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Abstract 
 

For more than a decade the US government has been developing laser-based sensors for 
detecting, locating, and classifying aerosols in the atmosphere at safe standoff ranges.  
The motivation for this work is the need to discriminate aerosols of biological origin from 
interferent materials such as smoke and dust using the backscatter from multiple 
wavelengths in the long-range IR (LWIR) spectral region.  Through previous work, 
algorithms have been developed for estimating the aerosol spectral dependence and 
concentration range-dependence from these data.  The range-dependence is required for 
locating and tracking the aerosol plumes, and the backscatter spectral dependence is used 
for discrimination by a support vector machine classifier.  Substantial progress has been 
made in these algorithms for the case of a single aerosol present in the lidar line-of-sight 
(LOS). 
 
Often, however, mixtures of aerosols are present along the same LOS overlapped in 
range and time.  Analysis of these mixtures of aerosols presents a difficult inverse 
problem that cannot be successfully treated by the methods used for single aerosols.  
Fortunately, recent advances have been made in the analysis of inverse problems using 
shrinkage-based L1-regularization techniques.  Of the several L1-regularization methods 
currently known, the split Bregman algorithm is straightforward to implement, converges 
rapidly, and is applicable to a broad range on inverse problems including our aerosol 
unmixing.  In this paper we show how the split Bregman algorithm can successfully 
resolve LWIR lidar data containing mixtures of bioaerosol simulants and interferents into 
their separate components.  The individual components then can be classified as bio- or 
non-bio aerosol by our SVM classifier.  We illustrate the approach through data collected 
in field tests over the past several years using the US Army FAL sensor in testing at 
Dugway Proving Ground, UT. 
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1. Introduction 
 
This work describes a generalization of previous research1 on developing efficient 
algorithms for estimating the parameters of optically thin aerosols in the atmosphere 
using data from rapidly tuned multiple-wavelength long wave infrared (LWIR) lidar.  
The motivation for this work remains the same: the need for detecting, locating, tracking, 
and discriminating atmospheric aerosols at safe standoff ranges using time-series data 
collected at a discrete set of CO2 laser wavelengths.  Our earlier work considered a single 
aerosol material producing a backscatter enhancement over that from the natural 
atmosphere.  The goals were to detect and track the aerosol by means of estimates of the 
range-dependence of the concentration, and to discriminate potentially harmful 
aerosols—particularly those of biological origin—from interferents such as smoke and 
dust by means of the spectral dependence of the backscatter.  State-of-the-art support 
vector machine (SVM) classifiers have been developed for this discrimination. 
 
Often, however, mixtures of aerosols are present along the same lidar line-of-sight 
overlapped in range and time.  For example, it is quite possible to have a biological or 
chemical agent release from a munition accompanied by dust and other byproducts of the 
explosive release.  Those extra materials can distort the spectral dependence of the threat 
material and degrade the ability of the sensor to correctly identify the threat.  The analysis 
of aerosol mixtures presents a difficult inverse problem that cannot be successfully 
treated by the methods used previously for single materials. 
 
Fortunately, recent advances have been made in the analysis of inverse problems using 
shrinkage-based L1-regularization techniques.  We focus here on the split Bregman 
algorithm2 because it is straightforward to implement, converges rapidly, and is 
applicable to a broad range of inverse problems including our aerosol unmixing.  In this 
paper we show how the split Bregman algorithm can successfully resolve LWIR lidar 
data containing mixtures of bioaerosol simulants and interferents into their separate 
components.  The individual components then can be classified as bio- or non-bio aerosol 
by our SVM classifier. 
 
The use of Bregman iteration to solve difficult L1-estimation problems efficiently was 
described by Yin et al.3  In that paper they showed the equivalence of Bregman iteration 
to the augmented Lagrangian method for the minimization of convex functions with 
linear constraints.  In a subsequent paper, Goldstein and Osher [2] showed that Bregman 
iteration could be efficiently implemented by splitting the original combination of L1 and 
L2 optimizations over a single variable into two separate minimizations; one over a 
differentiable quadratic component, and a second over a non-differentiable L1-norm 

