
We describe an algorithm for the rapid direct solution of linear algebraic systems arising from the
discretization of boundary integral equations of potential theory in two dimensions. The algorithm is
combined with a scheme that adaptively rearranges the parameterization of the boundary in order to
minimize the ranks of the off-diagonal blocks in the discretized operator, thus obviating the need for
the user to supply a parameterization r of the boundary for which the distance llr(s) -r(t)ll between
two points on the boundary is related to their corresponding distance lr- sl in the parameter space.
The algorithm has an asymptotic complexity of O(nlog2 n), where n is the number of nodes in the
discretization. The performance of the algorithm is illustrated with several numerical examples.

An adaptive fast direct solver for boundary integral equations
in two dimensions

W. Y. Kong, J. Bremer t, and V. Rokhlin *
Technical Report YaleU/DCS/TR1418

August 21, 2009

t Supported in part by the Office of Naval Research under contract N00014-09-l-0318.
• Supported in part by the Air Force Office of Scientific Research under contract FA9550-09-l-0241, in
part by the Office of Naval Research under contract N00014-07-l-0711; and in part by Srhlumberger
Limited under contract 1040834.l.R07554.622002.
Keywords: Boundary value problems, Boundary integral equations, Layer potentials, Laplace's equa­
tion, Fast solver

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
21 AUG 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
An adaptive fast direct solver for boundary integral equations in two
dimensions

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Yale University ,Department of Computer Science,New Haven,CT,06520

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

30

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

1 Introduction

Integral equations are one of principal tools in the analysis and solution of boundary value problems
for elliptic partial differential equations. In particular, one of the standard approaches to the numerical
treatment of boundary value problems for elliptic partial differential equations calls for reformulating
them as boundary integral equations, discretizing the associated integral operators, and solving the
resulting linear systems in order to obtain solutions in the form of layer potentials. This approach
has been widely studied, especially in the context of Laplace and Helmholtz boundary value problems
on smooth domains. Traditionally, an iterative solver was coupled with the appropriate fast multipole
method (for example, [10]) in order to solve the discrete linear systems arising from the boundary
integral equations. For problems associated with the Laplace and Helmholtz equations, the asymptotic
complexity of this approach is 0(n) and 0(n log n) respectively, with n the number of nodes in the
discretization.

More recently, a number of "fast direct solvers" was developed for the solution of linear systems
arising in various environments (see, for example, [4, 5, 19, 8]). Most of these schemes are based on
the observation that the matrices in question have a hierarchical structure involving rank-deficient off­
diagonal blocks. Matrices with such structure commonly arise from the boundary integral operators of
potential theory and, in particular, the authors in [19] describe a fast direct solver for boundary integral
equations in two dimensions that make use of such structure. Hierarchically rank-deficient matrices have
been studied in a number of other contexts (see, for instance, [12, 13, 3]), and they are strongly related to
the class of "generalized" Calder6n-Zygmund operators characterized by having integral kernels K(x,y)
which are smooth for x well-separated from y (see [6]).

The solver in [19] operates by constructing a two-sided hierarchical factorization of the inverse of
a discretized boundary integral operator. When applied to boundary integral equations of potential
theory in two dimensions, the solver has an asymptotic complexity of O(n), with n the number of nodes
used to discretize the integral equation. The two-sided factorization, which appears to be necessary
in order to obtain an algorithm that is asymptotically O(n), is relatively complicated and makes the
algorithm difficult to implement. Moreover, the solver in [19] relies on certain strong assumptions about
the regions on which the PDEs are to be solved. In particular, it assumes that the boundary of the
region is specified via a parameterization r : [0, 1]'-+ 1R2 such that the distance llr(s)- r(t)ll between
two points on the curve is related to their corresponding distance lr - sl in the parameter space. For
certain complicated curves such parameterizations can be difficult to obtain, and in the absence of a
parameterization with this property the resulting discretized operator can exhibit high rank off-diagonal
blocks. This becomes an even more serious problem for boundary integral equations in three-dimensions
since for a parameterization r of a boundary surface llr(s1 , t1)- r(s2 , t 2)11 generally bears no relation to
the Euclidean distance between (s1 ,tl) and (s2 ,t2).

In this paper, we introduce a simple direct solver that is similar to the one in [19], but operates
by constructing a one-sided hierarchical factorization of the inverse of a matrix. When applied to a
matrix with rank deficient off-diagonal blocks and no other structure, the solver is asymptotically O(n2)

in the dimension n of the matrix. When applied to boundary integral equations in two dimensions
arising from partial differential equations for which a Green's function is non-oscillatory (or, weakly
oscillatory, as defined in [19]), the complexity of the solver is reduced to O(nlog2 n). Not only is this
solver considerably simpler to implement than that of [19], but it also addresses an important weakness
of that solver. That is, it includes an adaptive rotation scheme that rearranges the parameterization of
the boundary in order to minimize the ranks of the off-diagonal blocks. This scheme obviates the need
for the user to supply a parameterization r of the boundary curve for which llr(t)- r(s)ll is related to
It- sl and thereby expands the class of regions to which the solver is applicable. Moreover, the scheme
generalizes readily to the three dimensional setting, where it is expected to be a useful tool.

The paper is structured as follows. Section 2 provides the necessary mathematical and numerical ·

2

preliminaries. Section 3 reviews solution of boundary value problems for Laplace's equation via bound­

ary integral equations. In Section 4, we introduce the multi-level algorithm for the construction of a

compressed factorization of the inverse of a matrix; the algorithm applies generally to matrices with

rank. deficient off-diagonal blocks. Section 5 contains a formal description of the algorithm outlined

in Section 4 and assesses its computational cost. In Section 6, we show how the algorithm presented

in Section 5 can be accelerated when the matrix arises from the discretization of a boundary integral

operator. Section 7 illustrates through numerical examples the performance of the algorithm when ap­

plied to boundary integral equations. Finally, in Section 8, we summarize the work and discuss possible

extensions and generalizations.

2 Mathematical and numerical preliminaries

Throughout the paper we use the following notation. Given a matrix X, we let X* denote its adjoint (the

complex conjugate transpose), O"k(X) its kth singular value, IIXII2 its l2-norm, and IIXIIF its Frobenius

norm. Finally, given matrices A, B, G, and D, we let

(2.1)

denote larger matrices obtained by combining the blocks A, B, G, and D.

