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Abstract 
 
We report on the isogeometric residual-based variational multiscale (VMS) Large Eddy 
Simulation of a fully developed turbulent flow over a wavy wall. To assess the 
predictive capability of the VMS modeling framework, we compare its predictions 
against the results from direct numerical simulation (DNS) and, when available, 
against experimental measurements. We use C1 quadratic B-spline basis functions to 
represent the smooth geometry of the sinusoidal lower wall and the solution variables. 
The Reynolds number of the flow considered is 6,760 based on the bulk velocity and 
average channel height. The ratio of amplitude to wavelength (α/λ) of the sinusoidal 
wavy surface is set to 0.05. The computational domain is 2λ×1.05λ×λ in the 
streamwise, wall-normal and spanwise directions, respectively. Mean averaged 
quantities, including velocity and pressure profiles, and the separation/reattachment 
points in the recirculation region, are compared with DNS and experimental data. The 
turbulent kinetic energy and Reynolds stress are in good agreement with benchmark 
data. Coherent structures over the wavy wall are observed in isosurfaces of the Q-
criterion and show similar features to those previously reported in the literature. 
Comparable accuracy to DNS solutions is obtained with at least one order of 
magnitude fewer degrees of freedom. 
 
Keywords: Variational multiscale modeling, Large Eddy Simulation, Wavy wall, 
Isogeometric analysis, B-spline finite elements 
 
1. Introduction 
 
Fully developed turbulent flows over wavy surfaces are relevant for many engineering 
applications, such as, pipe flow in a heat exchanger where wall waviness enhances 
heat transfer and gas-liquid contractors in the chemical industry. The wavy wall 
induces the alternation of favorable and adverse pressure gradients and a large ratio of 
amplitude to wavelength (α/λ) generates a complex recirculating flow, which enhances 
turbulent mixing. 
 
Many experimental and numerical studies have been conducted to understand the 
complex physics of fully developed turbulent flows over wavy walls. Hudson et al. 
[1] measured the spatial and temporal variation of the velocity components in a flow 
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with wavy walls using Laser Doppler Velocimetry (LDV) and reported mean velocity 
fields and fluctuating quantities such as turbulent stresses and kinetic-energy production. 
In their experiment, the Reynolds number based on bulk velocity and channel height 
is 6,760 and the amplitude to wavelength ratio is equal to 0.05. These measurements 
are used to benchmark our simulations. The experiments showed that the shear layer 
in the vicinity of the separation region is the locus of large turbulent kinetic energy 
production and Reynolds stresses.     
 
Günther and Rohr [2] studied streamwise structures and the three-dimensional flow 
field using proper orthogonal decomposition (POD) in their particle image velocimetry 
(PIV) experiment. They identified the characteristic length-scale of the longitudinal 
structures as 1.5λ in both laminar and turbulent wavy wall flows and POD results 
revealed smaller structures at the maximum Reynolds stress location.   
 
Maass and Schumann [3] performed direct numerical simulation (DNS) of turbulent 
wavy wall flows using the finite difference method and showed the effective friction 
velocity is about 50% larger at the wavy surface than at the flat surface because of 
the additional pressure drag. 
 
Cherukat et al. [4] conducted DNS studies of the turbulent flow over a sinusoidal 
wavy surface using spectral elements of 7th order. Their results were validated with 
the experimental data of Hudson et al. [1] and are considered a reliable benchmark 
for numerical simulation of wavy walls. They report instantaneous flow fields and 
turbulent statistics and used them to find velocity bursts in the separated-flow region 
that extend over large distances away from the wall. 
 
Recently, Yoon et al. [5] investigated the effect of wave amplitude on turbulent flow 
in a wavy channel using DNS with the immersed boundary method. They observed 
that the pressure drag coefficient increases as the ratio α/λ increases, whereas the 
friction drag coefficient is maximum at the specified amplitude to wavelength ratio, 
α/λ=0.3. 
 
In [6], Park et al. compared several Reynolds-Averaged Navier Stokes (RANS) models, 
such as standard k-ε and linear/nonlinear k-ε-fµ and showed that most RANS models 
tested have severe limitations in predicting flow separation appropriately with the 
exception of the nonlinear k-ε-fµ model. The nonlinear k-ε-fµ model shows good 
agreement with DNS results in mean flow field, streamwise fluctuations, and Reynolds 
stresses, however, it exhibits discrepancies in other turbulent quantities such as wall-
normal fluctuations. 
 
