Design for Lifecycle Cost using Time-Dependent Reliability

Amandeep Singh
Zissimos P. Mourelatos
Jing Li

Mechanical Engineering Department
Oakland University
Rochester, MI 48309, USA
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. **REPORT DATE**
 13 MAY 2009

2. **REPORT TYPE**
 Briefing Charts

3. **DATES COVERED**
 13-05-2009 to 13-05-2009

4. **TITLE AND SUBTITLE**
 DESIGN FOR LIFECYCLE COST USING TIME-DEPENDENT RELIABILITY

5. **AUTHOR(S)**
 Amandeep Singh; Zissimos Mourelatos; Jing Li

6. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
 Oakland University, Mechanical Engineering Department, Rochester, MI, 48309

7. **SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)**
 U.S. Army TARDEC, 6501 E. 11 Mile Rd, Warren, MI, 48397-5000

8. **PERFORMING ORGANIZATION REPORT NUMBER**
 #22498

9. **SPONSOR/MONITOR’S ACRONYM(S)**
 TARDEC

10. **SPONSOR/MONITOR’S REPORT NUMBER(S)**
 #22498

11. **DISTRIBUTION/AVAILABILITY STATEMENT**
 Approved for public release; distribution unlimited

12. **SUPPLEMENTARY NOTES**

13. **ABSTRACT**
 N/A

14. **SUBJECT TERMS**

15. **SECURITY CLASSIFICATION OF:**
 | a. REPORT | b. ABSTRACT | c. THIS PAGE |
 | unclassified | unclassified | unclassified |

16. **LIMITATION OF ABSTRACT**
 Same as Report (SAR)

17. **NUMBER OF PAGES**
 33

18. **NAME OF RESPONSIBLE PERSON**

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Response(t) = f [E(t), Degradation/Wear(t), Load(t)]

Random Process approach to reliability-based design is needed → time-dependent reliability
Problem Definition

Input variables

Variable #1

Frequency

Time

Degradation

Variable #n

Frequency

Time

Degradation

System Responses

Response #1

Frequency

Time

System Reliability

System Reliability

Quality

Quality = Reliability (t = 0)
What can we get from Time-Dependent Reliability?

- Design for:
 - Lifecycle cost
 - Quality
 - Warranty
 - Maintenance schedule for CBM
Design for Lifecycle Cost

\[
\text{Lifecycle Cost} = \text{Production Cost} + \text{Inspection Cost} + \text{Expected Variable Cost}
\]

Accurate and efficient predictive tools are, therefore, needed to estimate **Time-dependent System Reliability.**
Design for Lifecycle Cost

\[C_L(d, X, t_f, r) = C_P(d, X) + C_I(d, X, t_0) + C_V^E(d, X, t_f, r) \]

- Lifecycle Cost
- Production Cost
- Inspection Cost
- Expected Variable Cost

\[C_V^E(d, X, t_f, r) = \int_{0}^{t_f} c_F(t) e^{-rt} f_T^c(t) dt \]

- Final time
- Interest rate
- Cost of failure at time t
- PDF of time to failure time

\[F_T^c(t_L) = P(\exists t \in [0, t_L], such that g(X(t), t) \leq 0) \]
Problem Statement:
Design for Lifecycle Cost

\[\min_{d, \mu_x, \sigma_x} C_L (d, \mu_x, t_f, r) \]

s. t.
\[F^i_{Q_i} (d, X, t_0) \leq p_f (t_0) \]
\[F^c_R (d, X, t_k) \leq p_f (t_k) \]

\[d_L \leq d \leq d_U \]
\[\mu_{x_L} \leq \mu_x \leq \mu_{x_U} \]

Quantification of time-dependent reliability is a major challenge in this research.
Definitions / Observations

Reliability: Ability of a system to carry out a function in a time period \([0, t_L]\)

\[
p_f^c = P(t \leq t_L) = F_T^c(t_L)
\]

Prob. of Time to Failure

\[
F_T^c(t_L) = P(\exists t \in [0, t_L], \text{such that } g(X(t), t) \leq 0)
\]

Cumulative Prob. of Failure

\[
F_T^i(t_L) = P(g(X(t_L), t_L) \leq 0)
\]

Instantaneous Prob. of Failure

Time-Invariant Reliability

\[
0 \quad \frac{t_L}{\text{time}} \quad F_T^i(t_L)
\]

