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On the Nesting Behavior of T-splines

X. Lia,∗, M. A. Scottb

aDepartment of Mathematics, USTC, Hefei, Anhui Province 230026, P. R. China
b Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin,
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Abstract

We establish rigorously the fundamental nesting behavior of T-spline spaces in terms of
the topology of the T-mesh. This provides a theoretical foundation for local refinement
algorithms based on analysis-suitable T-splines and their use in isogeometric analysis. A
key result is a dimension formula for smooth polynomial spline spaces defined over the
Bézier mesh of a T-spline.

Keywords: T-splines, isogeometric analysis, local refinement, T-spline spaces

1. Introduction

T-splines were originally introduced as a superior alternative to NURBS [1] and have
emerged as an important technology across several disciplines including industrial, ar-
chitectural, and engineering design, manufacturing, and engineering analysis. T-splines
can model complicated designs as a single, watertight geometry and can be locally re-
fined [2, 3]. These basic properties make it possible to merge multiple NURBS patches
into a single T-spline [4, 1] and any trimmed NURBS model can be represented as a
watertight T-spline [5].

T-splines are an ideal discretization technology for isogeometric analysis [6, 7, 3, 8, 9,
10, 11]. Isogeometric analysis was introduced in [12] and described in detail in [13]. The
isogeometric paradigm is simple: use the smooth geometric basis as the basis for analysis.
Traditional design-through-analysis procedures such as geometry clean-up, defeaturing,
and mesh generation are avoided. Additionally, the higher-order smoothness provides
substantial gains to analysis in terms of accuracy and robustness of finite element solu-
tions [14, 15].

Analysis-suitable T-splines, a mildly restricted subset of T-splines, are optimized to
meet the needs of both design and analysis [16, 3]. Analysis-suitable T-splines main-
tain the important mathematical properties of NURBS, such as linear independence [16]
and partition of unity [17], while providing an efficient and highly localized refinement
capability [3].
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In this paper we establish rigorously the nesting behavior of analysis-suitable T-
splines. This provides the theoretical justification for the analysis-suitable local refine-
ment algorithm in [3] and provides important insights into T-spline spaces in general.
A key result is a simple dimension formula for polynomial spline spaces defined over
the Bézier mesh of a T-spline [18]. The formula, written only in terms of topological
quantities, “bridges the gap” between T-splines and traditional spline spaces posed over
partitions of R2. We feel that this may have important implications in establishing ap-
proximation, stability, and error estimates for T-splines in isogeometric analysis [19] by
allowing theoretical tools, established for traditional spline spaces, to be used directly
for T-spline spaces.

This paper is organized as follows. Section 2 establishes notation and reviews fun-
damental T-spline concepts. T-junction extensions and the extended T-mesh are then
described in Section 3. Section 6 uses the smoothing cofactor-conformality method to
develop an algebraic representation of the smoothness properties of a polynomial spline
space posed over the Bézier mesh of a T-spline. A dimension formula for these polyno-
mial spline spaces is then derived in Section 7. Finally, Section 8 establishes the nesting
behavior of T-spline spaces.

2. T-spline fundamentals

We restrict our developments to cubic T-spline surfaces. All results can be easily
generalized to other odd polynomial orders.

2.1. The T-mesh

A T-spline is defined in terms of a control grid or T-mesh, T, and two global knot vec-

tors, Ξ = [ξ−2, ξ−1, ξ0, . . . , ξc+1, ξc+2, ξc+3] and Π = [η−2, η−1, η0, . . . , ηd+1, ηd+2, ηd+3].
Interior knots may have a multiplicity of three while end knots may have a multi-
plicity of four. The global knot vectors define a full parametric domain, Ω̃ ⊂ R2,
where Ω̃ = [ξ−2, ξc+3] ⊗ [η−2, ηd+3] and a reduced parametric domain, Ω̂ ⊂ Ω̃, where
Ω̂ = [ξ1, ξc]⊗ [η1, ηd].

Each control point or active vertex, vai,j , corresponds to a unique pair of knots, (ξi, ηj),
0 ≤ i ≤ c+ 1, 0 ≤ j ≤ d+ 1. Note that active vertices may be positioned at some, but
not all, pairs of indices (i, j) within 0 ≤ i ≤ c+ 1, 0 ≤ j ≤ d+ 1 because of T-junctions.
A T-junction terminates a row or column of vertices and edges before the boundary of
the T-mesh is reached. The vertices vi,j = (ξi, ηj), −2 ≤ i ≤ −1 or c + 2 ≤ i ≤ c + 3,
and −2 ≤ j ≤ −1 or d+2 ≤ j ≤ d+3 are called inactive vertices and are not associated
with T-spline blending functions. We denote the total number of vertices in T by n and
the number of active vertices by na. In the following we also specify a global index A for
each active T-mesh vertex such that A = τ(i, j), where τ(i, j) is an index map.

