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1 Introduction

The current consumer software stack makes end-user
systems extremely difficult to secure. Consumer oper-
ating systems are large and complex, so they are easily
subverted by malware, which makes its way onto users’
machines either by exploiting vulnerable applications or
through social engineering. Once malware has compro-
mised the OS, it can easily disable security applications
running in the OS. Afterwards, the malware is free to en-
gage in information theft or to enlist the user’s machine
in attacks on third parties. As a result, there is a flourish-
ing market in compromised bank accounts, credit cards,
login credentials, and botnets [14].

Developing solutions that both significantly improve
security and can feasibly be deployed is a major chal-
lenge for researchers and OS vendors. Reengineering
operating systems is too costly to be practical, trusted
hardware is difficult to deploy widely in the near term,
and mechanisms that work within the current software
stack invariably get compromised.

In this paper, we argue for an approach that leverages
the growing trend of virtualization: significantly improve
end-user security through a hypervisor for personal com-
puters. Two factors motivate this approach. First, as a
small programmable layer between the OS, the network,
and the hardware, the hypervisor is a uniquely attractive
insertion point for security. Second, hardware virtual-
ization support has been available in desktop and laptop
CPUs for several years, and lowers the overhead of virtu-
alization below the point where most users would notice.
Hypervisors thus represent one of the best opportunities
to sidestep the vulnerable consumer software stack.

Previous work has explored security uses for hyper-
visors in isolating applications [11], protecting the OS
from rootkits [22], and reducing the impact of bots [12].
However, we believe that there is a broader opportunity
to directly improve user security without severely de-
grading the user experience. To illustrate, we discuss
several hypervisor-based primitives that protect users’
interactions with online services (e.g., banks) from both
malware and phishing. These include a secure remote Ul
that hides the entire interaction from the OS and user au-
thentication and secure input primitives that can be called
from existing applications, including web applications.

We also sketch how hypervisors can inform users when
their machine is infected by malware and aid in cleaning
it up, both of which are pain points for users.

The purpose of this paper is to propose the creation of
a security-enhancing hypervisor for PCs as a collabora-
tive agenda for the research community. This agenda is
not necessarily about answering fundamentally new re-
search questions. Rather, it is a call to action about a
rare chance for the community to have substantial im-
pact. If researchers demonstrate compelling near-term
benefits from a modest security layer, then OS vendors
may adopt such a layer as a way to increase security
without costly reengineering. The introduction of this
secure foothold into the consumer software stack could
then yield significant long-term benefits by providing a
much better avenue for deploying security solutions.

This agenda consists of two parts: (1) exploring how
hypervisors can address end-user security issues and (2)
exploring how to architect a small, secure hypervisor that
provides several of these facilities. We believe that there
are interesting and worthwhile challenges in both parts.

The rest of this paper is organized as follows. We be-
gin by explaining why hypervisors provide a highly at-
tractive insertion point for security (§2) and summariz-
ing work in this area (§3). We then discuss security fa-
cilities that a hypervisor can provide in §4, with a focus
on trusted paths to online services. We conclude by dis-
cussing challenges associated with our proposal in §5.

2  Why Hypervisors?

We believe that hypervisors are uniquely positioned as
a security platform because of their combination of
tractability, capabilities, and incentive alignment with
OS vendors, chip vendors and users.

Hypervisors are tractable: Hypervisors have always
been small enough for research teams to build [7, 6].
However, hardware virtualization support allows hyper-
visors to become drastically simpler, obviating the need
for binary rewriting and software page table manage-
ment. For example, the NOVA microhypervisor [21], de-
signed to solely use hardware virtualization, has a 9000-
line trusted computing base yet outperforms commercial
hypervisors. This decrease in size should also make hy-
pervisors easier to secure. At this size, it may even be



possible to formally verify hypervisors, as was recently
accomplished for the L4 microkernel [16].