2.1 Singular value decomposition

The singular value decomposition (SVD) is a ubiquitous tool in numerical analysis, provided in the case

of real matrices by the following lemma (see, for instance, [21] for more details).

Lemma 2.1 (SVD) For any n x m real matrix A, there exist, for some integer p, ann x p real matrix U
with orthonormal columns, an m x p real matrix V with orthonormal columns, and a p x p real diagonal

matrix :E with positive diagonal entries a 1 ~ a 2 ~ · · · ~ O"p > 0, such that A= U:EV*.

The diagonal entries O"i of :E are called singular values, the columns ui of the matrix U are called

the left singular vectors, and the columns Vi of the matrix V are called the right singular vectors. The

number pis called the (mathematical) rank of A. Note that the SVD of A can be written as

where

p

A = U:EV* = L aiuiv;,
i=l

obviously, (2.2) provides a decomposition of the matrix A into a sum of p rank one matrices.

(2.2)

(2.3)

A common application of the SVD is for the approximations of matrices, as described by the following
lemma (see, for instance, [1]).

Lemma 2.2 Suppose A E JR.nxm has the SVD

p

A = U:EV* = L aiuiv;,
i=l

and the matrix B E JR.nxm is defined by the formula

k

B = L a;u;v;,
i=l

3

(2.4)

(2.5)

where k is an integer with 1 ~ k ~ p. Then

(2.6)

where Ak ranges over the set of all n x m matrices of rank k. In other words, B is the best rank k

approximation of A.

The SVD allows us to introduce the concept of the numerical rank of a matrix. For some small e,

we define the e-rank of a matrix A via the formula

rank(A,e) = min rank(B)
IIA-B!I2~e

(2.7)

(see [9]). In other words, rank(A,e) equals kif and only ifthere are exactly k singular values of A that

lie above e, i.e.,
(2.8)

with O"p+l defined to be 0.

2.2 QR decomposition

The singular value decomposition provides the optimal rank k approximation to a given matrix; how­

ever, the SVD is relatively expensive to construct, and other, less computationally expensive, matrix

factorizations are often used.
Given a realm x n matrix M, l = min(m,n), and an integer k with 0 < k ~ l, the classical QR

decomposition (see, for instance, [9]) constructs a factorization of the form

(2.9)

where II E JR.nxn is a permutation matrix, Q E JR.mxl has orthonormal columns, R E JR.Ixn, Ak E JR.kxk

is upper triangular with nonnegative diagonal entries, Bk E JR.kx(n-k), and Ck E JR.(I-k)x(n-k).

The following theorem can be found, in a slightly different form, in [11]. It asserts that, given any

real m x n matrix M, there exists a factorization of the form (2.9) satisfying inequalities such that (2.9)

provides a reasonable means to detect the numerical rank of M.

Theorem 2.3 {Gu and Eisenstat) Suppose that M is a realm x n matrix, l = min(m,n), and M has

p singular values. Then for any integer k with 0 < k ~ p, there exists a factorization of the form {2.9)

such that

uk(Ak) ;:::
J1 + :(n- k) O"k(M),

(2.10)

IICkll2 ~ J1 + k(n- k)uk+l(M), (2.11)

iiAk" 1BkiiF ~ Jk(n- k). (2.12)

Theorem 2.3 implies that if M E JR.mxn is a matrix of numerical rank k to precision e, there exists

a permutation matrix II E JR.nxn such that the first k columns of Mil form a well-conditioned basis for

the column space of M, to within e. Let jt,h, ... ,jk be the column indices of M corresponding to the

first k columns of Mil; then we will refer to the m x k matrix consisting of the columns of M numbered

Jt,h, ... ,jk as a column skeleton of M. Furthermore, in this case the inequality (2.11) implies that M

can be accurately approximated by a matrix of rank k. Specifically,

M~{Js, (2.13)

4

where Q is the m x k matrix formed by the first k columns of Q in (2.9) and S is a k x n matrix defined

by the formula
(2.14)

and
\IM- QSII2 ::; J1 + k(n- k)s. (2.15)

Remark 2.1 While Theorem 2.3 asserts the existence of a QR decomposition of the form {2. g) satisfying

{2.10)-{2.12), it does not address the question of how to construct it numerically. In {11}, a robust,

provably stable algorithm is presented that constructs a QR decomposition of the form {2.g), with {2.10}­

{2.12) replaced by the weaker inequalities:

uk(Ak) ;::::
J1 + n~(n- k) O"k(M),

(2.16)

IICkll2 ::; J1 + nk(n- k)uk+I(M), (2.17)

IIAk"1BkiiF ::; Jnk(n- k). (2.18)

In this paper, we use the pivoted Gram-Schmidt algorithm (with reorthogonalization) described in {1} to

construct factorizations of the form (2.13). While there are no guaranteed bounds of the form {2.15) for

this algorithm, it is simple to implement and does well in practice. In particular, one applies the pivoted

Gram-Schmidt algorithm to the columns of M, halting the procedure when the l 2 -norm of the remaining

columns falls below a preset thresholds. This procedure computes a column skeletonfor M, and if M is

an m x n matrix with numerical rank k, it requires O(mnk) operations. After that, a factorization of

the form {2.13) is computed in O(k2 (m + n)) operations.

2.3 Randomized algorithms for the approximation of matrices

In (23], a randomized algorithm is presented that constructs a low-rank approximation to a matrix A in

the form A :=:::: AP, where A is a column skeleton of A.
Suppose A is an m x n matrix, and l and k are positive integers with k < l < min(m, n). The algorithm

of (23] involves applying an l x n random matrix <P to A, and then constructing a decomposition of the

form
<PA :=:::: BP, (2.19)

where B is a column skeleton of <PA, consisting of k columns of <PA with indices j 1 ,h, ... ,jk (for details

on the exact form of <I>, see (23]). If we let A be them x k matrix formed by collecting the k columns

of A with the same indices, then the product AP provides an approximation to A such that

(2.20)

with very high probability. The probability p of (2.20) is a function of l - k; its actual estimates are

detailed, and the reader is referred to (23] for them. Here we merely observe that (for example) l- k = 20

yields p > 1- 10-17 .