Time-Variant Reliability

\[
0 \quad \frac{t_L}{\text{time}} \quad F_T^c(t_L)
\]
Calculation of Cumulative Probability of Failure

• State-of-the-art Approaches

➢ Set-Based approach (Son and Savage, *Quality & Rel. Engin.*, 2007)

\[t_F = K \Delta t \]

• State-of-the-art approaches are in general, inaccurate due to:

➢ Choice of \(\Delta t \)

➢ Not including contribution of all discrete times
Cumulative Probability of Failure

Composite Limit State

Example 1: Linear Limit State

\[g(X_1, X_2, t) = X_1 + tX_2 \]

\[X_1 \sim N(-5, 1^2) \quad X_2 \sim N(0, 1^2) \]

\[t_0 < t \leq t_K \]

“Composite” limit state

\[F_T^c(t_F) = P\left(\bigcup_{k=0}^{K} g(X(t_k), t_k) \right) \]

Single MPP of instantaneous limit states evolves into multiple MPPs of composite limit state.
Cumulative Probability of Failure

Composite Limit State

Example 2:

\[g(X_1, X_2) = 1 - \frac{X_1 - 1000X_2 \sin(4\pi t + X_2)\alpha}{12000\alpha}, \quad \alpha = 52966 \]

\[X_1 \sim N\left(4.58E08, \ (5E07)^2\right) \]

\[X_2 \sim N\left(0, \ 0.7^2\right) \]
Composite Limit State: Example 2

U_2

U_1

$t = 0$
Composite Limit State: Example 2

t = 0 t = 0.125
Composite Limit State: Example 2
Composite Limit State: Example 2

- $t = 0$
- $t = 0.125$
- $t = 0.25$
- $t = 0.375$
Composite Limit State: Example 2
Composite Limit State: Example 2
Reliability Index Approach

– Limit State is kept Time-dependent i.e. \(g(d, X, t) = 0 \)

Maximum Response Approach

– Limit State is converted into Time-Independent i.e \[g(d, X) = 0 \]
Calculation of Probability of Failure

- **Reliability Index Approach:**

\[\beta = \min_{U,t} \|U\|_2 \]

\[\text{s.t.} \quad g(U, t) = 0 \]

\[t_0 \leq t \leq t_{\text{max}} \]

Time is treated as an **additional** design variable in RIA optimization.
Cumulative Probability of Failure

- Maximum Response Approach:

\[y_{\text{max}}(d, X) = \max_{t_{\text{min}} \leq t \leq t_{\text{max}}} y(d, X, t) \]

\[F_{T}^{C}(t_F) = P(y_{\text{max}}(X) > y^t) = P(y^t - y_{\text{max}}(X) < 0) \]

Composite Limit-State as time-independent is defined as:

\[g(d, X) = y^t - y_{\text{max}} \leq 0 \]
Calculation of p_f:
Two-DOF System
Two-DOF System

\[m_c \sim N(\mu_m, \sigma_m^2), \quad \mu_m = 55 \text{ Kg}, \quad \sigma_m = 5 \text{ Kg} \]

\[k_s \sim N(\mu_k, \sigma_k^2), \quad \mu_k = 33E04 \text{ N/m} \]

\[\sigma_k = 3E04 \text{ N/m} \]

\[u(t) \text{: unit impulse; } \quad 0 \leq t \leq 5s \]
Two-DOF System - Multiple MPPs

- Maximum Response method
- Niching GA optimization to search for multiple MPPs

T=0.2 sec

T=1 sec

Local Metamodel based MCS: 100000 samples
Two-DOF System - Comparison of Pf

![Graph showing comparison of cumulative Pf for different models.](image-url)
Design of a Roller Clutch using Lifecycle Cost
Roller Clutch

Random Design Variables:
- **D:** Hub diameter, mm
- **d:** Roller diameter, mm
- **A:** Cage inner diameter, mm

D, d, and A are normally distributed

Due to degradation:
- \(D \rightarrow D(1 - kt) \)
- \(d \rightarrow d(1 - kt) \)
- \(A \rightarrow A(1 + kt) \)

with: \(k = 2.5E-04 \text{ mm/ year} \)
Roller Clutch

Constraints:

- **Contact angle** \(\alpha = 0.11 \pm 0.06 \text{ rad} \)
- **Torque** \(\tau \geq 3000 \text{ Nm} \)
- **Hoop stress** \(\sigma_h \leq 400 \text{ MPa} \)

\[
0.05 \leq \cos^{-1}\left(\frac{D-d}{A-d}\right) \leq 0.17
\]

\[
g_1(D, d, A) = 0.05 - \cos^{-1}\left(\frac{D-d}{A-d}\right) \leq 0
\]

\[
g_2(D, d, A) = \cos^{-1}\left(\frac{D-d}{A-d}\right) - 0.17 \leq 0
\]

\[
g_3(D, d, A) = 3000 - NL\left(\frac{\sigma_c}{c_1}\right)^2 \frac{D^2d}{4(D+d)} \sqrt{1-S^2} \leq 0
\]

\[
g_4(D, d, A) = \frac{N}{2\pi}\left(\frac{\sigma_c}{c_1}\right)^2 \left(\frac{Dd}{(D+d)}\right) \frac{S}{A}\left(\frac{B^2 + A^2}{B^2 - A^2}\right) - 400E06 \leq 0
\]
Roller Clutch: Problem Statement

Minimize Lifecycle Cost

\[\min \ C_L (\mu_X, \sigma_X, t_f, r) \]

s. t.

\[\sigma_{XL} \leq \sigma_X \leq \sigma_{XU} \]

\[\mu_{XL} \leq \mu_X \leq \mu_{XU} \]

Case 1

\[F^i(\mu_X, \sigma_X, t_0 = 0) = \ P(\bigcup_i (g_i(D,d,A,t_0) < 0)) \leq p_f(t_0 = 0) = 0.0013 \]

Case 2

\[F^i(\mu_X, \sigma_X, t_0 = 0) = \ P(\bigcup_i (g_i(D,d,A,t_0) < 0)) \leq p_f(t_0 = 0) = 0.0013 \]

\[F^c(\mu_X, \sigma_X, t = 7.5) = \ P(\bigcup_i (g_i(D,d,A,t) < 0)) \leq p_f(t = 7.5) = 0.005 \]

Case 3

\[F^c(\mu_X, \sigma_X, t = 10) = \ P(\bigcup_i (g_i(D,d,A,t) < 0)) \leq p_f(t = 10) = 0.0716 \]
Roller Clutch: Problem Statement

where:

Total Cost, \(C_L = C_P + C_I + C_V^E \)

\[
C_P = \left(3.5 + \frac{0.75}{3\sigma_D} \right) + \left(3.0 + \frac{0.65}{3\sigma_d} \right) + \left(0.5 + \frac{0.88}{3\sigma_A} \right)
\]

\(C_I = 20F_Q(X,t_0) \)

\(C_V^E = \int_0^{t_f} 20e^{-rt} f_R^c(t) \, dt \)

\(t_f = 10 \text{ years} \)

\(r = 3\% \)

Scrap cost/unit

Failure cost/unit (warranty cost)
Roller Clutch: Results

Initial Design vs. Case 1

<table>
<thead>
<tr>
<th>Objective</th>
<th>Initial Design</th>
<th>Optimal Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production Cost</td>
<td>17.3900</td>
<td>21.3340</td>
</tr>
<tr>
<td>Inspection Cost</td>
<td>0.7677</td>
<td>0.0260</td>
</tr>
<tr>
<td>Expected Variable Cost</td>
<td>10.0697</td>
<td>2.5161</td>
</tr>
</tbody>
</table>
Summary/Conclusions

- A new method to calculate the Cumulative Probability of failure is presented for linear and non-linear problems.

- The design study of the roller clutch showed that:
 - Lifecycle cost can be reduced by controlling the probability of failure though time.
 - Higher lifecycle cost due to higher initial quality does not guarantee acceptable reliability.
Challenges/Future Work

➢ Improve further efficiency by:
 ▪ Random process characterization using time-series modeling techniques.
 ▪ Solving RBDO problem using Probabilistic Re-Analysis which uses a single MCS

➢ Apply presented ideas/approaches to the Army related problems
Q & A

Disclaimer: Reference herein to any specific commercial company, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the Department of the Army (DoA). The opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or the DoA, and shall not be used for advertising or product endorsement purposes.