Figure 1 shows a T-mesh. The global indexing corresponding to the global knot
vectors is shown along the bottom and left. The active vertices are denoted by open and
red circles where the red circles are T-junctions. Shaded circles denote inactive vertices.
The full parametric domain is the union of the light and dark shaded rectangles. The
reduced parametric domain is denoted by the dark shaded rectangle.

Each vertical edge is associated with an ξi, −2 ≤ i ≤ c+ 3, and each horizontal edge
is associated with an ηj , −2 ≤ j ≤ d + 3. Two perpendicular edges can only intersect
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Figure 1: A T-mesh. The global indexing is shown on the bottom and left. The active vertices are
denoted by open and red circles. Inactive vertices are denoted by shaded circles. T-junctions are
denoted by red circles. The full parametric domain is denoted by the union of the light and dark shaded
rectangles. The reduced parametric domain is denoted by the dark shaded rectangle.

at a vertex. Each edge is assigned a knot interval which is the parametric length of the
edge. An edge segment is a row or column of T-mesh vertices and edges which begins and
ends at a T-junction or the boundary of the T-mesh. We denote a vertical edge segment
by evi and a horizontal edge segment by ehj . If the orientation of the edge segment is
not important we simply write ei, without a superscript. We denote the number of edge
segments in T by nseg , the number of horizontal edge segments by nh

seg, and the number
of vertical edge segments by nv

seg .
We call each polygonal face in a T-mesh a T-mesh element. The parametric domain

of each T-mesh element is denoted by Ω̂e ⊂ Ω̃ where e is a global element index. Note
that not all T-mesh elements are contained in the reduced parametric domain.

The notation T
1 ⊆ T

2 will indicate that T
2 can be created by adding vertices and

edges to T1 and the notation T
1 ⊑ T

2 will indicate that T2 can be created by adding edges
and vertices to existing edge segments in T

1 without creating additional edge segments.
Obviously, T1 ⊑ T

2 implies T1 ⊆ T
2.

2.2. T-spline spaces

A T-spline blending function, NA(ξ, η), is associated with each active T-mesh vertex.
The T-spline blending functions are given by

NA(ξ, η) = B[ΞA](ξ)B[ΠA](η) (1)
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where B[ΞA](ξ) and B[ΠA](η) are the cubic B-spline basis functions associated with the
local knot vectors

ΞA = [ξi(A,1), . . . , ξi(A,5)] ⊂ Ξ (2)

ΠA = [ηj(A,1), . . . , ηj(A,5)] ⊂ Π (3)

and i(A, ĩ) and j(A, j̃) map the local knot indices, ĩ and j̃, to the global knot indices,
i and j. The knot vectors ΞA and ΠA are inferred from the T-mesh according to the
procedure outlined in [1]. Figure 2 illustrates the construction of a T-spline blending
function corresponding to active vertex va3,3. In this case, the local knot vectors are
ΞA = [ξ1, ξ2, ξ3, ξ4, ξ6] and ΠA = [η1, η2, η3, η4, η5].
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Figure 2: Inferring a T-spline blending function from a T-mesh.

The set of all T-splines with the same T-mesh topology, T, and global knot vectors is
called a T-spline space. We denote a T-spline space by T . While the T-spline blending
functions are defined using the full parametric domain, Ω̃, a T-spline space is only defined
over the reduced parametric domain, Ω̂. In other words,

T =
{

f ∈ L2(Ω̂) | f =
∑

cANA(Ω̂), cA ∈ R
}

(4)

where L2(Ω̂) is the space of square integrable functions over Ω̂.

3. Extended T-spline fundamentals

To develop the needed mathematical machinery to describe a T-spline space, T , we
define the extended T-mesh, Text, and elemental T-mesh, Telem. Extended and elemental

4



T-meshes are defined using T-junction extensions.