The randomized approach of (23] accelerates the process of finding a column skeleton of a matrix for

the purpose of constructing its QR decomposition. In order to find a column skeleton of an m x n matrix

A with numerical rank k, one can first form the l x n matrix <I>A, which can be done in O(mnlogl)

operations (see (23]), and then apply the pivoted Gram-Schmidt algorithm to <I> A. The procedure involves

a total cost of O(mnlogl + lnk), and this is less expensive than applying the pivoted Gram-Schmidt

algorithm directly to A, which has a cost of O(mnk).

5

2.4 Sherman-Morrison-Woodbury formula

The Sherman-Morrison-Woodbury formula provides an expression for the inverse of a low-rank pertur­
bation of an invertible matrix. It can be found, for example, in [9].

Lemma 2.4 Suppose that A is an invertible n x n matrix, and that U and V are n x k matrices. Then

(A+ UV*)- 1 = A- 1 - A- 1U(J + V* A-1u)- 1V* A- 1 ,

assuming that the matrix (I + V* A - 1 U) is invertible.

(2.21)

The Sherman-Morrison-Woodbury formula implies that a rank k perturbation to a matrix results in
a rank k perturbation to the inverse. In the case that A is ann x n identity matrix I, (2.21) reduces to
the following convenient form:

(I+ UV*)- 1 =I- U(I + V*U)"'" 1V*. (2.22)

Note that the second I appearing in the right-hand side of (2.22) is a k x k identity matrix.

3 Boundary integral formulations

In this section, we briefly outline the solution of certain boundary value problems for Laplace's equation
via integral equation methods. Thorough treatment of the classical theory can be found in [17, 20, 7, 15].
Extension of the classical theory to the case of Lipschitz domains is discussed in [16, 22, 6].

Throughout this section, n will denote a bounded, smooth, simply connected domain in the plane
with boundary an, nc will denote the open region in the plane exterior to n, and dS will . denote
integration with respect to the arclength measure on an.

3.1 Interior Dirichlet problem

The interior Dirichlet problem calls for the determination of a function harmonic in n with prescribed
values on the boundary an. That is, given a continuous J : an --> lR, we seek a function u : n --> 1R such
that

b.u(x) = 0 for X En,
lim u(x) = f(p) for p E an.
x->p
xEO

(3.1)

As is well-known, such a problem has a unique solution that can be represented as the potential of a
dipole distribution a on an:

1 1 8 u(x) = - a(y)-a log lx- yldS(y),
21f ao vy

(3.2)

where a~, denotes the outward normal derivative taken at the pointy. In particular, the function u(x)

defined by {3.2) is harmonic in n and the limit of u(x) as X approaches the point p E an from the
interior of n is given by the jump relation

1 1 1 a lim u(x) = 2a(p) + 2 a(y)alog IP- yidS(y).
~E'~ 1f ao Vy

{3.3)

Thus, if a satisfies the integral equation

1 1 1 a -2a(p) + -2 a(y)-a log IP- yldS(y) = f(p)
1f ao vy

(3.4)

for all p E an, then the function u(x) given by (3.2) is a solution to problem (3.1).

6

3.2 Exterior Dirichlet problem

The exterior Dirichlet problem, which consists of finding a function u : nc __, 1R such that

~u(x) = 0 for X E nc,
lim u(x) = f(p) for p E an,
x~p

xE!Y

has a unique solution under the additional assumption that u behaves as 0(1) at infinity.

(3.5)

A difficulty arises, however, in applying the approach of the preceding section. Namely, the integral

equation resulting from the jump relation for the exterior domain is not uniquely solvable. In particular,

if we represent the solution u of (3.5) in the form (3.2):

1 1 a u(x) =- O"(y)-a log lx- yJdS(y),
27r an vy

(3.6)

then the limit of u(x)as X goes topE an from fF is

lim u(x) = -~O"(p) + ~ r iT(Y)aa log IP- yJdS(y).
x~p 2 27r lna" Vy
xEflc "

(3.7)

This leads to the integral equation

1 1 1 a --20"(p) + -2 O"(y)-a log IP- yJdS(y) = J(p).
7r an Vy

(3.8)

The operator appearing on the left-hand side of equation (3.8) has a one-dimensional null space; more

specifically,
1 1 1 a --2 + -2 -a log IP- yJdS(y) = 0, for all p E an.

7r an vy
(3.9)

Note that the exterior Dirichlet problem itself has a unique solution u, but the corresponding dipole

distribution O" in representation (3.6) is only determined up to a constant because

r aa log IP- Yl dS(y) = 0, for p E nc.
lao vy

(3.10)

To overcome this difficulty, we use the modified double-layer potential to represent the solution u:

u(x) = 2~ lao O"(y) (a~Y logJx-yl + 1) dS(y). (3.11)

This leads to the integral equation

(3.12)

It is shown in [17] that (3.12) has a unique solution O" which, when inserted into (3.11), produces the

(unique) solution of (3.5).

7

3.3 Exterior Neumann problem

The exterior Neumann problem

is solvable, provided that

Au(x) = 0 for X E nc,

lim aau (x) = f(p) for p E an
x-.p 1/
XEric X

r J(p)ds(p) = o.
lan

(3.13)

(3.14)

It admits a unique solution under the additional assumption that u goes to 0 at infinity. The solution
can be represented in the form of a single layer potential arising from a charge distribution u on an:

u(x) = 2
1 { u(y) log lx- yldS(y).
1r lan

The proper charge distribution u is obtained by solving the boundary integral equation

1 1 1 a -2u(p) + -2 u(y)-a log IP- yldS(y) = f(p),
7r an 11P

(3.15)

(3.16)

which is derived by taking the derivative in the variable x of both sides of (3.15) with respect to the
outward normal vector, taking the limit as X goes topE an from the exterior of n, and applying the
appropriate jump relation. As in the case of the interior Dirichlet problem, the integral equation (3.16)
is uniquely solvable.

