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Sparse Modeling of Human Actions from Motion

Imagery

Alexey Castrodad and Guillermo Sapiro ∗

September 2, 2011

Abstract

An efficient sparse modeling pipeline for the classification of human
actions from video is here developed. Spatio-temporal features that char-
acterize local changes in the image are first extracted. This is followed
by the learning of a class-structured dictionary encoding the individual
actions of interest. Classification is then based on reconstruction, where
the label assigned to each video comes from the optimal sparse linear com-
bination of the learned basis vectors (action primitives) representing the
actions. A low computational cost deep-layer model learning the inter-
class correlations of the data is added for increasing discriminative power.
In spite of its simplicity and low computational cost, the method outper-
forms previously reported results for virtually all standard datasets.

1 Introduction

We are living in an era where the ratio of data acquisition over exploitation capa-
bilities has dramatically exploded. With this comes an essential need for auto-
matic and semi-automatic tools that could aid with the processing requirements
in most technology-oriented fields. A clear example pertains to the surveillance
field, where video feeds from possibly thousands of cameras need to be analyzed
by a limited amount of operators on a given time lapse. As simple as it seems for
us to recognize human actions, it is still not well understood how the processes
in our visual system give our ability to interpret these actions, and consequently
is difficult to effectively emulate these through computational approaches. In
addition to the intrinsic large variability for the same type of actions, factors
like noise, camera motion and jitter, highly dynamic backgrounds, and scale
variations, increase the complexity of the scene, therefore having a negative
impact in the performance of the classification system. In this paper, we fo-
cus in a practical design of such a system, that is, an algorithm for supervised
classification of human actions in motion imagery.

∗The authors are with the Department of Electrical and Computer Engineering, University
of Minnesota, Minneapolis, MN, 55455 USA e-mail: {castr103, guille}@umn.edu. Alexey
Castrodad is also with the Department of Defense.
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There are a number of important aspects of human actions and motion
imagery in general that make the particular task of action classification very
challenging:

1. Data is very high dimensional and redundant: Each video will be sub-
divided into spatio-temporal patches which are then vectorized, yielding
high-dimensional data samples. Redundancy occurs from the high tempo-
ral sampling rate, allowing relatively smooth frame-to-frame transitions,
hence the ability to observe the same object many times (not considering
shot boundaries). In addition, many (but not all) of the actions have an
associated periodicity of movements. Even if there is no periodicity associ-
ated with the movements, the availability of training data implies that the
action of interest will be observed redundantly, since overlapping patches
characterizing a specific spatio-temporal behavior are generally very sim-
ilar, and will be accounted multiple times with relatively low variation.
These properties of the data allow the model to benefit from the blessings
of high dimensionality [11], and will be key to overcoming noise and jit-
ter effects, allowing simple data representations by using simple features,
while yielding stable and highly accurate classification rates.

2. Human activities are very diverse: Two people juggling a soccer ball can
do that very differently. Same for people swimming, jumping, boxing,
or performing any of the activities we want to classify. Learning simple
representations is critical to address such variability.

3. Different human activities share common movements: A clear example of
this is the problem of distinguishing if a person is either running or jog-
ging. Torso and arms movements may be very similar for both actions.
Therefore, there are spatio-temporal structures that are shared between
actions. While one would think that a person running moves faster than a
person jogging, in reality it could be the exact opposite (consider racewalk-
ing). This phenomena suggests that our natural ability to classify actions
is not based only on local observations (e.g., torso and arms movements)
or global observations (e.g., person’s velocity) but on local and global
observations. This is consistent with recent psychological research indi-
cating that the perception of human actions are a combination of spatial
hierarchies of the human body along with motion regularities [2]. Rela-
tionships between activities play an important role in order to compare
among them, and this will be incorporated in our proposed framework via
a simple deep learning structure.

4. Variability in the video data: While important applications, here ad-
dressed as well, consist of a single acquisition protocol, e.g., surveillance
video; the action data we want to classify is often recorded in a large
variety of scenarios, leading to different viewing angles, resolution, and
general quality. This is the case for example of the YouTube data we will
use as one of the testing scenarios for our proposed framework.
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In this paper, we consider these aspects of motion imagery and human actions
and propose a hierarchical, two-level sparse modeling framework that exploits
the high dimensionality and redundancy of the data, and accounts for inter-
class relationships using global and local perspectives. As illustrated in Section
2 (this section also briefly describes prior art), and described in detail in Section
3, we combine `1-minimization with structured dictionary learning, and show
that with proper modeling in combination with a reconstruction and complexity
based classification procedure using sparse representations, only one feature and
one sampling scale are sufficient for highly accurate activity classification. We
claim that there is a great deal of information inherent in the sparse represen-
tations that have not yet been fully explored. In [23] for example, class-decision
functions were incorporated in the sparse modeling optimization to gain higher
discriminative power. In the results the authors show that significant gain can
be attained for recognition tasks, but always at the cost of more sophisticated
modeling and optimizations. We drift away from these ideas by explicitly ex-
ploiting the sparse coefficients in a different way such that, even though it
derives from a purely generative model, takes more advantage from the struc-
ture given in the dictionary to further model class distributions with a simpler
model and more moderate computational cost. In Section 4 we evaluate the
performance of the model using four publicly available datasets: the KTH Hu-
man Action Dataset, the UT-Tower Dataset, the UCF-Sports Dataset, and the
YouTube Action Dataset, each posing different challenges and environmental
settings, and compare our results to those reported in the literature. Our pro-
posed framework uniformly produces state-of-the-art results for all these data,
exploiting a much simpler modeling than those previously proposed in the lit-
erature. Finally, we provide concluding remarks and future research in Section
5.

