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Abstract

We consider goal–oriented a posteriori error estimators for the evaluation of the er-

rors on quantities of interest associated with the solution of geometrically nonlinear

curved elastic rods. For the numerical solution of these nonlinear one–dimensional

problems, we adopt a B–spline based Galerkin method, a particular case of the

more general Isogeometric Analysis. We propose error estimators using higher or-

der “enhanced” solutions, which are based on the concept of enrichment of the

original B–spline basis by means of the “pure” k–refinement procedure typical

of Isogeometric Analysis. We provide several numerical examples for linear and

nonlinear output functionals, corresponding to the rotation, displacements and

strain energy of the rod, and we compare the effectiveness of the proposed error

estimators.

Keywords: Geometrically nonlinear rods; Isogeometric Analysis; B–spline basis; goal–
oriented a posteriori error estimation; error estimator.

1 Introduction

The study of large deflections of thin beams, or rods, has received a growing interest
in many engineering and science problems. Examples of these problems include framed
structures [36, 37], compliant mechanisms [11, 44] and nanoscale structures [45].
The simplest geometrically nonlinear bending theory of planar elastic rods is the Elas-
tica theory, mathematically formulated by L. Euler in 1744 [31]. In this theory a rod
is thought of as an inextensible line of particles which resists bending according to a
law given by a linear constitutive relation; no restrictions on the magnitude of dis-
placements or angles of rotation are considered. Since then, several variants have been
proposed, in particular, theories including dynamical effects, extensibility of the rod,
shear deformation, plasticity, follower loads, etc., see e.g. [3] and the references therein.
Also, different approaches have been considered in the literature for the analysis of
elastic thin beams: (i) the elliptic integral approach first proposed by [9], which gives
closed–form solutions only for simple loading cases and boundary conditions [33], (ii) the
numerical integration approach with iterative shooting techniques (e.g. [29, 32, 13]), and
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(iii) the incremental Finite Element method with Newton–Raphson iteration techniques
[43, 22, 21].
Of these approaches, the Finite Element method (e.g. [14, 40, 25]) is indeed the most
popular approach, mainly due to its versatility to the analysis of problems with complex
topologies and geometries. As a result, numerous geometrically nonlinear planar beam
elements have been developed over the past few decades. Among others, see e.g. [17,
19, 18, 24, 41, 27, 36, 47, 12, 30, 23, 37, 42].

However, the Finite Element method only provides approximate solutions whose
quality depends on the discretization procedure. The problem of how to measure the
quality of these numerical solutions, assessing the accuracy of the Finite Element ap-
proximations, is essential for a reliable application of these problems.
Nevertheless, if, on the one hand, error estimation offers no major challenges in the
linear analysis of one–dimensional beam problems, since it is possible to employ certain
elements which can model the linear problem exactly, even with one element per member,
on the other hand, approaches based on a posteriori error estimation [2] for geometrically
nonlinear beams have received very little attention. Exceptions to this are the works
presented in [28] and [34].
Furthermore, although the error estimation on the solution of a problem represents
an important aspect of the numerical approximation, it is also important to properly
evaluate quantities of interest associated with such solution, often referred to as output
functionals (see e.g. [4]). For the rod problem, these quantities of interest, can be
defined by local quantities, such as, for instance, displacements, rotations, forces and
bending moments, or by global quantities, such as the total strain energy. In this
context, a posteriori error estimation approaches, are often referred to as goal–oriented
approaches, as they are particularly suited for estimating the error on quantities of
interest, rather than the solution itself; the introduction of the dual (adjoint) problem
allows the quantification of the sensitivity of the output functionals with respect to the
perturbations on the solution. Several contributions have been made in this field, with
special emphasis on the Finite Element method, for both linear and nonlinear problems,
see e.g. [2, 8, 35, 20, 5].

It is the main goal of this work to propose and discuss goal–oriented a posteriori
error estimators for the evaluation of the errors on quantities of interest involving the
solution of geometrically nonlinear rods problems. With this aim, we consider a numer-
ical approximation scheme based on a B–spline basis [38] for the approximation space.
This choice represents a particular case of the Isogeometric Analysis method [26, 15], a
Galerkin approximation method based on the isoparametric concept in which the basis
of the approximation space is the same as the one used to represent the geometry and
which can be represented by B–splines, NURBS (Non–Uniform Rational B–splines) [38]
or eventually T–splines [6]. High order, Ck globally continuous basis can be generated
while maintaining the exactness of the representation of the geometry in the analysis;
moreover, the basis possesses useful properties for the approximation of solutions inde-
pendently of the geometrical construction. Error analysis methods [7] and a posteriori
error estimates with T–splines [16] have already been proposed in the literature, also in
the goal–oriented framework [46].
The proposed error estimators are constructed on a B–spline basis in which the “en-
hanced” approximated solutions, typically employed to evaluate the estimators, are not
only generated by means of a mesh refinement strategy, as proposed in [46] for two–
dimensional B–splines and T–splines, but also by means of higher order approximations.
In particular, we build the “enhanced” higher order B–spline basis by performing one
step of the “pure” k–refinement procedure typical of Isogeometric Analysis [15] (order
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Figure 1: Cantilever rod model.

elevation without internal knots insertion); in this manner, an higher order B–spline ba-
sis with increased global continuity is obtained by introducing only an additional degree
of freedom with respect to the original one. As a result, the corresponding estimators
and, therefore, the errors associated with the outputs, can be evaluated at a relatively
small computational cost. The case of the classical Finite Element method with the
standard Lagrangian polynomial linear basis is obtained and discussed as a particular
case of the B–spline basis of order one.
As the proposed error estimators are formulated in a general framework, they can be
straightforwardly applied to the analysis of other nonlinear problems, even multidimen-
sional.

The paper is organized as follows. In Sec.2 we introduce the boundary value problem;
in Sec.3 we reformulate the problem in an abstract setting by introducing its correspond-
ing weak form and recall goal–oriented a posteriori error estimates. In Sec.4 we describe
the B–spline based approximation and propose the error estimators. In Sec.5 we pro-
vide numerical tests for the rod problem and discuss the obtained results. Conclusions
follow.

2 Boundary–value problem

We confine attention to the statics of cantilever rods having a planar initially curved
reference configuration subjected to a pair of concentrated loads P̄x and P̄y and a bend-
ing moment M̄ applied at the tip, as represented in Fig.1. The governing differential
equation of these type of rods is given as follows [31]:

EI
d2θ

ds2
+ P̄x sin(θ + θ0) + P̄y cos(θ + θ0) = 0. (1)

where s ∈ Ω = (0, L) represents the arch–length of the rod (curvilinear abscissa) in the
undeformed configuration, with L the length of the rod; θ0 = θ0(s) stands for the initial
slope angle of the rod, θ = θ(s) represents the rotation angle of the normal to rod axis,
and EI is the bending stiffness of the beam, which we assume as constant, being E the
Young modulus and I the cross–sectional moment of inertia. The boundary conditions
for the differential equation (1) are:

θ(0) = 0,

EI
dθ

ds

∣∣∣∣
s=L

= M̄.
(2)
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As it is well known, the boundary–value problem defined by Eqs.(1) and (2) may exhibit
multiple solutions, very often referred in the literature to as elastica shapes. Each
shape corresponds to a critical point of the total potential energy functional defined by
Πp(·) : V → R:

Πp(θ) := U(θ) +W (θ) (3)

where U and W represent the strain (internal) and the external energies of the rod
element, respectively:

U(θ) :=

∫

Ω

1

2
EI

(
dθ

ds

)2

ds, (4)

W (θ) :=

∫

Ω

(
P̄x cos(θ + θ0)− P̄y sin(θ + θ0)

)
ds

+ P̄x(x0(0)− x0(L))− P̄y(y0(0)− y0(L))− M̄θ(L), (5)

with V the kinematically admissible (functional) space defined as:

V := {θ ∈ H1(Ω) : θ(0) = 0}, (6)

whereH1(Ω) represents a standard Hilbert space [1]; the pairs (x0(0), y0(0)) and (x0(L), y0(L))
represent the initial coordinates of the cantilever at s = 0 and s = L, respectively.
The horizontal and vertical displacements of the rod, herein denoted by u = u(s) and
v = v(s), respectively (see Fig.1), are shown to obey the following differential equations:

du

ds
= cos(θ + θ0)−

dx0

ds
,

dv

ds
= sin(θ + θ0)−

dy0
ds

,

(7)

where:
dx0

ds
= cos(θ0),

dy0
ds

= sin(θ0),

(8)

together with the boundary conditions:

u(0) = v(0) = 0. (9)

We are interested in evaluating quantities of interest associated with the solution θ(s)
of problem (1)–(2), in particular, the strain energy U(θ) defined by (4), the rotation at
the tip of the cantilever rods θ(L), and the horizontal and vertical displacements at the
tip of the cantilever rods, u(L) and v(L). The displacements can be obtained from the
integration of equations (7) and (9) as:

u(L) =

∫

Ω

(cos(θ + θ0)− cos(θ0)) ds.

v(L) =

∫

Ω

(sin(θ + θ0)− sin(θ0)) ds.