3.1. T-junction extensions

A T-junction extension is a closed line segment which begins at a T-junction and
extends into the T-mesh away from the T-junction. There are two types of T-junction
extensions: face and edge extensions. An n-bay face extension is a line segment which
originates at a T-junction and extends in the direction of a missing edge until n perpendic-
ular edges or vertices are intersected. T-junction face extensions include the intersection
points but not the originating T-junction. For simplicity, the term face extension will
denote a 2-bay face extension. An edge extension can be created if an edge is attached to
the T-junction in the opposite direction of a face extension. The edge extension begins
at the T-junction and extends to the edge’s opposite vertex. Since T-junction extensions
(face or edge) are closed line segments, a horizontal and vertical extension can intersect
either on the interior of both extensions or at the endpoint of one extension or both
extensions. Figure 3 shows several examples of intersecting T-junction extensions. The
edge extensions are the dashed red lines and the face extensions are the dotted black
lines.

Figure 3: Examples of T-junction extension intersections. The edge extensions are the dashed red lines
and the face extensions are the dotted black lines.

3.2. The extended T-mesh

An extended T-mesh, Text, is a T-mesh which is formed by adding face (and possi-
bly edge) extensions to T. We denote the number of T-mesh vertices in Text by next.
The vertices corresponding to crossing face extensions are called crossing vertices. The
vertices corresponding to overlapping face extensions are called overlap vertices. The
inactive vertices and the vertices corresponding to the intersections of face extensions
and existing edges in T, which do not already correspond to overlap vertices, are called
extended vertices. We denote the number of crossing, overlap, and extended vertices by
n+, n−, and n∗, respectively. We note that next = na + n+ + n− + n∗ where na is the
number of active vertices in T.

Figure 4 shows a T-mesh and the corresponding extended T-mesh, Text. The face
extension edges which have been added to T are denoted by dotted black lines. The cross-
ing vertices are denoted by red stars, the overlap vertices are denoted by red hexagons,
and the extended vertices are denoted by red squares. Notice that the inactive vertices
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are also extended vertices. The active vertices are denoted by hollow circles and the
T-junctions are denoted by red circles.

Every edge segment in Text is composed of at least four edges and five vertices. All
vertices in an edge segment which are not extended vertices are called interior vertices.
We say an edge segment e1 is prior to edge segment e2 if there exists an extended vertex
in e2 which is an interior vertex in e1. A set of edge segments ei, i = 1, 2, . . . , c form a
circle if ei is prior to ei+1 for i = 1, . . . , c − 1 and ec is prior to e1. The intersection
vertices, vi, of the edge segments ei−1 and ei in a circle are called circle vertices. Notice
that every edge segment in a circle must contain at least two active vertices.

3.3. The elemental T-mesh

T-mesh edgesmay not correspond to all knot lines in the underlying T-spline blending
functions due to T-junctions. The elemental T-mesh, Telem, is an extended T-mesh
formed by adding the missing edges and vertices to T such that all blending function knot
lines are represented. The missing edges are added in the form of n-bay face extensions
where n is determined by the knot structure of the underlying blending functions. All
notation and properties described in Section 3.2 for the extended T-mesh apply to an
elemental T-mesh. Note that T ⊑ Text and Text ⊑ Telem.

4. Perturbing T-spline spaces

It will often be necessary to perturb a T-spline space. To perturb a T-spline space
a set of knot intervals is modified by a small parameter. In a smoothing perturbation

all zero knot intervals in a T-mesh are replaced by an arbitrarily small knot interval,
δ. We denote a smoothed T-mesh by T(δ), a smoothed extended T-mesh by Text(δ), a
smoothed elemental T-mesh by Telem(δ), and a smoothed T-spline space by T (δ). Notice
that by replacing all zero knot intervals with a small parameter the resulting space is
globally C2-continuous. If a smoothing perturbation is performed on a T-mesh with no
zero knot intervals the T-mesh is left unchanged.

In an offset perturbation all face extensions in Text, which overlap, are offset by an
arbitrary small real parameter, ǫ. We denote an ǫ-offset T-mesh by T(ǫ), an ǫ-offset
extended T-mesh by Text(ǫ), an ǫ-offset elemental T-mesh by Telem(ǫ), and an ǫ-offset
T-spline space by T (ǫ). Notice that an ǫ-offset extended T-mesh does not have any
overlap vertices. If an offset perturbation is performed on a T-mesh which does not have
any overlap vertices the T-mesh is left unchanged.

Since T-spline blending functions are continuous functions of their defining knot in-
tervals we have that T (δ) → T as δ → 0 and T (ǫ) → T as ǫ → 0.

