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Abstract 

The objective of this article is to demonstrate, by way of example(s), how to 
use our implementation of the MLSL method for model independent 
parameter estimation to calibrate a GSSHA hydrologic model. The purpose 
is not to present or focus on the theory which underlies the parameter 
estimation method, but rather to carefully describe how to use the ERDC 
software implementation of MLSL that accommodates the PEST model 
independent interface to calibrate a GSSHA hydrologic model. Given the 
computational expense associated with global optimization, we will initially 
consider variations of our MLSL implementation on a computationally 
efficient test problem in attempts to provide the interested reader with an 
intuitive sense of how the method works. 

 

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. 
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. 
All product names and trademarks cited are the property of their respective owners. The findings of this report are not to 
be construed as an official Department of the Army position unless so designated by other authorized documents. 
 
DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. 
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1 Introduction 

Recent research at the U.S. Army Engineer Research and Development 
Center (ERDC) has focused on the development of methodologies or 
improvement of the efficiency of native algorithms, for the computer-based 
calibration of hydrologic and environmental models (wherein by efficiency, 
we mean the number of forward model calls necessary for the calibration 
algorithm to converge). These include, among others, an accelerated 
derivative-based local search algorithm, a stochastic global optimization 
algorithm for intelligently sifting through local minima to find a global 
minimum and, most recently, a state-of-the-art evolutionary strategy for 
global parameter identification of difficult problems with noise or other 
features that make derivatives estimation difficult. Minimizing the number 
of required model runs is one of the primary factors driving the research 
and development activities, such that the resulting optimization tool(s) are 
more compatible with the computationally expensive physics-based models 
that are becoming more commonly used within the practice community. 

In a previous technical report (Skahill et al. 2011) we recently discussed 
how to use, by way of example, our implementation of the Levenberg-
Marquardt (LM) local search method (Levenburg, 1944; Marquardt, 1963), 
and also the Secant LM (SLM) method, an efficiency enhancement to the 
LM method, for computer-based model independent hydrologic model 
calibration. The context for this article will be directed to the previously 
mentioned stochastic global optimization algorithm, which at present uses 
our implementations of the LM/SLM methods for local search. The LM 
method has features that make it attractive for model calibration. One 
feature is its ability to readily report estimates of parameter uncertainty, 
correlation, and (in)sensitivity as a by-product of its use both during and 
after the parameter estimation process. Another feature is that it is easily 
adapted by the inclusion of various regularization devices to maintain 
numerical stability and robustness in the face of potential numerical 
problems (that adversely affect all parameter estimation methodologies) 
caused by parameter insensitivity and/or parameter correlation (Menke, 
1984; de Groot-Hedlin and Constable, 1990; Doherty and Skahill, 2006). 
Skahill et al. (2009) and Skahill and Doherty (2006) both provide lengthy 
summaries of the LM method. 
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The model independent LM method based parameter estimation software 
PEST (Doherty, 2004, 2007a, 2007b), which quantifies model to measure-
ment misfit in the weighted least squares sense, is now widely used to 
support hydrologic and environmental model calibration. In addition to its 
traditional groundwater model calibration application setting (Zyvoloski et 
al., 2003; Tonkin and Doherty, 2005; Moore and Doherty, 2006; Gallagher 
and Doherty, 2007a), it is now employed to calibrate ecological models 
(Rose et al., 2007), land surface models (Santanello Jr. et al., 2007) and 
models in other application areas including nonpoint source pollution 
(Baginska et al., 2003; Haydon and Deletic, 2007), surface hydrology 
(Doherty and Johnston, 2003; Gutiérrez-Magness and McCuen, 2005; 
Kunstmann et al., 2006; Skahill and Doherty, 2006; Doherty and Skahill, 
2006; Gallagher and Doherty, 2007b; Goegebeur and Pauwels, 2007; Iskra 
and Droste, 2007; Kim et al., 2007; Maneta et al., 2007), and surface water 
quality (Rode et al., 2007). 

Skahill et al. (2011) focused on one drawback associated with LM-based 
model independent parameter estimation as implemented in PEST; viz., 
that it requires estimates, based on finite differences, of the derivatives of 
the objective function with respect to the model parameters. We briefly 
discussed the secant LM method and then presented examples which 
demonstrated benefits that can be derived in terms of improved inverse 
model run-efficiency when using the SLM method rather than LM for 
calibrating a GSSHA hydrologic model deployment for the Goodwin Creek 
Experimental Watershed (GCEW).  