(10)

3 Goal–oriented a posteriori error estimation

In this Section we recall and discuss the so-called goal–oriented analysis; with this aim,
we reformulate the problem discussed in the previous Section in an abstract setting by
introducing its weak form and the adopted Galerkin approximation scheme.
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3.1 Weak form

The weak form associated with the primal boundary–value problem introduced in the
preceding Section reads:

find θ ∈ V : a(θ)(φ) = f(φ) ∀φ ∈ V , (11)

with the form a(·)(·) : V × V → R semilinear in the second argument (nonlinear in the
first) and differentiable in Fréchet sense, and the functional f(·) : V → R linear and
continuous. We assume that suitable hypothesis for the existence and local uniqueness
of the solutions of problem (11) hold. Additionally, in view of the error estimation, it
is convenient to introduce the primal residual Rpr(·)(·) : V × V → R as:

Rpr(θ)(φ) := f(φ)− a(θ)(φ). (12)

Associated with the solution of problem (11), we desire to evaluate quantities of interest
qi represented by output functionals:

qi = li(θ) i = 1, . . .N, (13)

with li(θ) : V → R suitable differentiable linear or nonlinear functionals.
By introducing the finite dimensional approximation space Vh ⊂ V , the Galerkin ap-
proximated primal problem reads:

find θh ∈ Vh : a(θh)(φh) = f(φh) ∀φh ∈ Vh, (14)

with the associated approximated output functionals qi,h:

qi,h = li(θh) i = 1, . . .N. (15)

If we refer to the problem (1)–(2), we have that V =
{
v ∈ H1(Ω) : v(0) = 0

}
and:

a(θ)(φ) =

∫

Ω

(
EI

dθ

ds

dφ

ds
− P̄x sin(θ + θ0)φ− P̄y cos(θ + θ0)φ

)
ds,

f(φ) = M̄φ(L).

(16)

We are interested in evaluating the following output functionals

q1 = l1(θ) := U(θ), q2 = l2(θ) := θ(L),

q3 = l3(θ) := u(L), q4 = l4(θ) := v(L),
(17)

where l1(θ) is quadratic in θ, l2(θ) is linear in θ and l3(θ) and l4(θ) are nonlinear
trigonometric functionals. Note that, in general, q2 = θ(s0) can be represented as

follows l2(θ) =

∫

Ω

θ(s)δ(s− s0)ds, with δ(s) the delta Dirac function and s0 ∈ Ω.

3.2 A posteriori error estimation

A posteriori error estimation in the goal–oriented framework represents a well estab-
lished tool for errors associated with output functionals, see e.g. [8, 35, 20, 5], especially
in the linear case. In this Section we recall results for nonlinear problems in view of the
definition of the error estimators.
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We introduce the dual variables zi ∈ V , representing the solutions of the following
dual problems:

find zi ∈ V : a′(θ)(z, φ) = l′i(θ)(φ) ∀φ ∈ V , i = 1, . . . , N, (18)

which depend on the primal solution θ ∈ V (11) and on the output functionals li(θ) (13).
The notations a′(·)(·, ·) : V × V × V → R and l′i(·)(·) : V × V → R indicate the first
Fréchet differentials in θ of the form a(θ)(·) and functionals li(θ). Note that, for a given
θ ∈ V , the form a′(θ)(·, ·) : V ×V → R and the functionals l′i(θ)(·) : V → R are linear;
it follows that the dual problems (18) are linear with respect to the dual variables.
Similar considerations follow for higher order differentials. Additionally, it is convenient
to introduce the dual residuals Rdu

i (·)(·, ·) : V × V × V → R as:

Rdu
i (θ)(zi, φ) := l′(θ)(φ) − a′(θ)(zi, φ) i = 1, . . . , N. (19)

The Galerkin approximation of the dual problems (18) reads:

find zi,h ∈ Vh : a′(θh)(zh, φh) = l′i(θh)(φh) ∀φh ∈ Vh, i = 1, . . . , N, (20)

with θh ∈ Vh the solution of the primal problem (14).
The goal of the a posteriori error estimation consists in properly estimate the errors

on the output functionals
|qi − qi,h| i = 1, . . . , N, (21)

once the approximated primal θh ∈ V is provided. With this aim, we recall from [8]
the following Propositions, in which the Galerkin orthogonality property has been taken
into account:

Proposition 3.1 For the Galerkin approximated primal (14) and dual (20) problems,
we have:

qi − qi,h = Eqi +Ri i = 1, . . . , N, (22)

with:

Eqi = Eqi(θ, zi) :=
1

2
Rpr(θh)(zi) +

1

2
Rdu

i (θh)(zi,h, θ), (23)

the remainder terms:

Ri :=
1

2

∫ 1

0

{
l′′′i (θh + tepr)(epr, epr, epr)− a′′′(θh + tepr)(epr, epr, epr, zh + tedui )

−3a′′(θh + tepr)(epr, epr, edui )
}
t(t− 1)dt

(24)
and the primal and dual errors defined as epr := θ − θh and edu := zi − zi,h.

Proposition 3.2 Let us assume that θ̂h ∈ V̂h ⊂ V is an improved (enhanced) approxi-
mated solution with respect to θh ∈ Vh, then:

qi − qi,h = Êqi + R̂i i = 1, . . . , N, (25)

with:
Êqi = Êqi(zi) := Rpr(θh)(zi), (26)

and the reminder terms such that:∣∣∣R̂i

∣∣∣ ≤ max
vh∈θ,θ̂h,θh

|l′′i (vh)(ê
pr, epr)− a′′(vh)(ê

pr, epr, z)| , (27)

being θ, θ̂h, θh the “triangle” spanned in V by the functions θ, θ̂h and θh and êpr := θ−θ̂h.
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Let us observe that:

1. the a posteriori error estimates (22) and (25) are not computable, since they
involve the exact solutions θ ∈ V and zi ∈ V ;

2. the remainder terms Ri in Eq.(24) are null for at most quadratic functionals li(θ)
and bilinear form a(θ)(·) = a(θ, ·);

3. in the case of linear functionals li(θ) and bilinear form a(θ)(·) = a(θ, ·), the re-

mainder terms Ri and R̂i in Eqs.(24) and (27) are null and the errors qi − qi,h =

Eqi ≡ Êqi ;

4. if the differentials of the form a(θ)(·) and functionals li(θ) can be bounded for

θ ∈ V , the remainder terms Ri and R̂i converge to zero with order 3 and 2,
respectively, in the errors epr and edui ;

5. for the rod problem under consideration (see Eqs.(16) and (17)), the remainder

terms Ri and R̂i can be bounded, since the functionals involved are at most
quadratic or depend on trigonometric functions which are C∞ continuous and
bounded; similar properties hold for the form a(θ)(·);

6. the terms Eqi and Êqi in the estimates (22) and (25) can be used to evaluate

the errors |qi − qi,h| if the remainder terms Ri and R̂i are “sufficiently” small;
eventually, they can be used to correct the output functionals si,h as q̃i,h = qi,h+Eqi
or q̂i,h = qi,h + Êqi .

4 Error estimators with B–spline basis

In this Section, following from the goal–oriented a posteriori error estimates recalled in
Sec.3, we propose the error estimators for the Galerkin approximation method with the
use of a B–spline basis.

4.1 Numerical approximation: B–spline basis

We use univariate B–spline basis for the construction of the approximation space Vh;
we refer the reader to [38] and also to [15] for a general overview of the definition and
construction of B–spline basis as well as their properties. We consider B–spline basis
defined in a parametric domain, hereafter denoted by Ω = (0, 1), with associated knot
vectors Ξ = {ξj}

m
j=1, with ξj the jth knot, for some m = n + p + 1, where n is the

total number of degrees of freedom and p is the polynomial order under consideration.
Specifically, we consider open knots vectors Ξ with internal equally spaced Ne knot
spans, for which the total number of degrees of freedom is n = Ne + p; Ne can be
interpreted as the number of “elements” e = 1, . . . , Ne of size h in which Ω is partitioned.
In this case, Ξ ≡ Ξh,p :=

{
{0}p+1, . . . , ξj , . . . , {1}

p+1
}

with ξj = (j − p − 1)h for
j = p+ 2, . . . , n with h := 1/Ne.
The jth B–spline basis function, Bh,p,j(ξ), is defined in Ω by using the knot vector Ξ
with the Cox–de Boor recursion formula (see [38] and [15]); the subscripts h and p in
the basis functions refer to the number of internal knot spans (Ne “elements”) and their
polynomial order p. Examples of such basis functions for p = 1, 2, 3 are highlighted in
Fig.2(top–right), (bottom–left) and (bottom–right), respectively, in the case Ne = 5.
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Figure 2: B–spline basis {Bh,p,j(ξ)}
Ne+p
j=1 (left) and enhanced basis {B2h,p,j(ξ)}

2Ne+p
i=1

(center) and {Bh,p+1,j(ξ)}
Ne+p+1

i=1
(right) for p = 1 (top) and p = 2 (bottom) with ξ ∈ Ω;

Ne = 5 is considered.