Most of the previous numerical simulations of the fully developed turbulent flow over 
a wavy wall have been done using DNS to capture the separated flow field and to 
collect turbulent statistics. However, very fine resolutions are required to resolve the 
Kolmogorov length scale of the boundary layer, which implies a large computational 
burden. To overcome these difficulties, we believe that Large Eddy Simulation (LES) 
is an adequate tool, since separation and turbulence fluctuations can be captured well 
while utilizing significantly less computational resources. 
 
The recently proposed Variational Multiscale Method [7,8] has proven to be an 
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effective approach to LES and yields new insights into classical LES challenges such 
as scale separation and closure modeling. The proposed residual-based variational 
multiscale (VMS) framework uses analytical tools to approximate the effect of the fine 
scales in the coarse-scale governing equations, such as, perturbation series arguments 
and the fine-scale Green’s function; see e.g. [7]. In this framework, the simplest 
approximation to the fine scales is given in the form of a scaled residual of the 
coarse scales. This VMS methodology was validated in bypass transition [9], forced 
isotropic turbulence and fully-developed channel flows [7,10], on free-surface [11], 
Taylor-Couette flows [12], and, in conjunction with the weak imposition of Dirichlet 
boundary conditions, in high Reynolds number channel and asymmetric diffuser flows 
[13].  
 
In this study, we further validate isogeometric VMS methodology in a turbulent flow 
with separation, that is, in fully-developed turbulent flow over a wavy wall. We report 
mean fields and turbulent statistics of the flow such as Reynolds stress, kinetic energy 
and production. Additionally, instantaneous velocity fields are studied and their 
coherent structures described. 
 
The organization of the paper is as follows. In Section 2, following [7], we briefly 
summarize the residual-based variational multiscale formulation for the incompressible 
Navier-Stokes equations and introduce the numerical procedure used to discretize the 
resulting non-linear system of equations. In Section 3, we present the problem setup 
describing the computational domain, boundary conditions and meshes used. In Section 
4, we present the main results for the wavy wall simulations and compare these with 
DNS results and experimental data. In section 5 we draw conclusions. 
 
2. Residual based Variational Multiscale Method 
 
The incompressible Navier-Stokes equations are: 
 

 in Ω             (1) 

 in Ω                   (2) 
 in Ω              (3) 

 on Γ                   (4) 
 
where u is the flow velocity, p is the pressure, f:Ω→R3 is a given body force, ν is 
the kinematic viscosity, and the symbol, ⊗ denotes the tensor product. Equations (1) 
and (2) represent the balance of linear momentum and mass, respectively, while 
equations (3) and (4) describe the initial and boundary conditions, where u0 is the 
given initial velocity distribution. Let V denote both the trial solution and weighting 
function spaces, which are assumed to be identical. The variational formulation can be 
expressed as follows:  
 
Find  such that : 
 

               (5) 
with 
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            (6) 

                   (7)  
                        (8) 

 
where U={u, p} and W={w,q} belong to V. B1(·,·) is a bilinear form and B2(·,·,·) is a 
trilinear form.  
 
The solution and weighting function spaces are decomposed into coarse-scale and fine-
scale subspaces as follows: 
 

                (9) 
where  is the finite-dimensional space associated with the coarse scales of the 
problem and is the complement of  in  and is associated with fine-scale 
variables. We indentify  with the numerical solution of the resulting discrete 
variational system. Using the linearity of [5] with respect to the weighting functions, 
we divide the variational system into a coupled coarse-scale and fine-scale equation 
system: 
 

,               (10) 
,              (11) 

where  

             (12) 

        (13) 

 
Using integration by parts, we rearrange equation (13) as: 
 

                   (14) 

where   
                     (15) 

               (16) 

 
 represents the residual of coarse-scales and  is the duality pairing 

between and . Thus, we think of  as the solution of the non-linear problem 
described by (14). It is abstractly expressed as a function of  and  as 
follows: 
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(17) 
 
Following [7], once we introduce a disctretization and indentify the coarse scales with 
the resolved scales, Uh, we approximate the fine-scale Green’s operator, which arises 
in the perturbation series solution of (15), with an element-wise stabilization operator 

 and residual of the coarse scales  as follows: 
 

              (18) 
 