3.4 Interior Neumann problem

Similarly, the interior Neumann problem

Au(x) = 0 for X En,

lim aau (x) = f(p) for p E an
x-+p II
xErl X

is uniquely solvable (up to a constant), provided

r J(p)ds(p) = o.
lan

Representing the solution u as a single layer potential

leads to the integral equation

u(x) = 21 { u(y) log lx- yldS(y)
7r Jan

1 1 1 a --2u(p) + -2 u(y)-a log IP- yldS(y) = f(p).
7r 8!1 1/p

(3.17)

(3.18)

(3.19)

(3.20)

As in the case of the exterior Dirichlet problem, the operator appearing on the left-hand side ofequation
(3.20) has a one-dimensional null space. To overcome this, we consider instead the integral equation

-~u(p) + 2~ fail u(y) (a~p log IP- Yl + 1) dS(y) = J(p), for p E an, (3.21)

which has a unique solution u and, when inserted into (3.19), produces a solution of (3.17).

8

4 Numerical apparatus

In this section, we describe a scheme for constructing a factorization of the inverse of any matrix that
possesses a hierarchical structure involving low-rank off-diagonal blocks. We first present a one-level
scheme in Section 4.1, and then we discuss how it can be applied recursively to obtain a multi-level
scheme in Section 4.2. In particular, the scheme we describe is applicable to matrices resulting from the
discretization of boundary integral equations of potential theory.

4.1 One-level compression scheme

Consider a matrix A written in 2 X 2 block form:

(4.1)

where the off-diagonal blocks 0 1 E lRnxm and 0 2 E lRmxn are of numerical rank k < min(m,n)
(to precision .::), and the diagonal blocks D 1 E lR,nxn and D2 E lRmxm are invertible. A compressed
factorization of A- 1 can be obtained by transforming A into a simpler form, and then applying the
Sherman-Morrison-Woodbury formula.

First, we construct for 0 1 and 0 2 factorizations of the form (2.13):

01 = Q181 + 0(.::)

02 = Q282 + 0(.::),

(4.2)

(4.3)

where Q1 E lR,nxk, Q2 E lRmxk, 81 E JRkxm, 82 E lR,kxn, and Q1, Q2 have orthonormal columns. For

simplicity, we will henceforth assume that the off-diagonal blocks have exact rank k and ignore the error
terms.

Now if one applies the matrix

B = 1 [v-1
0

to A from the left, one obtains a matrix of the form

where u1 = D11Q1 and u2 = D21Q2. Expressing A as

A= I+ uv·,

where

and

v· = [o
82

we now use formula (2.22) to represent the inverse of A as:

A- 1 =I- UCV*,

where
C =(I+ V*U)- 1.

9

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

Thus, we have obtained a factorization of the inverse of A in the form:

A- 1 =(I- UCV*)B. (4.11)

Note that U is (n+m) x 2k, Vis 2k x (n+m), and Cis 2k x 2k. As long ask is small, the factorizations

(4.2), (4.3), and the C matrix (4.10) can be computed rapidly, and the inverse of A can be applied

rapidly to any vector or matrix by a scheme based on (4.11).

Remark 4.1 In the above we assume that 0 1 and 0 2 have the same rank. This assumption was made

for notational convenience and is in no way essential to the results.

4.2 Multi-level compression scheme

The one-level compression scheme in Section 4.1 can be applied recursively to obtain a multi-level

compression scheme. In this subsection, we construct a two-level scheme; a formal description of the

multi-level scheme can be found in Section 5.
Consider a matrix A with a two-level block structure:

(4.12)

with the two diagonal blocks on the first level defined by the formula

D1,1 = [D2,1 02,1] ' (4.13)
02,2 D2,2

D _ [D2,3
1'2 - 02,4

02,3

D2,4] . (4.14)

We assume that all diagonal blocks D;,j, i = 1, 2; j = 1, 2, ... , 2i, are invertible square matrices, and all

off-diagonal blocks O;,j, i = 1, 2; j = 1, 2, ... , 2i, have numerical ranks at most k. For convenience, let

us denote the matrix (I- UCV*) in (4.11) by X, so the one-level compression formula (4.11) can be

rewritten as
A- 1 = XB. (4.15)

The two-level compression scheme is carried out in a bottom-up manner. First, we apply the one-level

compression scheme in Section 4.1 to the diagonal blocks D1,1 and D 1,2 , obtaining factorizations of their

inverses:
D.t:~ = X1,1B1,1 (4.16)

D.t:~ = X1,2B1,2· (4.17)

That is, X1,1,B1,1 are obtained by replacing the role of A in (4.1) by that of D 1,1 in (4.13). X 1,2,B1,2

are similarly obtained.
Then, we apply the one-level compression scheme to the first-level block structure of A:

(4.18)

making use of the fact that compressed factorizations of the inverses of D1,1 and D 1,2 are already stored.

We thus obtain a compressed factorization of A- 1 as

(4.19)

10

where B2 has the block form

(4.20)

As long as k is small, the compressed factorizations of D1L D1~, and A-1 can be computed rapidly.

After that, we can apply A-1 to any vector by a recursive ~chem~ based on equations (4.19) and (4.20).

Note that the recursive scheme constructs an one-sided factorization of A-1 of the form

(4.21)

where
x1 = [X01,1 o] and B 1 = [B1,1 o]

X1,2 0 B1,2 .
(4.22)

A multi-level compression scheme can be similarly obtained by applying the one-level compression

scheme recursively. If A has an n-level block structure, then the scheme constructs a one-sided factor­

ization of A - 1 of the form
(4.23)

where X 1 , ..• , Xn- 1 and B 1 are block-diagonal matrices. This is in contrast to the scheme in [19], which

constructs instead a two-sided factorization of the inverse of a matrix. Section 5 describes the numerical

algorithm in detail.

Remark 4.2 We only need to compute and store the matrices that are needed in applying the inverse

of A to another vector or matrix. For example, in the two-level scheme above, the matrices B 1,1; B 1,2,

B 2, X 1,1, X 1,2, and X 2 need not be explicitly formed.

Remark 4.3 The multi-level compression procedure is particularly applicable to matrices that arise from

the discretization of boundary integral operators of potential theory. Suppose we have the boundary

integral operator

Au(x) + l K(x,y)u(y)dS(y), for X E r, (4.24)

where r denotes the boundary of a region n, and K(x,y) is the kernel of the single or double layer

potential for Laplace's equation. Let A E m.nxn be a matrix obtained from discretizing (4.24) using n

nodes on r, and let f 0 be a segment of r that is discretized with n0 nodes. Then for most regions 0

encountered in practice, the rank of interaction k between the nodes on f 0 and those on the rest of the

boundary is bounded by the logarithm of n0 . Specifically,

k ~ clog(no), (4.25)

where cis a constant independent of no and n {see, for example, {19}). The bound (4.25} implies that in

such case A admits a hierarchical block structure in which the off-diagonal blocks are of low numerical

rank.