We observe that globally high–order continuous B–spline basis functions with compact
support can be easily constructed by introducing a relatively small number of additional
degrees of freedom; indeed, n = Ne + p with respect to the classic Finite Element
method for which C0 globally continuous basis yields n = pNe + 1 degrees of freedom.
Specifically, the basis functions so far constructed are Cp−1 globally continuous and C∞

in each “element”. Additionally, we have that the support of each basis function is p+1
knot spans (“elements”).

Remark 4.1 For a given knot vector Ξ, the B–spline basis of order p = 1 ({Bh,1,j(ξ)}
Ne+1

j=1 )
coincides with the classic linear Finite Element Lagrangian basis.

The geometrical map from the parametric domain Ω to the physical domain Ω,
s(ξ) : Ω → Ω, is defined by using the B–spline basis {Bh,p,j(ξ)}

n
j=1 and n control

points ζj ∈ R as s(ξ) :=

n∑

j=1

Bh,p,j(ξ)ζj . We assume that ζj+1 > ζj for j = 1, . . . , n

in order to have an invertible map, with ζ1 = 0 and ζn = L; it is convenient for this
one–dimensional problem to distribute the control points ζj such that a linear map is
obtained.
The functional space X h,p := span({Bh,p,j(ξ)}

nh,p

j=1 ) of dimension nh,p = Ne + p is

originated by the B–spline basis for ξ ∈ Ω, for which a generic function vh,p(ξ) ∈ X h,p

8



reads vh,p(ξ) =
n∑

j=1

Bh,p,j(ξ)vj for some control variables vj ∈ R. The function vh,p(ξ)

mapped in the physical domain Ω reads vh,p(s) = vh,p(ξ)◦s(ξ)
−1. Due to the invertibility

of the geometrical map, the functions vh,p and vh,p will be indifferently interchanged as
well for the space X h,p with its correspondent Xh,p in Ω.
It follows that the Galerkin approximated solutions of the primal and dual problems
(Eqs.(11) and (18)), which we will indicate as θh,p, zi,h,p in order to highlight their
dependency on the “element” size h and order p, belongs to the functional space

Vh,p :=
{
vh,p ∈ Xh,p : vh,p|ΓD

= 0
}
⊂ V of dimension nVh,p

≤ nh,p; note that with this

new notation, the space Vh ≡ Vh,p and the output functionals qi,h ≡ qi,h,p.
For a more comprehensive analysis of the use of B–splines basis (eventually NURBS
basis) and the related advantages in the context of analysis, we refer the reader to [7]
and [15] (and to the references therein indicated).

We solve the nonlinear primal problem (14) by means of the Newton–Raphson method
[39]. In particular, the approximated solution θh,p ∈ Vh,p is achieved by means of
a converging sequence of intermediate solutions θkh,p ∈ Vh,p, obtained by solving for
k = 0, 1, . . . the following tangent (linear) problem with the consequent update:

find δθkh,p ∈ Vh,p : a′(θkh,p)(δθ
k
h,p, φh,p) = −Rpr(θkh,p)(φh,p) ∀φh,p ∈ Vh,p,

θk+1

h,p = θkh,p + δθkh,p,
(28)

where θ0h,p ∈ Vh,p is a prescribed initial guess of the solution “sufficiently” close to the
solution θh,p; the bilinear form a′(θ)(·, ·) is given in Eq.(18), while the primal residual
Rpr(·)(·) in Eq.(12). The satisfaction of the stopping criterium ‖Rk+1‖ < tolNR‖R

0‖

terminates the procedure for some tolNR ≪ 1, where Rk := {Rpr(θkh,p)(Bh,p,j)}
nVh,p

j=1 .

4.2 Error estimators

We propose and consider the error estimators for the output functionals qi for i =
1, . . . , N by using the a posteriori error estimates (22) and (25) with the approximation
method presented in the previous Section. Due to the difficulties in properly evaluating
the remainder terms Ri and R̂i of Eqs.(24) and (27), we derive error estimators by using

only the terms Ei and Êi of Eqs.(23) and (26).
We remark that while the terms Ei = Ei(θ, zi) depend on both the exact primal and

dual solutions, Êi = Êi(zi) depends only on the exact dual solutions. In both cases,
in order to derive and evaluate the error estimators, we need computable variables in
place of the exact primal and dual solutions. The most natural choice for replacing
the exact solutions with the approximated ones θh,p and zi,h,p ∈ Vh,p is, however, not

effective, since Ei(θh, zi,h,p) = Êi(zi,h,p) ≡ 0 due to the Galerkin orthogonality property
of the primal and dual problems (11) and (18) (see also [5]). For this reason the exact
solutions need to be replaced by computable enhanced approximated solutions; see e.g.
[8] for a wider discussion1.

A first couple of error estimators is obtained by considering enhanced dual solutions
for the terms Êi(zi). A first, standard choice, consists in building the enhanced functional
space V2h,p by uniformly refining the knot spans internal to Ξ such that the dimension

1An alternative possibility consists in using approximated solutions (or gradients of the solutions)
recovered from θh,p and zi,h,p ∈ Vh,p; see e.g. [10].
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of the enhanced space X2h,p is n2h,p = 2Ne+p = 2nh,p−p; this procedure is called knot
insertion ([38]) and we can regard it as “mesh” refinement. However, knot insertion
does not coincide with the h–refinement of the Finite Element method of order p, since
the new basis obtained is Cp−1 continuous through the newly inserted knots and not
C0; they do coincide only for the case p = 1.
As alternative, we propose to use a higher order enhanced dual solution with respect to
the order p considered for the primal solution θh,p ∈ Vh,p. With this aim, in order to
build the higher order enhanced space Vh,p+1, we consider the order elevation of the orig-
inal B–spline basis, but without increasing the multiplicity of the internal knots of the
original knot vector Ξh,p ([38]); only the multiplicity of the external knots {0} and {1} is
increased by one to obtain the new knot vector Ξh,p+1 :=

{
{0}p+2, . . . , ξj , . . . , {1}

p+2
}
.

The result is a B–spline basis with increased Cp continuity through the internal knots
ξj of the knot vector Ξh,p+1

2. This procedure corresponds to a step of the “pure” k–
refinement approach introduced for Isogeometric Analysis [15]; however, this can not be
identified with the standard p–refinement of the Finite Element method which would
maintain C0 continuity through the knots. Finally, the higher order enhanced space

reads Vh,p+1 :=
{
vh,p+1 ∈ Xh,p+1 : vh,p+1|ΓD

= 0
}
, where the space Xh,p+1 assumes

dimension nh,p+1 = Ne + p+ 1 = nh,p + 1.
Examples of the so obtained enhanced B–spline basis are displayed in Fig.2 for the cases
p = 1, 2 and Ne = 5.
The enhanced dual solutions zi,2h,p ∈ V2h,p and zi,h,p+1 ∈ Vh,p+1 are obtained by solving
the following dual problems, respectively:

find zi,2h,p ∈ V2h,p : a′(θh,p)(zi,2h,p, φ2h,p) = l′i(θh,p)(φ2h,p) ∀φ2h,p ∈ V2h,p, (29)

find zi,h,p+1 ∈ Vh,p+1 : a′(θh,p)(zi,h,p+1, φh,p+1) = l′i(θh,p)(φh,p+1) ∀φh,p+1 ∈ Vh,p+1,
(30)

for i = 1, . . . , N , where θh,p ∈ Vh,p is the approximated solution of the primal problem
(not enhanced).

On this basis, from Eq.(26), we define the error estimators ∆̂i,2h,p and ∆̂i,h,p+1 as,
respectively:

∆̂i,2h,p := Êi(zi,2h,p) i = 1, . . . , N, (31)

∆̂i,h,p+1 := Êi(zi,h,p+1) i = 1, . . . , N, (32)

where the ith index refer to the output functional qi. The error estimator ∆̂i,2h,p co-
incides with the one considered in [46], proposed for two–dimensional B–splines and
T–splines.

