Hansen Solubility Parameters of Polyhedral Oligomeric Silsesquioxane (POSS) Compounds

Authors: Andrew J. Guenthner, Kevin R. Lamison, Lisa M. Lubin, and Joseph M. Mabry

Abstract: The Hansen Solubility Parameters (HSP) of three different octafunctional POSS compounds (octaphenethyl, octastyrenyl, and 1-naphthyl-heptaphenyl) were successfully determined using the traditional Hansen approach with a set of 45 test solvents. The data suggest that HSP are likely to be as valid for simple inert POSS compounds as for any organic oligomer. In the case of phenethylPOSS, there is at least some extant experimental data on polymer blend compatibility that suggests the HSP approach may offer more insight than simple “like dissolves like” heuristics.

Subject Terms:

Security Classification: Unclassified

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>b. ABSTRACT</td>
<td>c. THIS PAGE</td>
<td>SAR</td>
</tr>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Dr. Joseph M. Mabry</td>
</tr>
</tbody>
</table>

Telephone Number: N/A
HANSEN SOLUBILITY PARAMETERS OF POLYHEDRAL OLIGOMERIC SILSESQUIOXANE (POSS) COMPOUNDS

Andrew J. Guenther,1 Kevin R. Lamison,2 Lisa M. Lubin,2 and Joseph M. Mabry1

1Propulsion Directorate, Air Force Research Laboratory
 Edwards AFB, CA 93524
2ERC Incorporated
 Edwards AFB, CA 93524

Abstract

The Hansen Solubility Parameters (HSP) of three different octafunctional POSS compounds (octaphenethyl, octastyrenyl, and 1-naphthyl-heptaphenyl) were successfully determined using the traditional Hansen approach with a set of 45 test solvents. The data suggest that HSP are likely to be as valid for simple inert POSS compounds as for any organic oligomer. In the case of phenethylPOSS, there is at least some extant experimental data on polymer blend compatibility that suggests the HSP approach may offer more insight than simple “like dissolves like” heuristics.

Distribution A. Approved for public release, distribution unlimited.
HANSEN SOLUBILITY PARAMETERS OF POLYHEDRAL Oligomeric Silsesquioxane (POSS) Compounds

Andrew J. Guenther, Kevin R. Laison, Lisa M. Lubin, and Joseph M. Mahdy

1Propulsion Directorate, Air Force Research Laboratory Edwards AFB, CA 93524
2ERC Incorporated Edwards AFB, CA 93524

Introduction

The Hansen Solubility Parameter (HSP) approach has proven highly successful for predicting miscibility and phase separation phenomena in the realms of organic polymers and (mainly) organic coatings, and as an aid to understanding related phenomena such as wetting, permeation, and dispersion in systems containing polymers and organic molecules. To date, however, the HSP approach has not been widely used and is often regarded as unsuitable for inorganic small molecules or even for inorganic polymers, despite the fact that HSP values are readily available for polydimethylsiloxane, and have been used, for example, in separation membrane studies. Since organosilicon materials, such as polyhedral oligomeric silsesquioxane (POSS), share many characteristics with common organic oligomers, and given that HSP parameters are easily computed for materials spanning a wide range of molecular weights and are known for at least one high molecular weight organosiloxane, there is good reason to believe that the HSP approach can be applied successfully to POSS compounds as well. The aforementioned reasoning should apply particularly to stable, discrete, well-defined POSS, such as those based on attachment of relatively small organic fragments to octameric silsesquioxane cages.

Experimental

Materials. Octa(phenethyl)POSS, octa(styryl)POSS, and the 1-naphthylethaphehnylPOSS were synthesized at AFRL. Previously reported synthesis and characterization data are available for the octaphenyl and octaethyl POSS compounds, and, more recently, the 1-naphthylethaphehnyl compound. The set of 45 solvents used in the study were obtained from a variety of commercial sources based on laboratory availability.

Test Procedures. For each of the tests reported herein, 50 mg of the POSS compound was placed in a clean 5 mL glass vial along with 0.5 mL of the selected solvent. The tightly closed vials were then stirred for two minutes and allowed to stand, undisturbed, for 24 hours. When complete dissolution did not occur, the vials were allowed to stand for up to one hour. The tests were then rated as follows: “Pass” indicated complete dissolution within two minutes, “Pass” indicated complete dissolution within one hour but not within two minutes (in these cases, most of the solute dissolved initially and extra time was required to achieve complete dissolution, an indication of near saturation given the low molecular weight of the POSS compounds); “Fail” indicated that significant but incomplete dissolution occurred; “Fail” indicated that no dissolution was observed. Note that the “*” and “**” designations were retained for documentation purposes only, with subsequent analysis treating “Pass” as “Pass” and “Fail” as “Fail”.

