equal to one rather than four, as in the
previous (third) example, in attempts to require more exploration of adjust-
able model parameter space. The termination criteria for this example,
relative to the previous (third) example, were specified at the command
prompt in a manner to encourage a more exhaustive search than what was
performed in the third example (Figure 6). The contents of the file
ct_mlsl.rec, which summarize the salient aspects of the MLSL GO run to
calibrate the GSSHA GCEW hydrologic model, are listed in Appendix 5.

ERDC/CHL TR-12-2 20

Figure 6. Terminal display for MLSL method (example 4).

ERDC/CHL TR-12-2 21

3 Results and Discussion

Example 2 explored the impact of the MLSL input parameters N, γ, and σ
on overall algorithm efficiency and effectiveness by considering thirteen
separate cases of 100 MLSL global optimization trial runs which were
directed at calibrating the computationally efficient two parameter test
problem that was originally presented in example 1. Examining the table
that was presented in example 2 (Table 1), which summarized the thirteen
separate numerical experiments involving 100 trials in each case, the
following observations are given:

1. With γ and σ fixed, as N increases, so does the average for the total number
of forward model calls.

2. With N and γ fixed, as σ decreases, we observe that the average and
standard deviation for the total number of forward model calls both
increase, modestly, and also that the effectiveness of the MLSL algorithm
improves. For example, we see that with N, γ, and σ equal to 20, 0.05, and
16, respectively, we have 2 failures for the 100 trials, but only 1 failure for
the 100 trials when σ = 8, and no failures for the 100 trials when σ = 4, 2,
or 1. The MLSL algorithm is more effective with the lower σ values because
the critical distance which is used to characterize the size of the clusters is a
function of σ (see Figure 1). At a lower σ value, cluster size is smaller;
hence, the opportunity for a single cluster to contain multiple regions of
attraction is reduced.

3. With N and σ fixed, as γ increases so does the average and standard
deviation for the total number of forward model calls, simply because γ
controls the potential number of local searches to be performed during
each iteration of MLSL execution, and as γ increases so does that potential.

Based on our own experience to date, we recommend that users of our
implementation of MLSL start with a value of one for σ, and choose values
for N and γ that take into consideration the expense associated with a
single forward model call and the understanding that MLSL is an iterative
stochastic GO method. And we recommend that termination criteria be
specified in a manner consistent with the level of importance assigned to
finding the global minimizer for the given application.

ERDC/CHL TR-12-2 22

In examples 3 and 4 we used our implementation of MLSL to calibrate the
GSSHA hydrologic model for the GCEW which was originally calibrated as
part of the work effort documented in our recent report using our indepen-
dent LM/SLM local search method implementations. For examples 3 and
4, in consideration of the expense associated with a single forward model
call for the GSSHA GCEW hydrologic model, we used the SLM method for
local search, in such a manner that no measures were employed to
mitigate against the potential that our approximation to the true model
Jacobian may become poor after some optimization iterations. In example
3, 517 total model calls were required to calibrate the model using MLSL
with the given input parameters (as specified above and also at the very
beginning of Appendix 4). And in example 4, with the value for σ reduced
relative to its value used for example 3 (from 4 in example 3 to one in
example 4), and also using stricter termination criteria, 3832 total model
calls were required to calibrate the GSSHA GCEW model using MLSL with
the given input parameters (as specified above and also at the very
beginning of Appendix 5). As a result, in example 3, 7 local searches were
performed and 7 distinct local minima were identified; whereas, in
example 5, 55 local searches were performed and 55 distinct local minima
were identified. With example 3, the minimum and maximum identified
objective function values were 58.126056 and 70.299196, respectively, and
the minimum value was found from the fourth of the seven total local
searches. With example 4, the minimum and maximum identified object-
tive function values were 57.825337 and 77.795517, respectively, and the
minimum value was found from the fiftieth of the fifty-five total local
searches. Figures 7 and 8 are plots of the transformed observed and
simulated flows that constitute the minimum objective function values
that were identified in Examples 3 and 4, respectively. The figures provide
the interested reader with a means to effectively compare the minimum
objective function values that were obtained in the two examples in terms
of a statistical summary (i.e., R2 and Nash-Sutcliffe efficiency score) and
also by way of a scatter plot of the transformed observed data and its
model simulated counterparts. Clearly, there is little difference in terms of
fit with the observed data between the models associated with the mini-
mum objective function values that were identified in Example 3 and 4.
The salient difference is that the minimum identified in Example 4
required approximately an order of magnitude more model calls. Possibly
even of greater interest to the engaged reader would be to compare the
results presented in Figures 7 and 8 with the results that were displayed in
a similar manner for Example 3 in our recent report (Skahill et al. 2011),

ERDC/CHL TR-12-2 23

wherein the same GSSHA GCEW hydrologic model was calibrated using
the independent ERDC SLM implementation, employed in the same
manner as it was for the local searches within MLSL in Examples 3 and 4.
Performing such a comparison, one would see comparable results were
obtained when using SLM simply once, with no cyclic updating, in terms
of the fit achieved between the observed data and their model simulated
counterparts, wherein an associated final objective function value of 59.56
was obtained in only 62 total model calls.