5. The extended and elemental spline spaces

Using the smoothed extended T-mesh, Text(δ), we define the homogeneous extended

spline space as

Sext =
{

f ∈ C2,2(R2) | f |Ω̂e
ext

∈ P33, ∀Ω̂
e
ext ⊆ Ω̃, and f |

R2\Ω̃ ≡ 0
}

(5)

where C2,2(R2) is the space of bivariate functions which are C2-continuous in ξ and
η over all of R2. P33 is the space of bicubic polynomials. The homogeneous elemental
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(a) A T-mesh T
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(b) The extended T-mesh Text

Figure 4: A T-mesh and the corresponding extended T-mesh. The face extension edges which have been
added to T are denoted by the dotted black lines. The crossing vertices are denoted by red stars, the
overlap vertices are denoted by red hexagons, and the extended vertices are denoted by red squares.
Notice that the inactive vertices are also extended vertices. The active vertices are denoted by hollow
circles and the T-junctions are denoted by red circles.
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spline space, Selem, can be defined similarly using Telem(δ). Notice that the homogeneous
spline spaces are defined over all of R2. Restricting the domain of definition generates
the extended spline space, Text, where

Text = Sext|Ω̂ (6)

The elemental spline space, Telem, can be defined similarly using Selem.

Theorem 5.1. For any T-mesh, T, we have that

dim Text = dimSext (7)

and similarly for Selem and Telem.

Proof. We first prove that the dimension of Sext is not less than the dimension of Text.
Notice that for any function f ∈ Sext, f |Ω̂ ∈ Text. We now show that the dimension of
Text is not less than the dimension of Sext. This is equivalent to showing that there is
only one function in Sext which is zero over Ω̂. It is easy to see that the only function
which is zero over Ω̂ must be zero over all of R2 since the minimum support of a cubic
C2 spline function is four intervals.

Remark 5.2. While we develop our theoretical results using Text(δ), Sext, and Text the
results also hold if Telem(δ), Selem, and Telem are used instead.

6. The smoothing cofactor-conformality method

The smoothing cofactor-conformality method [20] can be used to transform the com-
plicated smoothness properties of Sext into a linear constraint matrix, M. This constraint
matrix can then be analyzed to determine the dimension of Sext. For additional appli-
cations of this method in the context of spline spaces over T-meshes see [18, 21, 22, 23,
24, 25, 26] and references therein.

6.1. Vertex and edge cofactors

As shown in Figure 5, for any vertex, vi,j = (ξi, ηj), in Text(δ), the surrounding
bi-cubic polynomial patches are labeled, pki,j(ξ, η), k = 0, 1, 2, 3. If the vertex, vi,j , is

a T-junction, then pki,j(ξ, η) = pk+1
i,j (ξ, η) for some k. Since p0i,j(ξ, η) and p1i,j(ξ, η) are

C2-continuous there exists a cubic polynomial λ2
i,j(η), called the edge cofactor, such that

p1i,j(ξ, η) − p0i,j(ξ, η) = λ2
i,j(η)(ξ − ξi)

3. (8)

Similarly, there exists cubic polynomials, λ1
i,j(η), µ

1
i,j(ξ), and µ2

i,j(ξ), such that

p2i,j(ξ, η) − p1i,j(ξ, η) = µ1
i,j(ξ)(η − ηj)

3, (9)

p3i,j(ξ, η) − p2i,j(ξ, η) = −λ1
i,j(η)(ξ − ξi)

3, (10)

p0i,j(ξ, η) − p3i,j(ξ, η) = −µ2
i,j(ξ)(η − ηj)

3. (11)
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(a) (b) (c)

Figure 5: The smoothing cofactors around a vertex.

We note that if two patches are identical the edge cofactor is zero. Combining (8) - (11)
gives

(λ1
i,j(η) − λ2

i,j(η))(ξ − ξi)
3 = (µ1

i,j(ξ)− µ2
i,j(ξ))(η − ηj)

3. (12)

Since (ξ − ξi)
3 and (η − ηj)

3 are prime to each other there exists a constant, di,j , called
the vertex cofactor, such that

λ1
i,j(η)− λ2

i,j(η) = di,j(η − ηj)
3, µ1

i,j(ξ)− µ2
i,j(ξ) = di,j(ξ − ξi)

3. (13)

6.2. Assembling the constraint matrix, M

A global constraint matrix, M, can be constructed by examining the coupling between
edge cofactors on all horizontal and vertical edge segments in Text(δ).

Figure 6: The smoothing cofactors along a horizonal edge segment.

Referring to Figure 6, consider a horizontal edge segment with k + 1 vertices and k

edge cofactors. Using (13) we have that

µ1
i0,j

− 0 = di0,j(ξ − ξi0 )
3, (14)

µ2
i1,j

− µ1
i1,j

= di1,j(ξ − ξi1 )
3, (15)

...