Remark 4.4 Once a multi-level compression procedure is performed on A, one can rapidly apply A-1

to any vector in a recursive manner. Typically, if A is an n X n matrix arising from the discretization

of a boundary integral operator, it takes O(nlogn) operations to apply its inverse to a vector.

5 Algorithm and performance

Section 4 contains an informal description of a hierarchical compression scheme for matrices with low­

rank off-diagonal blocks. In this section, we give an algorithmic description of such a scheme, and

estimate its efficiency.

11

5.1 One-level compression

In the following, we consider a matrix A in the block form (4.1) satisfying the assumptions of Section 4.1.

• Step (1) Construct for 0 1 and 0 2 factorizations of the form (2.13):

• Step (2) Compute and store D!1, D21.

01:::::: Q1S1

02:::::: Q2S2.

(5.1)

(5.2)

• Step (3) Apply D!1 and D21 to Q1 and Q2 respectively, obtaining U1 = D!1Q1 and U2 = D21Q2.

• Step (4) Compute C =(I+ V*U)-\ where U is as in (4.7) and v• is as in (4.8}.

• Step (5) Store U1, U2, 81, 82, and C.

Using the randomized procedure described in Section 2.3, computing column skeletons for 01 and
0 2 requires O(mnlogl + lnk) floating point operations, where lis chosen to be k + 20. After that, the
factorizations (5.1) and (5.2) can be computed in O(k2 (n + m)) operations (see Remark 2.1). Thus,
Step (1) requires O(mnlogl + lnk + k2 (n + m)) operations. Step (2) requires O(n3 + m3) operations.
Step (3) requires O(nmk) operations. In Step (4), forming (I+ V*U) requires O(k2 (n+m)) operations,
while inverting it requires an additional O(k3) operations. Since k < min(m,n), the total cost is

T "'mnlogl + lnk + k2 (m + n) + mnk + n3 + m3 • (5.3)

5.2 Multi-level compression

In this subsection we give a detailed description of the recursive, multi-level compression algorithm. We
suppose that the input matrix A is represented via a multi-level block structure consisting of n levels.
In particular, there are 2r diagonal and 2r off-diagonal blocks belonging to level r, for r = 1, ... , n. For
example, if A has a two-level block structure represented by (4.12), (4.13), and (4.14), then the diagonal
blocks of A belonging to level r = 1 are D 1,1 and D 1,2, and the off-diagonal blocks belonging to level
r = 2 are 0 2,1> 0 2,2, 0 2,3 , and 0 2,4. We assume that the diagonal blocks on all levels are invertible.

For convenience, in the algorithm below we will adopt the following notation. Let B denote the
input matrix A itself or a diagonal block on level r, where r = 1, ... , n- 1. Then the hierarchical block
structure of A imposes on B the following 2 x 2 block structure:

B = [g~ g~] . (5.4)

We define D1 and D2 to be the left and right children of B, B to be the parent of D1 and D2, and D1
(D2) to be the left (right) sibling of D2 (D1).

The following gives a description of the algorithm.

1. Computation of all column skeletons

For each level r = 1, ... , n, apply the pivoted Gram-Schmidt procedure to all off-diagonal blocks,
storing a column skeleton for each off-diagonal block in terms of column indices.

2. Compression step

• Step (0) Initialize the current block B to be the input matrix A. Set level= 0. Go to Step (1).

12

• Step (1)

(i) If this is the first pass of the current block B to Step (1), go to Step (2).

(ii) If this is the second pass of B to Step (1), go to Step (3).

• Step (2)

(i) If level= n- 1, invert the left and right children D 1 and D 2 of B. Store D]"" 1 and D2 1.

Go back to Step (1).

{ii) If level < n- 1, update the current block B to be its left-child. Update level :=level+ 1.

Go back to Step (1).

• Step (3) [Comment: See representation (5.4) of the current block B.]

(i) Construct for 0 1 and 0 2 factorizations of the form (2.13):

{5.5)

(5.6)

(ii) Apply the inverses of the diagonal subblocks D1, D 2 of B to Q1 , Q2 respectively, obtaining

U1 = D]"" 1Q1 and U2 = D21Q2.

(iii) Compute the matrix C =(I+ V*U)-1, where U is as in (4.7), and V* is as in (4.8).

(iv) Store U1,U2,S1,S2, and C.

(v) If level = 0, we are done. Otherwise, go to Step (4).

• Step (4)

(i) If B is a left-child of its parent, update B to be its right-sibling. Go back to Step (1).

(ii) If B is a right-child of its parent, update B to be its parent. Update level := level- 1.

Go back to Step (1).

Remark 5.1 In effect, for each diagonal block B of A on level r, where r = 1, ... , n- 1, the algorithm
computes and stores the quantities pertaining to a one-level compression of B (see Step (3)). The
algorithm does it in a recursive manner such that at the time the inverse of a diagonal block needs to
be applied (see Step (3}(ii}}, the relevant quantities needed for its rapid application have already been
constructed.

Remark 5.2 Only the inverses of the lowest-level diagonal blocks are explicitly computed and stored by
the algorithm (see Step (2}(i}}. The end result is a hierarchical list of quantities that allows the rapid
application of the inverse of A in a recursive manner.

5.2.1 Computational cost

The remainder of this subsection assesses the efficiency of the multi-level compression algorithm. Let N
be the size of the matrix A, and r = 1, ... , R be the index for the levels, so that the numbers of diagonal

and off-diagonal blocks that belong to level r are both equal to Pr = 2r. We let nr denote the average

block size (for both diagonal and off-diagonal blocks) on level r, so that

(5.7)

13

and let kr denote the average rank of an off-diagonal block on level r.

1. Computation of all column skeletons

First, we estimate the cost of computing column skeletons for all off-diagonal blocks. For each off­
diagonal block on level r, where r = 1, ... , R, we apply the randomized algorithm described in Section 2.3
to compute its column skeleton. Each block involves a cost of

(5.8)

where we choose lr = kr + 20. For matrices with rank-deficient off-diagonal blocks, we can assume that

c,;n;.,
c',

where c and c' are constants independent of nr and N. Sot in (5.8) is dominated by

t ~ n~.