We provide two additional error estimators from the term Ei(θ, zi) of Eq.(23), for
which the concept of enhanced dual solutions introduced so far can be extended to
the primal solution θh,p ∈ Vh,p. However, we observe that in order to obtain such
enhanced solutions θ2h,p ∈ V2h,p and θh,p+1 ∈ Vh,p+1, nonlinear problems need to be
solved by means of the Newton–Raphson method. In order to avoid this inefficiency in
the evaluation of the errors on the outputs qi associated with the current primal solution
θh,p ∈ Vh,p, we propose an alternative approach based on the tangent problem (28) of
the Newton–Raphson method. In particular, we obtain the enhanced primal solutions
θ̃2h,p ∈ V2h,p and θ̃h,p+1 ∈ Vh,p+1 by solving the following tangent (linear) problems,

2In the standard order elevation procedure the multiplicity of the internal knots is increased in order
to preserve the discontinuity of the derivatives of the enhanced basis with respect to the original one.
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respectively:

find δθ̃2h,p ∈ V2h,p : a′(θh,p)(δθ̃2h,p, φ2h,p) = −Rpr(θh,p)(φ2h,p) ∀φ2h,p ∈ V2h,p,

θ̃2h,p = Π2h,p
h,p θh,p + δθ̃2h,p,

(33)

find δθ̃h,p+1 ∈ Vh,p+1 : a′(θh,p)(δθ̃h,p+1, φh,p+1) = −Rpr(θh,p)(φh,p+1) ∀φh,p+1 ∈ Vh,p+1,

θ̃h,p+1 = Πh,p+1

h,p θh,p + δθ̃h,p+1,

(34)

for the given solution of the primal problem θh,p ∈ Vh,p; Π
2h,p
h,p : Vh,p → V2h,p and

Πh,p+1

h,p : Vh,p → Vh,p+1 represent projection operators of functions vh,p ∈ Vh,p into the
spaces V2h,p and Vh,p+1, respectively.
By recalling Eq.(23) and the enhanced dual solutions of Eqs.(29) and (30), we define
the error estimators ∆i,2h,p and ∆i,h,p+1 as:

∆i,2h,p := Ei(θ̃2h,p, zi,2h,p) i = 1, . . . , N, (35)

∆i,h,p+1 := Ei(θ̃h,p+1, zi,h,p+1) i = 1, . . . , N. (36)

We remark that the error estimators can be conveniently and immediately adopted
in the case of linear problems.

Remark 4.2 Following from Remark 4.1, the error estimators ∆̂i,2h,p and ∆i,2h,p for
p = 1 can be directly used to estimate errors associated with the classic Finite Element
method with linear basis.

We note that the error estimators do not represent rigorous error bounds for the
errors on the output functionals |qi− qi,h|, since the remainder terms Ri and R̂i are not
included in the estimators and the exact primal and dual solutions are replaced with
enhanced solutions. In order to evaluate the capability of the error estimators (31),
(32), (35) and (36) to bound and provide indications of the error (21), we introduce the
following effectivity indexes:

η̂i,2h,p :=
∆̂i,2h,p

|qi − qi,h,p|
, η̂i,h,p+1 :=

∆̂i,h,p+1

|qi − qi,h,p|
,

ηi,2h,p :=
∆i,2h,p

|qi − qi,h,p|
, ηi,h,p+1 :=

∆i,h,p+1

|qi − qi,h,p|
,

(37)

for i = 1, . . . , N . Effectivity indexes larger than 1 indicate the capability of the error es-
timator to bound the error; however, sharp estimators should exhibit effectivity indexes
close to 1. Asymptotic effectivity indexes are obtained for large number of degrees of
freedom nVh,p

.

Remark 4.3 Although we are only dealing with a one–dimensional problem, it is still
interesting to discuss the computational costs associated with the evaluation of the es-
timators. With this respect, the estimator ∆̂i,h,p+1 is the most convenient one, since
the primal residual is evaluated with the enhanced dual solutions zi,h,p+1 for which only
an additional degree of freedom is added with respect to θh,p. Conversely, the estimator
∆i,2h,p is the most expensive to evaluate since both the primal and dual residuals need

to be evaluated with the enhanced primal and solutions θ̃2h,p and zi,2h,p, each containing
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Test EI L P̄x P̄y M̄

1.1 10.0 1.00 0.0 100 0.0

1.2 ” ”
1

2

π2EI

4L2
10.0 ”

1.3 ” ”
3

2

π2EI

4L2
” ”

2 3.60 · 103 π −2.062648 0.0 0.0

3.1 0.50 4.00 0.150 −1.00 −
1

10

πEI

L
3.2 0.50 4.00 1.00 0.0 0.0

4 10.0 (2π − α)R 50.0 0.0 0.0

Table 1: Data for the Test problems 1.1–1.3, 2, 3.1–3.2 and 4.

Test θ0(s) “Exact” Ne = 2 4 8 16 32 64 128

1.1 π s 5 5, 5 5, 5 5, 5 5, 5 5, 5 5, 5 5, 5
1.2 ” 5 5, 5 5, 5 5, 5 5, 5 5, 5 5, 5 5, 5
1.3 ” 4 5, 5 5, 5 5, 5 5, 5 5, 5 5, 5 5, 5

2 −π s 4 4, 4 4, 4 4, 4 4, 4 4, 4 4, 4 4, 4

3.1 −π s 7 10, 16 11, 13 10, 6 7, 7 7, 7 7, 7 7, 7
3.2 π/2 s 5 4, 4 4, 4 5, 5 5, 5 5, 5 5, 5 5, 5

4 − cos(π s) 5 4, 6 5, 7 5, 6 5, 5 5, 5 5, 5 5, 5

Table 2: Number of Newton–Raphson iterative steps starting from the initial solution
θ0(s) for the “exact“ solution and the approximate ones with Ne ∈ {2r}7r=2 (p = 1,
p = 2) for the Test problems 1.1–1.3, 2, 3.1–3.2 and 4; the pairs in the entries of the
table indicate the steps for p = 1 and p = 2.

a number of degrees of freedom about (2Ne + p)/(Ne + p) times higher. Among these,

intermediate costs are obtained with ∆̂i,2h,p and ∆i,h,p+1. Indeed, ∆̂i,2h,p only require
the evaluation of the primal residual but with the enhanced dual solution zi,2h,p, while
∆i,h,p+1 evaluates both the primal and dual residuals with the enhanced primal and dual

solutions θ̃h,p+1 and zi,h,p+1. In general, the cost associated with ∆̂i,2h,p could be higher
than the one for ∆i,h,p+1 for a sufficiently large Ne.
Additionally, the cost associated with the computations of the enhanced primal and dual
solutions should be taken into account. With this respect the estimators ∆̂i,2h,p and

∆̂i,h,p+1 only require the solution of the linear dual problems (29) and (30), while for
∆i,2h,p and ∆i,h,p+1, also the enhanced primal ones (33) and (34) need to be solved,
with consequent increased computational costs.

5 Results and discussion

In this Section we report the numerical results obtained using the proposed error es-
timators applied to the solution of various Test problems of the same type as the one
introduced in Sec.2. The error estimators are evaluated and analyzed in terms of their
effectivity indexes; a discussion follows from these results.
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Figure 3: Undeformed configuration (dashed line, −−) and deformed ones (continu-
ous lines, —) for Tests 1.1–1.3 (top–left), 2 (top–right), 3.1–3.2 (bottom–left) and 4
(bottom–right).

5.1 Numerical results

We study four Test problems, Tests 1–4; Tests 1.1–1.3 and 3.1–3.2 represent the same
problems but with different load conditions. The data used for the various Test problems
are reported in Table 1 (see Sec.2 for the definition of the notation). We note that Test 4
does not correspond to a cantilever problem, but to a simply supported rod problem.
However, as both P̄y and M̄ are set to zero, we can make use of the equations for the
cantilever problem with no changes; in particular, for this Test we choose α = 4π/5 and
R = 1. The “exact” solutions of the Test problems are plotted in Fig.3 in terms of the
displacements u(s) and v(s). Such solutions are obtained using the Newton–Raphson
method with initial solutions as the ones indicated with θ0(s) in Table 2.

We solve the Test problems using B–spline bases of orders p = 1 and p = 2 for
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Figure 4: Test 3.2. Comparison of the approximated solutions θh,p (top) and their

derivatives
dθh,p
ds

(bottom) with the “exact” ones (continuous lines, −) for p = 1 (dashed

lines, −−) and p = 2 (dash–dotted lines, − ·); Ne = 4 (left) and Ne = 8 (right).

decreasing values of h = 1/Ne; in particular, we assume Ne = 2, 4, 8, . . . , 128 (Ne ∈
{2r}7r=2). A 7–point Gauss quadrature rule is used for the evaluation of the integrals
in each element e = 1, . . . , Ne. Also, the tolerance for the stopping criterion of the
Newton–Raphson method (28) is set to tolNR = 10−12.
Additionally, we assume the approximated solutions obtained by solving the primal
problem with a B–spline basis of order p = 4 with an open knot vector Ξ partitioned
into Ne = 1, 024 equally spaced “elements” as the “exact” solutions.
In Fig.4 we compare the approximated solutions and their derivatives, obtained for
Test 3.2 with p = 1, 2 and Ne = 4, 8, against the “exact” solutions.
In Table 2 we report the number of Newton–Raphson iterative steps required for conver-
gence to the approximate primal solutions θh,p ∈ Vh,p in comparison to those obtained
for convergence to the “exact” solution. We can observe that the obtained number of
steps is equal to the one obtained for convergence to the “exact” solution in most of
the cases, with the exception of Tests 3 and 4 when a small number of “elements” Ne

is considered.
In Tables 3–9 we report the effectivity indexes (37) of the error estimators associated

with all the Test problems and output functionals qi for i = 1, . . . , N = 4 (the index
i is dropped in the effectivity indexes, since deducible from the context) for all the
approximations Vh,p obtained with Ne ∈ {2r}7r=2 and p = 1, 2. The values of the
“exact” output functionals qi are reported as well as the asymptotic convergence orders
of the errors |qi − qi,h,p| with respect to h; these correspond to about 2 and 4 in the
cases p = 1 and p = 2, respectively. The output functional q4 is not discussed for Test 4
since in this case q4 ≡ 0 and q4,h,p = 0 except for round–off errors.
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p = 1 p = 2

q1

Ne |q1 − q1,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 1.3257e+ 00 0.79 1.18 0.79 0.60
4 3.2983e− 01 0.89 2.05 0.89 1.38
8 8.0124e− 02 0.95 2.68 0.95 1.83
16 1.9863e− 02 0.97 3.00 0.97 2.03
32 4.9551e− 03 0.97 3.15 0.97 2.12
64 1.2381e− 03 0.97 3.22 0.97 2.16
128 3.0949e− 04 0.98 3.26 0.98 2.18