0− µ2
ik,j

= dik,j(ξ − ξik )
3, (16)
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and
µ2
iℓ+1,j

= µ1
iℓ,j

, ℓ = 1, . . . , k. (17)

Summing (14) - (16) and using (17) results in

k
∑

ℓ=0

diℓ,j(ξ − ξiℓ)
3 = 0. (18)

Similarly, for a vertical edge segment we have that

l
∑

ℓ=0

di,jℓ(η − ηjℓ)
3 = 0. (19)

We call (18) and (19) edge conformality conditions.

Lemma 6.1. If each ξiℓ and ηjℓ are different, then the dimension of the solution spaces

corresponding to (18) and (19) are k − 3 and l− 3, respectively.

Proof. We only prove the dimension of the solution space corresponding to (18). The
proof for (19) is similar. Denote dT

j = [di0,j , . . . , diℓ,j , . . . , dik,j ]
T and

mj =









1 1 . . . 1 1
ξi1 ξi2 . . . ξik ξik+1

ξ2i1 ξ2i2 . . . ξ2ik ξ2ik+1

ξ3i1 ξ3i2 . . . ξ3ik ξ3ik+1









. (20)

Then (18) is equivalent to the linear system

mjdj = 0. (21)

The rank of matrix mj is 4 since k ≥ 4 for every horizontal edge segment in Text(δ).
The assertion follows from the rank-nullity theorem.

Assembling all horizontal and vertical edge conformality conditions into a global sys-
tem generates the global conformality condition for Sext. In other words,

MD = 0 (22)

where DT = [d1, d2, . . . , dnext
]T is a column vector of all vertex cofactors in Text(δ) and

M is a 4nseg × next real matrix. Each edge conformality condition corresponds to a
submatrix consisting of 4 rows of M and each vertex cofactor corresponds to a column
of M.

Lemma 6.2. The dimension of Sext is the nullity of M, i.e., the dimension is next

minus the rank of M.

Proof. Since the continuity constraints in Sext have been converted into the linear system
in (22), the dimension of Sext is the dimension of the null space of M, i.e., the dimension
is next minus the rank of M.

10



6.3. Simplifying the constraint matrix, M, and Text(δ)

It is possible to simplify the constraint matrix, M, and the topology of the extended
T-mesh, Text(δ) such that the null space of M is undisturbed. To remove a vertex
from Text(δ) means we delete the corresponding column from M and to remove an edge
segment from Text(δ) means we delete the appropriate submatrix from M. We form
the reduced constraint matrix M by removing the eight edge segments eh1 , e

h
2 , e

h
nh
seg−1,

eh
nh
seg

, and ev1, e
v
2 , e

v
nv
seg−1, e

v
nv
seg

, and sixteen corner vertices v−2,−2, v−1,−2, v−2,−1, v−1,−1

and v−2,d+2, v−1,d+2, v−2,d+3, v−1,d+3, and vc+2,d+2, vc+3,d+2, vc+2,d+3, vc+3,d+3, and
vc+2,−2, vc+3,−2, vc+2,−1, vc+3,−1 from Text(δ). We denote the T-mesh after the removals
by Text(δ) and the number of vertices and edge segments in Text(δ) by next and nseg,
respectively. Figure 7 shows the simplified extended T-mesh Text(δ) corresponding to
the extended T-mesh in Figure 4b. The vertices and edge segments which remain after
the removal process have corresponding entries in M.

1 5 8 9102 3 4
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Figure 7: The simplified extended T-mesh Text(δ) corresponding to the extended T-mesh in Figure 4b.

Lemma 6.3. The dimension of the null space of M is the same as that for M.

Proof. The vertex cofactors which correspond to the removed corner vertices can be
uniquely determined by applying (18) to the four horizontal removed edge segments or by
applying (19) to the four vertical removed edge segments. To establish the result we need
to show that the constraints corresponding to the four vertical removed edge segments
can be derived from the constraints corresponding to the four horizontal removed edge

11



segments. We have that

0 =

k
∑

m=0

[

l
∑

ℓ=0

dim,jℓ(η − ηjℓ)
3

]

(ξ − ξim)3 (23)

=

l
∑

ℓ=0

[

k
∑

m=0

dim,jℓ(ξ − ξim)3

]

(η − ηjℓ)
3 (24)

=
∑

ℓ=0,1,l−1,l

[

k
∑

m=0

dim,jℓ(ξ − ξim)3

]

(η − ηjℓ)
3. (25)

Equation (23) involves the sum of all edge conformality conditions for the horizonal edge
segments. Equation (25) holds because the linear systems for the other vertical edge
segments are satisfied. Since (η − ηjℓ), ℓ = 0, 1, l− 1, l, form a basis for a linear space of

polynomials with degree less than four,
∑k

m=0 dim,jℓ(ξ − ξim)3 = 0, for m = 0, . . . , k. In
other words, the constraints for the four vertical removed edges segments can be derived
from the other constraints.