                                                 
1 R. E. Warren, R. G. Vanderbeek, A. Ben-David, and J. L. Ahl, Simultaneous estimation of aerosol cloud 
concentration and spectral backscatter from multiple-wavelength lidar data, Appl. Optics, 47, pp 4309-
4320, 2008. 
2 T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci., 
2(2):323-343, 2009. ISSN 1936-4954. 
3 W. Yin, S. Osher, D. Goldfarb, and J. Darbon, Bregman iterative algorithms for l1-minimization with 
application to compressed sensing, SIAM J. Imaging Sci., vol. 1, pp 143-168, 2008. 
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component with an objective function that could be solved in closed form by shrinkage.  
This is the origin of the term split Bregman.  Subsequently,4,5 it was recognized that their 
splitting algorithm could be interpreted from a Lagrangian and penalty standpoint 
(augmented Lagrangian) analogous to that described in [3].  It is this augmented 
Lagrangian interpretation of split Bregman that we follow here.  For a comprehensive 
analysis of the interrelations between Bregman iteration, augmented Lagrangians, split 
Bregman, and other techniques, see the review by Esser.6 
 
In our treatment of single aerosol estimation, we gave a rather detailed discussion of the 
lidar measurement and preprocessing needed to remove the effects of the natural 
atmosphere and to deconvolve the long CO2 transmitter pulse waveforms.  Those 
discussions pertain here without any modification.  We therefore concentrate on the 
problem of generalizing the estimation to multiple aerosols by use of the split Bregman 
method.  Accordingly, section 2 provides a brief summary of the advantages of L1-
regularization over the more traditional L2 method, and more particularly, how this 
newer, more robust method can be implemented efficiently through split Bregman.  
Section 3 describes how the multi-aerosol estimation is formulated as a dual application 
of the basic split Bregman algorithm.  In section 4 we give some examples of processing 
aerosol mixture data from both simulated and actual release data collected by the US 
Army FAL sensor during testing at Dugway Proving Ground, UT.  Section 5 summarizes 
and concludes. 
 
2. L1-Regularization of Inverse Problems by the Split Bregman Method 
 
It is well known that inverse problems such as the retrieval of signals observed after some 
smoothing operation such as blurring are ill-posed in the sense that small changes in the 
data due to noise, for example, can have large effects on the solution.  Otherwise stated, 
many different solutions are compatible with the same data.  Since most of these 
“solutions” are wildly oscillatory, and therefore not physically meaningful, some sort of 
regularization is required to produce useful results.  Historically, L2-regularization has 
been used in the context of least-squares estimation since it is easy to implement through 
ridge regression.  Although stabilizing the solution, ridge regression tends to be 
unselective in the features it suppresses and can lead to severely biased results. 
 
As noted above, more recent alternatives to L2-regularization have replaced the quadratic 
regularization term in the objective function with an L1-norm regularizing term.  This has 
the effect of selectively removing features in the estimate that produce the large 
fluctuations associated with direct inversion without regularization.  This selectivity gives 
L1 estimates a sparse representation in an appropriate basis set.  The downside of L1-

                                                 
4 X. Tai and C. Wu, Augmented Lagrangian method, dual methods and split Bregman iteration for ROF 
model, Scale Space and Variational Methods in Computer Vision: Lecture Notes in Computer Science, vol. 
5567/2009, pp 502-513, 2009. 
5 Y. Gui-Bo and X. Xiaohui, Split Bregman for large scale fused Lasso, J. Computational Statistics and 
Data Analysis, vol. 55, no. 4, April, 2011. 
6 E. Esser, Applications of Lagrangian-based alternating direction methods and connections to split 
Bregman, UCLA CAM report 09-31, 2009. 
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regularization has been the loss of differentiability of the objective function making 
implementation more difficult than L2.   
 
As noted above, the new class of shrinkage-based inversion methods such as split 
Bregman largely overcomes the computational limitations of L1-regularization.  To 
illustrate the advantages of L1 over L2 we compare them on a simple one-dimensional 
simulated example.  Our objective is to minimize the functionals  and : 1( )J u 2 ( )J u
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where J1,2 are the sum of a quadratic term quantifying the fidelity of the linear model Ku 
to the data f and the second terms are regularizers using the L1 and L2 norms, 
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The simulated data are shown in Figure 1 together with the L2 regression estimate at the 
value   = 0.015, and the L1 estimate computed by the split Bregman method defined 
below also using   = 0.015.  We note the L2 estimate is unable to resolve the peaks, 
whereas the L1 estimate gives a clean separation of the two components. 
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Fig. 1 Data and estimates from the narrow Gaussian example. 