Hypervisors have relevant capabilities: The goal of
this project is not to prevent computers from being com-
promised; the complexity of modern OSes and the gulli-
bility of most users makes compromise too easy to reli-
ably prevent. The goal, instead, is to allow compromised
machines to still perform some useful tasks without sac-
rificing user information, and to mitigate the damage that
compromised hosts can do to others. Hypervisors are
well equipped for this, having direct access to the com-
puter’s hardware (particularly its keyboard, display, and
processor), so that a compromised OS cannot interfere
with the hypervisor. Hypervisors can also interpose on
all communication between the OS and the network.

Incentives align: A hypervisor-based security plat-
form aligns well with the incentives of operating system
vendors, chip vendors and users. OS vendors would ap-
preciate a way to improve security that does not require
costly reengineering of their operating system code. If a
hypervisor-based security platform built by the academic
community provided an adequate proof-of-concept, one
could imagine these vendors shipping such a hypervisor
(not the one built by the academic community, but one
built by the vendor) as part of their OS package.

Chip vendors have expressed strong interest in im-
proving security (e.g., the CEO of Intel has declared se-
curity to be “job one” [1]). It is difficult for chips them-
selves to make great strides in security without changes
in software. However, virtualization provides a good ex-
ample for what might happen with security. Initially,
hardware vendors had little interest in virtualization, but
once VMware and Xen demonstrated the market for vir-
tualization by achieving significant deployment, and pro-
vided a stable target for acceleration, chip vendors rushed
to add support for this feature. Similarly, if a market for
a hypervisor-based security platform were demonstrated,
chip vendors could add more value to their chips by find-
ing ways to improve its security and its performance.

Finally, users are conscious of the impact of malware
and appreciate unintrusive solutions that boost security.
For example, gamers are even buying hardware tokens
to protect their World of Warcraft accounts [5]. Build-
ing a hypervisor platform that protects online interac-
tions might lead to wide enough deployment that other
hypervisor-based security ideas, such as limiting bots’
ability to send spam [12], can also begin to have impact.

3 Related Work
A substantial body of work on hypervisor-based security
already exists. This work broadly falls into four classes:

e Isolation: At its most basic level, virtualization can
be used to run applications that do not need to inter-

act in different VMs, which is attractive in datacenter
environments [11]. It has also been used to isolate in-
trusion detection and antivirus tools from the OS they
monitor, as in Livewire [10] and VMsafe [3].

e Desktop software stacks based on multiple VMs:
Terra [9] is a trusted hypervisor that runs both general-
purpose “open-box” VMs and tamper-proof, attested
“closed-box” VMs for specific applications, such as
DRM-enforcing media players, cheat-proof games, or
“trusted access points” for enforcing network access
policies. Lampson and others proposed running sepa-
rate VMs for sensitive and non-sensitive data [17].

e OS and application protection: By monitoring in-
teractions with the hardware, hypervisors can protect
running OSes against attacks. For example, SecVisor
[20] ensures that only approved code can execute in
kernel mode, HookSafe [22] protects kernels against
rootkits, and Overshadow [8] protects application data
against a compromised OS.

e Limiting the impact of bots on third parties: Not-
a-Bot [12] diminishes the ability of bots to send spam
and launch DoS attacks by providing human activity
attestation (e.g., attesting that a person was at the key-
board when an email was sent).

Many of these ideas can be incorporated into the hy-
pervisor security platform we have proposed, but we be-
lieve that many other opportunities to leverage hyper-
visors arise when the focus is shifted to home users.
Specifically, we urge the community to design solu-
tions that directly help the user (rather than third par-
ties), that proactively bypass malware (as opposed to dis-
abling some types of attacks), and that are minimally in-
trusive (and hence easier to deploy). To illustrate, we
present several primitives that protect users’ interactions
with online services. We believe that if researchers de-
sign a hypervisor security platform that users themselves
want and that OS vendors find sufficiently beneficial,
then this platform could also facilitate the deployment of
other useful security mechanisms that are not compelling
enough by themselves to achieve wide deployment, such
as mechanisms to limit the ability of bots to send spam.

There are also serious systems challenges in architect-
ing a hypervisor that can perform multiple of these pro-
posed security functions while retaining a small trusted
computing base. We discuss these challenges in §5.

