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1    Statement of the problem studied 

The Department of Defense seeks to develop body armor that is, among other things, lighter 
and more flexible. For example, the new armor based on shear thickening fluids (STF) is very 



flexible, but stiffens under the load of impacting projectiles in order to provide protection. 
Hence, the interaction of the armor with human tissue (e.g., muscle) becomes very important. 
However, there is not sufficient understanding in how tissue responds to the large Stresses, and 
high strain rates that occur in such interactions. Moreover, in order to test armor candidates, 
one needs a synthetic material that can mimic the response of tissue. Our projects seek to 
address both of these limitations, both by modeling the transient mechanical (rheological) 
properties of tissue, and by developing software that can predict the same response of many 
possible synthetic testing materials. 

Specifically, we proposed the following: 

1. Generalization of our entanglement theory to cross-linked systems. 

description. 2. A progressive coarse graining of the theory to create a continuum-level 
Success here would create a model more amenable to simulation in complex geometries. 
This was a longer-term goal, with no promised deliverables in the time frame of the 
proposal. 

3. Make available to the Army resulting computer code. 

4. Generalization to co-polymers. 

5. Generalization to semi-flexible polymers. Such polymers are ubiquitous in tissue, and 
largely determine their rheological and mechanical properties. 

We will summarize achievements and deliverables for each of these points below. 

2    Summary of the most important results 

2.1    Generalization of our entanglement theory to cross-linked sys- 
tems. 

inl 

The Multifunctional Materials Branch (MMB) of the Army Research Laboratory (ARL) has 
been developing cross-linked polymer gels as candidate materials to mimic human tissue. 
Such a mimetic is necessary to develop certification protocols for proposed advanced body 
armor. To be successful these materials should mimic tissue's rheological and mechanical re- 
sponse. The possible parameter space for such material is very large, so a guiding theoretical 
framework is necessary to focus synthetic and experimental efforts. 

The slip-link model, in particular its discrete version (DSM) has shown great success 
at describing the rheological material of linear, monodisperse entangled polymers, without 
parameter adjustment. It is based on statistical mechanics, and has strong connections to 
non-equilibrium thermodynamics. Moreover, it is substantially robust, so able to handle 
virtually all flow fields, polymer architectures and blends of polymers, without diange to the 
mathematical structure. Basically, one needs only to perform some statistical mechanical 
calculations for chain architecture (including semi-flexibility) as input to the structure. 



In order to apply this theory to the problem at hand—predicting the rheology of cross- 
linked gels with entangled, structured solvents, we needed to solve several theoretical and 
practical problems to make the numerical calculations sufficiently robust. First, the imple- 
mentation had to include blends of polymers. The theory is a single-chain, mean-field object 
so that blending effects occur through entanglement dynamics. Calculations are performed 
via ensemble averages of simulation trajectories, whose algorithms were rigorously derived 
from the proposed evolution equation. However, in order to be computationally efficient, it 
was important to keep all dynamics local to individual trajectories in the ensemble. Hence, 
we continued to utilize an entanglement survival function, but generalized it to blends. This 
is conceptually straightforward, but created a few practical obstacles. Once our solutions 
were implemented, we were able to show that the theory could indeed make quantitative 
predictions of the rheology of blends. These results were published in Macromolecules, as 
detailed below. Another manuscript also examining simultaneous dielectric relaxation of 
monodisperse, bidisperse, and star-branched entangled polymers will also be submitted for 
publication very soon. 

We were then able to implement the theory to model the rheology of cross-linked systems. 
However, the theory also requires as input the cross-linked structure that arises during curing 
or cross-linking of the gel. Such structure should come from other models. However, to avoid 
ambiguity in the tests of the theory, we considered monodisperse, end-functionalized chains. 
These networks are somewhat idealized, but obtainable experimentally. Here, comparison 
with theory allowed us to interpret and clarify important physics in cross-linked systems. 
These results were published in Rheologica Acta, as discussed below. 

