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Abstract—We propose a new algorithm for real-time esti-
mation of instantaneous heart rate (HR) from noise-laden
electrocardiogram (ECG) waveforms typical of unstructured,
ambulatory field environments. The estimation of HR from
ECG waveforms is an indirect measurement problem that
requires differencing, which invariably amplifies high-fre-
quency noise. We circumvented noise amplification by
considering the estimation of HR as the solution of a
weighted regularized least squares problem, which, in addi-
tion, directly provided analytically based confidence intervals
(CIs) for the estimated HRs. To evaluate the performance of
the proposed algorithm, we applied it to simulated data and
to noise-laden ECG records that were collected during
helicopter transport of trauma-injured patients to a trauma
center. We compared the proposed algorithm with HR
estimates produced by a widely used vital-sign travel monitor
and a standard HR estimation technique, followed by
postprocessing with Kalman filtering or spline smoothing.
The simulation results indicated that our algorithm consis-
tently produced more accurate HR estimates, with estimation
errors as much as 67% smaller than those attained by the
postprocessing methods, while the results with the field-
collected data showed that the proposed algorithm produced
much smoother and reliable HR estimates than those
obtained by the vital-sign monitor. Moreover, the obtained
CIs reflected the amount of noise in the ECG recording and
could be used to statistically quantify uncertainties in the HR
estimates. We conclude that the proposed method is robust
to different types of noise and is particularly suitable for use
in ambulatory environments where data quality is notori-
ously poor.

Keywords—Heart rate estimation, Least squares, Regulari-

zation, Confidence intervals.

INTRODUCTION

The estimation of instantaneous heart rate (HR) is
one of the most vexing problems in physiological
measurements.4,25 The difficulties arise from the
exquisite sensitivity of such estimations to the smallest
amount of noise present in electrocardiogram (ECG)
waveform recordings from which the HRs are esti-
mated.5 Many sophisticated methods have been pro-
posed to deal with this problem;2,13,15 however, by and
large, these are based on empirical approaches that fail
to address the nature of such sensitivity.

The majority of HR estimation algorithms consist
of two major steps: QRS detection and HR estimation.
In this two-step approach, emphasis has been placed
primarily on the first step, the detection of QRS
complexes in the ECG signal. QRS detection generally
involves linear and nonlinear transformations of the
raw ECG to enhance the QRS complexes in the signal,
and can be achieved by techniques that focus on the
ECG amplitude, its first and second derivatives, or by
using digital filters.13 Unfortunately, with the excep-
tion of template-matching techniques, the most simple
and easy-to-implement algorithms for detecting QRS
complexes are inherently vulnerable to uncertainties in
the determination of the exact location of the peak in
the complex and to noise whose frequency spectra
overlap with those of the complex, leading to the
under- or overcounting of QRS events and, hence, to
inaccurate estimations of beat occurrence times.13

Thresholding algorithms used to detect the occurrence
of heartbeats can partially alleviate the miscounting
problem; however, these algorithms are based on time
windows of limited length and may yield inaccurate
estimates.31

After a time series of beat occurrence times has been
determined, the next step is to estimate instantaneous
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HRs by computing the difference between successive
beat occurrence times. This step is generally followed
by various postprocessing methods to smooth and
reduce the resulting unphysiological HR variations.
One class of such algorithms focuses mainly on
removing large spikes in the resulting HRs caused by
either ectopic beats or missed/false QRS detections,3,26

necessarily deemphasizing noise (or error) in the exact
determination of the beat occurrence times. Another
class of algorithms focuses on improving the overall
quality of the HR estimates by combining postpro-
cessing methods, such as Kalman filter, with signal
quality assessment techniques and additional physio-
logical data.11,17 Furthermore, other well-established
smoothing techniques, such as spline smoothing,28

could also be readily implemented to postprocess noisy
HRs. Nevertheless, to the best of our knowledge, to
date, no attempt has been made to elucidate the
mathematical provenance of such unphysiological HR
variations in the estimation of instantaneous HR. In
this article, we provide the mathematical rationale for
the sensitivity of HR estimates to measurement noise,
which is ubiquitous in ambulatory environments.

In partly unstructured environments, such as in the
case of transport of trauma patients to a trauma cen-
ter, the recorded HRs are notoriously unreliable. For
example, our automated post hoc analysis of vital-sign
data of 898 trauma patients collected during helicopter
transport to a Level I trauma center indicates that only
44% of the HRs are of sufficient quality to be used for
automated decision support and closed-loop control.31

And our analysis of vital-sign data collected from
soldiers using field-wearable monitors during daily
physical activity shows that such physiological data are
also notoriously unreliable.18 The percentage of reli-
able vital-sign data is expected to be even lower in
more austere, uncontrolled environments, such as a
battlefield or a mass-casualty event setting, where the
challenges of obtaining accurate measurements are
exacerbated by the unexpected and quickly changing
physiological status of the casualties and other con-
founding factors. To address these challenges, our
group developed physiological data qualification
algorithms that automatically assess the reliability of
the major vital signs.7,18,31 While these algorithms have
been shown to match the assessments made by human
experts and significantly improve the accuracy of
automated decision-making algorithms,8,9,23 they have
some shortcomings: they are not designed for real-time
analysis, require the availability of redundant sensor
measurements, and operate based on a fixed set of
physiological types of measurements. Furthermore, to
date, these algorithms have only been used to label
physiological data as reliable or unreliable, without

replacing the unreliable data with the improved esti-
mates.