Ne |q1 − q1,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 1.3831e− 01 0.51 0.97 0.51 1.73
4 5.4334e− 03 0.42 1.65 0.42 6.83
8 3.1742e− 04 0.40 1.63 0.40 8.32
16 1.9405e− 05 0.39 1.60 0.39 8.04
32 1.1957e− 06 0.39 1.59 0.39 7.70
64 7.4366e− 08 0.39 1.58 0.39 7.49
128 4.6413e− 09 0.39 1.58 0.39 7.38

Conv. Order = 2.00 Conv. Order = 4.00

q2

Ne |q2 − q2,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 4.5317e− 02 0.75 0.82 0.75 0.93
4 1.0614e− 02 0.75 0.96 0.75 1.11
8 2.6207e− 03 0.75 0.99 0.75 1.15
16 6.5324e− 04 0.75 1.00 0.75 1.16
32 1.6319e− 04 0.75 1.00 0.75 1.17
64 4.0791e− 05 0.75 1.00 0.75 1.17
128 1.0197e− 05 0.75 1.00 0.75 1.17

Ne |q2 − q2,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 9.0134e− 04 0.92 0.66 0.92 0.18
4 7.9694e− 05 0.93 0.96 0.93 0.83
8 5.3464e− 06 0.94 0.99 0.94 1.01
16 3.3891e− 07 0.94 1.00 0.94 0.87
32 2.1228e− 08 0.94 1.00 0.94 0.75
64 1.3272e− 09 0.94 1.00 0.94 0.69
128 8.2955e− 11 0.94 1.00 0.94 0.66

Conv. Order = 2.00 Conv. Order = 4.00

q3

Ne |q3 − q3,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 2.7692e− 02 0.72 0.98 0.72 0.68
4 6.3033e− 03 0.74 1.05 0.74 0.50
8 1.5299e− 03 0.75 1.02 0.75 0.41
16 3.7993e− 04 0.75 1.01 0.75 0.37
32 9.4829e− 05 0.75 1.00 0.75 0.36
64 2.3698e− 05 0.75 1.00 0.75 0.36
128 5.9239e− 06 0.75 1.00 0.75 0.36

Ne |q3 − q3,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 2.0920e− 05 1.64 9.74 1.64 62.5
4 8.2291e− 06 1.02 0.45 1.02 39.6
8 4.5144e− 08 0.92 3.78 0.92 526
16 6.1625e− 09 0.91 0.39 0.91 228
32 5.7855e− 10 0.93 0.89 0.93 143
64 4.0226e− 11 0.94 0.97 0.94 124
128 2.5867e− 12 0.94 0.99 0.93 119

Conv. Order = 2.00 Conv. Order = 3.96

q4

Ne |q4 − q4,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 4.3420e− 02 0.81 0.88 0.81 0.75
4 1.0687e− 02 0.77 0.97 0.77 0.67
8 2.6301e− 03 0.75 1.00 0.75 0.64
16 6.5463e− 04 0.75 1.00 0.75 0.62
32 1.6348e− 04 0.75 1.00 0.75 0.62
64 4.0858e− 05 0.75 1.00 0.75 0.61
128 1.0214e− 05 0.75 1.00 0.75 0.61

Ne |q4 − q4,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 2.0822e− 03 0.98 0.93 0.98 0.28
4 8.4967e− 05 0.95 1.08 0.95 2.82
8 5.0163e− 06 0.94 1.03 0.94 3.87
16 3.0663e− 07 0.94 1.01 0.94 3.72
32 1.8916e− 08 0.94 1.00 0.94 3.51
64 1.1771e− 09 0.94 1.00 0.94 3.37
128 7.3478e− 11 0.94 1.00 0.94 3.29

Conv. Order = 2.00 Conv. Order = 4.00

q1 = 17.954, q2 = 1.4303, q3 = −0.55500, q4 = 0.81061

Table 3: Test 1.1. Errors and effectivity indexes η̂2h,p, η̂h,p+1, η2h,p and ηh,p+1 for the
output functionals q1, q2, q3 and q4 with Ne ∈ {2r}7r=2 and p = 1, 2; the asymptotic
convergence orders and “exact” values of the output functionals are reported.
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p = 1 p = 2

q1

Ne |q1 − q1,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 2.9640e− 01 0.22 1.39 0.22 0.73
4 7.3836e− 02 0.20 1.55 0.20 0.83
8 1.8444e− 02 0.20 1.64 0.20 0.88
16 4.6100e− 03 0.20 1.69 0.20 0.91
32 1.1524e− 03 0.20 1.71 0.20 0.92
64 2.8810e− 04 0.20 1.72 0.20 0.93
128 7.2026e− 05 0.20 1.73 0.20 0.93

Ne |q1 − q1,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 6.7273e− 04 0.54 0.72 0.54 1.82
4 4.5086e− 05 0.58 1.21 0.58 7.38
8 2.6654e− 06 0.57 1.33 0.57 16.7
16 1.6335e− 07 0.57 1.37 0.57 34.5
32 1.0153e− 08 0.57 1.38 0.57 69.9
64 6.3364e− 10 0.57 1.39 0.57 140
128 – – – – –

Conv. Order = 2.00 Conv. Order = 4.12

q2

Ne |q2 − q2,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 8.0199e− 03 0.82 1.15 0.82 0.68
4 1.8738e− 03 0.77 1.04 0.77 0.48
8 4.6054e− 04 0.75 1.01 0.75 0.34
16 1.1464e− 04 0.75 1.00 0.75 0.27
32 2.8631e− 05 0.75 1.00 0.75 0.23
64 7.1557e− 06 0.75 1.00 0.75 0.21
128 1.7888e− 06 0.75 1.00 0.75 0.20

Ne |q2 − q2,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 3.6097e− 05 0.94 0.76 0.94 11.4
4 2.3489e− 06 0.94 0.98 0.94 60.2
8 1.3765e− 07 0.94 1.00 0.94 146
16 8.4227e− 09 0.94 1.00 0.94 311
32 5.2336e− 10 0.94 1.00 0.94 639
64 3.2659e− 11 0.94 1.00 0.94 1293
128 – – – – –

Conv. Order = 2.00 Conv. Order = 4.00

q3

Ne |q3 − q3,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 1.7068e− 02 0.73 1.03 0.73 0.65
4 4.3594e− 03 0.75 1.01 0.75 0.71
8 1.0957e− 03 0.75 1.00 0.75 0.74
16 2.7430e− 04 0.75 1.00 0.75 0.76
32 6.8597e− 05 0.75 1.00 0.75 0.77
64 1.7151e− 05 0.75 1.00 0.75 0.77
128 4.2878e− 06 0.75 1.00 0.75 0.77

Ne |q3 − q3,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 7.4043e− 05 0.94 0.92 0.94 3.26
4 4.4798e− 06 0.94 1.00 0.94 15.1
8 2.6965e− 07 0.94 1.00 0.94 34.7
16 1.6661e− 08 0.94 1.00 0.94 72.0
32 1.0381e− 09 0.94 1.00 0.94 147
64 6.4829e− 11 0.94 1.00 0.94 297
128 – – – – –

Conv. Order = 2.00 Conv. Order = 4.00

q4

Ne |q4 − q4,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 3.0014e− 02 0.77 1.03 0.77 0.64
4 7.4033e− 03 0.75 1.01 0.75 0.70
8 1.8446e− 03 0.75 1.00 0.75 0.73
16 4.6075e− 04 0.75 1.00 0.75 0.75
32 1.1516e− 04 0.75 1.00 0.75 0.75
64 2.8789e− 05 0.75 1.00 0.75 0.76
128 7.1973e− 06 0.75 1.00 0.75 0.76

Ne |q4 − q4,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 3.8781e− 06 0.86 1.55 0.86 79.0
4 7.1194e− 07 0.95 0.77 0.95 158
8 3.8296e− 08 0.94 0.95 0.94 420
16 2.2311e− 09 0.94 0.99 0.94 942
32 1.3647e− 10 0.94 1.00 0.94 1967
64 8.4783e− 12 0.94 1.00 0.94 3998
128 – – – – –