2 Problem Statement and Overview of the Pro-
posed Framework

In this section we define the problem and present an overview of the proposed
framework. We also discuss the recent related literature and compare our pro-
posed framework to the standard bag-of-features approach. Details on the in-
troduced model will be presented in the next section.

Assume we have a set of labeled videos, each containing 1 of C known actions
(classes) with associated label j ∈ [1, 2, ..., C].1 Our goal is to learn from these
labeled videos in order to classify new incoming unlabeled ones, and achieve
this via simple and computationally efficient paradigms. We solve this with a
two-level feature-based scheme for supervised learning and classification, which
follows the pipeline shown in Figure 1.

1In this work, as commonly done in the literature, we assume each video has been already
segmented into time segments of uniform (single) actions. Considering we will learn and detect
actions based on just a handful of frames, this is not a very restrictive assumption. We will
comment more on this later in the paper.
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Figure 1: Algorithm overview. The left and right sides illustrate the learning and
classification procedures, respectively. The processes in white boxes represent
the first level of sparse modeling. The processes in gray boxes represent the
second level. (This is a color figure.)

For learning, we begin with a set of labeled videos, and for each action sepa-
rately, we extract and vectorize overlapping spatio-temporal patches consisting
of the videos’ temporal gradients at locations that are above a pre-defined energy
threshold. In other words, we exploit spatio-temporal (3D) patches that have
sufficient activity. During the first level of training, these labeled training sam-
ples (i.e., yj vectors from patches belonging to videos of class j) serve as input
to a dictionary learning stage. In this stage, an action-specific dictionary Dj of
kj atoms is learned for each of the C classes. After learning all C dictionaries, a
structured dictionary D consisting of the concatenation of these sub-dictionaries
is formed. A sparse representation of these training samples (spatio-temporal
3D patches) using `1-minimization yields associated sparse coefficients vectors.
These coefficient vectors are pooled in a per-class manner, so that they quantify
the contribution from each action (i.e., the sj vectors, each patch of class j pro-
ducing one). Then, on a second level of training, these per-class pooled samples
become the data used for learning a second set of action-specific dictionaries Φj

of lj atoms. While the first level dictionaries Dj are class independent, these
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second level ones model the inter-relations between the classes/actions. With
this, the off-line learning stage of the algorithm concludes.

To classify a video with unknown label “?,” we follow the same feature ex-
traction procedure, where test samples, y?’s (again consisting of spatio-temporal
patches of the video’s temporal gradient) are extracted and sparsely represented
using the (already learned) structured dictionary D. After sparse coding, the
resulting vectors of coefficients are also pooled in a per-class manner, yielding
the s?’s vectors. For a sometimes sufficient first level classification, a label is
assigned to the video by majority voting, that is, the class with the largest
contribution using all the pooled vectors is selected. For a second level classifi-
cation, the same majority voted single vector is sparsely represented using each
of the dictionaries Φj . The video’s label j∗ is selected such that the representa-
tion obtained with the j− th action dictionary Φj yields the minimum sparsity
and reconstruction trade-off.

Section 3 will provide details on the just described algorithm, but before
that, with this overview of our proposed modeling framework in mind, let us
comment on recent related work.

2.1 Related Work and Analysis

The recently proposed schemes for action classification in motion imagery are
mostly feature-based. These techniques include three main steps. The first
step deals with “interest point detection,” and it consists of searching for spa-
tial and temporal locations that are appropriate for performing feature extrac-
tion. Examples are Cuboids [10], Harris3D [18], Hessian [36], and dense sam-
pling2 [12, 20, 34]. This is followed by a “feature acquisition” step, where the
video data at the locations specified from the first step undergo a series of
transformation processes to obtain descriptive features of the particular action,
many of which are derived from standard static scene and object recognition
techniques. Examples are SIFT [28], the Cuboids feature [10], Histograms of
Oriented Gradients (HOGs) [19], and its extension to the temporal domain, i.e.,
HOG3D [16], combinations of HOG and Histograms of Optical Flow (HOF) [19],
Extended Speeded Up Robust Features (ESURF), Local Trinary Patterns [38],
and Motion Boundary Histograms (MBH) [8]. Finally, the third step is a “clas-
sification/labeling” process, where bag-of-features consisting of the features ex-
tracted (or vector quantized versions) from the second step are fed into a classi-
fier, often a Support Vector Machine (SVM). Please refer to [29, 35] for compre-
hensive reviews and pointers to feature-based as well as other proposed schemes.

In practice, it is difficult to measure what combinations of detectors and
features are best for modeling human actions. In [35], the authors conducted ex-
haustive comparisons on the classification performance of several spatio-temporal
interest point detectors and descriptors using nonlinear SVMs, using publicly
available datasets. They observed that most of the studied features performed

2Dense sampling is not an interest point detector per se. It extracts spatio-temporal multi-
scale patches indiscriminately throughout the video at all locations.
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relatively well, although their individual performance was very dependent on
the dataset. For example, interest point detection based feature extraction
performed better than dense sampling on datasets with relatively low com-
plexity like KTH, while dense sampling performed slightly better in more re-
alistic/challenging datasets like UCF-Sports. In this work, we do not look at
designing detectors or descriptors but rather give greater attention into devel-
oping a powerful model for classification using sparse modeling. We use a very
simple detector and descriptor, and one single spatio-temporal scale to better
show that sparse modeling is capable of taking high dimensional and redundant
data and translate it into highly discriminative information. Also, given that
the gain in performance of dense sampling is not significant, and it takes longer
computation times, we use a simple interest point detector (by thresholding) in-
stead of dense sampling, simply for a faster and more efficient sampling process,
such that the spatio-temporal patches selected contain slightly higher velocity
values relative to a larger background.