The cost for all off-diagonal blocks on level r is then

where we have used the fact that Prnr = N. The total cost for all R levels is thus

So we obtain

2. Compression step

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

We now estimate the cost of the main part of the compression algorithm. The cost of applying
a one-level compression to a diagonal block on level R - 1 follows the analysis of Section 5.1. The
only difference is that here a column skeleton is already computed, so Step (1) requires only O(k'knn)

operations. The cost for compressing one diagonal block on level R - 1 is thus

(5.15)

and the total cost for the level is

(5.16)

where we have used the fact that PR = 2PR-l and pnnn = N.
The cost of compressing each diagonal block on level r, where r = 1, ... , R - 2, comes entirely

from Step (3) of the algorithm. Step 3(i) takes O(k;+1nr+l) operations (see Remark 2.1), Step 3(ii)

takes O(kr+lnr+llog(nr+l)) operations (see Remark 4.4), while Step 3(iii) takes O(k;+1nr+1 + k~+ 1)
operations (see Section 5.1). Thus, the cost for each block is

(5.17)

14

and the compression cost for level r is

Prt'

Pr(k;+Inr+l + kr+lnr+llog(nr+I))

Pr+I(k;+lnr+l + kr+lnr+llog(nr+I))

N(k;+l + kr+llog(nr+I)).

(5.18)

Combining the estimates (5.18) for r = 1, ... , R- 2 with the estimate (5.16), we obtain the total cost

for the compression part of the algorithm:

R-2

T2 rv N L(k;+l + kr+llog(nr+I)) + Nn"h. (5.19)

r=l

In practice, we choose the number of levels R to be of the order logN, so that nR will be a small fixed

number. ·

Combining (5.7) with Remark 4.3, we obtain the estimate

(5.20)

where c" and 'Yare constants independent of r, n1 , and N. In particular, the estimate (5.20) is valid for

some 'Y < 0.95.
Now, combining (5.20) with (5.19), we have

R-2 R-2

N L (k;+l + kr+llog(nr+I)) N L (log2 (nl)('Y2)r + lognl'"(rlog(nr+I))

r=l r=l

r=l

c"' N log2 N,

where c"' = (1 - 7 2)-1 . Thus T2 has an asymptotic complexity of

T2 "' N log2 N.

Combining (5.14) and (5.24), we have
T"' N 2 ,

where T denotes the cost of the entire algorithm.

6 Application of the solver to boundary integral equations

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

In Section 5, we presented a generic algorithm that depends only on the ranks of off-diagonal blocks of the

matrix to be inverted. When applied to a dense n x n matrix A with rank-deficient off-diagonal blocks,

the algorithm typically requires O(n2) operations. In. the case that A is a discretization of a boundary

integral operator, we can accelerate the algorithm by utilizing the geometry of the region on which the

equation is to be solved, reducing the total cost to O(n log2 n). Section 6.1 introduces a technique for

computing column skeletons for off-diagonal blocks that is faster than the generic technique in Section 5,

and Section 6.2 describes an adaptive rotation scheme that seeks to minimize ranks of off-diagonal blocks

by rearranging the parameterization of the boundary.

15

6.1 An accelerated procedure for computing column skeletons

The bulk of the computational cost of the algorithm presented in Section 5.2 lies in the computation of

column skeletons for the factorization of off-diagonal blocks. When the matrix under consideration is a

discretization of a boundary integral operator, we can exploit the geometry of the underlying contour and

compute column skeletons for the off-diagonal blocks in a hierarchical manner, reducing computational

complexity of the process. In this subsection, we describe a single-block compression technique, whose

details can be found in [19], and then utilize it in a hierarchical scheme for the construction of column

skeletons of all off-diagonal blocks.
Consider a smooth contour r = r 1 u r 2 as in Fig. 1 (a), and let the matrix A in the block form

A = [A1,1 A1,2]
A2,1 A2,2

be the discretization of the boundary integral operator

.Aa(x) + l K(x,y)a(y)dS(y), X E r,

(6.1)

(6.2)

so that, for example, A1,2 represents the potential on r 1 generated by a charge distribution on r 2 , and

K is the kernel of a single or double layer potential for Laplace's equation.

Let rcirc be a circular contour surrounding r 2, and let rext be the part of r 1 outside of rcirc (see

Fig. 1 (b)). For any X E rext andy E r2,

K(x, y) =£eire G(x, z)K(z, y)dS(z), (6.3)

where G is the Green's function of Laplace's equation on the contour rcirc· By virtue of (6.3), we can

interpolate the values of the potential field generated by r2 on r ext from the values of the field generated

by r2 on rcirc· This observation allows us to compute a column skeleton for the block A 1,2 via an entirely

local operation: instead of compressing the interaction between r2 and r1, it suffices to compress the

interaction between r 2 and f'' where f' is the contour formed by the union of r eire and the part of r 1

that is inside rcirc· If r 2 is discretized using n nodes, then typically f' can be discretized using O(n)

nodes. A column skeleton for A1,2 can thus be computed in O(n2k) operations, where k is the numerical

rank of A1,2· A more detailed discussion can be found in [19].

Remark 6.1 The method described above can be applied to any partial differential equation for which

Green's identities hold, and the Green's function does not have to be known explicitly. In particular, the

method also works for the solution of boundary integral equations associated with the Helmholtz equation

and Maxwell's equations.

The remainder of this subsection describes, via an example, the recursive application of the single­

block compression technique for the determination of the column skeletons of all off-diagonal blocks. Let

A be a discretization of the integral operator (6.2) that is represented via a two-level block structure

(4.12). Each off-diagonal block in (4.12) corresponds to charges on a segment of r, and these segments

form a two-level partitioning ofr. Suppose for example that the blocks 0 2,3 , 0 2,4 , 0 1,1 , and 0 1 ,2 in (4.12)

correspond to charges on the segments r2,3, r2,4, r1,1, and r1,2 respectively such that, in particular,

r1,1 = r 2,3 ur2,4 . Using the single-block technique described above, we compress the interaction of r 2,3

with the rest of the contour, obtaining a column skeleton for the block 0 2,3 in terms of column indices

J1 = [i1, ... , ik]· Similarly, we compute a set of column indices J2 = [j1, ... ,jz] for 0 2,4.