Lemma 6.4. If M has full column rank, then the dimension of Sext is

dimSext = na + n+ + n− (26)

where na is the number of active vertices in T(δ) and n+ and n− are the number of

crossing and overlap vertices, respectively, in Text(δ).

Proof. Since there are next and nseg vertices and edge segments, respectively, in Text(δ),
M is a 4nseg × next matrix. And M has full column rank the dimension of Sext is
next − 4nseg. As every edge segment in Text(δ) has exactly four extended vertices (see
Section 3.2) and these four extended vertices are not extended vertices for any other edge
segment, the number of extended vertices in Text(δ) is 4nseg . Thus,

dimSext = next − 4nseg = na + n+ + n−. (27)

7. The dimension of Text and Telem

We now prove a fundamental dimension result which is written in terms of the topol-
ogy of a T-mesh. This result is fundamental in establishing the nesting results in Sec-
tion 8.

Theorem 7.1. For any T-mesh T, the dimension of Sext is

dimSext = na + n+ + n−. (28)

Proof. According to Lemma (6.4), we can establish the result if we can show that M has
full column rank. Since every extended vertex in Text(δ) is an extended vertex in exactly
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one edge segment, the matrix M has more columns than rows, i.e., next > 4nseg. An
appropriate partition of the linear system of constraints, M D = 0, is

[

M1 M2

]

[

D1

D2

]

= 0 (29)

where M1 is a 4n̄seg × 4n̄seg matrix and M1 is a 4n̄seg × (n̄ext − 4n̄seg) matrix, D
T

1 =

[d̄11, . . . , d̄
1
n̄seg

]T is a vector of the first 4n̄seg vertex cofactors, andD
T

2 = [d̄21, . . . , d̄
2
(n̄ext−n̄seg)

]T

is a vector of the remaining vertex cofactors. Thus, the problem reduces to finding an
appropriate ordering of edge conformality conditions and vertex cofactors such that M1

is full rank. There are two cases to consider:

Case 1: Text(δ) has no circles

Since Text(δ) has no circles it is possible to create a partial ordering of the edge
segments such that ei comes before ej if no boundary vertex in ei is an interior
vertex in edge segment ej. Then, using this ordering, for i = 1, 2, . . . , n̄seg, we place
the four extended vertex cofactors and edge conformality conditions corresponding
to edge segment ei in rows 4(i−1)+1 through 4(i−1)+4 ofD1 andM, respectively.
The interior vertices of edge segment ei can be placed anywhere in D2. As a result,
the matrix M1 is in upper block triangular form and according to Lemma 6.1 each
diagonal block 4× 4 matrix is full rank, thus matrix M1 is obviously of full rank.

Case 2: Text(δ) has circles

If Text(δ) has circles the matrix M is more complex. For a circle, ei, i = 1, . . . , c
with circle vertices vi, the edge conformality conditions and vertex cofactors as-
sociated with the circle can be arranged to create a circulant block matrix if we
place the edge conformality conditions corresponding to the four extended vertex
cofactors for ei in rows 4(i− 1) + 1 through 4(i− 1) + 4 with the edge conformal-
ity condition corresponding to the vertex cofactor for the circle vertex vi in row
4(i− 1) + 1. The circulant block matrix has the following form,















m1 n1 0 . . . 0

0 m2 n2 . . . 0
...

. . .
...

0 mc−1 nc−1

nc 0 . . . 0 mc















(30)

where mi, i = 1, . . . , c, is a 4 × 4 matrix corresponding to the edge conformality
conditions for the four extended vertices in circle edge segment ei and ni, i =
1, . . . , c− 1, is a 4× 4 matrix corresponding to the edge conformality conditions for
circle edge segment ei where only the first column is non-zero.

Through row reduction we can transform the circulant block matrix into an almost
triangular matrix















I ñ1 0 . . . 0

0 I ñ2 . . . 0
...

. . .
...