In this article, we present a new algorithm that
resolves these shortcomings and provides a rigorous
analysis of the HR estimation problem. We note that
HRs are indirectly estimated and that their estimation
can be cast as a solution to a least squares problem. We
argue that errors in HR estimation are caused by the
sensitivity of the least squares solution (or naı̈ve dif-
ferencing) to noise in the data, and further show that
these errors can be eliminated by constraining the
solution of the least squares problem using a well-
known regularization technique with a weighting
scheme,27 i.e., weighted regularized least squares
(WRLS), leading to more consistent and reliable HR
estimates. The representation of HR estimation as a
solution to a least squares problem also allows us to
analytically compute statistical confidence intervals
(CIs) on the estimated rates. We present results of
simulated and field-collected data that demonstrate the
performance of our algorithm on very noisy signals
and compare its performance against well-established
techniques, such as Kalman filtering and spline
smoothing. We show that the proposed algorithm
consistently provides superior performance to com-
monly observed types of noise in ECG records.

METHODS

QRS Detection Algorithm

This section describes the first step of the HR esti-
mation algorithm: QRS detection. As mentioned ear-
lier, this component of HR estimation algorithms has
been well developed and studied. To process raw ECG
waveforms for QRS complex identification, we modi-
fied and customized a well-known algorithm20 to fit the
needs of our perspective applications. Figure 1 shows a
flow diagram of the algorithm along with the corre-
sponding inputs and outputs of the four processing
stages. In the first stage, we used a 5- to 25-Hz But-
terworth band-pass filter to eliminate non-QRS-related
frequencies, and in the second stage, we computed the
difference between each two consecutive points of the
entire data stream to amplify the sharp slopes of
the QRS complex. After differencing, we squared the
resulting signal to make the ECG samples positive and
to amplify the high-frequency components. Finally, in
the last stage, we used a low-pass filter to enhance
the fiducial marks of the QRS complex and imple-
mented a self-adaptive thresholding method to detect
QRS peaks, reject noise, discriminate T-waves, and
search back for missed QRS complexes if a detection
was not made within a certain time interval.20
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The top panel in Fig. 1 shows an example of a raw
0.5-min-long ECG segment from our trauma patient
database described later in ‘‘Study Data’’ section. As
can be seen, the raw ECG waveform was contaminated
with low-frequency interference between 0.1 and
0.3 min, which could be attributed to a baseline drift
due to respiration or loose electrode contact. The
identification of QRS complexes in such a signal could
be problematic for trained human experts and even
more challenging for automated algorithms. Never-
theless, the bottom panel in Fig. 1 shows that the
algorithm produced clearly identifiable peaks, denoted
by solid circles, which were detected using our
aforementioned self-adaptive thresholding method.
Accordingly, the final output of the QRS detection
algorithm of an ECG of length T is a time series of
N monotonically increasing cumulative beat occur-
rence times (Ri), 0<R1<R2< � � �<Ri< � � �<RN<T:
(Notice that we selected this QRS detection algorithm
due to its popularity and ease of use; however, any
other QRS detection algorithm could be used in

conjunction with our HR estimation algorithm
described next.)

HR Estimation Algorithm

In contrast to the previous section, this section
describes our unique contribution to the HR estima-
tion problem. It addresses the second step of the HR
estimation algorithm, where we estimate instantaneous
HRs from a time series of cumulative beat occurrence
times obtained by a QRS detection algorithm. Two
important observations led to the conceptualization
and development of this novel approach to HR esti-
mation. The first was that a time series of monotoni-
cally increasing cumulative beat occurrence times
needs to be differenced to obtain a sequence of
R–R intervals (RRIs). Specifically, the sequence of
RRIs is obtained by subtracting two successive
cumulative beat occurrence times, Ri 2 Ri21,
i.e., RRI ¼ R2 � R1;R3 � R2; . . . ;RN � RN�1f g:Notice
that, by definition, the RRI time series represents
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FIGURE 1. The four stages of the QRS detection algorithm along with corresponding sample inputs and outputs of each of the
stages. The ECG fiducial points, or beat occurrence times, are marked with solid circles in the bottom panel.
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the first-order difference of the cumulative beat
occurrence times,

RRI ¼ DR ð1Þ

where D denotes the first-order difference operator.
Equation (1) reveals that the desired RRIs [or equiv-
alently HRs, where HR = 60/RRI in beats/min (bpm)]
are not a directly measured quantity; rather, they are
indirectly obtained by computing the difference of the
directly observable cumulative beat occurrence times
R. This observation that HR estimation is a differ-
encing estimation problem has not been discussed in
the literature so far and, per se, represents an impor-
tant insight into the HR estimation problem.