Since r2,3 and r2,4 partition r 1,1 , we can obtain a column skeleton for the block 0 1,1 by downsampling

from the column skeletons already computed for 0 2,3 and 0 2,4 . In other words, J 1 and h correspond

16

(a) (b)

Figure 1: A contour r. In Fig. (a), the partitioning r = r1 U r2 is shown with r2 drawn with a bold

line. In Fig. (b), rcirc is the circular contour and rext is the part drawn with a dashed line.

to two clusters of charges on r 1,1 , and the union of these charges belongs to a (possibly discontinuous)

segment r pre~ rl,l so that, to compute a column skeleton for 01,1, it suffices to compress the interaction

between r pre and r 1,2.

The same idea can be applied hierarchically when A has a multi-level block structure: due to the

underlying geometry, the column skeletons computed for off-diagonal blocks at one level can be combined

to form pre-computed column skeletons for blocks on the upper level, thus reducing computational cost

to O(NlogN), where N is the total number of discretization nodes (see Section 6.1.1 below).

6.1.1 Computational cost

In this subsection, we estimate the computational cost of the multi-level compression algorithm described

in Section 5.2 in the context of boundary integral equations, in which the accelerated technique in

Section 6.1 can be used.
We start with observing that the technique only accelerates the procedure of computing column

skeletons for off-diagonal blocks, so the estimate (5.24) for the cost T2 of the main compression part

remains the same. In particular, we will show that the cost T1 of computing all column skeletons is now

O(NlogN).
We will follow the notation in Section 5.2. In addition, let k~ denote the average rank of interaction

between a cluster on level r with the rest of the boundary. For all practical purposes, we have

(6.4)

where cis a constant independent of r and N. So, for simplicity we will use kr in the following calculation.

We first apply. the pivoted Gram-Schmidt algorithm to compress the interaction of each cluster on

level R with the rest of the world. By the technique of Section 6.1, we are on average compressing blocks

of dimension nn by nn. Combining it with the randomized algorithm ofSection 2.3 and following the

analysis in Section 5.2.1, the total cost for level R is

(6.5)

where we choose ln = kn + 20.
On levels r = 1, ... , R- 1, we downsample from the column skeletons computed on the previous

level, so for each cluster on level r we only need to apply the pivoted Gram-Schmidt procedure to a

17

block of 2kr+I columns and nr rows. Combining it with the randomized algorithm of Section 2.3,

tr Pr((2kr+l)nrloglr + (2kr+I)lrkr)

:5 Pr(2krnrloglr + 2k~lr)
Prkrnr (6.6)

Nkr,

where tr is the total cost for level r, and lr = kr + 20; above we have used the assumption kr+l :5 kr

and the bounds (5.9) and (5.10).
Combining the estimates (6.6) for r = 1, ... , R- 1 with the estimate (6.5), the same analysis as in

Section 5.2.1 shows that
T1 "'NlogN, (6.7)

where T1 is the cost of computing column skeletons for all off-diagonal blocks. Combining (6.7) with

(5.24), we have
T"' Nlog2 N,

where T denotes the cost of the entire algorithm.

6.2 Adaptive rotation scheme

(6.8)

Typically, matrices that arise from the discretization of boundary integral equations of potential theory

have rank-deficient off-diagonal blocks. This is the case when the corresponding segments of the boundary

are "well-separated" so that interacting clusters of nodes are sufficiently far from each other. When the

boundary is specified via a parameterization such that the separation between two points is not well

predicted by their corresponding distance in the parameter space, there may exist interacting segments

that are close to each other, leading to off-diagonal blocks that have high ranks. The dumbbell-shaped

contour r in Fig. 2 is an example that needs to be treated with care in order to avoid such a problem.

In this subsection, we introduce a scheme that adaptively arranges the partitioning of a given contour

Figure 2: The dumbbell-shaped contour r.

so that clusters of nodes interacting with each other are well-separated in the plane.

Consider the contour r in Fig. 2 and the matrix A formed by discretizing the boundary integral

operator (6.2) according to some given parameterization of r. The scheme proceeds in a hierarchical

manner. On the coarsest (first) level, a "center" of r is chosen (the center of mass is an acceptable

choice). Then, an angle (} is chosen randomly and r is partitioned into two segments by a line with

inclination(} passing through the chosen center (see Fig. 3 (a)). This divides the discretization nodes on

r into two clusters, and the rank of interaction k between the clusters is estimated. If the computed k

is less than a pre-set threshold, the partition is accepted; otherwise, another angle (} is chosen and the

above process is repeated. .

Once a partition r = f 1 U f 2 is found on the coarsest level, the same procedure is applied to f 1 and

f 2 respectively to obtain partitions for the second level. We then recursively apply the procedure to

obtain "optimal" partitions of the contour for all levels. Finally, we rearrange the rows and columns of

18

D.
-~----·--

__ .-------
. . . .

(b)

(a)

' '

)

r2 \ .---\ ___ __...,..,_ ',_:-- ///

~\

(c)

Figure 3: Fig. (a) shows, on the first level, the partition r = r 1 U r 2 obtained by the adaptive rotation
scheme for the contour r in Fig. 2, indicated by a dashed line. The chosen center of r is indicated
with an arrow. On the second level, partitions obtained for the segments r 1 and r 2 are shown in Fig.
(b) and (c) respectively. In general, on each level a contour is split by lines into segments so that
interacting clusters are well-separated from each other, resulting in rank-defie,ient off-diagonal blocks in
the discretized operator.

the matrix A according to the partitioning. Fig. 3 shows, on the first two levels, the partitions that are
typically obtained by the scheme for r.

The only expensive part of the scheme lies in computing the interaction rank between two clusters,
and if it is done via the randomized algorithm of Section 2.3 the scheme involves a cost of O(n2), where n
is the number of nodes on the contour. However, the same principle based on Green's theorem described
in Section 6.1 can be used to speed up the procedure. Suppose, for example, we wish to compute the
rank of an m x kmatrix B corr~sponding to the potential generated by r 1 on r 2 , as arranged in Fig. 3(a).
Consider a segment r 0 that belongs to r 1 and is inside of a box, as indicated in the figure. Since r o is
sufficiently separated from the dashed line, we can, by virtue of Green's theorem, replace the charges on
r 0 by some fixed small number of artificial charges placed on the boundary of the box, and compress
the interaction between the charges on the box and the nodes on r 2 . This can be done systematically
on r 1 by applying the method to those boxes in the structure that are well-separated from the line. As
a result, we obtain an m x l matrix C whose column dimension l is typically much less than that of B,
and whose rank gives a good approximation to the rank of B, provided that the artificial charges on
the boxes are suitably chosen (see, for example, [19]). This approach reduces the column dimension of
a block whose rank has to be computed. In the experimental results in Section 7, we will see that for
typical contours the scheme involves a cost of O(n), where n is the number of nodes on the contour, and
the time taken by the scheme never constitutes more than 8 percent of the total solution time.