Figure 7. Plot of transformed observed and simulated flows, associated with the minimum

objective function value identified in Example 3.

ERDC/CHL TR-12-2 24

Figure 8. Plot of transformed observed and simulated flows, associated with the minimum

objective function value identified in Example 4.

ERDC/CHL TR-12-2 25

4 Summary

In this report, we demonstrated how to use our implementation of the
stochastic global optimization technique called Multi Level Single Linkage
(MLSL), which uses our LM/SLM method implementations for local search.
We considered four separate examples to demonstrate its practical use. All
four examples emphasized how simple it is to use our MLSL implementa-
tion after a given forward model has already been interfaced with our
LM/SLM software for local search (see our recent report (Skahill et al.
2011)). The first example discussed all of the steps necessary to use our
MLSL implementation to calibrate a computationally efficient two
parameter test problem. The second example also involved calibrating the
computationally efficient two parameter test problem that was considered
in example 1. It considered a series of 13 separate numerical experiments,
each involving 100 unique MLSL runs for a given set of input parameters, in
attempts to provide the active reader with an intuitive feel for how the
principal MLSL input parameters affect MLSL algorithm efficiency and
effectiveness. The third and fourth examples both involved demonstrating
how to calibrate, using our MLSL implementation, the same GSSHA GCEW
hydrologic model that we also considered in our recent report (Skahill et al.
2011) wherein we demonstrated how to use our LM/SLM local search
implementations for GSSHA hydrologic model calibration. The fourth
experiment was designed, among others, to provide an opportunity to
examine MLSL termination criteria and their impact on overall algorithm
execution. We provided some initial guidance regarding the specification of
MLSL input parameter values and termination criteria.

Our quick comparison between the results that were obtained in Examples
3 and 4, and also with the SLM local search calibration run that was
performed and documented upon in our recent report (Skahill et al. 2011)
encouraged us, based on our limited applications to date, to recommend
that GSSHA hydrologic modelers currently use our SLM implementation,
possibly with prior information, rather than MLSL for GSSHA hydrologic
model calibration. However, if needed and/or desired, then we
recommend MLSL as the global optimization tool to use to calibrate
GSSHA, rather than the SCE method, which is currently employed for
automatic calibration of GSSHA models (please see Skahill et al. (2009)
for further details). The previously mentioned comparisons underscore the

ERDC/CHL TR-12-2 26

need to provide for an effective, efficient, and adaptive means for
calibrating spatial hydrology models such as GSSHA. We see that to be
possible by merging ideas from previous contributions, in particular, by
merging ideas from Skahill et al. (2009) and Doherty and Skahill (2006).
This is our current research and development focus for GSSHA hydrologic
model calibration.

The user of our ERDC implementation of the MLSL method accepts and
uses the software at his/her own risk. Any questions, comments, and/or
concerns regarding the use of our ERDC software implementation of the
MLSL method with the GSSHA model should be directed to the first
author. The interested reader is encouraged to contact the second author
with any questions, comments, and/or concerns related to the GSSHA
hydrologic simulation model.

ERDC/CHL TR-12-2 27

References
Baginska, B., W. Milne-Home, P. S. Cornish. 2003. Modelling nutrient transport in

Currency Creek, NSW with AnnAGNPS and PEST. Environmental Modelling &
Software 18, 801-808.

Bicknell, B. R., J. C. Imhoff, J. L. Kittle, T. H. Jobes, A. S. Donigian. 2001. HSPF User’s
Manual. Aqua Terra Consultants, Mountain View, California.

DeGroote-Hedlin, C., and S. Constable. 1990. Occam’s inversion to generate smooth, two-
dimensional models from magnetotelluric data. Geophysics, 55(12), 1631-1624.

Doherty, J. 2004. PEST: Model Independent Parameter Estimation. Fifth edition of user
manual. Watermark Numerical Computing, Brisbane, Australia.

Doherty, J. 2007a. Addendum to the PEST Manual. Watermark Numerical Computing,
Brisbane, Australia, January.

Doherty, J. 2007b. Addendum to the PEST Manual. Watermark Numerical Computing,
Brisbane, Australia, August.

Doherty, J. 2007c. PEST Surface Water Utilities. Watermark Numerical Computing,
Brisbane, Australia.

Doherty, J., and J. M. Johnston. 2003. Methodologies for calibration and predictive
analysis of a watershed model. J. American Water Resources Association, 39(2),
251-265.