 
 

The objective function J1 is non-smooth because of the L1-norm regularization term.  
This makes the optimization over u difficult by the usual calculus-based methods.  The 
basic idea of split Bregman is to introduce additional variables into the J1 objective 
function that will allow a convenient separation of the minimizations over the quadratic 
(smooth) data term 
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where b is the Lagrange multiplier vector, ,a b  denotes the inner product of vectors a 

and b, and  is a positive regularization parameter.  In this formulation, L assumes the 
form of an augmented Lagrangian [4, 5] to be minimized for u and d, and maximized for 
the dual variable b.  In the appendix the derivation of this saddle point optimization is 
sketched.  The resulting algorithm is given as Algorithm 1.  The function  S x  

appearing in Algorithm 1 is the shrinkage operator that plays a key role in the success of 
the method by promoting sparseness in the solution through shrinking input values 
toward zero.  S is defined as 
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Algorithm 1 Split Bregman algorithm. 
 

 
3. Multi-Aerosol Split Bregman Algorithm 
 
In this section we generalize the basic split Bregman method described in section 2 to 
treat the aerosol unmixing problem for multiple aerosols within a single lidar line-of-

sight.  Our starting point is the M N  matrix  jkG that represents the range-resolved 

lidar data at a single time-step after the preprocessing to remove the natural aerosol 
backscatter and transmitter pulse effects as described in [1].  The row index of G, 

, labels the wavelength, and the column index, 1 j M  1 k N  , labels the digitized 
range-cell.  We model G as the additive combination of the aerosol backscatter from L 
materials 
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where jl  are the spectral backscatter variables as a function of wavelength and material, 

and Clk are the concentration variables as a function of material and range-cell.  The 
variables njk represent zero-mean additive noise.  As discussed in [1], to lead to an 
identifiable model we must constrain   and C for each material.  We adopt the choice 

made in [1] of requiring that  0,lkC  0,jl   and the backscatter estimates be unit 

vectors for each material: 2 1.jlj
   

 
Our goal is to resolve G into L aerosol components using a generalization of the L1-
regularized split Bregman method.  To that end we perform the splitting by introducing 
the constrained versions of   and C, d and e, that carry the L1-norm regularizations, and 
Lagrange dual variables b and c that enforce the constraints d  , and  within an 
augmented Lagrangian framework.  Setting the data fidelity term 
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we have the augmented Lagrangian 
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to be minimized over , , ,C d e , and maximized over b and c such that 0,   and 0,C 

2
1   for each material.  The parameters 0   and 0C   control the balance 

between fitting errors and parameter smoothness, and are set heuristically using a 
combination of simulated and test data. 
 
As in the case of the basic split Bregman algorithm, the multi-aerosol augmented 
Lagrangian leads to a saddle point solution that iterates between concentration and 
backscatter using three iterated steps for each component given current estimates of the 
other.  The steps for backscatter are: 
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Because of the introduction of d, the problem splits into three easily solved components: 
the first step is solved by calculus, the second step is solved by shrinkage, and the third 
step is explicit. 
 
The corresponding steps for concentration are: 
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Algorithm 2 gives the resulting unmixing algorithm.  The function S is the shrinkage 

operator (2).  The recursions in Algorithm 2 are initialized by prior estimates of the 
backscatter, if available, or randomly.  Typically, 10 iterations are enough to give good 
results. 
 
