TA5 Project 3:

Time-Dependent Reliability/Durability Methodologies for Acquisition, Maintenance, and Operation of Vehicle Systems

Amandeep Singh
U.S. Army, RDECOM TARDEC;
Ph.D. Candidate, Oakland University

Zissimos P. Mourelatos, Jing Li
Mechanical Engineering Department
Oakland University
Rochester, MI 48309, USA
Time-Dependent Reliability/Durability Methodologies for Acquisition, Maintenance, and Operation of a Vehicle Systems

Amandeep Singh; Zissimos Mourelatos; Jing Li

Oakland University, Mechanical Engineering Department, Rochester, MI, 48309

U.S. Army TARDEC, 6501 E. 11 Mile Rd, Warren, MI, 48379-5000

Approved for public release; distribution unlimited

N/A

Report Documentation Page

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 May 2010</td>
<td>Briefing Charts</td>
<td>11-05-2010 to 11-05-2010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME-DEPENDENT RELIABILITY/DURABILITY METHODOLOGIES FOR ACQUISITION, MAINTENANCE, AND OPERATION OF A VEHICLE SYSTEMS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amandeep Singh; Zissimos Mourelatos; Jing Li</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oakland University, Mechanical Engineering Department, Rochester, MI, 48309</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>; #22499</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Army TARDEC, 6501 E. 11 Mile Rd, Warren, MI, 48379-5000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TARDEC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#22499</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT unclassified</td>
<td>Same as Report (SAR)</td>
</tr>
<tr>
<td>b. ABSTRACT unclassified</td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE unclassified</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
</tr>
</tbody>
</table>
Excerpts from Memorandum dated 27 Mar 2004

...Published studies and audits have documented that reliability has a significant impact on mission effectiveness, logistics effectiveness, and life-cycle costs...."
Background

Vehicle

Input

Uncertainty (Quantified)

Propagation

Output

Uncertainty (Calculated)

Design

- Random Variable *(Time-Independent)*
- Random Process *(Time-Dependent)*

Challenges:

- **Quantification of a Random Process**
- **Estimation of time-dependent reliability**
Research Statement

➢ Develop methodologies to **assess and improve the reliability / durability** of vehicle systems using

 • Experimental (field) data
 • “Expert” opinion
 • Predictive tools (physics-of-failure data)

Previously and currently at TARDEC

➢ Use methodologies in **design for lifecycle cost and preventive maintenance**

Current research
Background

Random Process (Field)

Input Random Process

Vehicle

Output Random Process

Random Process leads to Time-Dependent Reliability
What is Reliability?
Cumulative Probability of Failure

Reliability at time t is the probability that the system has not failed before time t.

$$F^c_T(t_L) = P(\exists t \in [0,t_L], \text{such that } g(X(t),t) \leq 0)$$

Cumulative Prob. of Failure

$$F^i_T(t_L) = P(g(X(t_L),t_L) \leq 0)$$

Instantaneous Prob. of Failure

Time-Invariant Reliability

$$F^i_T(t_L)$$

Time-Variant Reliability

$$F^c_T(t_L)$$
Maximum Response Approach

\[y_{\text{max}}(X) = \max_{t_{\text{min}} \leq t \leq t_{\text{max}}} y(X,t) \]

\[F_T^c(t_F) = P(y_{\text{max}}(X) \geq y^t) = P(y^t - y_{\text{max}}(X) \leq 0) \]

Time-independent composite limit state is defined as:

\[g(X) = y^t - y_{\text{max}} \leq 0 \]
Observations:

- Niche center is an approximate MPP
- Niching GA finds ALL approximate MPPs

Local metamodels are driven by Niching GA exploration for multiple MPPs

- Error control using cross-validation
Definition of Lifecycle Cost

Lifecycle Cost = Production Cost

+ Inspection Cost

+ Expected Variable Cost

Quality

Time-Dependent System Reliability
Definition of Lifecycle Cost

\[C_L(d, X, t_f, r) = C_P(d, X) + C_I(d, X, t_0) + C^E_V(d, X, t_f, r) \]

- Lifecycle Cost
- Production Cost
- Inspection Cost
- Expected Variable Cost

\[C^E_V(d, X, t_f, r) = \int_0^{t_f} c_F(t)e^{-rt}f^c_T(t)dt \]

- Final time
- Interest rate
- Cost of failure at time \(t \)
- PDF of time to failure time

\[F^c_T(t_L) = P(\exists t \in [0, t_L], such that \ g(X(t), t) \leq 0) \]
Design Using Lifecycle Cost

Using a Target System Reliability in Time

\[
\min_{d, \mu_X, \sigma_X} C_L(d, \mu_X, \sigma_X, t_f, r)
\]

s. t. \[F_T^i(d, X, t_0) \leq p^t_f(t_0)\]
\[F_T^c(d, X, t_1) \leq p^t_f(t_1)\]
\[F_T^c(d, X, t_f) \leq p^t_f(t_f)\]
\[d_L \leq d \leq d_U\]
\[\mu_{X_L} \leq \mu_X \leq \mu_{X_U}\]
\[\sigma_{X_L} \leq \sigma_X \leq \sigma_{X_U}\]
Estimation of Time for Preventive Maintenance

\[
\min_{d, \mu_X, \sigma_X} C_P(d, \mu_X, \sigma_X) + C_I(d, \mu_X, \sigma_X, t_0)
\]

s. t. \(F_T^c(d, X, t_M) \leq p_f^t \)