However, as mentioned, another drawback of the LM method is that it is a 
local search method. Thus, if there are different “regions of attraction” in 
parameter space, its solution will lead to just one of possibly many objective 
function minima, the particular one that is found is dependent upon the 
user-supplied set of initial parameter values. Stochastic global optimization 
(GO) can be employed as a remedy. Stochastic global optimization 
algorithms estimate the global minimum of the objective function by 
initiating local searches from global, randomly sampled points. The local 
and global phases can be iterated and/or the local searches may be initiated 
at some or all of the globally sampled points. Stochastic global optimization 
algorithms are guaranteed to converge, with probability one, to the global 
minimum as the sample size approaches infinity. Stronger convergence 
properties are possible for some stochastic algorithms, as we mention 
below. Moreover, probabilistic-based stopping criteria can be developed for 
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stochastic global optimization methods (Rinnooy Kan and Timmer, 1987a, 
b; Törn and Žilinskas, 1987); however, an a priori computational budget 
may preclude any concern regarding termination criteria. 

One would like to utilize stochastic GO methods that are not only reliable 
in finding the global minimum, but also efficient in the sense that they 
minimize the return to previously visited local minima in parameter space. 
A modeler would possibly also like to receive some information on the 
locations of non-global minima, especially if these minima are little 
different in magnitude from the global minimum, but are widely separate 
from it in parameter space. With the understanding that efficient and 
reliable optimization methods, possibly constrained by a predetermined 
computational budget, that are capable of efficiently finding the locations 
of other good minima in addition to an estimate of the global minimum, 
are needed to identify hydrologic and/or environmental models, Skahill et 
al. (2009) implemented a more efficient and reliable stochastic global 
optimization algorithm than what is currently available in PEST.  

Ideally, we would like to perform a single local search within the region of 
attraction of each local minimum. This would not only ensure that each 
local minimum is identified just once, but also that in fact we find all local 
minima. But we also want to employ a method that works well if one has a 
predetermined computational budget in that for a given effort it compares 
favorably with other methods. Clustering methods were designed to 
accommodate these requirements. They are variants of Multistart (the 
Multistart method samples points from a uniform distribution over the 
feasible parameter space and starts a local search from each of the sample 
points) and the basic idea behind them is to group close points, sampled 
from the feasible parameter space and for which the specified groups 
presumably relate to actual regions of attraction in parameter space, and to 
apply a single local search procedure within each identified cluster. Either 
reduction; wherein sampled points associated with the highest objective 
function values are temporarily removed, or concentration; wherein the 
sampled points are transformed through application of one or a few 
iterations of a local search procedure, is employed to identify a reduced 
sample as part of the clustering process in order to provide some assurance 
that in fact the specified groups correspond to regions of attraction of actual 
local minima. Clustering methods are often iterative in that the global and 
local phases are repeated sequentially until a stopping criterion is satisfied. 
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With clustering methods, it is possible that one cluster intersects multiple 
regions of attraction; hence, the global minimum could be missed, or that 
one region of attraction contains more than one cluster, thus allowing for 
the same local minimum to possibly be identified more than once. Multi 
Level Single Linkage (MLSL) is a clustering method that was developed to 
reduce the probability of not finding a local minimum or of finding a local 
minimum more than once (Rinnooy Kan and Timmer, 1987a, b).  

MLSL mimics clustering by calculating a critical distance rk at each 
iteration, k. This critical distance can be used to build clusters, but instead, 
in MLSL, the decision as to whether a local search is to be initiated from a 
given reduced sample point is simply based on whether there exists 
another reduced sample point within the distance rk of the given point 
with a corresponding lower objective function value. The critical distance 
rk is reduced at each iteration. 

Under certain assumptions, MLSL has stronger convergence properties 
than simpler stochastic global optimization algorithms. First, if the 
algorithm continues forever, the number of local searches performed is 
finite. Second, if rk tends to zero with increasing k, then every local 
minimum will be identified in finite time with probability one. 

We implemented MLSL and it uses the ERDC implementation of the LM or 
SLM method for local search. Our MLSL implementation follows that of 
Rinnooy Kan and Timmer (1987a, b) with a slight modification to some-
times avoid repeatedly finding the same local minima. Our MLSL 
implementation is summarized in Figure 1. The following stopping criteria 
were included as part of our MLSL implementation: 

1. The objective function has not been lowered over a specified number of 
local searches, 

2. A specified maximum number of local searches have been performed, 
3. The expected number of minima, in the Bayesian sense, exceeds the 

number of identified distinct local minima by less than 0.5 (Rinnooy Kan 
and Timmer, 1987a, b), 

4. A specified maximum number of MLSL iterations have been performed, 
5. The objective function has not been lowered over a specified number of 

MLSL iterations. 
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Figure 1. Our implementation of the Multi Level Single Linkage (MLSL) algorithm. 

An instance of our MLSL implementation stops when any one of the above 
criteria are satisfied. It can be utilized by simply appending the MLSL 
search parameters to the end of the control data section of a working 
SLM_CHL input control file (see Skahill et al. 2011). Hence, as with our 
independent LM/SLM implementations, only slight modification to a 
working PEST input control file is required to also use our MLSL 
implementation.  