Sparse coding along with dictionary learning has proven to be very successful
in many signal and image processing tasks, especially after highly efficient opti-
mization methods and supporting theoretical results emerged. More recently, it
has been adapted to classification tasks like face recognition [37] (without dic-
tionary learning), digit and texture classification [23, 24], hyperspectral imag-
ing [5, 6], among numerous other applications. It has also been applied recently
for motion imagery analysis for example in [4, 9, 13, 31]. In [9], the authors
propose to learn a dictionary in a recursive manner by first extracting high
response values coming from the Cuboids detector, and then using the result-
ing sparse codes as the descriptors (features), where PCA is optionally applied.
Then, as often done for classification, the method uses a bag-of-features with
K-bin histograms approach for representing the videos. To classify unlabeled
videos, these histograms are fed into a nonlinear χ2-SVM. In contrast to our
work, the authors learn a basis globally, while the proposed method learns it
in a per-class manner, and follows a different scheme for classification. We also
learn inter-class relationships via a two levels (deep-learning) approach.

In [13], the authors build a dictionary using vectorized log-covariance matri-
ces of 12 hand-crafted features (mostly derived from optical flow) obtained from
entire labeled videos. Then, the vectorized log-covariance matrix coming from
an unlabeled video is represented with this dictionary using `1-minimization,
and the video is classified by selecting the label associated with those dictio-
nary atoms that yield minimum reconstruction error. In contrast to our work,
the dictionary in [13] is hand-crafted directly from the training data and not
learned. While similar in nature to the `1-minimization procedure used in our
first level, the data samples in [13] are global representations of the entire video,
while our method first models all local data samples (spatio-temporal patches),
followed by a fast global representation on a second stage, leading to a hierar-
chical model that learns both efficient per-class representations (first level) as
well as inter-class relationships (second level).

In [15], the authors propose a three-level algorithm that simulates processes
in the human visual cortex. These three levels use feature extraction, template
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matching, and max-pooling to achieve both spatial and temporal invariance by
increasing the scale at each level. Classification of these features is performed
using a sparsity inducing SVM. Compared to our model, except for the last
part of its second level, the features are hand-crafted, and is overall a more
sophisticated methodology.

In [31], a convolutional Restricted Boltzmann Machine (convRBM) archi-
tecture is applied to the video data for learning spatio-temporal features by
estimating frame-to-frame transformations implicitly. They combine a series of
sparse coding, dictionary learning, and probabilistic spatial and temporal pool-
ing techniques (also to yield spatio-temporal invariance), and then feed sparse
codes that are max-pooled in the temporal domain (emerging from the sparse
coding stage) into an RBF-SVM. Compared to our work, this method deals
with expensive computations on a frame by frame basis, making the training
process very time consuming. Also they train a global dictionary of all actions.
In contrast, our method learns C per-class/activity dictionaries independently
using corresponding training data all at once (this is also beneficial when new
classes appear, no need to re-train the entire dictionary). In [20], Indepen-
dent Subspace Analysis (ISA) networks are applied for learning from the data
using two levels. Blocks of video data are used as input to the first ISA net-
work following convolution and stacking techniques. Then, to achieve spatial
invariance, the combined outputs from the first level are convolved with a larger
image area and reduced in size using PCA, and then fed to the second level,
another ISA network. The outputs from this level are vector quantized (bag-of-
features approach), and a χ2-SVM is used for classification. The method here
proposed does not uses PCA to reduce the dimensionality of the data after the
first level, as the dimension reduction derives more directly and naturally by
using sum-pooling in a per-class manner after the first level.

Note that the hierarchical modeling of the proposed method is different
from [15, 20, 31]. These works progress from level to level by sequentially
increasing spatial and/or temporal scales, thus benefiting from a multi-scale
approach (spatial invariance), while our work progresses from locally oriented
representations using only one scale,3 to a globally oriented video representation
deriving directly from the sparse model, and not from a bag-of-features approach
or series of multi-scale pooling mechanisms. Also, the proposed scheme, as we
will discuss in more detail next, produces sparse codes that contain information
in a different way than the sparse codes produced with the global dictionaries
in [9, 31]. This is achieved by explicit per-class learning and pooling, yielding a
C-space, for C activities, representation with invariance to the per-class selection
of action primitives (learned basis).

2.1.1 Comparison of Representations for Classification

The bag-of-features approach is one of the most widely used techniques for ac-
tion classification. It basically consists of applying K-means clustering to find

3In this work, only a single scale is used to better illustrate the model’s advantages, already
achieving state-of-the-art results. A multi-scale approach could certainly be beneficial.
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K centroids, i.e., visual words, that are representative of all the training sam-
ples. Then, a video is represented as a histogram of visual word occurrences,
by assigning one of the centroids to each of the extracted features in the video
using (most often) Euclidean distance. These K centroids are found using a
randomly selected subset of features coming from all the training data. While
this has the advantage of not having to learn C sub-problems, it is not ex-
plicitly exploiting/modeling label information available in the given supervised
setting. Therefore, it is difficult to interpret directly the class relationships in
these global, high dimensional histograms (K is usually in the 3, 000 − 4, 000
range). In addition, the visual words expressed as histograms equally weight
the contribution from the data samples, regardless of how far these are from the
centroids. For example, an extracted descriptor or feature from the data that
does not correspond to any of the classes (e.g., background), will be assigned to
one of the K centroids in the same manner as a descriptor that truly pertains
to a class. Therefore, unless a robust metric is used, further increasing the com-
putational complexity of the methods, this has the disadvantage of not properly
accounting for outliers and could significantly disrupt the data distribution. In
the proposed method, each of the data samples is represented as a sparse linear
combination of dictionary atoms, hence represented from union of subspaces.
Instead of representing an extracted feature with its closest centroid, it is rep-
resented by a weighted combination of atoms, thus better managing outliers.
Analogue to a Mixture of Gaussians (MoG), the bag-of-features representation
can be considered as a hard-thresholded MoG, where only one Gaussian dis-
tribution is allowed per sample, and its associated weight equals to one. In
contrast, our representation is able to better adapt to the data structure, with
no prior hard assumption on its distribution (does not assumes a MoG).