0 0 . . . I ñc−1

0 0 . . . 0 m̃c















(31)
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where I is a 4×4 identity matrix, ñi, i = 1, . . . , c−1 is a 4×4 matrix corresponding
to the edge conformality conditions for circle edge segment ei where only the first
column is non-zero, and m̃c is a 4× 4 matrix where the first row and column may
be zero. If so, we call the circle vertex, vc, a vanished vertex and the circle edge
segment, ec, a vanished edge segment. We can now make the following observations
about circles:

1. A circle has at most one vanished vertex which depends on the ordering of
the edge conformality conditions. In other words, if we arrange the circle edge
segments as ei+1, . . . , en, e1, . . . , ei, then the vanished vertex will be vi, and
the vanished edge segment is ei.

2. If Text(δ) has n̄c circles then there are at most n̄c vanished circle vertices.
Since each circle has at least two horizonal edge segments and each edge
segment belongs to at most four circles we have that 2n̄h

seg > n̄c, where n̄h
seg

is the number of horizontal edge segments in Text(δ). Thus, we can create a
selection set of horizonal edge segments, e1, e2, . . . , en̄t

, n̄t ≤ n̄c such that
each edge segment in the set is a vanished edge segment, each belongs to
different circles, and each has at most two vanished extended vertices.

For the edge segments which are not part of the selection set we can create a
partial ordering as described in Case 1. We place the vertex cofactors and edge
conformality conditions, corresponding to each edge segment in the partial order-
ing, into D and M as described in Case 1. Then, for each edge segment in the
selection set, we first place the vertex cofactors corresponding to two active vertices
into D1, followed by two non-vanished extended vertices. The corresponding edge
conformality conditions are placed in M1. By construction M1 has the following
form





















mn̄t+1 ∗

0
. . . ∗

0 0 mn̄seg

c1 0 0

C 0
. . . 0

0 0 cn̄t





















. (32)

The 4 × 4 matrix, mi, i = n̄t + 1, . . . , n̄seg, corresponds to the edge conformality
conditions for the four boundary vertices in the (non-circle) edge segment ei. The
4 × 4 matrix, ci, i = 1, . . . , n̄t, corresponds to the edge conformality conditions
for the two non-vanished extended vertices and two active vertices in circle edge
segment ei. The 4n̄t×4(n̄seg− n̄t+1) matrix, C, corresponds to the vertex cofactor
coupling in the circles. The ∗ means that the corresponding part of the matrix
may be non-zero but is not important for our developments. We now perform row
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reductions to reveal the rank of M1. The first pass of row reductions yields





















mn̄t+1 ∗

0
. . . ∗

0 0 mn̄seg

I 0 0

C̃ 0
. . . 0

0 0 I





















. (33)

A second pass of row reductions eliminates matrix C̃ and produces the following
upper block triangular matrix





















mn̄t+1 ∗

0
. . . ∗

0 0 mn̄seg

c̃1 0 0

0 0
. . . 0

0 0 c̃n̄t





















. (34)

The 4 × 4 matrices, c̃i, i = 1, . . . , n̄t, are diagonal matrices. Notice that only the
information of circle ci is required to eliminate the edge conformality conditions for
edge segment ei. Since no vertex cofactors corresponding to vanished vertices are
in D1 no entries of c̃i are zero. Thus, M1 is full rank.

We can now conclude that M is full column rank.

Corollary 7.2. For any T-mesh T, the dimension of Text is

dim Text = na + n+ + n−. (35)

Proof. Apply Theorem 5.1.

Corollary 7.3. Given T
1 and T

2 such that T1
ext ⊑ T

2
ext, then

dim T 2
ext = dim T 1

ext + ndiff = na + n+ + n− + ndiff (36)

where ndiff is the number of vertices in T
2
ext which are not in T

1
ext.

Proof. Since the number of edge segments in both T-meshes is the same we can place
the vertex cofactors corresponding to the vertices in T

2
ext(δ) which are not in T

1
ext(δ) into

D2. This implies that M1 is identical for both T-meshes. This implies that dimS2
ext =

dimS1
ext + ndiff = na + n+ + n− + ndiff . Then apply Theorem 5.1 to arrive at the

result.
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8. The nesting behavior of T-spline spaces

We can use the dimension results derived for Sext, Selem, Text, and Telem to prove
several fundamental nesting properties for T-splines spaces. Specifically, we prove Theo-
rem 8.9 and Corollary 8.10 which serve as the theoretical foundation for analysis-suitable
local refinement [3].

Lemma 8.1. For any T-mesh, T, Text ⊆ Telem

Proof. This immediately follows from the fact that Text ⊑ Telem.

Lemma 8.2. For any T-mesh, T, T (δ) ⊆ Telem.

Proof. This immediately follows from the fact that every blending function NA ∈ T (δ)
is in Telem.