Conv. Order = 2.00 Conv. Order = 4.01

q1 = 3.7685, q2 = 0.75854, q3 = −0.14608, q4 = 0.46902

Table 4: Test 1.2. Errors and effectivity indexes η̂2h,p, η̂h,p+1, η2h,p and ηh,p+1 for the
output functionals q1, q2, q3 and q4 with Ne ∈ {2r}7r=2 and p = 1, 2; the asymptotic
convergence orders and “exact” values of the output functionals are reported. Errors
and effectivity indexes for Ne = 128 and p = 2 are not reported since roundoff errors
disrupt the convergence order.
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p = 1 p = 2

q1

Ne |q1 − q1,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 9.6686e− 01 0.09 1.81 0.09 0.88
4 2.2514e− 01 0.21 2.09 0.21 0.97
8 5.5864e− 02 0.23 2.21 0.23 1.00
16 1.3945e− 02 0.24 2.27 0.24 1.01
32 3.4849e− 03 0.24 2.29 0.24 1.02
64 8.7115e− 04 0.24 2.31 0.24 1.02
128 2.1778e− 04 0.24 2.31 0.24 1.02

Ne |q1 − q1,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 1.4633e− 02 0.21 0.01 0.21 0.05
4 1.8363e− 03 0.55 1.19 0.55 0.53
8 9.3996e− 05 0.51 1.39 0.51 3.06
16 5.5185e− 06 0.50 1.44 0.50 7.78
32 3.4011e− 07 0.49 1.45 0.49 17.0
64 – – – – –
128 – – – – –

Conv. Order = 2.00 Conv. Order = 4.02

q2

Ne |q2 − q2,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 1.4640e− 02 0.54 0.53 0.54 2.26
4 4.3532e− 03 0.71 0.91 0.71 1.83
8 1.1161e− 03 0.74 0.98 0.74 1.58
16 2.8063e− 04 0.75 0.99 0.75 1.45
32 7.0257e− 05 0.75 1.00 0.75 1.38
64 1.7570e− 05 0.75 1.00 0.75 1.34
128 4.3929e− 06 0.75 1.00 0.75 1.32

Ne |q2 − q2,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 3.7772e− 04 0.93 0.64 0.93 2.29
4 3.3988e− 05 0.95 1.01 0.95 19.5
8 1.6319e− 06 0.94 1.03 0.94 56.1
16 9.3868e− 08 0.94 1.01 0.94 123
32 5.7736e− 09 0.94 1.00 0.94 252
64 – – – – –
128 – – – – –

Conv. Order = 2.00 Conv. Order = 4.02

q3

Ne |q3 − q3,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 5.2081e− 02 0.77 1.11 0.77 0.70
4 1.2768e− 02 0.75 1.03 0.75 0.74
8 3.1931e− 03 0.75 1.01 0.75 0.81
16 7.9846e− 04 0.75 1.00 0.75 0.85
32 1.9963e− 04 0.75 1.00 0.75 0.88
64 4.9908e− 05 0.75 1.00 0.75 0.89
128 1.2477e− 05 0.75 1.00 0.75 0.90

Ne |q3 − q3,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 8.2262e− 04 0.91 0.74 0.91 1.38
4 7.2521e− 05 0.95 1.01 0.95 9.03
8 3.8584e− 06 0.94 1.02 0.94 22.6
16 2.3013e− 07 0.94 1.01 0.94 47.1
32 1.4232e− 08 0.94 1.00 0.94 95.0
64 – – – – –
128 – – – – –

Conv. Order = 2.00 Conv. Order = 4.02

q4

Ne |q4 − q4,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 2.1520e− 02 0.86 1.03 0.86 0.62
4 4.6625e− 03 0.78 1.01 0.78 0.68
8 1.1309e− 03 0.76 1.00 0.76 0.76
16 2.8067e− 04 0.75 1.00 0.75 0.81
32 7.0041e− 05 0.75 1.00 0.75 0.84
64 1.7502e− 05 0.75 1.00 0.75 0.86
128 4.3751e− 06 0.75 1.00 0.75 0.86

Ne |q4 − q4,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 5.1043e− 04 0.97 1.15 0.97 0.53
4 8.1165e− 06 0.92 1.66 0.92 31.6
8 6.0445e− 07 0.93 1.09 0.93 62.1
16 4.1133e− 08 0.94 1.02 0.94 117
32 2.6268e− 09 0.94 1.00 0.94 233
64 – – – – –
128 – – – – –

Conv. Order = 2.00 Conv. Order = 3.97

q1 = 20.877, q2 = 1.7732, q4 = −0.68420, q3 = 0.80464

Table 5: Test 1.3. Errors and effectivity indexes η̂2h,p, η̂h,p+1, η2h,p and ηh,p+1 for the
output functionals q1, q2, q3 and q4 with Ne ∈ {2r}7r=2 and p = 1, 2; the asymptotic
convergence orders and “exact” values of the output functionals are reported. Errors
and effectivity indexes for Ne = 64, 128 and p = 2 are not reported since roundoff errors
disrupt the convergence order.
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p = 1 p = 2

q1

Ne |q1 − q1,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 2.2404e+ 00 1.84 1.26 1.84 1.20
4 4.7824e− 01 2.30 0.54 2.30 1.58
8 1.1172e− 01 2.48 0.30 2.48 1.44
16 2.7423e− 02 2.53 0.84 2.53 1.24
32 6.8241e− 03 2.55 1.12 2.55 1.13
64 1.7040e− 03 2.55 1.26 2.55 1.06
128 4.2589e− 04 2.55 1.33 2.55 1.03

Ne |q1 − q1,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 1.1787e− 01 0.66 0.48 0.66 2.99
4 1.0964e− 02 0.15 1.53 0.15 1.00
8 6.3700e− 04 0.18 1.98 0.18 1.17
16 3.8167e− 05 0.21 2.14 0.21 3.37
32 2.3581e− 06 0.22 2.19 0.22 7.82
64 1.4696e− 07 0.22 2.22 0.22 16.7
128 9.1781e− 09 0.22 2.23 0.22 34.4

Conv. Order = 2.00 Conv. Order = 4.00

q2

Ne |q2 − q2,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 1.0033e− 01 0.72 0.89 0.72 0.89
4 2.7267e− 02 0.74 0.98 0.74 0.97
8 6.8939e− 03 0.75 1.00 0.75 0.99
16 1.7263e− 03 0.75 1.00 0.75 1.00
32 4.3174e− 04 0.75 1.00 0.75 1.00
64 1.0794e− 04 0.75 1.00 0.75 1.00
128 2.6986e− 05 0.75 1.00 0.75 1.00

Ne |q2 − q2,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 5.1806e− 03 0.94 0.95 0.94 0.86
4 2.5594e− 04 0.94 1.11 0.94 0.98
8 1.3941e− 05 0.94 1.07 0.94 0.95
16 8.4825e− 07 0.94 1.02 0.94 0.84
32 5.2712e− 08 0.94 1.01 0.94 0.66
64 3.2899e− 09 0.94 1.00 0.94 0.31
128 2.0555e− 10 0.94 1.00 0.94 0.37

Conv. Order = 2.00 Conv. Order = 4.00

q3

Ne |q3 − q3,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 6.6589e− 01 0.79 0.50 0.79 0.66
4 2.5881e− 01 0.76 0.80 0.76 0.88
8 7.1712e− 02 0.75 0.94 0.75 0.97
16 1.8363e− 02 0.75 0.98 0.75 0.99
32 4.6178e− 03 0.75 1.00 0.75 1.00
64 1.1561e− 03 0.75 1.00 0.75 1.00
128 2.8913e− 04 0.75 1.00 0.75 1.00

Ne |q3 − q3,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 1.6235e− 01 0.99 0.79 0.99 0.99
4 1.1652e− 02 0.95 0.90 0.95 1.04
8 6.7858e− 04 0.94 0.98 0.94 1.10
16 4.1144e− 05 0.94 1.00 0.94 1.21
32 2.5510e− 06 0.94 1.00 0.94 1.43
64 1.5912e− 07 0.94 1.00 0.94 1.87
128 9.9398e− 09 0.94 1.00 0.94 2.74

Conv. Order = 2.00 Conv. Order = 4.00

q4

Ne |q4 − q4,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 1.0131e+ 00 0.77 0.71 0.77 0.10
4 2.3267e− 01 0.76 0.97 0.76 0.73
8 5.6522e− 02 0.75 0.99 0.75 0.93
16 1.4022e− 02 0.75 1.00 0.75 0.97
32 3.4986e− 03 0.75 1.00 0.75 0.98
64 8.7422e− 04 0.75 1.00 0.75 0.99
128 2.1853e− 04 0.75 1.00 0.75 1.00

Ne |q4 − q4,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 6.5408e− 03 0.55 2.51 0.55 38.1
4 3.1507e− 03 0.93 0.90 0.93 3.05
8 2.2060e− 04 0.94 0.97 0.94 3.05
16 1.4141e− 05 0.94 0.99 0.94 6.90
32 8.8924e− 07 0.94 1.00 0.94 14.8
64 5.5663e− 08 0.94 1.00 0.94 30.5
128 3.4803e− 09 0.94 1.00 0.94 62.1