The learning process at the first level of the proposed model uses samples
(vectorized spatio-temporal patches) from each action independently (in con-
trast to learning a global dictionary), and later encodes them as linear combi-
nations of the learned dictionary atoms from all classes, where the class contri-
bution is explicitly given in the obtained sparse codes. Since each data sample
from a specific class can be represented by a different subset of dictionary atoms,
the resulting sparse codes can have significant variations in the activation set.
Sum-pooling in a per-class manner achieves invariance to the class subset (atom)
selection. These sum-pooled vectors are used to quantify the association of the
samples with each class (activity), and a significant dimensionality reduction
is obtained by mapping these codes into a C-dimensional space (in contrast to
performing explicit dimension reduction as in some of the techniques described
above). As we will see in Section 3.2, we learn all the representations in a
nonnegative fashion. This is done for two reasons. First, we use the absolute
value of the temporal gradient (to allow the same representation for samples
with opposite contrast), so all data values are nonnegative. Second, each data
sample is normalized to have unit magnitude. After the per-class sum-pooling,
this allows a mapping that is close to a probability space (the `1 norm of the
sparse codes will be close to one). Therefore, the coefficients associated with
each class give a good notion of the probability of each class in the extracted
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Figure 2: Front and rear views of the first three principal components corre-
sponding to the per-class `1-norm of data samples (using all the training videos
from the KTH dataset) after the first level of sparse coding in our algorithm.
The samples in green correspond to the walk class, the samples in blue corre-
spond to the jog class, and the samples in red correspond to the run class. (This
is a color figure.)

features.
Consider the example illustrated in Figure 2. Shown are the first three

principal components of all the C-dimensional sum-pooled vectors corresponding
to the jog, run, and walk actions from the KTH dataset (details on this standard
dataset will be presented in the experimental section). As we can see, some of the
data points from each class intersect with the other two classes, corresponding
to shared movements, or spatio-temporal structures that may well live in any
of the classes’ subspaces, a per-sample effect which we call action mixtures.
Also, the actions have a global structure and position relative to each other
within the 3D spatial coordinates, which appears to be related to the subjects’
velocity (jog seems to be connected to walk and run). Therefore, this local
characterization obtained at the first level, where the data points are mapped
into a mixture space, indeed have a global structure. Thus, the purpose of the
second level is to model an incoming video by taking into account its entire data
distribution relative to this global structure, considering relationships between
classes (actions), and expressing it sparsely using dictionary atoms that span
the space of the individual actions. Such cross-action learning and exploitation
is unique to the proposed model, when compared to those described above,
and is achieved working on the natural low dimensional C-space, thereby being
computationally very efficient.

To recap, the proposed model, described in detail next, is significantly sim-
pler than previously proposed ones, both at the concept level and at the compu-
tational cost one, still achieving state-of-the-art results for virtually all standard
popular datasets.
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3 Sparse Modeling for Action Classification

We now give a detailed description of the proposed modeling and classification
algorithm for activity recognition. We start with the data representation and
feature extraction process, which is the same for labeled (training) and unlabeled
(testing) videos. Then, we describe the first level of sparse modeling, where
dictionaries are learned for each of the actions. This is followed by the second
level of the learning process, where a new set of dictionaries are learned to
model inter-class relationships. We finalize the section with a description of the
labeling/classification procedure.

3.1 Data Representation and Modeling

Let I be a video, and It its temporal gradient. In order to extract informative
spatio-temporal patches, we use a simple thresholding operation. More precisely,
let It(p) be a 3D (space+time) patch of It with center at location p ∈ Ω, where Ω
is the video’s spatial domain. Then, we extract data samples y(p) = vect(|It(p)|)
such that |It(p)| > δ, ∀p, where δ is a pre-defined threshold, and vect(·) denotes
vectorization (in other words, we consider spatio-temporal patches with above
threshold temporal activity). Let all the data extracted from the videos this
way be denoted by Y = [y1, ...,yn] ∈ <m×n, where each column y is a data
sample. Here m is then the data dimension m = r × c × w, where r, c, and w
are the pre-defined number of rows, columns, and frames of the spatio-temporal
patch, respectively, and n the number of extracted “high-activity” patches.

We model the data samples linearly as y = Da + n, where n is an additive
component with bounded energy (‖n‖22 ≤ ε) modeling both the noise and the
deviation from the model, a ∈ <k are the approximation weights, and D ∈ <m×k

is a (possibly overcomplete, k > m) to be learned dictionary. Assuming for the
moment that D is fixed, a sparse representation of a sample y is obtained as
the solution to the following optimization problem:

a∗ = argmin
a
‖a‖0 s.t.