2.1.1     Bidisperse blends of linear polymers 

The following description of the theory is taken from [9]. The chain is approximated by a 
random walk. The entanglements are randomly distributed along the chain with uniform 
probability 1/(1-1-/3), defining the primitive-path of the chain, where ß is a model parameter 
that is defined below. It is assumed that relaxation of an entangled strand is much faster 
then the chain relaxation, so the chain may be coarse-grained to a primitive-path. The 
model is described by the following variables: the number of strands, Z, in a chain; the 
number of Kuhn steps, JVj, in the 2th strand; the vector, Qi, connecting entanglements i — 1 
and i; and the characteristic life-time, rfD, of the i entanglement related to constraint- 
dynamics (CD). The equilibrium probability density, peq,7(n), of conformations of a type 7 
chain, which denotes chain length, is given by the modified Maxwell-Boltzmann relationship 

Peq,y{ty 

*(tfK.,,EJllW) 
J0Z~ 

exp 
knT 

,CD/_CDN 
(1) 

where J = (1 + 1/ß) K is the normalization constant, 6(i,j) is the Kronecker delta func- 
tion, /VK.-V is the total number of Kuhn steps in a chain of type 7, F (Q) is the free energy 
of a chain with conformation Q. T is temperature, pCD(rCD) is the probability density of 



entanglement life-times, k& is the Boltzmann constant, and ß is a parameter that depends 
on entanglement density and approximately equal to iVe — 1 for long chains, where iVe = (A^) 
is the average number of Kuhn steps in a strand [10]. 

Here, the free energy of an entangled strand is approximated by the Gaussian free energy 
[21] 

Fa(Q,N)       3Q2 

knT 2Na2
K 
• §- 2-KN 

3«K 
(2) 

The approximation is valid for flexible polymer chains that are not stretched greater than 
about 1/3 of their contour length. The free energy of the dangling ends is found to be zero, 
so the free energy of the entire chain is 

z-i 

F(Q) = Y/Fs(Ql N< 
t=2 

(3) 

In DSM Ni is treated as an integer number, so conformation changes due to Brownian 
forces are described by a jump process from one conformation to another. The evolution 
equation at equilibrium becomes 

dpeq,7(fM|no.to) 
dt 

= f [win\rt)Peq,y{n\t\n0,t0) -W(n'\n)p^y(n,t\n0,t0)}dn\    (4) 

where W(fi'|fi) is a transition rate probability of a jump from conformation fi to Q' in unit 
time. TK is a characteristic time required to shift one Kuhn step through an entanglement, 
which depends on the polymer chemistry and temperature, but not the polymer architec- 
ture nor molecular weight. Note that jumps to conformation Q are allowed only from a 
neighboring conformation Q', so W (fi|fi') can be split into five processes 

'z-\ 
w= [J2w^ \+wr+w•+w•+w•, 

.<=! 
(5) 

where W*h is a transition probability per time to shift a Kuhn step through entanglement 
i, Wf D and WC

SD are related to probabilities to destroy and create an entanglement on the 
ends of the chain by SD, and W^D and W"C

CD are transition probabilities per time to destroy 
and create an entanglement in the middle of the chain by CD. Complete expressions for the 
transition probabilities are reported in reference [10], but we give an example here. The 
transition probability to shift a Kuhn step between strands i and i + 1 is 
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The first line in the equation preserves conformations of the strands that are not involved 
in the Kuhn step shuffling through entanglement i. The second line ensures that only one 
Kuhn step can be shuffled at a time through entanglement i. The last line shows that Kuhn 
step shuffling is a result of Brownian forces as well as free energy differences, TK is a time 
constant related to the friction coefficient of a single step in the chain, which depends only 
on the chemistry and temperature of the polymer (and solvent concentration, if present). 
In the present work, the total chain friction is assumed to be proportional to the number 
of Kuhn steps in the entire chain. Hence, the total friction of the chain is constant [16]. In 
addition, the transition probability satisfies detailed balance (sec.6 in reference [23]). 

In DSM an entanglement is formed by at least two chains, so if one chain abandons an 
entanglement then it should be destroyed for the other chain (s). The simplest realization 
of such CD would be to couple several chains in the ensemble as was done by Doi and 
Takimoto [2]. However, such an implementation loses some advantages of a mean-field 
theory. To develop a self-consistent realization with independent chains in the ensemble we 
add a characteristic life-time, rCD, to each entanglement. The distribution of the life-times, 
pCD(rCD), will affect the rate of destruction of the entanglements by CD. which should be 
self-consistent with the rate of destruction by SD [10]. P