The second observation was that computing the
difference of an observable quantity containing some
measurement noise (or errors) amplifies the noise,
significantly contaminating the computed differences.
This is because subtraction, or differencing, acts as a
high-pass filter that amplifies high-frequency noise.12

In our case, the right-hand side of Eq. (1) contains
measurement noise because cumulative beat occur-
rence times cannot be determined with absolute cer-
tainty regardless of which QRS detection algorithm is
used. In fact, the American National Standards Insti-
tute (ANSI) recommends a time window of 0.15 s for
considering the synchronization between a QRS
detection algorithm and a reference annotation.1 In
addition, and more importantly, any QRS detection
algorithm eventually misses or overcounts a beat,
adding more noise to the determination of the cumu-
lative beat occurrence times. The sensitivity of such
determinations to the slightest misidentification of
peaks in ECG waveforms has been well documented,5

and we argue that this sensitivity is significantly
amplified in the computation of differences DR, which
are inherent in the calculation of RRI. Therefore, we
propose a different approach to estimate HR, which
avoids noise amplification during differencing, thus
removing the primary source of noise in RRI estima-
tion. While all currently available techniques4 attempt
to deal with the effect of noise amplification, the pro-
posed approach removes the very cause of such
amplification.

In our approach, instead of directly taking the dif-
ference DR of the cumulative beat occurrence times as
in Eq. (1), we reformulated the problem with R being
represented as the integration of RRI

R ¼ A �RRIþ e; ð2Þ

and estimated RRI as a solution to an ordinary least
squares (OLS) problem24

RRIOLS ¼ AT � A
� ��1�AT
h i

� R; ð3Þ

where R is an N 9 1 vector of measured cumulative
beat occurrence times, RRI (RRIOLS) is a N 9 1 vector
of the corresponding ‘‘true’’ (OLS solution) RRI val-
ues, A denotes an N 9 N lower triangular integration
matrix with all non-zero elements equal to one, e rep-
resents a N 9 1 vector of measurement noise in R, and
N is the total number of cumulative beat occurrence
times. Note that Eq. (3) represents the solution of a
general OLS estimation6 (i.e., when A is not invertible)
and the right-hand side is equivalent to the difference
operation DR in Eq. (1) when A21 is analytically
obtainable, as in the studied case. Using Eq. (3), with
RRI expressed in seconds, we computed HROLS =

60/RRIOLS in bpm.
Because the OLS solution is equivalent to naı̈ve

differencing, the resulting RRIOLS still contained
amplified measurement noise. Thus, to obtain a
smoothed estimation of RRI without noise amplifica-
tion, we used the WRLS method,22 which augments
the least squares cost function R� A �RRIk k2 with a
weighting matrix W and a penalty term to constrain
the variability of the solution. Thus, the goal is to
obtain RRI that minimizes

A �W �RRIOLS � A �W �RRIk k2þk2 � L �RRIj jj j2
� �

! min; ð4Þ

where W denotes a diagonal N 9 N weighting matrix,
where the elements are either zeros (represented by
1025) for spike-like outliers detected in RRIOLS (and
HROLS) via an impulse rejection filter26 or ones for
non-outliers, L denotes a smoothing matrix that con-
strains high-frequency noise amplification in the RRI
estimates and produces a smooth and consistent solu-
tion, and k represents a positive regularization
parameter, which controls the tradeoff between the fit
to the data and the smoothness of the solution. A
standard choice for L (and the one used here) is to use
a (N 2 2) 9 N matrix representing a second-order
derivative.22 Conversely, the regularization parameter
k is dependent on the signal-to-noise ratio in the data
and can be selected by numerous methods, such as
generalized cross-validation14 or the discrepancy prin-
ciple.19 Because the signal-to-noise ratio may vary in
different data sets, and to improve generalization, we
customized k for every patient. Specifically, starting
with k = 0 (i.e., no regularization), we incrementally
increased it until the absolute time rate of change of
the estimated HRs dropped below a specified threshold
of 4.0 bpm/s, which represents the average absolute
time rate of change of HRs estimated from clean ECG
segments in our trauma patients database.8

The minimization of Eq. (4), representing the WRLS
solution for RRI, can be analytically obtained10
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RRIWRLS ¼ WT � AT � A �Wþ k2 � LT � L
� ��1

�WT � AT � A �W �RRIOLS: ð5Þ

Accordingly, we computed the WRLS solution for
HR as HRWRLS = 60/RRIWRLS.