1
2
‖Da− y‖22 ≤ ε, (1)

where ‖ · ‖0 is a pseudo-norm that counts the number of nonzero entries. This
means that the spatio-temporal patches belong to the low dimensional subspaces
defined by the dictionary D. Under assumptions on the sparsity of the signal
and the structure of the dictionary D (see [3]), there exists λ > 0 such that (1)
is equivalent to solving

a∗ = argmin
a

1
2
‖Da− y‖22 + λ‖a‖1, (2)

known as the Lasso [32]. Notice that the `0 pseudo norm was replaced by an
`1-norm, and we prefer in our work the formulation in (2) over the one in (1)
since it is more stable and easily solvable using modern convex optimization
techniques.
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The dictionary D can be constructed for example using wavelets basis. How-
ever, in this work, since we know instances of the signal, we learn/infer the dic-
tionary using training data, bringing the advantage of a better data fit compared
with the use of off-the-shelf dictionaries. Contrasting with sparse coding, we de-
note this process of also learning the dictionary sparse modeling. Sparse model-
ing of data can be done via an alternation minimization scheme similar in nature
to K-means, where we fix D, obtain the sparse code A = [a1, ...,an] ∈ <k×n,
then minimizing with respect to D while fixing A (both sub-problems are con-
vex), and continue this process until reaching a (local) minimum to get

(D∗,A∗) = argmin
D,A

1
2
‖DA−Y‖2F + λ

n∑
i=1

‖ai‖1, (3)

which can be efficiently solved using algorithms like the K-SVD [1, 22].
This concludes the general formulation for feature extraction and data rep-

resentation using sparse modeling. Next, we focus our attention on a supervised
classification setting, specifically applied to action classification.

3.2 Learning Action-specific Dictionaries

Since we are in the supervised setting, there are labeled training data available
for each of the actions. Let Yj = [yj

1, ...,y
j
nj

] ∈ <m×nj be the nj extracted
samples corresponding to the j − th action/class. We obtain the j − th action
representation (class-specific dictionary) Dj ∈ <m×kj

+ by solving

Dj∗ = arg min
(Dj ,Aj)�0

1
2
‖DjAj −Yj‖2F + λ

nj∑
i=1

S(aj), (4)

where (a � b) denotes the element-wise inequality, and S(aj) =
∑kj

i=1 a
j
i . No-

tice that we modified the sparse modeling formulation of (3) to a nonnegative
version, and this can be interpreted as performing a sparsity constrained non-
negative matrix factorization on each class. We repeat this procedure and learn
dictionaries for all C classes. As we explain next, these compose the overall
actions structured dictionary D.

3.3 Modeling Local Observations as Mixture of Actions:
Level-1

Once the action-dependent dictionaries are learned, we express each of the data
samples (extracted spatio-temporal patches with significant energy) as sparse
linear combinations of the different actions by forming the block-structured
dictionary D = [D1, ...,DC ] ∈ <m×k

+ , where k =
∑C

j=1 kj . Then we get, for the
entire data being processed Y ,

A∗ = argmin
A�0

1
2
‖DA −Y‖2F + λ

n∑
i=1

S(ai), (5)
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where A = [a1, ...,an] ∈ <k×n
+ , ai = [a1

i , ..., a
k1
i , ..., a

kC
i ]T ∈ <k

+, and n =∑C
j=1 nj . Note that this includes all the high energy spatio-temporal patches

from all the available training videos for all the classes.
Note that with this coding strategy, we are expressing the data points

(patches) as a sparse linear combination of elements of the entire structured dic-
tionary D, not only of their corresponding class-dependent sub-dictionary (see
also [37] for a related coding strategy for faces). That is, each data sample be-
comes a “mixture” of the actions modeled in D, and the component (or fraction)
of the j− th action mixture is given by its associated aj . The idea is to quantify
movement sharing between actions. If none of the local movements associated
with the j − th action are shared, then the contribution from the other action
representations will be zero, meaning that the data sample is purely pertaining
of the j−th action, and is quantified in S(aj). On the other hand, shared move-
ments will be quantified with nonzero contributions from more than one class,
meaning that the data samples representing these may lie in the space of other
actions. This strategy permits to share features between actions, and to repre-
sent actions not only by their own model but also by how connected they are
to the models of other actions. This cross-talking between the different action’s
models (classes) will be critical in the second stage of the learning model, as will
be detailed below. The sparsity induced in the minimization should reduce the
number of errors caused by this sharing effect. Furthermore, these mixtures can
be modeled by letting s = [S(a1), ...,S(aC)]T ∈ <C

+ be the per-class `1-norm
vector corresponding to the data sample y, and letting S = [s1, ..., sn] ∈ <C×n

+

be the matrix of all per-class `1-norm samples. By doing this, the actions’ con-
tributions in the sample are quantified with invariance to the subset selection in
the sub-dictionaries Dj , and the dimensionality of the data is notably reduced
to C-dimensional vectors in a reasonable way, as opposed to an arbitrary re-
duction using for example PCA. This reduced dimension, which again expresses
the inter-class (inter-action) components of the data, low dimensional input to
the next level of the learning process.

3.4 Modeling Global Observations: Level-2

Once we obtain the characterization of the data in terms of a linear mixture
of the C actions, we begin our second level of modeling. Using the training
data from each class, Sj ∈ <C×nj

+ (the C-dimensional sj vectors for class j), we
model inter-class relationships by learning a second set of per-class dictionaries
Φj ∈ <C×lj

+ as:

Φj∗ = arg min
(Φj ,Bj)�0

1
2
‖ΦjBj − Sj‖2F + τ

nj∑
i=1

S(bj), (6)

where Bj = [bj
1, ...,b

j
nj

] ∈ <lj×nj are the associated sparse coefficients from
the samples in the j − th class, and τ > 0 controls the trade-off between class
reconstruction and coefficients’ sparsity. Notice that although the dictionaries
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Φj are learned on a per-class basis, each models how data samples corresponding
to a particular action j can have energy contributions from other actions, since
they are learned from the nj mixed coefficients sj ∈ <C

+. Inter-class (actions)
relationships are then learned this way.

This completes the description of the modeling as well as the learning stage
of the proposed framework. We now proceed to describe how is this modeling
exploited for classification.