These approximate fine scales are expressed in terms of the resolved velocity and 
pressure fields as 
 

                  (19) 

 
where rM and rC are the coarse-scale residuals of the momentum and continuity 
equations, respectively. The scaling factors, also known as intrinsic times, and , 
are element-wise stabilization parameters for the momentum and continuity equations. 
The residuals and scaling factors are defined below: 
 

           (20) 

 
where is a physical-space coordinate and  is a parameter-space coordinate (i.e., 
reference element coordinate). CI is set to 36 through derivation of an inverse estimate 
[7]. Finally, the formulation of the residual-based variational multiscale method reads 
as follows: 
 
Find  such that : 

             (21) 

      

(22) 
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              (23) 

       (24) 

where the superscripts G and MS stand for Galerkin and variational multiscale, 
respectively.  
 
We use the generalized-α method as presented by Jansen et al. [14] to integrate the 
governing equations in time. We set ρ∞=0.5, where ρ∞ is the spectral radius of the 
amplification matrix as �t→∞. To solve the nonlinear system of equations, we employ 
Newton's method with a two-stage predictor-multicorrector algorithm. See [7] for 
further details. 
 
3. Numerical simulation 
 
The Reynolds number is 6,760 based on the bulk velocity and average channel height. 
The geometry of the wavy wall is described by the formula αcos(2πx/λ), where α is 
the amplitude of the wave and λ is the wavelength. Herein, the ratio (α/λ) of the 
amplitude to the wavelength is set to 0.05, which is the same as that in references 
[3-5].  
 

 
Figure 1. Computational domain. 

 
The computational domain (Lx×Ly×Lz) shown in Figure 1 has dimensions of 
2λ×1.05λ×λ in the streamwise (x), vertical (y) and spanwise (z) directions. This is 
identical to the one used by Yoon et al. [5]. We employ no-slip Dirichlet boundary 
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conditions at the lower wavy wall and at the upper flat wall (y=1.0λ), and we apply 
periodic boundary conditions in both the streamwise and spanwise directions. The 
driving force is the streamwise pressure gradient which is adjusted to maintain a 
constant mass flow rate. 
 
Isogeometric analysis [15] with B-spline basis functions is employed in the present 
work. The control points for the B-spline curve defining the geometry are obtained by 
projecting the known sinusoidal geometry onto the coarsest possible quadratic B-spline 
space that can represent the geometry [16, 17].  The open, non-uniform knot vector 
is: 
 

 
 
and the control points are reported in Table 1. 

 
Table 1. Control points for the B-spline curve defining the bottom wavy wall. 

 x y 
B1 0.0000E+00 5.0000E-02 
B2 3.1250E-02 4.9998E-02 
B3 9.3750E-02 4.2370E-02 
B4 1.5625E-01 2.8299E-02 
B5 2.1875E-01 9.9351E-03 
B6 2.8125E-01 -9.9350E-03 
B7 3.4375E-01 -2.8299E-02 
B8 4.0625E-01 -4.2370E-02 
B9 4.6875E-01 -4.9998E-02 
B10 5.0000E-01 -5.0000E-02 

 
4. Results: Simulation of wavy wall channel flows 
 
We analyzed the sensitivity of the simulation results to the grid resolution using the 
following three cases: 128×64×64 (Fine mesh), 64×32×32 (Medium mesh) and 
32×16×16 (Coarse mesh). The resolutions correspond to the streamwise, vertical and 
spanwise directions, respectively. For all meshes, C1-continuous quadratic B-splines 
basis functions are used. The geometry definition and solution variables use identical 
parameterization (isoparametric disctretization). The number of mesh elements for the 
three cases is summarized and compared with meshes used in other DNS 
computations in Table 2. An equivalent number of mesh points per unit streamwise 
and unit spanwise wave length are reported in Table 2 to allow a fair comparison of 
the different simulations, since different computational domain sizes were used in each 
simulation. As mentioned previously, the spectral element method of Cherukat el al. 
[4] employs 7th order Lagrange polynomials. The total number of mesh points is 
64×148×32, which is greater than 3.0×105. In the other two DNS cases, based on 
finite difference and finite volume methods, 3.0×105 and 1.8×106 mesh points are used. 
The number of degrees of freedoms in the medium mesh case of the present work is 
3.3×104 (=323), which is at least an order of magnitude fewer than those used in the 
DNS calculations.  
 