4 Security Facilities for a PC Hypervisor

In this section, we present several ways in which hypervi-
sors can directly address security concerns for end-users.
We spend most of our attention on securing interactions
with online services to prevent information theft. We
also sketch ideas on leveraging hypervisors to monitor
systems for malicious activity and to remove malware.



Lastly, we list some previously proposed security func-
tions that are well-suited for inclusion in a hypervisor for
personal computers.

4.1 Protecting Interactions with Online Services

Establishing a trusted path between an online service and
its users is a fundamental problem in Internet security,
critical for applications that perform financial transac-
tions or process sensitive data. The problem goes well
beyond man-in-the-middle attacks and key loggers. An
equally important issue is phishing attacks that simply
masquerade as a given website. Distressingly, most users
overlook or misunderstand browser security indicators
[19]. The combination of masquerading and malware is
especially worrisome, because malware can control ev-
erything the user sees. Some malware already alters on-
line bank statements shown by users’ browsers to hide
its transactions [2]. Lastly, a third set of problems arise
from the use of passwords for authentication: users often
pick weak passwords or reuse them across sites [13].

Hypervisors can play two roles in establishing a
trusted path to online services. First, they can read in-
put from and deliver output to the user in a way that by-
passes the OS, provided that phishing concerns are dealt
with. Second, we propose using hypervisors to store keys
that act as authentication factors for accessing online ser-
vices, similar to hardware tokens or two-factor authenti-
cation using mobile phones. Unlike external authenti-
cation factors, this approach is immune to man-in-the-
middle attacks where a phisher tricks a user into typing a
code onto a phishing site, because the hypervisor authen-
ticates itself directly to the online service. Furthermore,
it does not require the user to carry extra hardware.

These capabilities can be combined in several ways
to provide various degrees of security. We discuss three
such primitives in the rest of this section:

o Authentication only: This is sufficient for applications
where theft of login credentials is the main concern,
such as online games and social networks.

e Secure input prompts: This mechanism allows both
websites and native applications to initiate hypervisor-
controlled dialogs for sending sensitive input to a re-
mote server (e.g., credit card numbers).

e Secure remote Uls: For the most sensitive applica-
tions, such as online banking, the hypervisor can com-
pletely hide the interaction from the OS. We discuss a
minimal and general mechanism for achieving this.

Hypervisor-Assisted Authentication: The user au-
thentication schemes commonly used today are vulner-
able to various combinations of phishing, man-in-the-
middle attacks, and malware. Passwords can be inter-
cepted by all three of these types of attacks, and are also
often weak. Two-factor authentication schemes using ex-

ternal devices (such as hardware tokens) solve some of
these problems, but require the user to carry an extra de-
vice. In addition, under these schemes, both phishing
sites and malware can still hijack user sessions.

We propose a hypervisor-assisted authentication
scheme that gets around many of these issues. In this
scheme, each user is identified to each online service by a
key specific for that service. The hypervisor keeps these
keys in storage inaccessible to the OS. Users receive their
keys either on USB drives or over the Internet if the user
registers the service through a hypervisor-controlled Ul
(using the remote UI primitive described later); in both
cases, the key does not pass through the OS. Also, the
hypervisor knows which service each key is associated
with, identifying services through the existing SSL PKI.

When a user wishes to log into a remote application
(either through a website or through a local client pro-
gram such as a game client), authentication proceeds as
follows. First, the client side of the application initiates
a request to the hypervisor, passing it the name of the
service and a nonce. This is logically done through a hy-
percall, although such a “hypercall” can be implemented
without modifying OSes and browsers by sending a spe-
cially formed network packet.! The hypervisor then asks
the user whether she wishes to authenticate to the service
in question using a hypervisor-controlled popup dialog.
If so, it contacts the service (authenticating it through
SSL), presents the nonce, and answers a cryptographic
challenge to prove that it has the user’s key.