CD
(T

CD
) is defined by chain-chain 

interactions, so it depends on polydispersity and complexity of entanglements. We show 
how to calculate pCD(rCD) for a polydisperse blend with any average number of chains, 
a, entangled with the probe chain. We assume that any given entanglement consists of 
an integer number of chains, but on average the number can be non-integer. If a is non- 
integer, the simplest implementation is to allow only entanglements with the integer number 
of chains closest to a. Although, more realistic might be to use a Poisson distribution, we 
are interested here in sensitivity effects of entanglement complexity. P

CD
(T

CD
) is found in a 

self-consistent way from chain SD using the following equation 
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where int(a) is the smallest integer value that is equal to or greater than o. pSD(r) is 
obtained from the fraction of survived entanglements, fSD{t), that are being destroyed by 
SD only 

/SD(t) = j[00pSD(r)eXp(-i)dr. j (8) 

For binary entanglements (a = 1) eq.(7) becomes equivalent to that used in references 
[10, 14, 18]. We examined the sensitivity of prediction on the value of a, and discovered 
that only binary entanglements are consistent with data.   Such a result is consistent with 



the primitive path analysis results discussed below. As a result we will consider only binary 
entanglements from now on. 

For a polydisperse blend of nm components with volume fractions u>7, fSD{t) is split into 
a fraction of survived entanglements of the individual components /7

D(£) as follows 

/sD(t)=i>/?D<*)- 
7=1 

(9) 

Note that for the blends considered in this paper, volume and weight fractions are assumed 
to be the same, so we choose to use weight fraction. However, in a more complicated blend, 
volume fraction would be more appropriate. 

We assume that entanglement characteristic life-times are all independent, ignoring the 
fact that two chains once entangled have a higher chance to entangle again, so pCD(rCD) is 
not affected by neighboring values of rCD. Assuming binary interactions and using eq. 7 and 
eq. 9, pct>(TCD) is constructed from life-time distributions of its monodisperse components 

PCVCD) = £^D(-CD), (10) 
7=1 

where p^(T ) is the entanglement characteristic life-time distribution for th$ 7 compo- 
nent. The details on how p^D(rCD) is estimated for a monodisperse component are given in 
reference [10], and has the following form 

pC°(r) 
^i-^K 
a°i _ 
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7 ^ft Th (ID 

where gy, a7, T°, T•**, rf are parameters determined self-consistently by TK, WK)7 and ß. 
H(x) is the Heaviside step function. The first term is a result of CLF and the second term 
is related to reptation [10]. 

After calculating pCD(rCD) and using it in eq.   1 we predict the relaxation modulus of 
the blend, G(t) 

G(*) = ^(r»l/(0)rIV(t))eq) (12) 

where (• • •) is an ensemble average, n = Yl-, ni = P^AEIK/^O) is the number 
density of polymer chains, n7 is the number density of type 7 polymer chains, p is the 
polymer density (assumed here to be independent of polymer molecular-weight), ./VA is the 
Avogadro constant, and Txy(t) is any off-diagonal stress tensor component. Note, that the 
DSM is a mean-field model, so the stress tensor of the system is a sum of the stresses of its 
individual molecular components 

7=1 

(13) 



The stress tensor of a component is found from thermodynamics [21, 16] 

r7 (t) = -n. (14) 

where (...)   is an average over the 7th component. Using equations (12-14) we calculate the 
relaxation modulus of the system to be 

G(£) = J>;7G,(t), 
7=1 

(15) 

where Gy(t) is the relaxation modulus of the ")th component in the system. 
To obtain the dynamic modulus, G*(w), we fit a relaxation spectrum, /i7(r), to Gy(t) 

Gy(t) = G°N,7£° ^exp (-1) dr. (16) 

We find that hy(r) represented by a BSW spectrum [1] describes model predictions very well 

,   , ,      f^ g^a^T^HJTS? - r)H(r - r° 7) 
(17) 

fc=i 

where <^,7, otk,~n T°,7r Tk^^ are ^he fitting parameters and Z7 is the number of fitting modes 
for the 7 component. We find that ly = 1 is enough for the low-molecular-weight component, 
and ly = 2 for the high-molecular-weight component in bidisperse blends. 