Skahill et al. (2009) performed an efficiency comparison of our MLSL 
implementation with Trajectory Repulsion (Skahill and Doherty, 2006), the 
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Shuffled Complex Evolution (SCE) general purpose global optimization 
method (Duan et al. 1992; Duan et al. 1993) and the Covariance Matrix 
Adaption Evolutionary Strategy (CMAES) general purpose optimization 
method (Hansen and Ostermeier, 2001; Hansen et al. 2003), using an eight 
parameter Hydrological Simulation Program-FORTRAN (HSPF) (Bicknell 
et al., 2001) hydrologic model, a ten parameter Fast All-season Soil Strength 
(FASST) state-of-the-ground model (Frankenstein and Koenig, 2004), and 
a sixteen parameter Gridded Surface Subsurface Hydrologic Analysis 
(GSSHA) (Downer and Ogden, 2003a, 2003b) hydrologic model. In 
particular, using the three previously mentioned environmental models, 
Skahill et al. (2009) compared the efficiencies, in terms of the number of 
model calls required to achieve a given objective function value, of their 
implementations of Trajectory Repulsion and MLSL with that of SCE and 
CMAES as implemented in PEST (Doherty, 2004, 2007a, 2007b). To 
examine their relative efficiencies, thirty trials of MLSL, Trajectory 
Repulsion, CMAES, and SCE were conducted with each of the three distinct 
environmental model structures. While PEST includes a Trajectory 
Repulsion implementation, our Trajectory Repulsion implementation was 
utilized so that the local search implementation (SLM) would be identical to 
that employed with MLSL. 

Results from the numerical experiments were obtained by computing the 
average over thirty trials of the best objective function value obtained after a 
specified number of model calls. Skahill et al. (2009) pointed out that they 
were very wary of comparing different software packages in this manner, for 
a package, and the methodology which it encapsulates, always performs 
best when operated by its designers. This is because program settings, 
particularly those pertaining to termination and convergence criteria, can 
have a huge effect on the performance of a method; a non-expert in the use 
of a particular package may not be aware of the optimal settings to use, 
especially in difficult cases. Hence, we do not pretend that their results 
provide a comprehensive basis for assessment of the comparative 
performance of SCE-PEST, CMAES-PEST and MLSL. We hope, however, 
that they do provide a basis for at least a “ball park” comparison of the 
methods for the particular calibration cases they considered. 

Based on the numerical experiments involving thirty trials with each global 
optimization method, and for each of the three model structures, Skahill et 
al. (2009) recommend MLSL over Trajectory Repulsion for environmental 
model independent LM-based stochastic global optimization. Moreover, 
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their results also suggested potential utilization of MLSL over SCE and 
CMAES, except for the case where only a very limited computational budget 
is available, in which case CMAES might be preferable. 

The objective of this article is to demonstrate, by way of example(s), how 
to use our implementation of the MLSL method for model independent 
parameter estimation to calibrate a GSSHA hydrologic model. The 
purpose is not to present or focus on the theory which underlies the 
parameter estimation method, but rather to carefully describe how to use 
the ERDC software implementation of MLSL that accommodates the PEST 
model independent interface to calibrate a GSSHA hydrologic model. 
Given the computational expense associated with global optimization, we 
will initially consider variations of our MLSL implementation on a 
computationally efficient test problem in attempts to provide the 
interested reader with an intuitive sense of how the method works. 
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2 Examples 

The steps necessary to use our implementation of the MLSL GO method 
will now be demonstrated and documented while applying it to initially 
calibrate a computationally efficient test problem and subsequently a 
GSSHA hydrologic model for the Goodwin Creek Experimental Watershed 
(GCEW) (Senarath et al. 2000; Downer and Ogden, 2003b). The general 
approach simply involves slight modification of an existing functional 
input control file associated with the ERDC implementation of LM/SLM. 
The interested reader is referred to our recent report for details on how to 
interface a given forward model with the ERDC LM/SLM implementations 
(Skahill, Downer, and Baggett, 2011). 

Example 1 

In this first example, we will document the steps necessary to use the ERDC 
implementation of the MLSL stochastic global optimization method to 
calibrate the computationally efficient test problem defined directly below 
in Figure 2. 

 
Figure 2. Implementation of MLSL with many local minima. 
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Step 01 – Obtain forward model 

The C source code provided directly below, once built (it was named 
tp2.exe), computes model generated observations for a given parameter set 
((p1,p2)). The program reads in a file named “tp2_parms.txt”, a file with two 
floating point data values, one specified on the first row, and the other 
specified on the second row of the file, respectively. The first row entry is the 
value for the first parameter, p1; whereas, the second row entry is the value 
for the second parameter, p2. The 87 model computed observations are 
generated and written to a file named “tp2_out.txt”, with one floating point 
data value specified per line. 