Analysis Procedures. The main analytical problem was the determination of the HSP (δH, δp, δε) of the POSS compound based on the pass/fail rating (here denoted as “test”) and the associated HSP (δH, δp, δε) of each solvent tested. The basic approach to solving the problem was to maximize the goodness of fit of the data set to the criteria described by Hansen, namely, for each instance, define a characteristic distance R, such that

R = \frac{1}{4} \left((δH - δH^*)^2 + (δp - δp^*)^2 + (δε - δε^*)^2 \right)

With the criteria being

If R < R0, then test = “Pass”, else test = “Fail”

in which δH, δp, δε, and R0 are adjustable parameters. The goodness of fit was determined by means of a chi-squared test, using the total fraction of tests rates as “Pass” and the total fraction of solvents for which R < R0 to determine the distribution of expected occurrences in each category (i.e., R < R0, test = “Pass”); R0 ≤ R0, test = “Fail”); R0 < R0, test = “Fail”; and R0 < R0, test = “Fail”). The procedure described above was the computational equivalent of attempting to identify the central co-ordinates and radius of a sphere that included all solvents with a “pass” rating but excluded all solvents with a “fail” rating, in a Cartesian space with axes given by δH, δp, and δε.

To locate the optimal values of δH, δp, and δε, a brute force method based on an iteratively refined search space was employed. In the first iteration, δH was varied from 14 to 15 in increments of 0.5, while δp and δε were varied from 0 to 10 in increments of 1, and while R0 was varied from 0 to 20 in increments of 0.25. The initial range represented a compromise between comprehensiveness and the need to minimize computation time, and was based on the range of the HSP for solvents with a rating of “pass”. For every possible combination of the four parameters given the ranges and increments listed above, the chi-squared parameter was then computed and the absolute maximum recorded. For the second iteration, the search grid was centered on the point having maximum chi-squared (with the lowest value of all other parameters used to break ties) found in the previous iteration, with the increments reduced to 0.5 for δH, and 0.25 for δp and δε while the increment was maintained at 0.25 for R0. The process was repeated two additional times, centering the grid as described previously and reducing the increment for δH, δp, and δε, while maintaining the increment for R0. The final search grid was 0.025 for δH, 0.05 for δp and δε, and 0.25 for R0. Note that the finer spacing for δH was used to compensate for the factor of 4 in the Hansen expression (effectively, the parameter 2δH was used as a dimension along with δp and δε, and δH in a uniformly gridded Cartesian search space that shrunk with each iteration until the optimal center co-ordinates were identified).

An additional analytical issue is the estimation of uncertainty, since, due to the highly non-linear nature of the optimization problem, many possible locations in “HSP space” bounded by an irregular and even non-contiguous region can be of equal or nearly equal goodness of fit. To address this issue, we again employed a brute force method, calculating the chi-squared value for all combinations of δH, δp, δε, and R0 with increments of 0.05, 0.1, 0.1, and 0.25, respectively, around the optimal point identified in the final search iteration with a span of 11 increments for δH, δp, δε, and δH and 41 increments for R0. We considered chi-squared values that differed from the previously determined optimum by less than one to be representative of equivalent goodness of fit, a practice originally suggested to us by E. von Meerwall of the University of Akron and found to work quite well in this situation. The values of every combination of δH, δp, δε, and R0 for which at least one value of R0 enabled the condition for equivalent goodness of fit to be met were logged. If any of these coordinates fell on the boundary of the search region, the increments of δH, δp, δε, and δH were increased in linear steps of 100% (i.e. they were first doubled from their original values, then tripled from their original values, etc.), and the entire process repeated, until no co-ordinates on the boundary of the search region met the criteria. We then computed the centroid and radii of gyration in each dimension of the set of all co-ordinates that met the goodness of fit criteria, using the centroid for the finally determined values of the HSP for the given POSS compound. Using these centroid co-ordinates, the smallest value of R0 that gave the maximum chi-squared was determined (by checking all R0 values from 0 to 20 with an interval of 0.25) and reported as the final R0 value for the POSS compound. The radii of gyration were then reported as the “characteristic uncertainty” of the measurement.