Confidence Interval Calculation

Finally, we computed the CI for the estimated
HRWRLS through a standard formulation:10

CI ¼ HRWRLS � ta=2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var HRWRLSð Þ

p
; ð6Þ

where ta/2 denotes a percentile of a Student’s t distri-
bution with a significance level of a and Var(HRWRLS)
represents the variance of HRWRLS. The derivation of
Var(HRWRLS) is described in the Appendix.

Study Data

Simulated Data

To validate the WRLS algorithm, we first tested and
compared its performance using a pristine, i.e., a clean,
noise-free, 2.5-min-long ECG segment selected from
our trauma database (see ‘‘Field-Collected Data’’)
from which we identified the cumulative beat occur-
rence times R and estimated (through naı̈ve differ-
encing) the ‘‘ground truth’’ instantaneous HRs.
Subsequently, we simulated two types of noise in R:
small time shifts and missed/added beats.21 We simu-
lated small time shifts, representing small errors in the
detection of each peak in a QRS complex, by adding
randomly selected noise sampled from a uniform dis-
tribution in the range [2b b], with b set to 0, 0.05, 0.10,
or 0.15 s. The largest b of 0.15 s was selected because
the ANSI stipulates that a timing mismatch of 150 ms
or less is considered insignificant.1 For the second type
of noise, we simulated both missed and added beats at
random points in the beat occurrence time data
record.5 In this simulation, we substituted 0, 10, 20, or
30% of the original data record, where each time we
randomly decided to substitute a record by deleting or
adding a beat. In total, we simulated 16 combinations
of noise conditions (including one noise-free condi-
tion). In addition, to separately investigate the per-
formance of the algorithm on clusters of added beats
and on clusters of missed beats, we simulated six more
noise conditions, where in each condition we either
added beats or missed beats in 10, 20, or 30% of the
original data record. Note that we chose to introduce
noise on R instead of on ECGs because the former
allowed us to directly test the HR estimation step, as
opposed to the detection of QRS complexes.

We simulated each of the 22 noise conditions (except
for the noise-free one) 100 times, and computed the
corresponding mean and standard deviation (SD) of the
root mean squared error (RMSE) to assess the ability of
four different methods (naı̈ve differencing (i.e., OLS),
Kalman filtering, spline smoothing, and WRLS) to
reproduce the ground-truth HRs. More specifically, for
each method, we first resampled the estimated and the
ground-truth HRs to 1Hz via linear interpolation, and
then calculated the RMSE of the resampled rates by
taking the square root of themean squared differences of
these two HRs. We applied Wilcoxon signed-rank tests
to determine whether the RMSEs were statistically sig-
nificantly different from those obtained with the WRLS
algorithm. The Wilcoxon signed-rank test is a non-
parametric statistical hypothesis test for evaluating two
related samples or repeated measurements on a single
sample.30 It can be used as an alternative to the paired
Student’s t-test when the population cannot be assumed
to be normally distributed.

Field-Collected Data

To validate theWRLSalgorithmusing field-collected
data, we tested the estimated instantaneous HRs using
ECG recordings selected from our database containing
898 trauma patients.8 The physiological time-series data
in this database were collected from injured patients
during transport via helicopter ambulance from the
scene of injury to the Level I unit at the Memorial
Hermann Hospital in Houston, TX. The time-series
variables were measured by Propaq 206EL vital-sign
monitors (Welch Allyn; Skaneateles Falls, NY), down-
loaded to an attached personal digital assistant, and
ultimately stored in our database. The physiological
data include ECG waveforms, sampled at 182 Hz, the
corresponding monitor-computed HR, and other vital-
sign data described elsewhere.8 Patient attribute data,
such as demographics, were also collected via chart
review. Data were collected and analyzed with the
approval of the local and the U.S. Army’s human sub-
jects Institutional Review Board, Fort Detrick, MD.
The duration of the ECG recordings varied for different
patients, with an average length of about 25 min/
patient. The Propaq processed the ECG with a
0.5–40 Hz bandpass filter. Visual inspection of the ECG
data revealed that they were contaminated with the
various types of noise reported in the literature.13

RESULTS

Performance of the Algorithm on Simulated Data

We estimated HRs in the simulated data, i.e., the
cumulative beat occurrence times identified from
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pristine ECG segments with superimposed noise (see
‘‘Study Data’’ section), using four methods: naı̈ve dif-
ferencing (i.e., OLS), Kalman filtering, spline smooth-
ing, and WRLS. The Kalman filtering17 and the spline
smoothing28 were used as postprocessing methods for
HRs computed through naı̈ve differencing. For a fair
comparison, and to eliminate outliers, we used a similar
weighting scheme in the Kalman filter as the one used
in the WRLS algorithm. Accordingly, the Kalman
filter measurement noise covariance matrix M (which
was a 1 9 1 matrix in our case) was computed as
M ¼M0 � exp 1=w2 � 1

� �
; where M0 was selected using

the same criterion as the one for k in Eq. (4) and w cor-
responds to the elements of theweightingmatrixW, with
w = 1 for non-outliers and w = 1025 for outliers. Fol-
lowing Li et al.17, we set the Kalman filter 1 9 1 state
noise covariance matrix Q to 0.1. Similarly, before we
applied spline smoothing28 to the HRs computed
through naı̈ve differencing, we identified outliers and
substituted them through linear interpolation. We
determined the smoothing parameter using the same
criterion used to select k.