3.5 Classification

In the first level of our hierarchical algorithm, we learned dictionaries using
extracted spatio-temporal samples from the labeled videos. Then, each of these
samples are expressed as a linear combination of all the action dictionaries to
quantify the amount of action mixtures. After class sum-pooling (`1-norm on
a per-class basis) of the corresponding sparse coefficients, we learned a second
set of dictionaries modeling the overall per-class contribution per sample. We
now describe two decision rules for classification that derive directly from each
modeling level.

3.5.1 Labeling After Level 1

It is expected that the information provided in S should be already significant
for class separation. Let g = S1 ∈ <C

+, where 1 is a n × 1 vector with all
elements one (note that now n is the amount of spatio-temporal patches with
significant energy present in a single video being classified). Then, we classify
a video according to the mapping function f1(g) : <C

+ → Z defined as

f1(g) = {j|gj > gi, j 6= i, (i, j) ∈ [1, ..., C]}. (7)

This classification, already provides competitive results, especially with actions
that do not share too many spatio-temporal structures, see Section4. The second
layer, that due to the significant further reduction in dimensionality (to C, the
number of classes), is computationally negligible, improves the classification
even further.

3.5.2 Labeling After Level 2

There are cases where there are known shared (local) movements between ac-
tions (e.g., running and jogging), or cases where a video is composed of more
than one action (e.g., running and then kicking a ball). As discussed before, the
first layer is not yet exploiting inter-relations between the actions. Inspired in
part on ideas from [30], we develop a classification scheme for the second level.
Let

R(Φj ,g) = min
bj�0

1
2
‖Φjbj − g‖22 + τS(bj), (8)

then, we classify the video as

f2(g) = {j|R(Φj ,g) < R(Φi,g), j 6= i, (i, j) ∈ [1, ..., C]}. (9)
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Here, we classify by selecting the class yielding a minimum reconstruction and
complexity as given by R(Φj ,g). Notice that in this procedure only a single
vector g in <C

+ needs to be sparsely represented for the whole video being
classified, which is computationally very cheap of course.

4 Experimental Results

We evaluate the classification performance of the proposed method using 4 pub-
licly available datasets: KTH, UT-Tower, UCF-Sports, and YouTube. The re-
sults presented include performance rates for each of the two levels of modeling,
which we call SM-1 for the first level, and SM-2 for the second level. Separating
both results will help in understanding the properties and capabilities of the
algorithm in a per-level fashion. Remember that the additional computational
cost of the second layer is basically zero, a simple sparse coding of a single low
dimensional vector. Additionally, to illustrate the discriminative information
available in the per-class sum-pooled vectors S, we include classification results
of all datasets using a χ2-kernel SVM in a one-against-the other approach, and
we call this SM-SVM. For each classifier, we built the kernel matrix by randomly
selecting 3,000 training samples. We report the mean accuracy after 1,000 runs.
Finally, for comparison purposes, we include the best three performance rates
reported in the literature. Often, these three are different for different datasets,
indicating a lack of universality in the different algorithms reported in the liter-
ature (though often some algorithms are always close to the top, even if they do
not make the top 3). Confusion matrices for SM-1 and SM-2 are also included
for further analysis.

Table 1 shows the parameters used in SM-1 and SM-2 for each of the datasets
in our experiments. The values were chosen so that good empirical results
were obtained, but standard cross-validation methods can be easily applied to
obtain optimal parameters. Note how we used the same basic parameters for
all the very distinct datasets. The first three columns specify the amount of
randomly selected spatio-temporal patches per video clip, the threshold used
for interest point detection, and the size of the spatio-temporal overlapping
patches, respectively. The last four columns specify the sparsity parameters and
the number of dictionary atoms used for SM-1 and SM-2 modeling, respectively.
Note how for simplicity we also used same dictionary size for all classes. We
now present the obtained results.

4.1 KTH

The KTH dataset4 [27] is one of the most popular benchmark action data.
It consists of approximately 600 videos of 25 subjects, each performing C = 6
actions: box, clap, jog, run, walk, and wave. Each of these actions were recorded
at 4 environment settings: outdoors, outdoors with camera motion (zoom in and
out), outdoors with clothing change, and indoors. We kept the original spatial

4http://www.nada.kth.se/cvap/actions/
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Table 1: Parameters for each of the datasets. The first three columns are
related to feature extraction parameters. The last four columns specify sparse
coding/dictionary-learning parameters.

Dataset Feature Extraction Sparse Modeling
n/clip η m λ τ kj lj

KTH 30000/#clips 0.15 15× 15× 7 15/
√
m 1/C 512 32

UT-Tower 30000/#clips 0.15 15× 15× 7 15/
√
m 1/C 512 32

UCF-Sports 20000/#clips 0.15 15× 15× 7 15/
√
m 1/C 512 32

YouTube 40000/#clips 0.15 15× 15× 7 15/
√
m 1.5/C 512 128

box clap jog

run walk wave

Figure 3: Sample frames from the KTH dataset.

and temporal resolution, 120 × 160 at 25 frames per second (fps) and followed
the experimental settings from [27]. That is, we selected subjects 11 − 18 for
training and subjects 2 − 10, and 22 for testing (the validation subset was not
used). Figure 3 shows sample frames from each of the actions.