The dynamic moduli, G*(w), are calculated analytically from the one-sided Fourier trans- 
form of eq.(16) multiplied by iu. The expressions for G7(w) and G'y(uj) are 

G» r10   / >2 E 
1=1 

nt-l     aj-aJ+i 
i=o rj 

n, 

"       /    a, + 2  Q,; + 4^      ,A   L 

I     Q»+2, Qi+4.      , ,2    2       \  _a,+ 
2^111, —0—; —0—;_w ri-i ri-i 

E 
t=l 

t-1      Oj-Oj+i nt-l     c r"' >&) 

t—1        Qj-Qj + i 

G»   =   G%^^ 
nt-i   t 

a, + l 
1F1    1 

(18) 

l£!i±3._wa7f)Tfi+ 

1    Qj + 1, Qt + 3 ,5     \     Q,+ 

E 
t=i 

nt-i   t 

2 2 

CXi 

(19) 



where 2-F1(a, b, c, d) is the hypergeometric function. Using equations 15, 18 and 19 we calcu- 
late the dynamic modulus of the polydisperse blend. 

Calculations with the model may now be compared with experiments. There are only 
three parameters, the first of which is known a priori from static light scattering experiments: 
MK, the molecular weight of a Kuhn step, ß, the average number of Kuhn steps between 
entanglements minus one, and TK the characteristic time for a Kuhn step to move through 
an entanglement. The second parameter determines the height of the plateau modulus for 
very high molecular weights, and the last determines all time scales. They are independent 
of molecular weight and can be fit to a single monodisperse system. 

Figure 1 shows a typical comparison for two monodisperse polystyrene melts, and a blend 
of 20% by volume blend of high molecular weight for the dynamic modulus. We note that 
the model does not agree at the highest frequencies because these rapid dynamics have been 
purposefully coarse-grained out. Secondly, we see that the smallest molecular weight data 
relax somewhat more slowly than predicted by the theory. However, these chains are barely 
entangled ((Z)^ = 3), whereas the theory assumes that entanglements are the dominate 
mechanism where stress resides. Hence, the theory is expected to break down at these low 
molecular weights. The theory is able to describe the high-molecular-weight data very well, 
but there may be some effects of polydispersity ignored in the calculations. Finally we note 
that the theory is indeed able to describe the blend of the two molecular weights. We called 
these results 'typical', although much better agreement is seen when the above limitations 
of entanglement number and polydispersity are avoided in the data. 

2.1.2     Cross-linked polymer rheology predictions 

The results in this section are from [11]. The implementation of the theory is very similar to 
that of the previous section. However, now we have two different kinds of strands: entangled 
network strands, and dangling ends. These are sketched in Figure 2. 

Experiments were performed elsewhere [7, 6] on chains that are end-functionalized and 
monodisperse. While such systems are more ideal, polydispersity still arises during cross- 
linking. For example, entangled network strands could still have an integer number of chains. 
Or, loops and dangling ends of complicated structures can arise. In real system, it is dif- 
ficult to know the exact distribution of such structures. In this work we considered only 
monodisperse network strands, and two possibilities for linear dangling ends. 

The procedure for handling constraint dynamics is very similar. However, the details 
are different. First, some entanglements are permanently trapped, so have a characteristic 
lifetime that is infinity. Dangling ends have lifetimes that are very similar to linear melts 
at short times, but then live longer, because there is only one end to relax entanglements. 
The former observation is illustrated in Figure 3, which shows the survival function of en- 
tanglements for a dangling end—a chain with one end attached permanently to the network, 
but the other is free. Also shown for comparison is the survival of linear chain of the same 
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Figure 1: Comparison of the DSM LVE predictions with experimental data by Watanabe 
et al. Gray symbols and black triangles are experimental data for PS39 and PS427. black 
squares and circles are bidisperse mixture PS39&427 [24]. Lines are the DSM predictions. 

molecular weight in the melt. The curves are spectra fitted to the expression 

pCD(r) 
/V'-^T-TQMTI-T)      T^H{T - TI)H(T2 - r)^1-"2 

+   WNS 

T
I    ~rn L. T2   -Ti    Tai-Q2 

2<J(l/r) 

QI
-T

Q
' T

n2__°2      „ 
J ÜJ L 12 Il_rQi-oi2 

Ql Q2 1 

where the last term is for the permanently trapped entanglements, and 

Ut)  =  i-p(t) 
J0°°^Pexp(-^)d^ 

joOO£C^PIdrCD 

r^^exp(-^)dr 
r P^)dTCD 

These expressions are used to carry around detailed information efficiently about the self- 
consistent lifetime distributions from constraint dynamics. They introduce no adjustable 
parameters, since all constants in eqn. (20) are found from sliding dynamics calculations. 
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Figure 2: A: Drawing of an ideal entangled network (IEN). All cross-linking points are reacted 
and no dangling ends, are present. The cross-linkers are represented as discrete points (black 
crosses) and gray circles are marking the trapped entanglements. B: Illustration of a network 
with elastic active network strands and a dangling strand. Gray circles mark entanglements, 
where the trapped have been marked additionally with black rings. The cross-linking points 
are considered as discrete points and marked as black crosses. 