Table 1 summarizes the results (mean (SD), except
for the noise-free condition in the first row) of 16 com-
binations of noise conditions and shows that theWRLS
algorithm significantly depressed noise and consistently
yielded smaller RMSEs than each of the other three
methods. The WRLS results were considerably better
than those obtained with naı̈ve differencing, in particu-
lar for larger noise levels. For example, for the highest
noise level (missed/added beats of 30% and uniform
noise of [20.15 0.15] s), the RMSE for the naı̈ve dif-
ferencing was 81.79 (29.90) bpm while that for the

WRLS algorithm was more than one order of magni-
tude lower at 8.03 (1.42) bpm. With respect to the two
postprocessing methods, the WRLS algorithm outper-
formed theKalman filtering and the spline smoothing in
14 out of the 16 noise conditions, where in each of these
14 conditions, the p-values of theWilcoxon signed-rank
tests were below the 0.001 level of significance. For the
two exceptions where theWRLS algorithm did not have
the smallest RMSE (the first two rows in the table),
the largest difference between the WRLS’s error and
that obtained with the spline smoothing was merely
0.04 bpm.

Table 2 summarizes the simulated results [mean
(SD)], where we separately added beats or missed beats
in the data record, and shows that the WRLS algo-
rithm significantly depressed noise and consistently
yielded smaller RMSEs than naı̈ve differencing. With
respect to the postprocessing methods, for added beats,
the WRLS algorithm outperformed both the Kalman
filtering and the spline smoothing methods for each of
the three noise levels, with p-values for the Wilcoxon
signed-rank tests below the 0.001 level of significance.
As for missed beats, the WRLS algorithm had con-
sistently smaller RMSEs than the Kalman filtering
method but marginally larger errors than the spline
smoothing method, with the largest difference of 0.02
bpm being clinically insignificant.

Performance of the Algorithm on Field-Collected
ECG Waveforms

To compare and contrast the performance of the
WRLS algorithm on field-collected ECG, we selected

TABLE 1. Comparison of the mean (SD) root mean squared error (RMSE) of HRs estimated by the four methods for the 16
combinations of simulated noise conditions.

Missed/added

beats

Uniform noise

level (s)

Naı̈ve differencing

RMSE (bpm)

Kalman filtering

RMSE (bpm)

Spline smoothing

RMSE (bpm)

Weighted regularized

least squares (WRLS) RMSE (bpm)

0% [0.00 0.00] N/A 0.27 0.19 0.21

[20.05 0.05] 4.20 (0.26)* 2.21 (0.12)* 1.01 (0.11)� 1.05 (0.12)

[20.10 0.10] 8.74 (0.60)* 3.57 (0.17)* 2.07 (0.17)* 1.40 (0.16)

[20.15 0.15] 14.16 (1.15)* 5.19 (0.33)* 4.21 (0.43)* 1.71 (0.21)

10% [0.00 0.00] 44.72 (19.85)* 2.48 (0.47)* 1.21 (0.39)* 1.04 (0.30)

[20.05 0.05] 46.68 (20.26)* 3.57 (0.39)* 2.70 (0.62)* 2.09 (0.37)

[20.10 0.10] 49.17 (21.06)* 5.12 (0.67)* 4.97 (1.03)* 3.13 (0.52)

[20.15 0.15] 50.21 (21.55)* 6.67 (0.92)* 7.36 (1.24)* 4.66 (0.81)

20% [0.00 0.00] 69.13 (24.20)* 3.24 (0.35)* 2.24 (0.60)* 1.85 (0.44)

[20.05 0.05] 67.11 (22.22)* 4.74 (0.62)* 4.75 (1.18)* 3.35 (0.66)

[20.10 0.10] 66.62 (20.90)* 7.05 (1.19)* 8.21 (1.62)* 5.14 (1.01)

[20.15 0.15] 68.19 (22.73)* 8.47 (1.86)* 10.39 (2.20)* 6.67 (1.20)

30% [0.00 0.00] 80.25 (22.94)* 3.92 (0.52)* 3.37 (0.92)* 2.75 (0.65)