////////////////////////////////////////////////////// 
//Example Test Problem for testing MLSL code 
// 
//Author: Brian E. Skahill    
// 
///////////////////////////////////////////////////// 
 
#include "stdio.h" 
#include "conio.h" 
#include "stdlib.h" 
#include "string.h" 
#include "ctype.h" 
#include "math.h" 
#include "time.h" 
 
void main( void ) 
{ 
 int i; 
 double h[87], value, m[3], x=0.0; 
 FILE *data, *read; 
 
 data = fopen( "tp2_out.txt", "w" ); 
 read = fopen( "tp2_parms.txt", "r" ); 
 
 ////////////////////////////////////////////////////// 
 //Read the parameter values - m 
 ////////////////////////////////////////////////////// 
 for( i = 1; i <= 2; i++ ) 
 { 
  value = 0.0; 
  fscanf( read, "%lf\n", &value ); 
  m[i] = value; 
 } 
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 ////////////////////////////////////////////////////// 
 //Compute h 
 ////////////////////////////////////////////////////// 
 for( i = 0; i <= 86; i++ ) 
 { 
  x = 3.1 + 0.15*i; 
  h[i] = (sin(m[1]*x)+sin(m[2]*x)); 
 } 
 
 ////////////////////////////////////////////////////// 
 //Write the computed h to file 
 ////////////////////////////////////////////////////// 
 for( i = 0; i <= 86; i++ ) 
  fprintf( data, "%16.14E\n", h[i] ); 
 
 fclose( data ); 
} 

Step 02 – Collect observed data 

Observations for the test problem can be generated by running the model 
executable for the problem, tp2.exe, whose source code was presented and 
briefly described in the previous step, with input parameter values set to p1 

= 1 and p2 = 2/3, or vice versa. Upon execution of tp2.exe at p1 = 1 and p2 = 
2/3 (viz., the global minimum), the (synthetic) observations for the test 
problem will be located in the file named “tp2_out.txt”, as mentioned 
above. The observations for the test problem will be discussed further below 
and clearly noted at that time. 

Step 03 – Prepare instruction file for forward model output file 

As with the ERDC LM/SLM implementations, our MLSL implementation 
is model independent. Hence, there is a need with each forward model call 
during an inverse model run to be able to read from one or more model 
generated output files the model generated observations relevant to 
objective function evaluation. An instruction file is the means to satisfy 
this requirement. As was also mentioned in our recent technical report, 
our software was written to accommodate the popular PEST model 
independent and input control file protocol; hence, the interested reader is 
directed to Doherty (2004, 2007a, b, c) for additional details regarding the 
PEST model independent interface, and in particular, instruction file 
development. The model instruction file for the test problem, named 
“tp2_out.ins”, is provided in Appendix 1 (Please note that all of the 
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appendices associated with this technical report are available in a separate 
document made publicly available on the GSSHA Knowledge Hub at 
https://knowledge.usace.army.mil/). It is the basis for reading model generated 
observations from the model (tp2.exe) output file named “tp2_out.txt”. 

Step 04 – Prepare template file for forward model input file 

For this example, the model input file named “tp2_parms.txt” contains the 
two input parameter values that are designated as adjustable. During an 
inverse model run (i.e., model calibration), this model input file will need 
to be updated every time there is a need to evaluate the model at a new 
location in adjustable model parameter space. To support the interface of 
the model for this test problem with the independent PEST and ERDC 
LM/SLM implementations, a PEST template file was prepared for this 
model input file. The contents of the template file named “tp2_parms.tpl” 
are shown directly below. 

ptf $ 
$p1 $ 
$p2 $ 

Step 05 – Prepare preliminary input control file 

We are now ready to generate an input control file, the main input file for 
execution of the LM method not only associated with the PEST, but also our 
own independent LM/SLM implementation. The path that we take for this 
two parameter test problem will be different from the path that we pursued 
to generate an input control file for the GSSHA GCEW model, as we docu-
mented in our recent technical report (Skahill et al. 2011). In this case, we 
will simply take an existing working control file and manually modify it in a 
text editor so that it is specific to our two parameter test problem being 
considered in this example. In particular, we will manually modify the 
control file listed in Appendix 10 of our recent technical report (Skahill et al. 
2011). Relevant changes to the control file will be mentioned so that the 
reader can interpret and follow the necessary changes. The final working 
input control file for this example problem, named tp2_1.pst, is listed in 
Appendix 2. As was mentioned in our recent technical report, the interested 
reader is referred to the PEST documentation for explanations related to 
control files. The second row of the control data section of the control file is 
changed from “16 233 16 0 1“ to “2 87 2 0 1” because we now have two 
adjustable model parameters, two parameter groups, and 87 observations 
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rather than 16 adjustable model parameters, 16 parameter groups, and 
233 observations. Interpreting the parameter groups and parameter data 
sections of the input control file is relatively straight forward, and the 
interested reader is directed to the PEST documentation and also our recent 
report (Skahill et al. 2011) for specific details related thereof. The name of 
the one observation group is now obsgroup1 rather than tmf. The 87 
observed data points are listed in the observation data section of the input 
control file, and they are all equally assigned a weight of one. The model 
command line section of the control file lists the model for this example 
and, as previously noted, it is tp2.exe. And the two relevant input and 
output files, also previously discussed, are listed in the model input/output 
section at the very end of the control file. 