Table 2 presents the corresponding results. We obtain 87.6%, 88.8% and
100% with SM-SVM, SM-1 and SM-2, respectively. Confusion matrices for
SM-1 and SM-2 are shown in Figure 4. As expected, for SM-1 there is some
misclassification error occurring between the jog, run, and walk actions, all
which share most of the spatio-temporal structures. This illustrates why SM-2
performs significantly better, since it combines all the local information with
the global information from S and g, respectively. The three best perform-
ing previous methods are [34] (94.2%), [17] (94.5%), and [13] (97.4%). The
method described in [34] performs tracking of features using dense sampling.
The method in [17] requires bag-of-features using several detectors at several
levels, dimensionality reduction with PCA, and also uses neighborhood infor-
mation, which is much more sophisticated than our method. The closest result
to our method is 97.4%, described in [13]. Their method is similar in nature
to ours, as it uses features derived from optical flow representing entire videos,
further highlighting the need for global information for higher recognition. As
mentioned before, there is no cross-class learning in such approach.
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Table 2: Results for the KTH dataset.

Method Overall Accuracy (%)
Wang et al. [34] 94.2
Kovashka et al. [17] 94.5
Guo et al. [13] 97.4
SM-SVM 87.6
SM-1 88.8
SM-2 100

Figure 4: Confusion matrices from classification results on the KTH dataset
using SM-1 and SM-2. The value on each cell represents the ratio between the
number of samples labeled as the column’s label the total number of samples
corresponding to the row’s label.

4.2 UT-Tower

The UT-Tower dataset5 [7] simulates an “aerial view” setting, with the goal of
recognizing human actions from low-resolution remote sensing (people’s height is
approximately 20 pixels on average), and is probably from all the tested datasets
the most related to standard surveillance applications. There is also camera
jitter and background clutter. It consists of 108 videos of 12 subjects, each
performing C = 9 actions using 2 environment settings. The first environment
setting is an outdoors concrete square, with the following recorded actions:
point, stand, dig, and walk. In the second environment setting, also outdoors,
the following actions were recorded: carry, run, wave with one arm (wave1),
wave with both arms (wave2), and jump. We kept the original resolution of
320 × 240 at 10 fps, and converted all the frames to grayscale values. A set
of automatically detected bounding box masks centered at each subject are
provided with the data, as well as a set of automatically detected tracks for
each subject. We used the set of bounding box masks but not the tracks. All
results follow the standard for this dataset Leave One Out Cross Validation

5http://cvrc.ece.utexas.edu/SDHA2010/Aerial_View_Activity.html
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stand point dig walk carry run wave1 wave2 jump

Figure 5: Sample frames from the UT-Tower dataset.

(LOOCV) procedure. Figure 5 shows sample frames for each action.
Table 3 presents the results. We obtained 93.3%, 97.2%, and 100% for SM-

SVM, SM-1, and SM-2, respectively. The only confusion in SM-1 occurs between
the point and stand classes and between the wave1 and wave2 classes (see Figure
6), since there are evident action similarities between these pairs, and the low
resolution in the videos provides a low amount of samples for training. The
methods proposed in [33] and [12] both obtained 93.9%, which is comparable to
the SM-SVM results. In [33], the authors use a Hidden Markov Model (HMM)
based technique with bag-of-features from projected histograms of extracted
foreground. The method in [12] uses two stages of random forests from features
learned based on Hough transforms. The third best result was obtained with
the method in [13] as reported in [26]. Again, our method outperforms the other
methods with a simpler approach.

Table 3: Results for the UT-Tower dataset.

Method Overall Accuracy (%)
Guo et al. [13, 26] 97.2
Vezzani et al. [33] 93.9
Gall et al. [12] 93.9
SM-SVM 93.3
SM-1 97.2
SM-2 100

4.3 UCF-Sports

The UCF-Sports dataset6 [25] consists of 150 videos acquired from sports broad-
cast networks. It has C = 10 action classes: dive, golf swing, kick, weight-lift,
horse ride, run, skateboard, swing (on a pommel horse and on the floor), swing
(on a high bar), and walk. This dataset has camera motion and jitter, highly
cluttered and dynamic backgrounds, compression artifacts, and variable illumi-
nation settings at variable spatial resolution, and 10 fps. We followed the exper-
imental procedure from [35], which uses LOOCV, and re-sampled the videos to
half the spatial resolution. Also as in [35], we extended the dataset by adding a
flipped version of each video with respect to its vertical axis, with the purpose

6http://server.cs.ucf.edu/~vision/data.html#UCFSportsActionDataset
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Figure 6: Confusion matrices from classification results on the UT-Tower dataset
using SM-1 and SM-2.

dive golf swing kick weight lift horse ride

run skateboard swing high bar swing walk

Figure 7: Sample frames from the UCF-Sports dataset.

of increasing the amount of training data (while the results of our algorithm are
basically the same without such flipping, we here preformed it to be compatible
with the experimental settings in the literature). These flipped versions were
only used during the training phase. All videos are converted to gray level for
processing. While the dataset includes spatial tracks for the actions of interest,
in keeping with the concept of as simple as possible pre-processing, these were
not used in our experiments. Figure 7 shows sample frames from each action.

Classification results are presented in Table 4, and we show the SM-1 and
SM-2 confusion matrices in Figure 8. We obtained 87.6%, 66.3%, and 96.0%
overall classification rates with SM-SVM, SM-1, and SM-2, respectively. Clearly,
the methods from [17, 20, 34] outperformed SM-1, and are in the same ballpark
as SM-SVM, while still the best performance is obtained for the proposed SM-
2. SM-1 failed to properly recognize the skate action (8%), and also performed
poorly in recognizing golf swing (39%) and kick (45%), which caused confusion
in recognizing the run action (46%). There are a number of possible reasons for
this. The skate action has significant misclassification errors from the walk and
kick classes. The front side angle of the camera when shooting makes it difficult
to capture changes in velocity, and the movements of the skater while putting a
foot in the ground for propulsion, creates very similar spatio-temporal structures
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Figure 8: Confusion matrices from classification results on the UCF-Sports
dataset using SM-1 and SM-2.