4. Numerical Examples 
 
In this section we illustrate the multi-aerosol unmixing algorithm on simulated and actual 
release data collected by the US Army FAL (Frequency Agile Lidar) sensor.  The 
calculations were done by implementing Algorithm 2 in MATLAB on a PC.  The 
simulated FAL data were created by injecting two overlapping aerosol plumes having 
Gaussian range-dependence both centered at 1.5 km with width 50 m into background 
FAL data sets.  Those sets consisted of transmitted pulse waveforms and received laser 
backscatter from the natural atmosphere as a function of time-step, wavelength index, and 
range-cell.  The two injected plumes represent a bioaerosol simulant (bacillus BG) and 
interferent (kaolin dust).  The simulant plume was injected between time-steps 200 and 
600, and the interferent between time-steps 400 and 800.  A randomly varying peak 
concentration was created from a first-order AR model.  The purpose of the simulator 
was to generate data for overall algorithm performance verification including background 
removal and transmitter pulse deconvolution.  Because those operations are not relevant 
to the present discussion, we focus on the comparison of the input concentration and 
backscatter waveforms with the estimates from the split Bregman algorithm after data 
preprocessing. 
 
Figure 2 shows the concentration estimates from the unmixing algorithm with 
regularization parameters set at 0.05C   .  The plots show the bioaerosol estimates 

(left) and interferent (right) versus time-step and range.  The calculation was initialized 
using the mean of the backscatter spectral estimates used to train our support vector 
machine classifier for the bioaerosol and interferent classes. 
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Figure 3 compares the input and estimated peak concentration over range as a function of 
time-step for the bioaerosol (top) and interferent (bottom).  We see that the estimates 
track the input throughout the run including the plume overlap region.  For comparison, 
Figure 4 plots the peak concentration estimates from a previous algorithm based on using 
backscatter mean spectra as priors in a Bayesian scheme.  Since the prior as well as data 
densities were chosen to be Gaussian, the Bayes approach in effect is doing quadratic 
norm processing.  Although giving good results when the plumes are separated in time, 
this processor fails to produce good material separation in the overlap region. 
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Algorithm 2 Split Bregman algorithm for multi-aerosol unmixing. 
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Fig. 2 Concentration estimates (bioaerosol left and interferent right) from simulated data example. 
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Fig. 3 Split Bregman peak concentration estimates for bioaerosol (top) and interferent (bottom). 
 

Figures 5 and 6 compare the concentration range-dependence (true and estimated) and 
backscatter wavelength dependence at time steps 300 and 700 for the bioaerosol and 
interferent, respectively.  The results suggest that the split Bregman unmixing can 
provide both low bias and low variance estimates. 
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Fig. 4 Peak concentration estimates using a Bayes (quadratic norm) approach. 
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Fig. 5 Concentration range-dependence for bioaerosol (top) and interferent (bottom). 
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Fig. 6 Backscatter wavelength-dependence for bioaerosol (top) and interferent (bottom). 
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As an example of processing FAL data from a mixture of aerosols, we consider the 
partially overlapped release TD4065 of Florida BG (a bioaerosol simulant) and Kuwait 
dust on May 31, 2008 in the Joint Ambient Breeze Tunnel (JABT) at Dugway Proving 
Ground, UT.  The FAL sensor was located about 1.2 km from the entrance to the JABT.  
The bioaerosol was released between time-steps 100-476, and the dust between times 
261-633.  Data collected during the first 100 time-steps were used to estimate the 
backscatter from the natural atmosphere.  The aerosols were injected near the far end of 
the tunnel, and drawn toward the front of the tunnel by large fans where they were 
exhausted.   
 
Figure 7 shows the concentration estimates from the unmixing algorithm on these data 
with the bioaerosol (dust) plotted on the left (right).  We see the initial localized aerosol 
appearing at the indicated beginning of the releases.  The subsequent time-steps show the 
plumes expanding to fill the space between the injection and extraction locations.  Figure 
8 plots the peak concentration over range with the bioaerosol (dust) shown at the top 
(bottom).  We see a clean separation of the two aerosol components in these figures. 
 
The estimates of aerosol backscatter are plotted in Figure 9 as a function of time-step and 
wavelength index for the 16 wavelengths used in these tests.  Up to time-step 100 we see 
only the random unit vectors produced by the algorithm in the absence of aerosol.  After 
the bioaerosol release (shown on the left) the estimates show a consistent structure, 
although they are rather noisy between time-steps 300-450 because of low concentration 
levels.  The corresponding dust backscatter estimates (shown on the right) also show a 
consistent structure throughout the dust release. 