Step 06 – Verify control file is functional 

One can check to see if there are any errors with the input control file as 
now prepared by typing the following at the command prompt and pressing 
enter: 

PESTCHEK tp2_1 

In so doing, one would see the following record of PESTCHEK execution at 
the command prompt (Figure 3): 

 
Figure 3. Terminal display for PESTCHEK execution. 

Step 07 – Modify control file for use with ERDC MLSL implementation 

To employ our ERDC MLSL implementation, two additional rows of input 
data are appended to the end of the control data section of the control file 
tp2_1.pst, as shown below. The four entries on the first row appended (now, 
the next to last row of the control data section) to the end of the control data 
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section of the control file are specific to our independent ERDC SLM 
implementation, and the description and function for each of the four 
entries is provided in Step 10 of Example 1 in our recent report (Skahill et al. 
2011). So, as was indicated earlier in this report, with our MLSL 
implementation, one can either employ LM or SLM for local search. The 
first entry on the second row appended (now, the last row of the control 
data section) to the end of the control data section of the control file is a 
floating point value specifying a distance threshold that is used for 
comparison during execution of our implementation of MLSL. In particular, 
if during a given local search with MLSL, the distance computed between 
the current location in adjustable model parameter space and any of the 
previously computed parameter upgrade vectors, obtained either during the 
existing or with any of the previously performed local searches, is less than 
this specified threshold value, then the current local search is prematurely 
terminated with the assumption that it has progressed into a region of 
attraction of a previously visited local minimum. The impact of this input 
entry has not been explored with much detail, and it is often set to zero, as it 
is specified below. Further exploration for the specification of this input 
value is encouraged, not only for MLSL, but also for the stochastic GO 
method Trajectory Repulsion (Skahill and Doherty, 2006). The subsequent 
four entries on the second row appended (now, the last row of the control 
data section) to the end of the control data section of the control file are all 
specific to our ERDC MLSL implementation. Relative to our specification of 
our MLSL implementation outlined in Figure 1 above, the following four 
input values are N, γ, σ, and d2, respectively. N is an integer input value; 
whereas, the remaining three are floating point values. N, γ, and σ impact 
the efficiency and effectiveness of MLSL. The second example in this report 
will explore their impact using the computationally efficient test problem 
from this first example. 

* control data 
restart estimation 
 2 87 2 0 1 
 1 1 single point 1 0 0 
 5.0 2.0 0.3 0.03 10 
100000.0 3.0 0.001 0 
 0.1 noaui 
30 0.001 4 4 0.001 4 
 1 1 1 
0 0 1.0 0 
0 40 0.10 4 0.1 
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Step 08 – Calibrate test problem using ERDC MLSL implementation 

Our implementation of MLSL was employed to calibrate the computa-
tionally efficient two parameter test problem, in a model independent 
manner, using the prepared input control file tp2_1.pst (and the related 
input files), by typing the following at the command prompt and pressing 
enter:  

chl_mlsl  

Upon execution of our current implementation of MLSL, the user is 
subsequently prompted for additional input parameters. Figure 4 
summarizes its complete execution. In particular, upon execution of our 
implementation of MLSL, the user is asked for, in sequence, 

1. The name of the modified input control file, 
2. Whether the program is to write or read (thus enabling the reproduction of 

past efforts) the file named “RandomNumberSeeds.prn”, which contains 
random numbers used during program execution,  

3. An unsigned long that provides the basis for computation of the previously 
mentioned random numbers, 

4. The maximum number of iterations to perform during MLSL execution, 
5. The maximum number of local searches to perform during MLSL 

execution, 
6. The maximum number of local searches to perform with no objective 

function improvement, 
7. The maximum number of MLSL iterations to perform with no objective 

function improvement, and 
8. The value which determines whether the previous and current computed 

best objective function value estimates are to be treated as effectively the 
same, or distinct. 