Doherty, J., and B. E. Skahill. 2006. An Advanced Regularization Methodology for Use in
Watershed Model Calibration. Journal of Hydrology, 327, 564– 577.

Downer, C. W., and F. L. Ogden. 2003a. GSSHA user’s manual: Gridded surface
subsurface hydrologic analysis, version 1.43 for WMS 6.1, Technical Report, U.S.
Army Corps of Eng., Eng. Res. and Dev. Cent., Vicksburg, Miss..

Downer, C. W., and F. L. Ogden. 2003b. Prediction of runoff and soil moistures at the
watershed scale: Effects of model complexity and parameter assignment. Water
Resources Research, Vol. 39, No. 3, 1045.

Duan, Q. S., S. Sorooshian, and V. K. Gupta. 1992. Effective and efficient global
optimization for conceptual rainfall runoff models. Water Resour. Res. 28 (4),
1015-1031.

Duan, Q., V. K. Gupta, and S. Sorooshian. 1993. A Shuffled Complex Evolution approach
for effective and efficient global minimization. Journal of Optimization Theory
and its Applications, 76 (3), 501-521.

Frankenstein, S., and G. Koenig. 2004. Fast All-season Soil STrength (FASST). U.S. Army
Engineer Research and Development Center, Cold Regions Research and
Engineering Laboratory, Hanover, New Hampshire, Special Report SR-04-1.

ERDC/CHL TR-12-2 28

Gallagher, M., and J. Doherty. 2007a. Predictive error analysis for a water resource
management model. Journal of Hydrology, (334), 513–533.

Gallagher, M., and J. Doherty. 2007b. Parameter estimation and uncertainty analysis for
a watershed model. Environmental Modelling & Software 22, 1000-1020.

Goegebeur, M., and V. R. N. Pauwels. 2007. Improvement of the PEST parameter
estimation algorithm through Extended Kalman Filtering. Journal of Hydrology,
(337), 436-451.

Gutiérrez-Magness, A. L., and R. H. McCuen. 2005. Effect of Flow Proportions on HSPF
Model Calibration Accuracy. J. Hydrologic Engrg. 10, 343-352.

Hansen, N., and A. Ostermeier. 2001. Completely derandomized self-adaptation in
evolution strategies. Evol. Comput., 9, 159-195.

Hansen, N., S. D. Muller, and P. Koumoutsakos. 2003. Reducing the time complexity of
the derandomized evolution strategy with covariance matrix adaptation (CMA-
ES). Evol. Comput, 9, 159-195.

Haydon, S., and A. Deletic. 2007. Sensitivity testing of a coupled Escherichia coli-
Hydrologic catchment model. Journal of Hydrology, (338), 161-173.

Iskra, I., and R. Droste. 2007. Application of Non-Linear Automatic Optimization
Techniques for Calibration of HSPF. Water Environment Research, 79 (6), 647-
659.

Kim, S. M., B. L. Benham, K. M. Brannan, R. W. Zeckoski, and J. Doherty. 2007.
Comparison of hydrologic calibration of HSPF using automatic and manual
methods. Water Resour. Res., 43, W01402, doi:10.1029/2006WR004883.

Kunstmann, H., J. Krause, and S. Mayr. 2006. Inverse distributed hydrological modelling
of Alpine catchments. Hydrology and Earth System Sciences. 10 (3), 395-412.

Levenberg, K. 1944. A method for the solution of certain problems in least squares. Q.
Appl. Math., 2, 164-168.

Maneta, M. P., G. B. Pasternack, W. W. Wallender, V. Jetten, and S. Schnabel. 2007.
Temporal instability of parameters in an event-based distributed hydrologic
model applied to a small semiarid catchment. Journal of Hydrology, Volume 341,
207-221.

Marquardt, D. 1963. An algorithm for least-squares estimation of non-linear parameters.
SIAM J. Appl. Math., 11, 431-441.

Menke, W. 1984. Geophysical Data Analysis. Academic Press Inc. Orlando, Florida.

Moore, C., and J. Doherty. 2005. The role of the calibration process in reducing model
predictive error. Water Resources Research. Vol 41, No 5. W05050.

Rinnooy Kan, A. H. G, and G. Timmer. 1987a. Stochastic Global Optimization Methods,

Part I: Clustering Methods, Mathematical Programming, 39, 27-56.

ERDC/CHL TR-12-2 29

Rinnooy Kan, A. H. G, and G. Timmer. 1987b. Stochastic Global Optimization Methods,
Part II: Multi Level Methods, Mathematical Programming, 39, 57-78.

Rode, M., U. Suhr, and G. Wriedt. 2007. Multi-objective calibration of a river water
quality model--Information content of calibration data. Ecological Modelling,
204, 129-142.