Table 2. Mesh elements in the present work and in the DNS calculations of others. 
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 Lx Ly Lz Nx Ny Nz Nx/λ Nz/λ 

Coarse (present) 32 16 16 16 16 

Medium (present) 64 32 32 32 32 

Fine (present) 

2λ 1.05λ λ 

128 64 64 64 64 

Cherukat et al. [4]* 4λ 1.05λ 2λ 36 21 64 9 32 

Maass and Schumann [3] 4λ 1.05λ 2λ 256 128 96 64 48 

Yoon et al. [5] 2λ 1.05λ λ 250 150 100 125 100 

* Spectral method with 7th order Lagrange polynomials. 

 

 
Figure 2. Grid convergence test, top: pressure coefficient distribution at the wall, bottom: urms, vrms at 

two positions (a) x/λ=0.0 (crest), (b) x/λ=0.5 (trough). 

 
Results for the three meshes are presented in Figure 2. The mean pressure coefficient 
at the wavy wall shows that the coarse-mesh result has small discrepancies compared 
with the two finer cases. The root-mean-square (rms) velocity fluctuations are 
compared in Figure 2 at two positions: the crest (x/λ=0.0) and the trough (x/λ=0.5). 
Velocity fluctuations of the medium and fine meshes are consistent with each other, 
while the coarse mesh fails to properly resolve the velocity fluctuations. This lack of 
resolution is particularly noticeable in the region of rapid variation near the peak. 
Based on these results, the medium mesh (64×32×32) is considered to be adequate.  
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To compute the mean flow quantities, we averaged the instantaneous velocity and 
pressure fields in the spanwise direction and in time over a period of 100H/Ub, where 
H is the channel height and Ub is the mean bulk velocity.  
 

 
Figure 3. Top: mean velocity vectors; bottom: mean streamlines (medium mesh case). 

 
Figure 3 shows mean velocity vectors and streamlines for the medium mesh case. It 
can be seen that the turbulent boundary layer near the wall is well resolved. 
 

 
Figure 4. Shear stress at the wall (medium mesh case).   

 
To determine the separation and reattachment points, the wall shear stress is calculated 
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and shown in Figure 4.	
   The separation point is seen to be predicted at x/λ=0.15 and 
the reattachment point at x/λ=0.58. The DNS results of Cherukat et al. [4] give the 
corresponding points at 0.14 and 0.59, and the experiment of Hudson et al. [1] 
determined these points as 0.22 and 0.58. As argued by Cherukat et al. [4], this 
difference in the measured separation point between numerical simulation and 
experiment may be due to the difficulty of measuring separation when there are large 
oscillations in the velocity while, at the same time, the mean flow velocity is small. 
The prediction of these points as 0.15 and 0.59 in the DNS of Maass and Schumann 
[3] is also consistent with the present results.  
 
The shear stress increases rapidly after the minimum value near x/λ=0.40, and has 
maximum value near x/λ=0.92, which is in agreement with reference data reported in 
[4]. The shear stress at the upper flat plate wall is computed as 0.0043 in the present 
work, compared with the value 0.0045 of [4].  
 

 
Figure 5. Mean streamwise velocity profiles, (a) x/λ=0.1, (b) x/λ=0.3, (c) x/λ=0.5, (d) x/λ=0.7 (medium 

mesh case). 
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Figure 6. Mean vertical velocity profiles, (a) x/λ=0.1, (b) x/λ=0.3, (c) x/λ=0.5, (d) x/λ=0.7 

(medium mesh case). 

 
Figures 5 and 6 show the streamwise and vertical mean velocity profiles at different 
streamwise locations (x/λ=0.1, 0.3, 0.5, 0.7) and these are compared with the DNS 
results [3]. Point a (x/λ=0.1) is located near the crest of the wavy wall and before the 
separation point of the flow. Points b and c (x/λ=0.1, 0.5, respectively) are in the 
recirculation region. Point d (x/λ=0.7) is located after the reattachment point of the 
flow. The streamwise and vertical velocity profiles agree well with the DNS results 
reported in [3].  
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Figure 7. Mean pressure coefficient distribution, line: present simulation, symbol: DNS of Cherukat et 

al. [4] (medium mesh case). 