Figure 3: fd{t) obtained from a simulation of the EDS model with NK = 60 and ß = 20 
and an ensemble of 100 chains. The crosses are simulated data, while the full line is a fitted 
spectrum: r0 = 0.0498, n = 1151, r2 = 264451.cn = 0.453 and a2 = -0.271. The dashed 
red line is fd(t) for linear chains with the same NK and ß. 

10 



2.2    A progressive coarse graining of the theory to create a continuum- 
level description. 

The more-common theoretical approach for entangled polymers, called "tube models'' is 
based on the Doi-Edwards tube theory. While it is typically computationally easier than 
the slip-link model, and is sometimes able to show good quantitative agreement with data, 
it does suffer some drawbacks. First, it is not a single mathematical model. Rather, there 
exist completely different mathematical objects depending on chain architecture, whether 
one considers only linear viscoelasticity or flow, or if there are blends. Even those models 
that show promise in nonlinear rheology, are expected to have problems in reversing defor- 
mations. Secondly, there is not a strong connection between tube models and statistical 
mechanics, or thermodynamics. As a result, it is difficult to make connections to molecular- 
level simulations, or to be certain that instabilities might not arise in certain deformations. 

In this work, we seek to derive continuum models on a level with existing tube models, 
but are strongly tied to the slip-link model. In this way, we might have a spectrum of 
mathematical models that are connected, but could be used where appropriate. Also, one 
can more easily make controlled approximations with some certainty on where to pin the 
blame when there is a failure comparing to experiments. To date, we have accomplished two 
important steps towards this goal. Comparison with atomistic simulations suggested that 
the model required some generalization regarding entanglement motion. This generalization 
also made the model closer in spirit to tube models. The first step was the generalization to 
consider mobile slip-links, and the second step was smooth out the discrete parts of the free 
energy so that it might be used to derive a continuum model. The first work was published 
in the Journal of Chemical Physics, while the second will be submitted very soon (to the 
same journal). 

2.2.1    Mobile slip-links 

In the slip-link model described so far, the entanglements are treated as point objects, fixed 
in space or deforming affinely with the macroscopic flow. In reality of course, the effects 
of entanglements allow some fluctuations. As a result, Likhtman's slip-spring simulation 
[13] allows the position of the entanglements to fluctuate around a fixed point using virtual 
springs. However, such an implementation raises questions about the proper expression for 
the stress tensor, and how it can be made thermodynamically consistent. For example, 
Likhtman has proposed two different expressions for stress, and it is not yet clear whether 
either of these is correct. We recently modified the slip-link model to allow such fluctuations 
[20], but utilized ideas from Rubenstein and Panyukov [19] to remove the contributions of 
the virtual springs to the stress tensor. We only mention the conclusions of that paper here, 
that we find that the static properties and stress-tensor expression of the model are largely 
unchanged, and that thermodynamic consistency can be recovered. 

11 



2.2.2    Free energy expressions for tube models 

Using some of the results from the paper of the previous section [20], we have derived a free 
energy for a slip-link model that is more like a tube model. In fact, the expression reduces 
to a free energy [17] that is used to justify the GLaMM tube model [5]. 

We find an expression for the free energy of an entangled chain, where the entanglements 
are no longer discrete points, but rather are smeared out along the primitive path. Moreover, 
these are allowed to fluctuate around the mean path. These fluctuations introduce a new 
parameter n, which characterizes their strength. However, we find that its value is easily 
estimated from the primitive path analysis of atomistic simulations [3, 22, 4, 8], so it is not 
adjusted 

F[nc 
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Note that the quantity S[o,z] is found from the ODE 
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with the boundary conditions 

d2S[o,z]      N(i) 

di2 

S[o,z](0) 
ds[0,Z] 

di 

= 1, 

2n 
t=0 

(22) 
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(24) 

(25) 

Here, the variables {Qt} are the mean positions of the primitive path. KampWe also found 
the resulting chemical potential ß, 
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and the stress tensor r 

3ncA:BT 
T = — 

^(O.Z]^) 

Q(i)Q(i 

T,Z,Q{i) 

di 

(26) 

(27) 

Note that this expression has not yet exploited the ideas of Rubenstein and Panyukov, 
because of the presence of the second term on the right side.  However, judiciously chosen 
dynamics of the virtual springs can be used to cancel this term. 