The MLSL generated output file that will be of most interest to the user is 
named “ct_mlsl.rec”, and its contents for this example are listed in 
Appendix 3. Examining its contents, we see that the file includes an echo 
of the MLSL input parameters, and then for each MLSL iteration, 

1. A listing of the sampling phase,  
2. The reduced sample set,  
3. The value for the critical distance threshold (named alpha in the file),  
4. A summary of the treatment of each member of the reduced sample set, 
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and then the file ends with a summary of the stochastic GO run, including 
the number of local searches that were performed, the number of local 
searches that yielded distinct local minima, the number of MLSL 
iterations, the minimum objective function value identified, at what point 
during MLSL execution the minimum objective function value was 
identified, the total number of forward model calls, and the reason for 
terminating MLSL execution. For example, with this computationally 
efficient two parameter test problem, MLSL, with the input as specified 
above and also listed in Appendix 3, identified the global minimum in the 
first iteration of its execution with the first local search, and it terminated 
execution after five additional MLSL iterations (and one additional local 
search that yielded another local minimum) yielded no further objective 
function improvement. One hundred and seventy-six forward model calls 
were required to find the global minimum. 

 
Figure 4. Terminal display for MLSL method (example 1). 

Example 2 

In this example, we will further examine MLSL execution using the 
computationally efficient two parameter test problem that was presented 
in the previous example. In particular, we will examine the impact of the 
input parameters N, γ, and σ on the performance of MLSL; viz., its 
efficiency (summarized by the average and standard deviation of total 
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model calls for 100 MLSL trial runs) and effectiveness (summarized by the 
number of failures to find the global minimum among 100 MLSL trial 
runs). We will do so by performing 100 trials for 13 unique N, γ, and σ 
permutations. Since all 13 100 MLSL trial runs are very similar in terms of 
execution, we will discuss how to do, by way of example, one instance, and 
then summarize the results for all 13 100 MLSL trial runs in the table we 
present below. 

Step 01 – Prepare 100 MLSL input files to automate execution of 100 
MLSL trial runs 

To enable the automatic execution of 100 MLSL trial runs, 100 MLSL 
input files were prepared whose contents are like what is shown below. 
The only difference between each separate input file is the third input 
value within each file; viz., the unsigned long that provides the basis for 
computation of the random numbers which impact the sampling phase 
which occurs in each iteration of MLSL execution. One hundred files were 
prepared with contents like what is shown below and the 100 files were 
numbered in the following manner: tp2_1_1.in, tp2_1_2.in, tp2_1_3.in, 
…, tp2_1_99.in, and tp2_1_100.in. 

tp2_1 
Y 
4063522982 
50 
100 
99 
5 
0.0025 

Step 02 – Prepare batch file for execution of multiple MLSL runs 

A batch file named chl_mlsl_all.bat was prepared and its contents are 
listed directly below. It supports the execution of multiple MLSL runs. 

@ECHO ON 
IF [%1]==[] GOTO INPUTERROR 
:: 
Set Count= 
:: 
:LOOP {The count advances one each time through the LOOP} 
:: 
:: 
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:: Start Counted process. 
:: 
Set /A Count += 1 
@echo %Count% 
:: 
:: 
chl_mlsl tp2_1.pst < tp2_1_%Count%.in 
copy RandomNumberSeeds.prn RandomNumberSeeds_%Count%.prn 
copy ct_mlsl.rec ct_mlsl_%Count%.rec 
copy tp2_1.rec tp2_1_%Count%.rec 
:: 
:: 
IF NOT [%Count%]==[%1] GOTO LOOP 
:: 
Goto END 
:: 
:INPUTERROR 
@ECHO USAGE: TPL {Number of runs} 
@ECHO. 
:: 
:END 

Step 03 – Calibrate model 100 times with 100 unique calls to MLSL 

The computationally efficient two parameter test problem was calibrated 
100 times by way of 100 MLSL trial runs that were performed by typing 
the following at the command prompt and pressing enter: 

chl_mlsl_all 100 

Table 1 summarizes the results from all 13 separate (calibration) cases of 
100 MLSL trial global optimization runs. The observed differences for 
each case are completely a function of the MLSL input parameters N, γ, 
and σ. 

Table 1. Results from all 13 separate cases of 100 MLSL trial global optimization runs. 
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Example 3 

In this example, we will describe the steps necessary to perform a MLSL GO 
run to calibrate a GSSHA hydrologic model for the GCEW. The noted 
GSSHA GCEW hydrologic model is the same model that was also 
considered in the examples in our recent report which documented how to 
use our independent implementations of the LM/SLM local search methods 
for model calibration (Skahill et al. 2011). To that end, before continuing 
any further with this example, wherein we will discuss how to use the 
stochastic GO method MLSL to calibrate the GSSHA GCEW hydrologic 
model, the active reader is first directed to complete the first and third 
examples in our recent report (Skahill et al. 2011). In particular, the point of 
departure, relative to completion of example 1 and example 3 from our 
recent report, and our intent to use MLSL, is to simply augment the control 
data section of the input control file from example 3 in our recent report 
(Skahill et al. 2011); viz., the input control file gc_1_bu2.pst, as shown 
below. The four new additions, which are relevant to MLSL execution, are 
highlighted yellow, and the one edit, which most likely will effectively not 
allow there to be a full update of the model Jacobian during any of the local 
searches, is highlighted orange. 