\(d_L \leq d \leq d_U \)

\(\mu_{X_L} \leq \mu_X \leq \mu_{X_U} \)

\(\sigma_{X_L} \leq \sigma_X \leq \sigma_{X_U} \)

Acceptable Reliability \((1 - p_f^t)\)
Design of a Roller Clutch

Constraints:

- **Contact angle** \(\alpha = 0.11 \pm 0.06 \) rad
- **Torque** \(\tau \geq 3000 \) Nm
- **Hoop stress** \(\sigma_h \leq 400 \) MPa

Random Variables: \(D, d, A \)

Due to degradation:

- \(D \rightarrow D(1-kt) \)
- \(d \rightarrow d(1-kt) \)
- \(A \rightarrow A(1+kt) \)

with: \(k = 2.5E-04 \) mm/ year

\[
g_1(D, d, A) = 0.05 - \cos^{-1}\left(\frac{D-d}{A-d}\right) \leq 0
\]

\[
g_2(D, d, A) = \cos^{-1}\left(\frac{D-d}{A-d}\right) - 0.17 \leq 0
\]

\[
g_3(D, d, A) = 3000 - NL\left(\frac{\sigma_c}{c_1}\right)^2 \frac{D^2d}{4(D+d)} \sqrt{1-S^2} \leq 0
\]

\[
g_4(D, d, A) = \frac{N}{2\pi} \left(\frac{\sigma_c}{c_1}\right)^2 \left(\frac{Dd}{(D+d)}\right) S \left(\frac{B^2 + A^2}{A\left(B^2 - A^2\right)}\right) - 400E06 \leq 0
\]
Roller Clutch: Problem Statement

Minimize Lifecycle Cost
\[\min C_L(\mu_X, \sigma_X, t_f, r) \quad \sigma_{X_L} \leq \sigma_X \leq \sigma_{X_U} \]
\[\mu_{X_L} \leq \mu_X \leq \mu_{X_U} \]

s. t.

Case 1
\[F_T^i(\mu_X, \sigma_X, t_0 = 0) = P(\bigcup_i (g_i(D, d, A, t_0) < 0)) \leq p_f(t_0 = 0) = 0.0013 \]

Case 2
\[F_T^i(\mu_X, \sigma_X, t_0 = 0) = P(\bigcup_i (g_i(D, d, A, t_0) < 0)) \leq p_f(t_0 = 0) = 0.0013 \]
\[F_T^c(\mu_X, \sigma_X, t = 7.5) = P(\bigcup_i (g_i(D, d, A, t) < 0)) \leq p_f(t = 7.5) = 0.005 \]

Case 3
\[F_T^c(\mu_X, \sigma_X, t = 10) = P(\bigcup_i (g_i(D, d, A, t) < 0)) \leq p_f(t = 10) = 0.0716 \]
Roller Clutch: Problem Statement

where:

Total Cost, \(C_L = C_P + C_I + C_V^E \)

\[
C_P = \left(3.5 + \frac{0.75}{3\sigma_D} \right) + \left(3.0 + \frac{0.65}{3\sigma_d} \right) + \left(0.5 + \frac{0.88}{3\sigma_A} \right)
\]

\[
C_I = 20F_T^i(X, t_0)
\]

\[
C_V^E = \int_{0}^{t_f} 20e^{-rt} f_T^c(t) dt
\]

Scrap cost/unit

Failure cost/unit (warranty cost)

\(t_f = 10 \) years

\(r = 3\% \)
Roller Clutch: Results

Initial Design vs. Case 1

Case 1 vs. Case 2 and Case 3

<table>
<thead>
<tr>
<th>Objective</th>
<th>Initial Design</th>
<th>Optimal Design</th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cost</td>
<td>28.2275</td>
<td></td>
<td>23.876</td>
<td>24.5440</td>
<td>21.1896</td>
</tr>
<tr>
<td>Production Cost</td>
<td>17.3900</td>
<td></td>
<td>21.3340</td>
<td>23.4446</td>
<td>19.9383</td>
</tr>
<tr>
<td>Inspection Cost</td>
<td>0.7677</td>
<td></td>
<td>0.0260</td>
<td>0.0260</td>
<td>0.6596</td>
</tr>
<tr>
<td>Expected Variable Cost</td>
<td>10.0697</td>
<td></td>
<td>2.5161</td>
<td>1.07340</td>
<td>0.5918</td>
</tr>
</tbody>
</table>
A Practical Issue

Vehicle speed: 20 mph; Mission distance: 100 miles

Simulation can be practically performed for a short-duration time
A novel MC-based method has been developed to calculate the time-dependent reliability (cumulative probability of failure) using short-duration data based on:

- Exponential extrapolation
- Poisson’s distribution
Can characterize a **stationary** or **non-stationary** input Random Process

\[u_i - \bar{u} = \phi_1(u_{i-1} - \bar{u}) + \phi_2(u_{i-2} - \bar{u}) + \ldots + \phi_p(u_{i-p} - \bar{u}) + \varepsilon_i \]

Must estimate \(\phi_p \), \(\sigma_e^2 \)
Cumulative Probability of Failure

\[R(t) = 1 - F_T^c(t) \] \hspace{1cm} (1)

\[\lambda(t) = \frac{P(t < T \leq t + dt/T > t)}{dt} = \frac{P(t < T \leq t + dt)}{dt * P(T > t)} = \frac{F(t + dt) - F(t)}{dt * R(t)} \Rightarrow \lambda(t) = \frac{f(t)}{1 - F_T^c(t)} \] \hspace{1cm} (2)

From (1) and (2):

\[F_T^c(t) = 1 - \exp \left[-\int_0^t \lambda(t) dt \right] \]

All we need is the failure rate
Efficient MCS-based Approach

The Bathtub Curve
Hypothetical Failure Rate versus Time

\[b = -\frac{1}{\lambda_0} \left(\frac{d\lambda}{dt} \right)_{t=0} \]

End of Life Wear-Out
Increasing Failure Rate

Normal Life (Useful Life)
Low "Constant" Failure Rate

Time

\[t_{\text{int}} \]

Poisson's Formula

\[F_T^c(t) = \begin{cases}
-\int_0^t \hat{\lambda}(t)dt, & t \in [0, t_{\text{int}}] \\
1 - e^{-\int_0^t \hat{\lambda}(t)dt}, & t \in [t_{\text{int}}, t_f]
\end{cases} \]

Exponential Extrapolation

\[\hat{\lambda}(t) \approx \lambda_0 e^{-bt} \]
Quarter-Car Model on Stochastic Terrain

Constant design parameters:
\[m_s = 1000 \text{ kg} \]
\[m_u = 100 \text{ kg} \]
Vehicle speed = 20 mph

Random Input variables
Damping, \(b_s \sim N(7000,1400^2) \)
Stiffness, \(k_s \sim N(40 \times 10^3,(4 \times 10^3)^2) \)

Random Input Process: Experimental Stochastic Terrain from Yuma Proving Grounds.

Random Output Process (Vertical Acceleration, G’)
Threshold = 2G

Constant design parameters:
\[m_s = 1000 \text{ kg} \]
\[m_u = 100 \text{ kg} \]
Vehicle speed = 20 mph

Random Input variables
Damping, \(b_s \sim N(7000,1400^2) \)
Stiffness, \(k_s \sim N(40 \times 10^3,(4 \times 10^3)^2) \)

Random Input Process: Experimental Stochastic Terrain from Yuma Proving Grounds.

Random Output Process (Vertical Acceleration, G’)
Threshold = 2G
AR(3) model was identified based on:

Autocorrelation Function

Sample Autocorrelation Function (ACF)

Autocorrelation of Residual process

Sample Autocorrelation Function (ACF)

\[u_i = 1.2456 \ u_{i-1} - 0.2976 \ u_{i-2} - 0.1954 \ u_{i-3} + \varepsilon_i (0, 0.5132^2) \]

Statistical tests were performed to verify the model
Quarter-Car Model: Results
(Failure Rate Estimation for Threshold = 2G)

Estimated parameters:
\[\lambda_0 = 0.1708 \]
\[b = 0.0818 \]

Exponential extrapolation
\[\hat{\lambda}(t) \approx \lambda_0 e^{-bt} \]

Estimation requires short duration MCS

Poisson’s Formula
Quarter-Car Model: Results
Cumulative Probability of Failure for Threshold = 2G

Efficient MCS (blue) approach is close to true MCS results (red)
Quarter-Car Model: Results
(Failure Rate Estimation for Threshold = 2.65 G)

Estimated failure rate (black) is close to true failure rate (red)
Quarter-Car Model: Results
Cumulative Probability of Failure for Threshold = 2.65 G

Efficient MCS (blue) approach is close to true MCS results (red)
Summary

- Time-dependent reliability methodologies have been developed using math-based models.

- An approach to design for lifecycle cost and preventive maintenance has been developed.

- A novel MC-based approach was developed, using short-duration data, to compute time-dependent reliability in the presence of an input random process.

- Examples demonstrated the developed methods.
Future Work

- Develop an **importance sampling** method to improve the computational effort in estimating the time-dependent reliability of systems with a stationary and non-stationary input random process (June 2010).

- Demonstrate potential of developed methods in **preventive maintenance** (August 2010).

- Combine current research developments with existing or under development efforts at TARDEC in reliability area (December 2010).
Thanks for your attention!

Q & A

Disclaimer: Reference herein to any specific commercial company, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the Department of the Army (DoA). The opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or the DoA, and shall not be used for advertising or product endorsement purposes.