Results and Discussion

(Figures 1-3) show the test results (filled circles equate to “Pass” or “Fail”, while unfilled circles equate to “Test.”) for octa(phenethyl)POSS (Figure 1), octa(styryl)POSS (Figure 2), and 1-naphthylethaphehnylPOSS (Figure 3), with the HSP solubility sphere superimposed. Table 1 provides tabulations of the computed HSP values, chi-squared values, and the characteristic uncertainties for each of the five compounds. The chi-squared values obtained were similar to those reported for many polymers (taking into account the number of tests), with the traditional HSP solubility criteria giving correct predictions about 80% of the time on average. Hence, there is no basis in the experimental data to suggest that HSP are any less valid for POSS compounds than for any type of organic oligomer.
A wide variety of POSS solubility characteristics were observed, ranging from the highly soluble octa(phenethyl)POSS to the barely soluble 1-naphthylheptaphenylPOSS. Further examination of Table 1 shows that, despite the non-polar nature of the peripheral groups on many of the POSS compounds, significant components of polarity and “hydrogen bonding” were found. It should be noted that “hydrogen bonding” character, as it relates to HSP, can be the result of a wide variety of different chemical interactions. Essentially, the HSP studies show that POSS compounds tend to have a greater affinity for strongly polar and strongly hydrogen bonding solvents than would be expected on the basis of their peripheral groups.

These HSP values suggest that POSS / polymer blends should be readily achievable with perhaps a different set of polymers than might be expected based on simple considerations of matching peripheral groups to polymer functionality. For instance, phenethylPOSS (the cage mixture, not purely octafunctional), has been shown to be compatible at over 20 vol% in polyvinyl chloride (PVC). Although originally attributed to a specific aromatic-halide interaction, in fact, the high compatibility likely simply reflects the similarity in HSP of PVC and phenethylPOSS. In fact, the “distance” in HSP space between octa(phenethyl)POSS and PVC is similar to the distance between octa(phenethyl)POSS and polystyrene. Both polymers exhibit a similar level of phenethylPOSS solubility, despite the fact that polystyrene is chemically similar to the peripheral group whereas PVC is chemically quite different.

Conclusions

The Hansen Solubility Parameters (HSP) of three different octafunctional POSS compounds were successfully determined using the traditional Hansen approach. The data suggest that HSP are likely to be as valid for simple inert POSS compounds as for any organic oligomer. In the case of phenethylPOSS, there is at least some extant experimental data on polymer blend compatibility that suggests the HSP approach may offer more insight than simple “like dissolves like” heuristics.

Acknowledgements. The authors wish to thank the Air Force Office of Scientific Research and the Air Force Research Laboratory, Propulsion Directorate, for program support, as well as Dr. Timothy S. Haddad and Dr. Rusty Blanicki for synthesis of POSS compounds.

References

<table>
<thead>
<tr>
<th>Name</th>
<th>δ_H</th>
<th>δ_P</th>
<th>δ_D</th>
<th>R0</th>
<th>χ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Octa(phenethyl)POSS</td>
<td>19.9±0.4</td>
<td>7.4±0.4</td>
<td>6.3±0.6</td>
<td>9.5</td>
<td>37 (N=45)</td>
</tr>
<tr>
<td>Octa(styrenyl)POSS</td>
<td>18.1±0.2</td>
<td>7.6±0.4</td>
<td>3.6±0.9</td>
<td>6.5</td>
<td>24 (N=45)</td>
</tr>
<tr>
<td>1-naphthylheptaphenylPOSS</td>
<td>16.9±0.1</td>
<td>4.2±0.2</td>
<td>6.4±0.2</td>
<td>2.25</td>
<td>29 (N=45)</td>
</tr>
</tbody>
</table>

Note: the values listed after the ± sign are “characteristic uncertainties” (see the Experimental section for details) for comparison purposes. Actual confidence intervals are likely to be significantly larger.

Figure 1. Hansen Solubility Parameter diagram for octa(phenethyl)POSS. Filled green circles represent solvents in which the POSS compound was soluble at 100 mg/mL or more. Unfilled red circles represent solvents in which the POSS compound was insoluble at 100 mg/mL.

Figure 2. Hansen Solubility Parameter diagram for octa(styrenyl)POSS (see Figure 1 for an explanation of symbols).

Figure 3. Hansen Solubility Parameter diagram for 1-naphthylheptaphenylPOSS (see Figure 1 for an explanation of symbols).

Distribution A. Approved for public release, distribution unlimited.