Conv. Order = 2.00 Conv. Order = 4.00

q1 = 66.987, q2 = −2.2807, q3 = 149.51, q4 = −66.795

Table 6: Test 2. Errors and effectivity indexes η̂2h,p, η̂h,p+1, η2h,p and ηh,p+1 for the
output functionals q1, q2, q3 and q4 with Ne ∈ {2r}7r=2 and p = 1, 2; the asymptotic
convergence orders and “exact” values of the output functionals are reported.
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p = 1 p = 2

q1

Ne |q1 − q1,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 1.0620e+ 00 0.11 0.02 0.11 0.01
4 1.8859e− 01 1.10 0.85 1.10 0.75
8 4.6160e− 03 9.65 2.33 9.65 6.96
16 6.6637e− 03 0.62 2.25 0.62 0.85
32 1.7265e− 03 0.58 2.62 0.58 1.07
64 4.3536e− 04 0.58 2.71 0.58 1.12
128 1.0908e− 04 0.57 2.74 0.57 1.14

Ne |q1 − q1,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 7.1760e− 02 0.50 1.24 0.50 1.26
4 4.5158e− 02 3.33 2.07 3.33 2.37
8 3.2464e− 02 0.75 0.86 0.75 0.87
16 2.4634e− 04 0.24 2.41 0.24 1.36
32 1.3965e− 05 0.03 2.05 0.03 1.05
64 8.1306e− 07 0.01 2.00 0.01 0.82
128 4.9573e− 08 0.01 1.99 0.01 0.41

Conv. Order = 2.00 Conv. Order = 4.04

q2

Ne |q2 − q2,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 3.6770e+ 00 0.24 0.03 0.24 0.02
4 1.2626e− 01 3.00 0.46 3.00 0.57
8 6.5856e− 02 1.03 1.42 1.03 1.47
16 4.4395e− 03 0.78 1.51 0.78 1.84
32 1.0978e− 03 0.76 1.11 0.76 1.61
64 2.7624e− 04 0.75 1.03 0.75 1.56
128 6.9183e− 05 0.75 1.01 0.75 1.55

Ne |q2 − q2,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 1.3917e− 01 0.23 0.66 0.24 0.92
4 1.0903e− 01 1.83 0.69 1.83 0.84
8 4.2557e− 02 1.15 0.61 1.15 0.97
16 3.2737e− 04 0.98 1.37 0.98 1.13
32 8.3927e− 06 0.95 1.26 0.95 1.10
64 3.8305e− 07 0.94 1.08 0.94 0.08
128 2.2432e− 08 0.94 1.02 0.94 2.00

Conv. Order = 2.00 Conv. Order = 4.10

q3

Ne |q3 − q3,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 8.3879e− 01 0.62 0.09 0.62 0.06
4 5.9996e− 02 0.15 0.96 0.15 0.27
8 2.7870e− 02 0.79 1.13 0.79 0.91
16 6.4018e− 03 0.75 1.06 0.75 0.80
32 1.6060e− 03 0.75 1.02 0.75 0.76
64 4.0219e− 04 0.75 1.00 0.75 0.75
128 1.0059e− 04 0.75 1.00 0.75 0.75

Ne |q3 − q3,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 4.1045e− 02 0.28 0.49 0.28 0.26
4 3.0216e− 02 1.13 0.67 1.13 0.87
8 1.4802e− 03 1.50 0.17 1.50 0.70
16 8.7423e− 05 0.96 1.24 0.96 0.69
32 3.8437e− 06 0.94 1.08 0.94 1.00
64 2.1475e− 07 0.94 1.02 0.94 2.13
128 1.3055e− 08 0.94 1.01 0.94 4.44

Conv. Order = 2.00 Conv. Order = 4.04

q4

Ne |q4 − q4,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 1.4515e+ 00 0.03 0.01 0.03 0.01
4 3.1567e− 01 1.29 0.63 1.29 0.53
8 3.4253e− 02 0.34 0.44 0.34 0.13
16 1.7935e− 02 0.74 1.01 0.74 0.83
32 4.5925e− 03 0.75 1.01 0.75 0.82
64 1.1556e− 03 0.75 1.00 0.75 0.81
128 2.8938e− 04 0.75 1.00 0.75 0.81

Ne |q4 − q4,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 2.1004e− 02 1.00 3.08 0.98 5.55
4 1.3415e− 03 58.2 44.3 58.2 46.4
8 4.1508e− 02 1.04 0.96 1.04 1.10
16 5.5119e− 04 0.95 1.20 0.95 1.14
32 2.8052e− 05 0.94 1.04 0.94 1.05
64 1.6060e− 06 0.94 1.01 0.94 1.35
128 9.7772e− 08 0.94 1.00 0.94 2.02

Conv. Order = 2.00 Conv. Order = 4.04

q1 = 1.1153, q2 = −2.7978, q3 = −1.5349, q4 = 0.63397

Table 7: Test 3.1. Errors and effectivity indexes η̂2h,p, η̂h,p+1, η2h,p and ηh,p+1 for the
output functionals q1, q2, q3 and q4 with Ne ∈ {2r}7r=2 and p = 1, 2; the asymptotic
convergence orders and “exact” values of the output functionals are reported.

19



p = 1 p = 2

q1

Ne |q1 − q1,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 2.4354e− 01 0.11 0.07 0.11 0.01
4 8.8545e− 02 0.18 0.76 0.18 0.60
8 3.1482e− 02 0.14 1.30 0.14 0.56
16 9.9188e− 03 0.03 1.80 0.03 0.92
32 2.5746e− 03 0.02 1.92 0.02 0.98
64 6.4948e− 04 0.02 1.95 0.02 0.99
128 1.6274e− 04 0.02 1.96 0.02 1.00

Ne |q1 − q1,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 1.6649e− 01 0.29 0.21 0.29 0.22
4 4.7141e− 02 0.55 0.33 0.55 0.34
8 1.0316e− 02 0.24 0.48 0.24 0.32
16 3.8222e− 04 0.01 2.37 0.01 1.13
32 1.7474e− 05 0.01 2.13 0.01 0.95
64 9.9520e− 07 0.01 2.04 0.01 0.79
128 6.0669e− 08 0.01 2.01 0.01 0.54

Conv. Order = 2.00 Conv. Order = 4.04

q2

Ne |q2 − q2,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 1.3614e− 01 0.79 0.81 0.80 0.81
4 1.2298e− 02 5.43 2.06 5.43 0.35
8 4.5826e− 02 1.10 1.13 1.10 1.42
16 1.2723e− 03 0.83 1.65 0.83 0.79
32 2.6283e− 04 0.77 1.25 0.77 0.95
64 6.3235e− 05 0.75 1.07 0.75 0.96
128 1.5679e− 05 0.75 1.02 0.75 0.97

Ne |q2 − q2,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 8.9991e− 03 7.41 1.84 7.35 0.51
4 5.0555e− 02 2.29 1.30 2.29 1.41
8 4.4598e− 02 1.04 1.12 1.04 0.96
16 3.0119e− 05 0.86 5.93 0.86 4.96
32 3.2597e− 06 0.95 1.49 0.95 4.41
64 1.6636e− 07 0.94 1.14 0.94 8.74
128 9.3557e− 09 0.94 1.04 0.94 17.8

Conv. Order = 2.00 Conv. Order = 4.10

q3

Ne |q3 − q3,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 5.0522e− 01 0.73 0.37 0.73 0.36
4 1.6131e− 01 0.57 0.72 0.57 0.53
8 6.6343e− 02 0.69 1.03 0.69 0.93
16 1.9524e− 02 0.74 1.05 0.74 1.02
32 5.0777e− 03 0.75 1.02 0.75 1.00
64 1.2814e− 03 0.75 1.00 0.75 1.00
128 3.2110e− 04 0.75 1.00 0.75 1.00

Ne |q3 − q3,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 3.0211e− 01 0.62 0.61 0.62 0.60
4 1.1336e− 01 0.82 0.35 0.82 0.25
8 1.7674e− 02 0.93 0.91 0.93 0.97
16 7.6475e− 04 0.95 1.26 0.95 1.48
32 3.4985e− 05 0.94 1.07 0.94 1.64
64 1.9942e− 06 0.94 1.02 0.94 2.21
128 1.2161e− 07 0.94 1.00 0.94 3.42

Conv. Order = 2.00 Conv. Order = 4.04

q4

Ne |q4 − q4,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 7.3282e− 02 0.98 0.36 0.98 0.38
4 5.6749e− 02 1.09 1.04 1.09 1.11
8 1.1139e− 03 0.99 0.18 0.99 2.35
16 1.8407e− 03 0.77 1.03 0.77 0.89
32 4.4339e− 04 0.76 1.01 0.76 0.95
64 1.0988e− 04 0.75 1.00 0.75 0.97
128 2.7413e− 05 0.75 1.00 0.75 0.99

Ne |q4 − q4,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 7.0421e− 02 1.69 1.08 1.68 1.17
4 3.2583e− 02 1.31 1.23 1.31 1.21
8 5.6490e− 03 1.05 1.17 1.05 1.10
16 3.5804e− 05 0.96 0.98 0.96 0.49
32 1.4246e− 06 0.94 1.00 0.94 3.90
64 8.1164e− 08 0.94 1.00 0.94 9.46
128 4.9944e− 09 0.94 1.00 0.94 19.9