* control data 
restart estimation 
 16 233 16 0 1 
 1 1 single point 1 0 0 
5.0 2.0 0.3 0.03 10 
5.0 5.0 1.0e-3 
0.1 noaui 
30 .005 4 4 .005 4 
1 1 1 
1 0 100000000000.0 0 
0 20 0.05 4 0.1 

After the slight alteration to the input control file noted above, all that is 
now required is to call MLSL at the command prompt 

chl_mlsl 

The inputs that were further specified at the command prompt for MLSL 
execution are shown below (Figure 5). And the contents of the file 
ct_mlsl.rec, which summarize the salient aspects of the MLSL GO run to 
calibrate the GSSHA GCEW hydrologic model, are listed in Appendix 4. 
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Figure 5. Terminal display for MLSL method (example 3). 

Example 4 

A second calibration run for the GSSHA hydrologic model for the GCEW 
was also performed using our MLSL implementation, this time with the 
MLSL input parameter σ set equal to one rather than four, as in the 
previous (third) example, in attempts to require more exploration of adjust-
able model parameter space. The termination criteria for this example, 
relative to the previous (third) example, were specified at the command 
prompt in a manner to encourage a more exhaustive search than what was 
performed in the third example (Figure 6). The contents of the file 
ct_mlsl.rec, which summarize the salient aspects of the MLSL GO run to 
calibrate the GSSHA GCEW hydrologic model, are listed in Appendix 5. 
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Figure 6. Terminal display for MLSL method (example 4). 
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3 Results and Discussion 

Example 2 explored the impact of the MLSL input parameters N, γ, and σ 
on overall algorithm efficiency and effectiveness by considering thirteen 
separate cases of 100 MLSL global optimization trial runs which were 
directed at calibrating the computationally efficient two parameter test 
problem that was originally presented in example 1. Examining the table 
that was presented in example 2 (Table 1), which summarized the thirteen 
separate numerical experiments involving 100 trials in each case, the 
following observations are given: 

1. With γ and σ fixed, as N increases, so does the average for the total number 
of forward model calls. 

2. With N and γ fixed, as σ decreases, we observe that the average and 
standard deviation for the total number of forward model calls both 
increase, modestly, and also that the effectiveness of the MLSL algorithm 
improves. For example, we see that with N, γ, and σ equal to 20, 0.05, and 
16, respectively, we have 2 failures for the 100 trials, but only 1 failure for 
the 100 trials when σ = 8, and no failures for the 100 trials when σ = 4, 2, 
or 1. The MLSL algorithm is more effective with the lower σ values because 
the critical distance which is used to characterize the size of the clusters is a 
function of σ (see Figure 1). At a lower σ value, cluster size is smaller; 
hence, the opportunity for a single cluster to contain multiple regions of 
attraction is reduced. 

3. With N and σ fixed, as γ increases so does the average and standard 
deviation for the total number of forward model calls, simply because γ 
controls the potential number of local searches to be performed during 
each iteration of MLSL execution, and as γ increases so does that potential. 