This work will be submitted for publication very shortly. 

12 



2.3 Make available to the Army resulting computer code. 

We have made available to ARL several codes to date. Two of these were were created in 
our lab, and one in the lab of Martin Kroger of ETH. The first is the discrete slip-link model 
described in some detail above. However, it can be used predict nonlinear flows, and not 
just the dynamic modulus G*. Secondly, since we saw that are model gives results similar 
to the GLaMM model (but with fewer parameters), and that our coarse-graining efforts of 
the DSM were moving in a similar direction, we also coded a numerical simulation of the 
GLaMM model, and provided it to MMB at ARL. This code runs much faster than that 
necessary to make accurate calculations of the DSM. Thirdly, we provided the Zl code of 
Martin Kroger [12], which can be used for primitive path analysis. 

2.4 Generalization to co-polymers. 

We expended considerable effort to correct the problems of thermodynamics in the primitive 
chain network (PCN) simulations of Yuichi Masubuchi. We hosted for several months his 
graduate student, Kazushi Horio, and made detailed derivations of a proper free-energy 
expression. However, before we completed that work, Mr. Horio was pulled off ofthat project 
and on to experimental work in the lab of the senior professor at Kyoto University. While 
those derivations are finished, there has been no computer code yet written to incorporate the 
results. Once written, the approach could be used in a straightforward way to incorporate 
blends of monomer chemistry. The approach would be something like a hybrid of the slip-link 
model and seld-consisten field theory. 

To resurrect that work, we have begun collaborations with Prof. Juan de Pablo at the 
University of Wisconsin. He has already successfully created new technology to make self- 
consistent held theory calculations very efficiently. We have been adding dynamics and 
entanglements to the code through slip-link ideas. A manuscript is currently in preparation. 

2.5 Generalization to semi-flexible polymers. 

In order to generalize the theory for biological systems, such as actin filament networks in 
the cytoskeleton, we need to find the free energy for a semi-flexible chain. The work above 
massively exploits the fact that the persistence length of a chain is the smallest length scale. 
In fact, one finds that the persistence length can be eliminated from the equations for stress 
completely. Also, the free energy for the chain can be written as the sum of the independent 
free energies of all the entangled strands. 

Determination of the free energy of a semi-flexible chain with entanglement constraints is 
a well-posed, straightforward question of statistical mechanics. However, the calculations are 
nontrivial. Work in this direction was begun by Yamakawa [25], but a great leap forward was 
recently made by Andrew Spakowitz and coworkers at Stanford University [15]. Therefore we 
began collaborating with Prof. Spakowitz to complete the statistical mechanical calculations 
for our problem. The derivation is rather lengthy, and not yet complete. However, we have 
overcome most obstacles to find the necessary Green's function for a semi-flexible chain with 
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Z strands (Z — 1 entanglements), whose ends are free to fluctuate 

G(R,L) = - r£^l°^L^^-k^k2dk 

^ J   Jo=0 

/ J2^Z'°^L^z(-kQz)k2dk 
J   lz=0 

2-\     .   oo     oo        min(/i,Z2) h+h 

n/EE   E   siH^i) E i»(-*Oi)<*(fi) 
j=2 ^    /:=0i2=Om=-min((i,/2) n=|Ji-J2| 

(Zi0/20|n0><i1mi2 - m|n0)fc2dfc 

where 

Qi-m(fc;L)   =   £ 
e£,L 

rf dpJ(p)p=£i' 
i=0 

(28) 

and J is the poles of a function determined by a recursion formula, jn are spherical Bessel 
functions, and the angular brackets represent Clebsch-Gordan coefficients. The point here 
is that this expression would clearly be computationally prohibitive for predictions. So, we 
are currently performing calculations of the exact result to search for useful approximations 
of the free energy. 
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