Conv. Order = 2.00 Conv. Order = 4.04

q1 = 0.32890, q2 = 0.87998, q3 = −0.75134, q4 = −0.034175

Table 8: Test 3.2. Errors and effectivity indexes η̂2h,p, η̂h,p+1, η2h,p and ηh,p+1 for the
output functionals q1, q2, q3 and q4 with Ne ∈ {2r}7r=2 and p = 1, 2; the asymptotic
convergence orders and “exact” values of the output functionals are reported.
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p = 1 p = 2

q1

Ne |q1 − q1,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 2.1779e+ 01 0.51 0.68 0.60 0.85
4 9.9297e+ 00 0.03 0.81 0.02 0.41
8 1.6917e+ 00 0.35 2.18 0.35 0.85
16 4.0822e− 01 0.44 2.54 0.44 0.98
32 1.0397e− 01 0.44 2.57 0.44 0.99
64 2.6120e− 02 0.44 2.57 0.44 0.99
128 6.5381e− 03 0.44 2.58 0.44 1.00

Ne |q1 − q1,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 7.6587e+ 00 0.37 0.42 0.42 0.29
4 5.8921e− 02 2.74 12.0 3.90 11.1
8 8.9579e− 02 0.14 3.70 0.14 1.81
16 9.3778e− 03 0.34 1.88 0.34 1.16
32 4.6134e− 04 0.27 1.77 0.27 1.03
64 2.7059e− 05 0.25 1.74 0.25 1.01
128 1.6646e− 06 0.25 1.74 0.25 1.00

Conv. Order = 2.00 Conv. Order = 4.02

q2

Ne |q2 − q2,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 5.1712e− 01 0.96 1.28 1.33 1.04
4 8.9262e− 03 0.72 1.31 0.41 0.39
8 1.3851e− 03 0.65 1.22 212 482
16 5.9992e− 04 0.73 1.03 59.0 230
32 1.6827e− 04 0.75 1.01 4.17 15.1
64 4.3218e− 05 0.75 1.00 1.18 5.25
128 1.0876e− 05 0.75 1.00 0.16 2.01

Ne |q2 − q2,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 1.3746e− 01 0.95 0.46 3.85 6.50
4 8.9098e− 03 0.93 0.86 0.14 2.33
8 6.6169e− 04 0.94 1.11 9.73 18.9
16 4.2862e− 05 0.94 1.03 2.73 8.03
32 2.5470e− 06 0.94 1.01 0.55 2.65
64 1.5723e− 07 0.94 1.00 0.21 0.94
128 9.7966e− 09 0.94 1.00 0.57 0.13

Conv. Order = 2.00 Conv. Order = 4.00

q3

Ne |q3 − q3,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 1.3144e+ 00 0.90 1.05 1.07 1.31
4 4.3784e− 01 0.88 0.96 0.88 1.11
8 8.5190e− 02 0.76 1.06 0.77 1.08
16 2.1252e− 02 0.75 1.03 0.76 1.04
32 5.3832e− 03 0.75 1.01 0.76 1.01
64 1.3504e− 03 0.75 1.00 0.75 1.00
128 3.3788e− 04 0.75 1.00 0.75 1.00

Ne |q3 − q3,h,p| η̂2h,p η̂h,p+1 η2h,p ηh,p+1

2 2.7769e− 01 1.08 0.19 1.22 0.32
4 6.1107e− 03 0.42 2.50 0.34 0.86
8 3.8213e− 03 0.93 1.87 0.94 1.64
16 3.0891e− 04 0.95 1.15 0.95 1.13
32 1.5794e− 05 0.94 1.04 0.94 1.02
64 9.3709e− 07 0.94 1.01 0.94 0.99
128 5.7814e− 08 0.94 1.00 0.94 0.99

Conv. Order = 2.00 Conv. Order = 4.02

q1 = 45.293, q2 = 1.5882, q3 = −3.9254

Table 9: Test 4. Errors and effectivity indexes η̂2h,p, η̂h,p+1, η2h,p and ηh,p+1 for the
output functionals q1, q2 and q3 with Ne ∈ {2r}7r=2 and p = 1, 2; the asymptotic
convergence orders and “exact” values of the output functionals are reported.

5.2 Discussion

Based on the results reported in Tables 3–9, we extrapolate the following considerations
for the error estimators ∆̂i,2h,p, ∆̂i,h,p+1, ∆i,2h,p and ∆i,h,p+1; see Eqs.(31), (32), (35)
and (36).

1. As expected, all the error estimators could highlight poor performances when
a small number of “elements” Ne = 2, 4 is considered (see e.g. the effectivity
indexes for Test 1.3 and q1); also, the effectivity indexes largely changes from an
error estimator to an other. Even if in many cases the effectivity indexes can
be considered “sufficiently” close to 1 (in particular for the estimators ∆̂i,2h,p,

∆̂i,h,p+1 and ∆i,2h,p), the reliability of the estimators largely depends on the Test
problem for Ne “small” (Ne = 2, 4).

2. As expected, the error estimators do not represent rigorous error bounds for the
errors on the output functionals q1–q4 for all the Test problems.

3. For the error estimator ∆̂i,2h,p (Eq.(31)):
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• asymptotic effectivity indexes of values 0.75 and 0.94 are achieved with p = 1
and p = 2, respectively, for the output functionals q2–q4 (linear and nonlinear
with the trigonometric functions sine and cosine) in all the tests considered;

• asymptotic effectivity indexes in the range 0.20–2.55 are achieved for the
quadratic strain energy functional q1 with η̂1,h,p+1 < 1 in all the Test prob-
lems except for Test 2 (p = 1); for the Tests 3.1 (p = 2) and 3.2 the error on
q1 is largely underestimated even asymptotically.

4. For the error estimator ∆̂i,h,p+1 (Eq.(32)):

• the asymptotic effectivity index η̂i,h,p+1 = 1.00 is achieved with both p = 1
and p = 2 for the output functionals q2–q4 in all the Tests problems;

• asymptotic effectivity indexes bigger than one (∆̂1,h,p+1 > 1.00) are obtained
for the quadratic strain energy functional q1 in all the Test problems; asymp-
totically, ∆̂1,h,p+1 is in the range 1.33–2.58 for all the Test problems and
differs for p = 1 and p = 2.

5. For the error estimator ∆i,2h,p (Eq.(35)):

• the behavior of this estimator is very close to the one of ∆̂i,2h,p for p = 1 and
p = 2 in many Test problems, except when a small number of “elements” is
considered (Ne = 2, 4) or as e.g. in Test 4 for q2.

6. For the error estimator ∆i,h,p+1 (Eq.(36)):

• asymptotic effectivity indexes are achieved only for p = 1 in a range η1,h,p+1 =
0.20–2.18; these values considerably vary with the Test problem and the
output functional under consideration (even if linear q2–q4);

• the behavior of the error estimator is quite unpredictable for p = 2 for which
no asymptotic effectivity indexes are achieved; very large overestimations of
the errors (η1,h,p+1 ≫ 1) are obtained e.g. for Tests 1.1–1.3.

Based on the previous considerations and by recalling Remark 4.3 regarding the compu-
tational costs, we conclude that the estimator ∆̂i,h,p+1 (31), which employs the higher
order enhanced dual solution, represents the most reliable and preferable error estima-
tor among the ones considered for the evaluation of the errors resulting from the linear,
quadratic and nonlinear (with trigonometric functions sine and cosine) outputs and for
p = 1, 2.
If the classic Finite Element method with linear Lagrangian basis is used (see Re-

marks 4.1 and 4.2), the error estimator ∆̂i,2h,1 is preferable to ∆i,2h,1 due to the con-
siderations in Remark 4.3 regarding the computational costs.

6 Conclusions

We have proposed and studied goal–oriented a posteriori error estimators for the evalu-
ation of the errors on quantities of interest associated with the solution of geometrically
nonlinear curved elastic rods with arbitrarily large planar deflections under the so–called
Elastica theory; for the numerical solution of these problems, a Galerkin formulation
with B–spline basis of order one and two has been considered. We have introduced
goal–oriented error estimators with higher order “enhanced” primal and dual solutions,
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in which the enrichment of the original B–spline basis by means of “pure” k–refinement
has been used. These estimators have been compared in several test cases with the
most traditional ones based on the mesh refined “enhanced” primal and dual solutions.
The numerical tests reveal a better performance, in terms of effectivity indexes, for
the proposed error estimator based on the higher order “enhanced” dual solution with
respect to one based on the mesh refined “enhanced” dual solution; while asymptotic ef-
fectivity indexes larger than one have been obtained for the quadratic functional (strain
energy), unitary asymptotic effectivity indexes have been achieved for the linear and
the nonlinear output functionals (rotation and displacements).
The error estimators can eventually be adopted for the analysis of other structural
problems, such as e.g. the so–called Kirchhoff and Reissner–Simo spatial beam theories,
or other more general PDEs.
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