0 0.02 0.04 0.06

Range (km)

T
im

e 
S

te
p

1.2 1.4 1.6 1.8

100

200

300

400

500

600

700

0 0.1 0.2

Range (km)

T
im

e 
S

te
p

1.2 1.4 1.6 1.8

100

200

300

400

500

600

700

 
Fig. 7 Concentration estimates (bioaerosol left and dust right) from release TD4065. 
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Fig. 8 Peak concentration estimates for bioaerosol (top) and dust (bottom) from TD4065. 
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Fig. 9 Backscatter estimates for bioaerosol (left) and dust (right) for TD4065. 
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Finally, the aerosol classifier, a least-squares support vector machine (LS-SVM) 
classifier,7 was applied to the backscatter estimates.  Our classifier consists of a three-
class discriminator for bioaerosol, interferent, and null classes.  The latter class was 
included to allow the classifier to perform a detection function by rejecting spectral 
patterns that look like neither bioaerosol nor interferent.  Three binary classifiers were 
trained by the 1-versus-rest method for discriminating samples from each class against 
the pooled alternatives.  At each time-step the class whose classifier has the highest 
decision function value is chosen.  Backscatter estimates from both material components 
were processed this way, and the results for the decision functions are plotted in Figure 
10.  The results indicate that the classifier recognized both materials at the correct times 
during the partially overlapped releases. 
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Fig. 10 LS-SVM decision functions for bioaerosol (top) and interferent (bottom) for TD4065. 

 
 
5. Summary and Conclusions 
 
The unmixing of elastic backscatter data from multi-wavelength, range-resolved lidar for 
aerosol mixtures has defied solution by traditional regularization methods using quadratic 
smoothing constraints.  A new shrinkage-based L1-regularization method for linear 
inverse problems, the split Bregman algorithm, has been successfully applied to the 
aerosol unmixing problem.  It was illustrated here on simulated and actual aerosol 

                                                 
7 J. A. K. Suykens, T.Van Gestel, J. De Brabanter, B. De Moor, and J. Vandwalle, Least Squares Support 
Vector Machines, World Scientific, 2002. 
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mixture release data collected by US Army personnel in field testing at Dugway proving 
Ground, UT using the rapidly tuned FAL sensor. 
 
The capability of resolving data from mixtures of aerosols into their backscatter and 
concentration components is important to the success of standoff sensors for biological 
detection in realistic operating environments where interferent materials such as smoke 
and dust will usually be present.  Failure to correctly perform this unmixing can lead to 
increased misclassifications that degrade the usefulness of potential sensors employing 
active detection. 
 
Other possible standoff sensing applications of this unmixing technique include (1) the 
analysis of lidar data from chemical releases where the agent can have both vapor and 
aerosol phases and interferent materials can include byproducts of an explosive release, 
and (2) the use of thermal imaging sensors operating in the long wave infrared spectra 
region. 
 

Appendix—Augmented Lagrangian Derivation of Split Bregman 
 

Given the augmented Lagrangian function  in (1), we wish to find a saddle 

point  such that

( , , )L u d b

 *, *, *u d b  8 

 
     *, *, *, *, * , , *L u d b L u d b L u d b  . 

 
We solve this saddle point problem by iterating between primal and dual optimizations: 
 

   1 1

,

1 1 1

, arg min , ,      (primal)

                        (dual)

k k k

u d

k k k k

u d L u d b

b b u d

 

  



  
 

 
For the primal minimizations holding the dual variable b fixed, we note that because of 
the introduction of the d variables, the optimization over u can be done for fixed d by 
differentiation: 
 

( , , )
*( ) ( )

L u d b
K Ku f b u d

u
 

    


 

 
 

to get 
 

   11 * * (ku K K I K f d b      )k k

                                                

.                             (A-1) 

 

 
8 This sketch follows the split Bregman treatment given by Y. Gui-Bo and X. Xiaohui, “Split Bregman 
method for large scale fused Lasso,” J. Comp. Stat. & Data Analysis, Vol. 55, No. 4, April 2011. 
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Likewise, although the d variable optimization is still non-smooth, it is very easy to solve 
by shrinkage for given u and b: 
 

 1 1 ,k kd S u b
   k                                              (A-2) 

 
where the shrinkage function S  is given by (2).  Steps A-1 and A-2 can be iterated for 

fixed , but we find it more efficient (usually) to perform them only once. kb
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