This scheme provides slightly stronger security prop-
erties than external authentication factors without requir-
ing the user to carry another device. First, the user’s
authentication key cannot be accessed by the OS and
hence by malware. Users also cannot be tricked to re-
veal their keys, because they do not know them. Sec-
ond, man-in-the-middle attackers (e.g., phishing sites)
cannot masquerade as the user’s machine because the hy-
pervisor opens an SSL connection directly to the online
service when it needs to answer the cryptographic chal-
lenge. Thus, there are only two ways for attackers to log
in as the user: either obtain physical access to the user’s
machine, or attempt to hijack a user session through mal-
ware (e.g., wait for the user to log into a bank website
and then start taking actions on her behalf). The physi-
cal attack vector can be mitigated by allowing the user to
set up a “local password” that needs to be typed into the
hypervisor-controlled dialog to unlock a key.?

'We propose DNS requests to a nonexistent subdomain of the
website of the service that the application wants to use, such as
<nonce>.auth.chase.com. These requests can even be made
by JavaScript in a web application. Since the hypervisor can see all
outgoing network traffic, it can intercept such packets.

2Note that if an attacker obtains this local password, she still needs
physical access to the user’s machine, because there is no way for mal-
ware to spoof keyboard input into the hypervisor.



In summary, hypervisor-assisted authentication is in-
expensive to deploy, usable from an unmodified OS and
browser, more convenient than two-factor authentication
through physical devices, and also more powerful.

Secure Input Prompts: The authentication primitive
in the previous section can prevent attackers from log-
ging in as the user on an online service, but is not enough
to prevent them from viewing information the user types
into the service. For example, a key logger can still
capture the user’s credit card number. To protect the
most sensitive information entry, the scheme can be ex-
tended slightly to allow the online service to prompt the
user through a hypervisor-controlled UI. Specifically, af-
ter the hypervisor authenticates the user to the service,
the service can send back a question to ask in another
hypervisor-controlled dialog box. User’s interactions
with this dialog will be hidden from the OS.

The main security challenge with this approach is Ul
spoofing. While malware cannot view the user’s inter-
actions with the hypervisor, it can pop up UlIs that look
similar to the hypervisor’s dialogs at a moment when the
user expects a secure input prompt. We believe that this
attack can be mitigated to some extent using a “reverse
password” that authenticates the hypervisor’s Ul to the
user, such as a background texture or color scheme for
hypervisor Uls that is chosen randomly on each PC and
thus cannot be easily guessed by malware. This scheme
is similar to SiteKey for web applications, except that
there is no way for attackers to view the hypervisor Ul
and capture the reverse password.> Nonetheless, protect-
ing gullible users from Ul spoofing is still a difficult chal-
lenge that requires significant human factors research.

Secure Remote Uls: The final primitive we discuss
is a fully hypervisor-controlled remote Ul that hides all
user input from the OS, as well as all output presented
by the service to the user. For example, banking sites
may encourage users to use this Ul so that malware can-
not see their bank statements and account numbers, or an
enterprise may ask employees to use this mechanism for
remote sessions to their work machines.

The main challenge here is designing a mechanism
that is convenient for the user, has a minimal trusted
codebase, and is general enough to support a wide range
of remote services. One strawman approach would be to
have each service distribute client software in the form of
a VM, as in Terra [9]. However, this approach has three
disadvantages. First, VMs consume significant resources
and take a nontrivial time to start up, which may damage
the user experience. Second, the VMs would need to be
updated periodically with new versions of web browsers
or other programs, which would be time-consuming and
expensive. Third, a VM is a large amount of code to

3We assume that the hypervisor protects graphics memory it uses.

trust, so the hypervisor would most likely need to protect
the user’s system against rogue client VMs.

For similar reasons, we believe that a browser is also
not the best client. Browsers are smaller than VMs, but
still fairly large. In addition, they are evolving provide
more capabilities (e.g., HTMLYS), so services would want
users’ browsers to be kept up to date. Lastly, browsers
may not be a rich enough client for all applications.

Instead, we believe that the best client software for this
primitive is a remote desktop client such as VNC [4]. In
effect, we are proposing a virtual thin client. Remote
desktop clients are not only small, but also unlikely to
need frequent updates, and general enough to support
many types of applications. Also, existing applications
are easy to expose through remote Ul servers.