Lemma 8.3. There exists T-meshes such that T (δ) * Text.

Proof. Consider the T-mesh and superimposed extended and elemental T-meshes in Fig-
ure 8. The extended T-mesh, Text(δ), is denoted by the dashed lines while the elemental
T-mesh, Telem(δ), is denoted by the bold shaded lines. In this case, T (δ) ⊆ Telem and
T (δ) * Text.

Figure 8: A T-mesh with the extended and elemental T-meshes superimposed on one another. In this
case T (δ) ⊆ Telem and T (δ) * Text. The extended T-mesh Text(δ) is denoted by the dashed lines while
the elemental T-mesh Telem(δ) is denoted by the bold shaded lines.

Definition 8.4. A polynomial T-mesh has an extended T-mesh, Text, with the following

properties:

• There are no crossing vertices.

• Text(ǫ) = Telem(ǫ).
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A T-spline space with a polynomial T-mesh is called a polynomial T-spline space

To illustrate the definition consider the T-meshes in Figure 9. The T-meshes on the
right are ǫ-offset T-meshes corresponding to the T-meshes on the left. In all cases, the
extended and elemental T-meshes are superimposed on one another with the dashed lines
denoting an extended T-mesh and the bold shaded lines denoting an elemental T-mesh.
The T-mesh in Figure 9a, on the left, is a polynomial T-mesh since Text(ǫ) = Telem(ǫ)
as shown on the right. The T-mesh in Figure 9b, on the left, is not a polynomial T-mesh
since Text(ǫ) 6= Telem(ǫ) as shown on the right. Notice that this subtle but important
difference is not discernible when the T-meshes are not ǫ-offset.

(a) A polynomial T-mesh

(b) Not a polynomial T-mesh

Figure 9: The T-mesh on the top left is a polynomial T-mesh while the T-mesh on the bottom left is
not a polynomial T-mesh. This can be seen by examining the corresponding ǫ-offset T-meshes on the
right.

Definition 8.5. An analysis-suitable T-mesh has an extended T-mesh, Text, which does
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not have any edge or face extension intersections. A T-spline space with an analysis-

suitable T-mesh is called an analysis-suitable T-spline space.

Lemma 8.6. An analysis-suitable T-spline space is a polynomial T-spline space.

Proof. By definition, Text, corresponding to an analysis-suitable T-spline space, has no
face extension intersections. To prove that Text(ǫ) = Telem(ǫ) see [17], Lemma 9.

Lemma 8.7. For a polynomial T-mesh, dim Text = na + n−.

Proof. This follows from Corollary 7.2 and the fact that n− = 0 for a polynomial T-
mesh.

Lemma 8.8. For a polynomial T-mesh, T (δ) ⊆ Text.

Proof. According to Lemma 8.2, T (δ) ⊆ Telem. If T is a polynomial T-mesh, Text =
Telem.

Theorem 8.9. Given two linearly independent polynomial T-meshes, T
1 and T

2, if

T
1
ext ⊆ T

2
ext, then T 1 ⊆ T 2.

Proof. It is obvious that T 1
ext ⊆ T 2

ext. If both T-meshes have no zero knot intervals we
consider the following three cases:

1. T
1
ext and T

2
ext have no overlap vertices.

In this case, T 1 = T 1
ext and T 2 = T 2

ext, so T 1 ⊆ T 2.

2. T
1
ext has overlap vertices and T

2
ext does not.

In this case, T 1 ⊆ T 1
ext and T 2 = T 2

ext, so T 1 ⊆ T 2.

3. T
2
ext has overlap vertices

Form T 1(ǫ) and T 2(ǫ). According to Case 1, T 1(ǫ) ⊆ T 2(ǫ). Now let ǫ → 0.

Otherwise, since T
1
ext(δ) ⊆ T

2
ext(δ) we have that T 1(δ) ⊆ T

2(δ). Now let δ → 0.

Corollary 8.10. Given two analysis-suitable T-meshes, T1 and T
2, if T1

ext ⊆ T
2
ext, then

T 1 ⊆ T 2.

Proof. This follows from Theorem 8.9 and the fact that analysis-suitable T-meshes are
linearly independent (see [16], Theorem 18).

9. Conclusion

We have established the nesting behavior of analysis-suitable T-spline spaces. This
provides a theoretical foundation for the efficient and highly localized local refinement
algorithm presented in [3] and its use in isogeometric analysis. Additionally, we have
derived a dimension formula for smooth polynomial spline spaces defined over the Bézier
mesh of a T-spline and demonstrated its utility in developing the theory of T-spline
spaces.
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