to run. Specifically regarding the golf swing and kick actions, confusion is
generated because of the models’s lack of imposing locality from the video to
keep the overall simplicity. For example, in the golf swing videos, since no
masks were used to track the subject of interest, the algorithm detected other
subjects that are standing and walking in the same scene. While this problem
could have been alleviated exploiting the available masks, the single additional
sparse code in SM-2 addressed it, and such step is certainly significantly simpler
than any possible tracker. In addition, most of the videos containing the kick
action were preluded by a walk or run action by the subject of interest and/or
the surrounding people, and the confusion is therefore reasonable (see Figure
7). Nevertheless, the failure of SM-1 seems to be purely a consequence of the
very simple labeling procedure, since SM-SVM attained a significantly higher
performance using the same proposed model, just a different back-end classifier
(and again, the simpler SM-2 completely solved the mentioned problems). This
shows that the discriminative information in S and g are sufficient for action
classification, even in such challenging environments.

Table 4: Results for the UCF-Sports dataset.

Method Overall Accuracy (%)
Le et al. [20] 86.5
Wang et al. [34] 88.2
Kovashka et al. [17] 87.5
SM-SVM 87.6
SM-1 66.3
SM-2 96.0

19



shoot bike dive g swing

h ride juggle swing t swing

jump spike walk (with a dog)

Figure 9: Sample frames from the YouTube dataset.

4.4 YouTube

The YouTube Dataset7 [21] consists of 1, 168 sports and home videos from
YouTube with C = 11 types of actions: basketball shooting, cycle, dive, golf
swing, horse back ride, soccer juggle, swing, tennis swing, trampoline jump, vol-
leyball spike, and walk with a dog. Each of the action sets is subdivided into
25 groups sharing similar environment conditions. Similar to the UCF-Sports
dataset, this is a more challenging dataset with camera motion and jitter, highly
cluttered and dynamic backgrounds, compression artifacts, and variable illumi-
nation settings. The spatial resolution is 320× 240 at variable 15− 30 fps. We
followed the experimental procedure from [21], that is, a group-based LOOCV,
where training per action is based on 24 out of 25 of the groups, and the remain-
ing group is used for classification. Following [35], the videos were re-sampled
to half the original resolution. We also converted all frames to grayscale values.
Figure 9 shows sample frames from each action.

Table 5 shows the overall classification results of our proposed method and
comparisons with the state of the art methods, and Figure 10 shows the confu-
sion matrices corresponding to SM-1 and SM-2. We obtain overall classification
rates of 87%, 80.29%, and 91.9% from SM-SVM, SM-1, and SM-2, respectively.
First, comparing the performance of SM-1 for this dataset as with the UCF-
Sports dataset, we notice improved performance. This may be a consequence of
the distribution of the classes, and the structure of the individual videos, which
reduces the effect of the spatial locality in the data extracted. For example,
some videos corresponding to the spike action contain a high number of back-
ground clutter factors (e.g, crowd and teammates), but these do not perform
any of the actions from the rest of the set.

The accuracy attained by SM-SVM is already 4.4% higher that the best re-
ported results using dense trajectories, which again incorporates dense sampling
at multiple spatio-temporal scales using more sophisticated features, in addition
to tracking. Again, the global and local nature of SM-2 greatly helps to achieve

7http://www.cs.ucf.edu/~liujg/YouTube_Action_dataset.html
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Figure 10: Confusion matrices from classification results on the YouTube dataset
using SM-1 and SM-2.

the highest accuracy, as it decreased the scattered instances of misclassification
obtained by SM-1 by implicitly imposing sparsity in a grouping fashion.

Table 5: Results for the YouTube dataset.

Method Overall Accuracy (%)
Le et al. [20] 75.8
Wang et al. [34] 84.2
Ikizler-Cinbis et al. [14] 75.2
SM-SVM 88.18
SM-1 80.29
SM-2 91.9

4.5 Summary

Summarizing these results, we reported an increase in the classification accuracy
of 2.6% in KTH, 2.8% in UT-Tower, 7.8% in UCF-Sports, and 7.7% in YouTube.
While the prior state-of-the-art results where basically obtained with a variety of
algorithms, our proposed framework uniformly outperforms all of them without
per-dataset parameter tuning, and often with a significantly simpler modeling
and classification technique. These results clearly show that the dimension
reduction attained from A to S and the local to global mapping do not degrade
the discriminative information, but on the contraty, they enhance it.

5 Concluding Remarks

We presented a two-level hierarchical sparse model for the modeling and classifi-
cation of human actions. We showed how modeling local and global observations
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using concepts of sparsity and dictionary learning significantly improves classi-
fication capabilities. We also showed the generality of the algorithm to tackle
problems from multiple diverse publicly available datasets: KTH, UT-Tower,
UCF-Sports, and YouTube, with a relatively small set of parameters (uniformly
set for all the datasets), a single and simple feature, and a single spatio-temporal
scale.

Although simple in nature, the model gives us insight into new ways of ex-
tracting highly discriminative information directly from the combination of local
and global sparse coding, without the need of explicitly incorporating discrim-
inative terms in the optimization problem and without the need to manually
design advanced features. In fact, the results from our experiments demonstrate
that the sparse coefficients that emerge from a multi-class structured dictionary
are sufficient for such discrimination, and that even with a simple feature extrac-
tion/description procedure, the model is able to capture fundamental inter-class
distributions.

We are currently interested in incorporating locality to the model, which
could provide additional insight for analyzing more sophisticated human inter-
actions. We are also exploiting time-dependencies for activity-based summa-
rization of motion imagery.
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