4.2 Monitoring for Malware

A second user concern that we believe hypervisors can
help with is letting users know when their machines are
infected with malware. Today, users may only get a
vague sense that their machine is infected if they are not
running antivirus software. Furthermore, malware can
disable such software before vendors distribute a signa-
ture for it. One previously proposed approach that helps
is running antivirus tools in a separate VM [10, 3]. How-
ever, we believe that it may also be beneficial to employ
behavioral monitoring in the hypervisor. For example,
having the hypervisor tell the user “your computer sent
1000 emails today” is enough to raise their suspicion.
This type of monitoring works even for new malware
malware for which signatures have not been dissemi-
nated. This idea is not particularly deep or novel, but
it is an example of how a hypervisor security platform
may be useful as attackers become more sophisticated.

4.3 Disinfection

A more speculative idea that we also believe could be
useful in the future is to use the hypervisor as a “last
bastion” for disabling malware once a user’s machine is
infected. The hypervisor appears to be a very strong van-
tage point from which to disable malware, because it can
view and alter all contents of memory and the entire in-
struction stream. As such, it may be possible to build
recipes for disabling each strain of malware that can be
disseminated to hypervisors. There may exist effective
countermeasures for attackers, such as obfuscation tech-
niques that generate very different instruction streams on
each infected machine, but this appears to be harder than
obfuscating against current forms of virus signatures.

4.4 Other Facilities

Existing work on protecting the kernel from rootkits
[22], ensuring that only approved code executes in ker-
nel mode [20], and preventing bots from harming third
parties [12] would also be helpful to include in a hyper-



visor security platform. If the community rallies to build
a platform that aligns with the incentives of users and OS
vendors, these ideas could have significant impact.

S Conclusion and Challenges

We argued that the research community should focus
its efforts on a hypervisor-based security platform be-
cause such a system could (i) be built by the community,
(ii) support a wide range of security features, and (iii)
achieve widespread deployment and impact. As such,
we think it represents perhaps the best chance the com-
munity has to bring significant near-term security bene-
fits to mass-market users. Such a layer would also make
security solutions far more deployable in the long term.

This agenda requires substantial work in two main ar-
eas: developing small, secure hypervisors, and exploring
how they can address the security concerns of end-users.
Both of these areas pose challenges and opportunities
well worth the community’s attention. We conclude by
sketching three of the major challenges.

Architecting a Versatile Yet Secure Hypervisor: A
successful hypervisor security platform will need to im-
plement not only one or two security mechanisms, but a
judiciously chosen subset out of an already large array of
proposed mechanisms. It is thus critical to design such
a platform in a way that ensures that none of the secu-
rity mechanisms becomes vulnerable to attack itself. We
believe that this will need to be accomplished through
a combination of architecture (defining a set of low-level
primitives that the hypervisor exposes for use by security
mechanisms), isolation, and possibly formal verification.
Fortunately, there is a wealth of research into secure
OSes that can be applied to this problem. One promising
approach is to limit the permissions of each system: for
example, a system that protects the OS against rootkits
has no need to access the network. It may also be possi-
ble to have most of the security mechanisms be written
in a restricted language that provides strong guarantees.
Apart from security, the design of the hypervisor will
also need to take into account efficiency (e.g., for features
that inspect network traffic) and updatability (ideally, the
hypervisor should update itself without rebooting).

Attacker Responses to Hypervisor Security: As with
any new security mechanism, it is important to consider
how attackers might evade hypervisor-based security so-
lutions. For example, one natural question is how mal-
ware can evade the hypervisor-assisted detection of spam
and DoS behavior described in §4.2.

Authenticating the Hypervisor to the User: Al-
though we believe that “reverse password” schemes, as
described in Section 4.1, are a useful tool in creating a
trusted path between the hypervisor and the user, this
path will likely remain one of the most attractive points to

attack in a hypervisor security platform. Protecting users
that are poorly informed, gullible, and not paying atten-
tion against Ul spoofing is a difficult problem, and ulti-
mately needs to be addressed through user studies. For-
tunately, we can leverage much of the existing research
on phishing prevention and secure Uls [15, 18].
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