 
The mean pressure coefficient along the wavy wall is replotted in Figure 7 along with 
the locations of separation and reattachment points. The separation bubbles are seen to 
appear within the adverse pressure gradient regions as is typical. The peak pressure 
point occurs near x/λ=0.69. From that point onward a favorable pressure gradient 
dominates until the next crest point at x/λ=1.0. 
 

 
Figure 8. Reynolds stress contours, top: present simulation, bottom: DNS of Cherukat et al. [4] 

(medium mesh case). 
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Figure 8 shows the contours of the Reynolds stress term, -u'v'. The upper plot 
displays the present results and the lower one reproduces those of [4]. As shown in 
Figure 8 (top), the position of maximum Reynolds stress is predicted near the upper 
region of the trough (x/λ=0.45) and negative values are seen on the windward side 
near the wall between x/λ=0.53 and 0.99. The DNS results of Cherukat et al. [4] give 
the maximum value at x/λ=0.40 and the negative region is from x/λ=0.55 to x/λ=1.0. 
Hudson [1] and others [4, 5] argue that the negative values of Reynolds stress occur 
due to the calculation of this term in a Cartesian frame rather than in a boundary 
fitted frame.  
 
Günther and Rohr [2] described these wavy flows in terms of three regions; (I) 
separation zone, (II) region of local maximum Reynolds stress (-u'v') and (III) region 
of local minimum  Reynolds stress (-u'v'). The contours of maximum Reynolds stress 
after the reattachment point increase in an upward direction, which is represented by 
the dashed lines in Figure 8. The local maximum in the Reynolds stress contours is 
approximately located at x=0.08λ above the wall. This coincides with Günther and 
Rohr's experimental results [2].  
 

 
Figure 9. Reynolds stress contours, left: present simulation results, right: DNS of Cherukat et al. [4], 

top: u'u', middle: v'v', bottom: w'w' (medium mesh case). 

 

The contours of the diagonal components of Reynolds stress are plotted for 
comparison with DNS results in Figure 9. The locations of maximum streamwise 
fluctuations are coincident with those of maximum positive Reynolds stress (-u'v'). A 
ridge appears over the crest of the streamwise intensity plot. However, the regions of 
maximum vertical intensity are closer to the wall than those of the other two 
variables. Spanwise intensity contours show a different pattern from those of 
streamwise and vertical intensity. A high intensity region between the trough and the 
crest indicates that the flow has developed fully three-dimensional structures. These 
terms contribute to the increase of the turbulent kinetic energy after the reattachment 
point, as shown in Figure 10.  
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The profiles of the resolved turbulent kinetic energy at different spanwise locations are 
shown in Figure 10 and are compared with the DNS results of Maass and Schumann 
[3]. The present results show very good agreement with the DNS data even though 
small sharp peaks are apparent at the maximum points of Figures 10(b) and 10(c). 
The contours of turbulent kinetic energy (not shown here) show the maximum kinetic 
energy point at x/λ=0.45 which is the same as the DNS results reported in [3]. 
 

 
Figure 10 Turbulent kinetic energy profiles, (a) x/λ=0.1, (b) x/λ=0.3, (c) x/λ=0.5, (d) x/λ=0.7  

(medium mesh case). 
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Figure 11. Turbulence production contours, (a) results for the medium mesh, (b) results for the fine 

mesh, (c) experiment of Hudson et al.[1], (d) DNS of Cherukat et al. [4].  

 

The contours of the production of turbulent kinetic energy ( ) are 

shown in Figure 11. The overall patterns displayed by the present simulations are in 
reasonable agreement with the reference data. Regions where negative production 
occurs are predicted near the bottom wall, above the high intensity region, between 
the reattachment point and the next crest. These negative production regions are 
associated with energy backscatter, that is, transfer of energy from the smaller flow 
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scales to the larger ones. 
 
The regions of high kinetic-energy production show slightly different patterns in 
Hudson's experiment [1] and in Cherukat et al. DNS [4]. Hudson's experiment predicts 
this region near the crest, while numerical simulations of Cherukat et al. show the 
high intensity region located after the reattachment point to the next crest. Cherukat et 
al. posited this difference may be caused by improper resolution of Hudson's 
experiment near the wall in the recirculation zone, which decreases the accuracy of 
the calculated velocity gradient used in the computation of the production terms from 
the experimental data. The patterns of high value in this region in the present 
calculations are qualitatively consistent with the DNS results. Angelis et al. [18] 
explain the importance of the gradient of spanwise velocity in wavy wall flows and, 
in particular, near the wall to accurately predict the turbulent kinetic energy production 
in the flow. This is evident when comparing medium and fine meshes in Figures 
11(a) and 11(b). In the medium resolution mesh simulation, the high intensity region 
is located near the crest of the wavy wall (x/λ ≥ 0.85), while, in the fine mesh 
simulation, the high intensity region is located toward the reattachment point (x/λ ≥ 
0.75) and is spread more widely than for the medium mesh.  
  