[20.05 0.05] 81.42 (24.96)* 5.91 (1.10)* 6.83 (1.78)* 4.66 (0.98)

[20.10 0.10] 80.81 (22.03)* 8.34 (1.93)* 10.68 (2.50)* 6.90 (1.35)

[20.15 0.15] 81.79 (29.90)* 10.17 (2.37)* 13.52 (3.00)* 8.03 (1.42)

SD: standard deviation; HR: heart rate; N/A: not applicable, as naı̈ve differencing was used to compute the ground truth HRs based on noise-

free condition; *p-value <0.001; �p-value <0.01.
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two different representative patients from our trauma
database whose ECGs were contaminated with com-
monly observed noise artifacts. Figure 2 shows 4 min
of a normalized ECG record (top panel and inset dis-
playing a smaller scale) for one patient and the asso-
ciated HR estimates (middle two panels) calculated

from a Propaq 206EL vital-sign monitor, Kalman fil-
tering, spline smoothing, and the proposed WRLS
algorithm. The ECG in Fig. 2 was contaminated with
spike noise and electromyographic (EMG) noise. Such
spike noise, consisting of high-frequency components
resembling those of QRS complexes, is common in our

FIGURE 2. Example of noisy ECG signals collected from a patient during transport to a trauma center and the corresponding
heart rates [HRs; in bpm] estimated by four distinct methods. The top panel depicts an ECG segment contaminated with spike
noise between 0.4 and 1.2 min and electromyographic noise between 1.4–2.5 and 3.7–4.0 min. The second and third panels
compare HRs estimated by the proposed weighted regularized least squares (WRLS) algorithm against those obtained by Propaq,
Kalman filtering, and spline smoothing. The bottom panel illustrates the WRLS-estimated HRs along with the corresponding 95%
confidence intervals.

TABLE 2. Comparison of the mean (SD) root mean squared error (RMSE) of HRs estimated by the four methods for the six
simulated noise conditions with either added or missed beats.

Noise type

Noise level

(%)

Naı̈ve differencing

RMSE (bpm)

Kalman filtering

RMSE (bpm)

Spline smoothing

RMSE (bpm)

Weighted regularized

least squares (WRLS) RMSE (bpm)

Added beats 10 67.16 (33.12)* 2.80 (0.21)* 1.80 (0.38)* 1.48 (0.26)

20 106.05 (31.95)* 4.21 (0.43)* 4.05 (0.71)* 3.06 (0.47)

30 134.93 (35.90)* 8.82 (1.45)* 10.89 (2.03)* 7.31 (1.13)

Missed beats 10 16.18 (0.78)* 1.02 (0.33)* 0.41 (0.06)* 0.43 (0.07)

20 24.52 (0.89)* 1.76 (0.41)* 0.61 (0.10)* 0.63 (0.11)

30 32.05 (1.33)* 2.36 (0.50)* 0.83 (0.18)� 0.84 (0.18)

SD: standard deviation; HR: heart rate; *p-value <0.001, �p-value >0.05.
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trauma patient database, and EMG noise due to
muscle contractions is ubiquitous in ECG signals.13

Because EMG noise partially overlaps with the QRS
spectra in the frequency domain, most HR monitors,
including Propaq, use some kind of EMG noise fil-
tering. However, the complete removal of this kind of
contaminant is usually not possible. In Fig. 2, the
largest amount of EMG noise was observed between
1.4–2.5 and 3.7–4.0 min, outside of which the ECG
was relatively clean, except for the spike-noise-con-
taminated segment between 0.4 and 1.2 min. The ECG
contamination was reflected in the Propaq-calculated
HRs (second panel), which showed very large varia-
tions between 1.4–2.5 and 3.7–4.0 min, changing from
100 to 200 bpm within a few seconds, and smaller but
marked variations between 0.5 and 1.2 min. Such rapid
HR excursions are usually unphysiological and indi-
cate the inability of the algorithm to provide continu-
ously smooth point estimates. It is not clear why the
Propaq-calculated HRs also showed marked variations
between 2.5 and 2.8 min, when the ECG recording was
relatively clean. In contrast, the WRLS algorithm
provided smooth and consistent estimates for the

whole recording, indicating its ability to handle both
types of noise. Note that during the periods of clean
ECG segments, the two algorithms yielded relatively
similar HR estimates. The third panel in Fig. 2 com-
pares HR estimates obtained by the WRLS algorithm
with those from the Kalman filtering and the spline
smoothing methods. While overall there was good
agreement among the three HR estimates, the Kalman
filter tended to fit a flat line no matter whether the
‘‘intrinsic’’ HR was changing or not, and, in compar-
ison with our algorithm, the spline smoothing exhib-
ited small overestimations, for example, at 0.5, 0.7, and
0.9 min.