Based on our own experience to date, we recommend that users of our 
implementation of MLSL start with a value of one for σ, and choose values 
for N and γ that take into consideration the expense associated with a 
single forward model call and the understanding that MLSL is an iterative 
stochastic GO method. And we recommend that termination criteria be 
specified in a manner consistent with the level of importance assigned to 
finding the global minimizer for the given application. 
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In examples 3 and 4 we used our implementation of MLSL to calibrate the 
GSSHA hydrologic model for the GCEW which was originally calibrated as 
part of the work effort documented in our recent report using our indepen-
dent LM/SLM local search method implementations. For examples 3 and 
4, in consideration of the expense associated with a single forward model 
call for the GSSHA GCEW hydrologic model, we used the SLM method for 
local search, in such a manner that no measures were employed to 
mitigate against the potential that our approximation to the true model 
Jacobian may become poor after some optimization iterations. In example 
3, 517 total model calls were required to calibrate the model using MLSL 
with the given input parameters (as specified above and also at the very 
beginning of Appendix 4). And in example 4, with the value for σ reduced 
relative to its value used for example 3 (from 4 in example 3 to one in 
example 4), and also using stricter termination criteria, 3832 total model 
calls were required to calibrate the GSSHA GCEW model using MLSL with 
the given input parameters (as specified above and also at the very 
beginning of Appendix 5). As a result, in example 3, 7 local searches were 
performed and 7 distinct local minima were identified; whereas, in 
example 5, 55 local searches were performed and 55 distinct local minima 
were identified. With example 3, the minimum and maximum identified 
objective function values were 58.126056 and 70.299196, respectively, and 
the minimum value was found from the fourth of the seven total local 
searches. With example 4, the minimum and maximum identified object-
tive function values were 57.825337 and 77.795517, respectively, and the 
minimum value was found from the fiftieth of the fifty-five total local 
searches. Figures 7 and 8 are plots of the transformed observed and 
simulated flows that constitute the minimum objective function values 
that were identified in Examples 3 and 4, respectively. The figures provide 
the interested reader with a means to effectively compare the minimum 
objective function values that were obtained in the two examples in terms 
of a statistical summary (i.e., R2 and Nash-Sutcliffe efficiency score) and 
also by way of a scatter plot of the transformed observed data and its 
model simulated counterparts. Clearly, there is little difference in terms of 
fit with the observed data between the models associated with the mini-
mum objective function values that were identified in Example 3 and 4. 
The salient difference is that the minimum identified in Example 4 
required approximately an order of magnitude more model calls. Possibly 
even of greater interest to the engaged reader would be to compare the 
results presented in Figures 7 and 8 with the results that were displayed in 
a similar manner for Example 3 in our recent report (Skahill et al. 2011), 
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wherein the same GSSHA GCEW hydrologic model was calibrated using 
the independent ERDC SLM implementation, employed in the same 
manner as it was for the local searches within MLSL in Examples 3 and 4. 
Performing such a comparison, one would see comparable results were 
obtained when using SLM simply once, with no cyclic updating, in terms 
of the fit achieved between the observed data and their model simulated 
counterparts, wherein an associated final objective function value of 59.56 
was obtained in only 62 total model calls. 

 
Figure 7. Plot of transformed observed and simulated flows, associated with the minimum 

objective function value identified in Example 3. 
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Figure 8. Plot of transformed observed and simulated flows, associated with the minimum 

objective function value identified in Example 4. 
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4 Summary 

In this report, we demonstrated how to use our implementation of the 
stochastic global optimization technique called Multi Level Single Linkage 
(MLSL), which uses our LM/SLM method implementations for local search. 
We considered four separate examples to demonstrate its practical use. All 
four examples emphasized how simple it is to use our MLSL implementa-
tion after a given forward model has already been interfaced with our 
LM/SLM software for local search (see our recent report (Skahill et al. 
2011)). The first example discussed all of the steps necessary to use our 
MLSL implementation to calibrate a computationally efficient two 
parameter test problem. The second example also involved calibrating the 
computationally efficient two parameter test problem that was considered 
in example 1. It considered a series of 13 separate numerical experiments, 
each involving 100 unique MLSL runs for a given set of input parameters, in 
attempts to provide the active reader with an intuitive feel for how the 
principal MLSL input parameters affect MLSL algorithm efficiency and 
effectiveness. The third and fourth examples both involved demonstrating 
how to calibrate, using our MLSL implementation, the same GSSHA GCEW 
hydrologic model that we also considered in our recent report (Skahill et al. 
2011) wherein we demonstrated how to use our LM/SLM local search 
implementations for GSSHA hydrologic model calibration. The fourth 
experiment was designed, among others, to provide an opportunity to 
examine MLSL termination criteria and their impact on overall algorithm 
execution. We provided some initial guidance regarding the specification of 
MLSL input parameter values and termination criteria.  

Our quick comparison between the results that were obtained in Examples 
3 and 4, and also with the SLM local search calibration run that was 
performed and documented upon in our recent report (Skahill et al. 2011) 
encouraged us, based on our limited applications to date, to recommend 
that GSSHA hydrologic modelers currently use our SLM implementation, 
possibly with prior information, rather than MLSL for GSSHA hydrologic 
model calibration. However, if needed and/or desired, then we 
recommend MLSL as the global optimization tool to use to calibrate 
GSSHA, rather than the SCE method, which is currently employed for 
automatic calibration of GSSHA models (please see Skahill et al. (2009) 
for further details). The previously mentioned comparisons underscore the 
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need to provide for an effective, efficient, and adaptive means for 
calibrating spatial hydrology models such as GSSHA. We see that to be 
possible by merging ideas from previous contributions, in particular, by 
merging ideas from Skahill et al. (2009) and Doherty and Skahill (2006). 
This is our current research and development focus for GSSHA hydrologic 
model calibration.  

The user of our ERDC implementation of the MLSL method accepts and 
uses the software at his/her own risk. Any questions, comments, and/or 
concerns regarding the use of our ERDC software implementation of the 
MLSL method with the GSSHA model should be directed to the first 
author. The interested reader is encouraged to contact the second author 
with any questions, comments, and/or concerns related to the GSSHA 
hydrologic simulation model. 
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