 
Figure 12. (Top) Isosurfaces of coherent structures at instantaneous time (Q-criterion) of fine mesh, 

contoured by streamwise vorticity (ωx), (Bottom) Spanwise vorticity contours in x-y plane at 
z/λ=0.5. 

 



17	
  
	
  

To study the coherent structures of this fully turbulent flow, the second invariant of 
the velocity gradient tensor, Q-criterion [19], is calculated for the fine mesh simulation. 
Even though the predictions of the mean and turbulent statistics for the medium mesh 
are in excellent agreement with the benchmark experimental and simulated data, the 
medium mesh resolution is not able to accurately resolve the turbulent coherent 
structures. Figure 12 (Top) shows the instantaneous vortical structures represented by 
the isosurfaces of the Q-criterion [19] which are colored with the values of 
streamwise vorticity (ωx). Figure 12 shows that the dominant structures are streamwise 
vortices; some structures begin after the trough and extend to the next crest or trough, 
while others are generated in the region between the reattachment point and the next 
crest. These structures appear to scale like the wavelength of the sinusoidal wavy wall. 
Hairpin vortices are found near the reattachment region and, at this instant, one is 
marked by a circle in Figure 12 (Top). Vortices aligned with the spanwise direction 
are rarely found due to the dominant streamwise convection of vortices. Figure 12 
(Bottom) shows the contours of the spanwise vorticity (ωz) in the midsection (z/λ=0.5) 
of the spanwise direction. High vorticity is generated by the shear layer interaction 
with the recirculating flow. This high vorticity moves toward the next crest while 
breaking up. A thin vortex sheet is developed near the wall after the reattachment 
point and results in the shear layer at the next crest. These observations are consistent 
with those of other numerical simulations [18, 20].  
 
5. Conclusions 
 
Fully developed turbulent flows with wavy walls are simulated using an isogeometric 
residual-based variational multiscale method. C1 quadratic B-spline basis functions are 
used to solve the incompressible Navier-Stokes equations and represent the geometry. 
To assess the predictive capabilities of the VMS modeling framework, mean and 
turbulent statistics as well as instantaneous flow features are compared with the DNS 
results of Maass and Schumann[3], Cherukat et al. [4] and experimental data of 
Hudson et al. [1]. 
 
Mean velocity and pressure fields show good agreement with DNS results. Turbulent 
statistics at the wall, such as wall shear stress and pressure coefficient, are in good 
agreement with reference data. The separation point is predicted at x/λ=0.15 and the 
reattachment point at x/λ=0.58, in good agreement with the estimation of the size of 
the recirculation bubble reported in the literature [4]. 
 
Overall, the patterns of the contours of the kinetic-energy production are consistent 
with the DNS results. Additionally, energy backscatter is correctly predicted. As the 
mesh is refined, particularly in the spanwise direction, the region of higher intensity 
of production spreads toward the downwind side of the wavy wall, confirming the 
observation of Angelis et al. [18] that the gradient resolution in the spanwise direction 
has an important effect on the calculation of production of the turbulent kinetic energy.  
 
Streamwise vortical structures with a length scales comparable to that of the bottom 
wall wave length are observed as dominant structures in this flow. Hairpin structures 
are also found in this flow regime. Strong interaction between the shear layer and the 
recirculation bubble appears to distort the thin boundary layer developing from the 
previous reattachment point. 
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From the engineering point of view, the residual-based variational multiscale modeling 
framework is consistently able to accurately predict the important features of the mean 
flow as well as those of the turbulent statistics. This observation has been verified 
herein for separated turbulent flow with relatively coarse meshes. Most statistical 
quantities for the medium mesh are in excellent agreement with DNS data, but with a 
reduction of degrees of freedom by at least an order of magnitude. As the mesh is 
refined, the variational multiscale results converge to those of DNS results, as 
anticipated from the structures of the variational multiscale modeling theory. 
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