Figure 3 shows similar comparisons for three addi-
tional types of commonly found noise in ECG
recordings: motion artifacts, electrode contact noise,
and instrumentation saturation noise. Motion artifacts
are transient (but not step) baseline variations caused
by changes in the electrode-skin impedance due to
electrode motion13 and are commonly observed during
patient transport. Electrode contact noise is generally
caused by a loose contact between an electrode and a
patient’s skin, and saturation noise is usually caused by

FIGURE 3. Example of noisy ECG signals collected from a patient during transport to a trauma center and the corresponding
heart rates [HRs; in bpm] estimated by four distinct methods. The top panel depicts an ECG segment contaminated with electrode
contact and instrumentation saturation noise between 1.5 and 2.5 min and motion artifact between 0.6 and 0.7 min. The second and
third panels compare HRs estimated by the proposed weighted regularized least squares (WRLS) algorithm against those obtained
by Propaq, Kalman filtering, and spline smoothing. The bottom panel illustrates the WRLS-estimated HRs along with the corre-
sponding 95% confidence intervals.
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amplification of artifacts exceeding the data range.13

The latter two types of noise significantly affected the
ECG between 1.5 and 2.5 min, causing Propaq’s esti-
mates to change from around 100 bpm to as low as
70 bpm in just a few seconds. Between 0.6 and 0.7 min
of the recording, the Propaq-estimated HRs displayed
a ‘‘bump’’ above the 100 bpm rate, reflecting the effects
of the ECG motion artifact in its estimates. In con-
trast, the WRLS algorithm produced smooth and
consistent estimates. Notice that the ECG was rela-
tively clean before 0.5 min and after 2.5 min of the
recording, during which periods the Propaq’s and the
WRLS’s estimates practically coincided with each
other, indicating that during the clean ECG segments
both algorithms worked correctly. When compared
with the WRLS algorithm, the Kalman filtering and
the spline smoothing-estimated HRs showed a similar
pattern (third panel), although the differences were
more pronounced than those in Fig. 2. In particular,
during the clean ECG recording before 0.5 min the
Kalman filtered HRs displayed a ~5% deviation from
those obtained with the other two methods, and at ~1.7
min the spline smoothing overestimated the WRLS by
~3% and the Kalman filter by ~8%.

Confidence Intervals

The bottom panels in Figs. 2 and 3 illustrate the
WRLS estimated HRs and their corresponding 95%
CIs. The width of the CIs should reflect the uncertainty
in the HR estimates, with smaller width indicating
lower uncertainty, and vice versa. Accordingly, ECG
segments containing larger amounts of noise artifacts
should yield wider CIs. For example, the estimated CIs
in the bottom panel in Fig. 2 were, as expected, large
between 0.4–1.2 and 1.4–2.5 min, indicating uncer-
tainties in the HR estimates associated with spike and
EMG noises. Outside of these regions, the CIs were
narrow, reflecting small uncertainties in the HR esti-
mates because of the good quality of the ECG signal.
Figure 3 shows a similar pattern; the CIs were wider
for noisy regions in the ECG and narrower for good-
quality ones.

DISCUSSIONS AND CONCLUSIONS

This article provides a formal mathematical for-
mulation to compute instantaneous HR in real time
from noise-laden ECG signals typical of field envi-
ronments. We noted that HR estimation is an indirect
measurement problem that requires the computation
of differences between successive beat occurrence
times, which invariably amplifies noise (i.e., the
uncertainties in the determination of the beat

occurrence times).We circumvented noise amplification
by casting the estimation of HRs, from beat occurrence
times, as the solution of a weighted regularized least
squares problem, thereby eliminating the need for
post hoc smoothing of HR signals corrupted with
amplified noise. Hence, the proposed formula-
tion is fundamentally different from existing tech-
niques3,4,11,17,26 in that while these solutions attempt to
smooth noise-amplified HRs with poor signal-to-noise
ratios, the proposed algorithm avoids noise amplifica-
tion altogether.

A unique advantage of the proposed WRLS algo-
rithm is that the resulting solution is optimal in the least
squares sense and, hence, it yields a closer estimate to
the true (unknown) solution than the standard least
squares approach.16 Therefore, in principle, the method
of regularized least squares can improve generalization
with respect to different data sets. However, regulari-
zation is inherently biased, as it trades off a solution
with a larger variance and a smaller bias for one with a
smaller variance but a slightly larger bias, where the
bias is controlled by the selection of the smoothing
matrix L and the regularization parameter k. Hence, in
practice, regularization can also limit generalization.
To avoid this potential problem, we set L as a second-
order derivative, which is the most general choice for
imposing smoothness in the estimates of R–R inter-
vals,22 and customized k for every patient to allow the
estimated HRs to vary as much as possible within the
‘‘normal’’ range (i.e., ±4.0 bpm/s). We also introduced
a weighting scheme to eliminate the effects of outliers,
which could otherwise significantly bias the results even
with the use of regularization.