Rose, K. A., B. A. Megrey, F. E. Werner, and D. M. Ware. 2007. Calibration of the
NEMURO nutrient-phytoplankton-zooplankton food web model to a coastal
ecosystem: Evaluation of an automated calibration approach. Ecological
Modelling, (202), 38-51.

Santanello Jr., J. A., C. D. Peters-Lidard, M. E. Garcia, D. M. Mocko, M. A. Tischler,
M. S. Moran, and D. P. Thoma. 2007. Using remotely-sensed estimates of soil
moisture to infer soil texture and hydraulic properties across a semi-arid
watershed. Remote Sensing of Environment, (110), 79-97.

Senarath, S. U. S., F. L. Odgen, C. W. Downer, and H. O. Sharif. 2000. On the calibration
and verification of two-dimensional, distributed, Hortonian, continuous
watershed models. Water Resources Res., 36 (6), 1495-1510.

Skahill, B., and J. Doherty. 2006. Efficient accommodation of local minima in watershed
model calibration. Journal of Hydrology, (329), 122-139.

Skahill, B., J. Baggett, S. Frankenstein, and C. W. Downer. 2009. Efficient Levenberg-
Marquardt Method Based Model Independent Calibration. Environmental
Modelling & Software (24), 517–529.

Skahill, B., C. W. Downer, and J. Baggett. 2011. A Practical Guide to Calibration of a
GSSHA Hydrologic Model using ERDC Automated Calibration Software –
Efficient Local Search. ERDC Technical Report 11-XX. (in press)

Tonkin, M., and J. Doherty. 2005. A hybrid regularised inversion methodology for highly
parameterised models. Water Resources Research. Vol. 41, W10412,
doi:10.1029/2005WR003995.

Törn, A., and A. Žilinskas. 1987. Global Optimization. Lecture Notes in Computer Science,
350, Springer-Verlag.

Zyvoloskia, G., E. Kwicklis, A. A. Eddebbarh, B. Arnold, C. Faunt, and B. A. Robinson.
2003. The site-scale saturated zone flow model for Yucca Mountain: calibration
of different conceptual models and their impact on flow paths. Journal of
Contaminant Hydrology, 62–63, 731–750.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington,
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not
display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
February 2012

2. REPORT TYPE
Final Report

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

A practical guide to calibration of a GSSHA hydrologic model using ERDC automated
model calibration software – effective and efficient stochastic global optimization

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Brian E. Skahill, Charles W. Downer, and Jeffrey S. Bagget

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
 NUMBER

U.S. Army Engineer Research and Development Center
Coastal and Hydraulics Laboratory
3909 Halls Ferry Road; Vicksburg, MS 39180;
University of Wisconsin at La C rosse
1725 State Street; La Cross,WI 54601

ERDC/CHL TR-12-2

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
U.S. Army Corps of Engineers
441 G. Street, NW
Washington, DC 20314-1000

11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The objective of this article is to demonstrate, by way of example(s), how to use our implementation of the MLSL method for model
independent parameter estimation to calibrate a GSSHA hydrologic model. The purpose is not to present or focus on the theory which
underlies the parameter estimation method, but rather to carefully describe how to use the ERDC software implementation of MLSL that
accommodates the PEST model independent interface to calibrate a GSSHA hydrologic model. Given the computational expense
associated with global optimization, we will initially consider variations of our MLSL implementation on a computationally efficient test
problem in attempts to provide the interested reader with an intuitive sense of how the method works.

15. SUBJECT TERMS
Calibration
Global optimization

GSSHA
Multi-Level Single Linkage

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE
PERSON

a. REPORT

UNCLASSIFIED

b. ABSTRACT

UNCLASSIFIED

c. THIS PAGE

UNCLASSIFIED 35
19b. TELEPHONE NUMBER (include
area code)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

	Abstract
	Contents
	Figures and Tables
	Preface
	1 Introduction
	2 Examples
	Example 1
	Step 01 – Obtain forward model
	Step 02 – Collect observed data
	Step 03 – Prepare instruction file for forward model output file
	Step 04 – Prepare template file for forward model input file
	Step 05 – Prepare preliminary input control file
	Step 06 – Verify control file is functional
	Step 07 – Modify control file for use with ERDC MLSL implementation
	Step 08 – Calibrate test problem using ERDC MLSL implementation

	Example 2
	Step 01 – Prepare 100 MLSL input files to automate execution of 100 MLSL trial runs
	Step 02 – Prepare batch file for execution of multiple MLSL runs
	Step 03 – Calibrate model 100 times with 100 unique calls to MLSL

	Example 3
	Example 4

	3 Results and Discussion
	4 Summary
	References
	REPORT DOCUMENTATION PAGE