Another advantage of the proposed algorithm is the
ability to infer a measure of uncertainty of the esti-
mated HRs in the form of CIs. This is achieved by
casting HR estimation as a solution to a least squares
problem, directly yielding analytic, statistically based
CIs for the estimated rates that account for noise in the
ECG, a feature that is lacking in any prevailing algo-
rithm. This is in contrast with our previous attempts to
qualify physiological measurements based on empirical
rules with no statistical justification.7,18,31 Moreover,
our method is generic, requiring only the availability of
a single waveform signal. This independence of other
physiological measurements promotes usability across
different waveform signals, e.g., respiratory wave-
forms, and portability across vital-sign-monitoring
devices and decision-support systems.

To validate our WRLS algorithm, we assessed its
performance with both simulated and field-collected
data against established HR estimation methods. For
the simulated data, the WRLS algorithm yielded esti-
mation errors (i.e., RMSEs) that were more than one
order of magnitude smaller than those obtained
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through naı̈ve differencing (i.e., OLS). When we post-
processed these HRs with two different methods
(Kalman filter and spline) to smooth the estimated
rates, we obtained significantly improved results.
However, the attained RMSEs were still higher by as
much as 67% than those obtained with the WRLS
algorithm, which consistently yielded superior results.
This supports our assertion that rather than attempt-
ing to smooth noise-amplified HRs with poor signal-
to-noise ratios, one should avoid noise amplification
altogether. When we applied the WRLS algorithm to
the 898 patients in our trauma database, it reliably
produced improved HR estimates that showed
observable differences when compared with those pro-
vided by themonitoringdevice (i.e., Propaq) and the two
postprocessing algorithms. In the presence of noise fre-
quently observed in field-collected ECG, the Propaq
often yielded HRs that exhibited very rapid excursions,
suggesting that the estimated HRs were unphysiologi-
cal. In contrast, the Kalman filter failed to express any
variability in its smoothing, as it systematically fitted a
flat line regardless the amount of noise in the naı̈ve dif-
ferencing HR estimates. These estimates could be im-
proved, however, by jointly employing signal quality
indices and using additional vital-sign information.17

Conversely, spline smoothing frequently exhibited lar-
ger variations in theHR estimates, whichwe attribute to
noise amplification. In addition, theCIs estimatedby the
WRLS algorithm correctly reflected the uncertainties in
the HR estimates with respect to noise contamination in
the ECG recordings.

One potential limitation of the proposed method is
the inability to track true, sudden large changes in HR.
Because we imposed a constraint of 4.0 bpm/s on the
maximum time rate of change of ‘‘normal’’ HRs, the
proposed method could compromise the accuracy of
the instantaneous HR estimates if the true HR changes
were larger than 4.0 bpm/s. In this case, the method
would correctly detect the onset of elevations or
reductions in HR without time-lags; however, it would
produce a delay in reaching the actual elevated or
reduced HR value. Such a delay would be proportional
to the difference between the true absolute time rate of
change of the HR and the imposed constraint of
4.0 bpm/s. Naturally, this limitation could be allevi-
ated by arbitrarily increasing the constraint; however,
setting the constraint too high would also diminish the
accuracy of the algorithm by including excessive noise
in the estimated HRs.

As biosensors become ubiquitous in everyday life, it
is important that we continue improving algorithms
for the real-time estimation of vital signs. For both
civilian and military applications, it is particularly
important to infer reliable values for HRs—arguably

one of the most-used vital signs—collected from aus-
tere, unstructured environments, such as a battlefield,
during the transport of trauma patients, in-home care
of elderly patients, and in the monitoring of active
individuals during physical activity, where the original
ECG data are prone to be contaminated with noise
artifacts. The study proposed here is a step in this
direction, as it allows for more consistent estimation of
HRs and of other ECG features, such as HR vari-
ability, which are highly sensitive to ECG noise.

APPENDIX

Because HRWRLS is reciprocal to RRIWRLS, we
approximated Var(HRWRLS) using the mean and var-
iance of RRIWRLS through a Taylor expansion, i.e.,

VarðHRWRLSÞ

� 60

½meanðRRIWRLSÞ�2

 !2

�VarðRRIWRLSÞ; (A1)

where Var(RRIWRLS) was estimated as the diagonal of
the covariance of RRIWRLS, Cov(RRIWRLS), which
was calculated from Eqs. (2), (3), and (5) as

Cov RRIWRLSð Þ ¼ C � B � Cov eð Þ � BT � CT; ðA2Þ

where B ¼ AT � A
� ��1�AT; C ¼ WT � AT � A �Wþ k2�

�

LT � LÞ�1 �WT � AT � A �W; and Cov(e) denotes the
covariance of the measurement noise, which was esti-
mated as a diagonal matrix with elements equal to half
of the square of the residual between RRIOLS and
RRIWRLS.
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