7 Numerical results

In this section, we present the results of a number of numerical experiments performed to assess the
efficiency of the schemes described in Sections 5 and 6.

In each of the experiments, we apply Nystrom discretization to one of the following boundary integral

19

I

I

I

equations:

1 1 1 a 2u(p) + 27r r u(y) avy log IP- yldS(y) f(p) (7.1)

-~u(p) + 2~ l u(y) (a~Y log IP- Yl + 1) dS(y) j(p) (7.2)

1 1 1 a 2u(p) + 27r r u(y) avp log IP- yldS(y) f(p) (7.3)

-~<T(p) + 2~ l u(y) (a~p log IP- Yl + 1) dS(y) = j(p), (7.4)

and solve the resulting linear systems.
The kernels in equations (7.1)-(7.4) are smooth over smooth curve segments. Since the contours

considered in the first three experiments are smooth, in these cases we discretize the equations using

piecewise Gaussian quadrature on an equispaced mesh. On the other hand, the contour in the last

experiment contains a corner point, over which the kernel is singular. In this case, special treatment is

needed and we discretize the equation near the corner using piecewise Gaussian quadrature on a simply

graded mesh, the details of which are described in Section 7.4 below.
We compare three methods for the solution of the resulting linear systems:

• Method 1. Using the multi-level solver combined with the adaptive rotation scheme.

• Method 2. Using the multi-level solver, without using the adaptive rotation scheme.

• Method 3. Using a "brute force" QR solver (with asymptotic complexity O(n3)) to invert the

linear system.

In the case of the Dirichlet problem, the right-hand side f is a potential field generated by a collection

of randomly placed charges, and in the case of the Neumann problem, f is the normal derivative of the

potential field generated by such a collection of charges. In each experiment the layer potential generated

by the computed charge distribution <T was evaluated at a collection of 40 randomly placed points. The

values obtained were then compared with the exact potential.
The solvers were implemented in Fortran 77 and compiled with the Lahey /Fujitsu Linux64 Fortran

Compiler Release 8.10a. All experiments wen! run on a PC with an Intel Core i7 2.67 GHz processor

and 12GB of memory. No attempt was made to parallelize any of the code. The following notation is

used when presenting the numerical results:

R
N
trot
tRolve,l

tsolve,2

tsolve,3

Erel,l

Erel,2

Erel,3

the number of levels in the multi-level solver
the number of discretization nodes used
the CPU time taken by the adaptive rotation scheme in Method 1
total CPU time taken in solving for <T by Method 1 (which includes trot)
total CPU time taken in solving for <T by Method 2
total CPU time taken in solving for <T by Method 3
the relative 12-norm error obtained by Method 1
the relative 12-norm error obtained by Method 2
the relative 12-norm error obtained by Method 3

By the relative 12-norm error we mean the quantity llv- velb/llvll 2 , where {v<illJ~ 1 denotes the exact

potential field at the 40 random points and {v~l}j~ 1 denotes the potential field given by the computed

<T. All timings presented are in seconds of CPU time.

20

I
I

I
i

I

10rT----~---r----r----r--~r----r;

-2

-4

-6 -4 -2

Figure 4: A rippled contour with a thin handle.

7.1 Example: a rippled contour with a thin handle

In this subsection, we present results for the rippled contour with a thin handle shown in Fig. 4. The
contour was discretized using between 200 and 51200 nodes and the integral equation (7.2) associated
with the exterior Dirichlet problem was solved. Table 1 presents the results.

In this example, we see that, roughly speaking, the timings tsolve,l and tsolve,2 taken by the mult1-level
solver scale slightly more than linearly with the number of discretization nodes N. This agrees with
the estimate (6.8) of its performance in Section 6.1.1. As shown in Fig. 5 (a), the contour is originally
parameterized in such a way that its long, narrow "handle" part causes the pair of clusters on the
coarsest (first) level to have high rank of interactions. Fig. 5 (b) shows the clusters as rearranged by the
adaptive rotation scheme. We observe that the scheme reduces the CPU times roughly by the factor of
3.

Finally, we compare the multi-level solver with the "brute force" QR solver that takes O(n3) op­
erations. We observe that for small-scale problems, the "brute force" approach is more efficient (as
expected). The observed break-even point is about n = 1100, after which the solver of this paper is
more efficient. At n = 3200, the solver of this paper (combined with the rotation scheme) performs
about 7.5 times faster than the "brute force" scheme. Needless to say, in practice one would always use
the more efficient scheme for the problem to be solved.

7.2 Example: A cross-shaped contour

In this subsection, we present results for the cross-shaped contour shown in Fig. 6. The contour was
discretized using between 200 and 51200 nodes and the integral equation (7.4) associated with the interior
Neumann problem was solved. Table 2 presents the results.

Similar to the contour in Section 7.1, the one here has several long and narrow parts that introduce
high ranks in the off-diagonal blocks of the discretized operator. Fig. 7 shows, in particular, that in the
original arrangement of the clusters interactions on the first two levels are of high rank. Fig. 8 shows

the clusters as rearranged by the rotation scheme, and the reduced ranks of interactions. We observe
that the scheme reduces the CPU times roughly by the factor of 4, and the time it spent constitutes less
than 8 percent of the total time.

21

-2

-4

-6 -4 -2

(a) (b)

Figure 5: (a) The original arrangement of the clusters of nodes on the first level for the contour shown

in Fig. 4. (b) The clusters on the first level as rearranged by the adaptive rotation scheme. The contour

was discretized using 3200 nodes, and the ranks of interactions between the pairs of clusters in (a) is

about 285 and in (b) is about 50.

Table 1: Computational results for the boundary integral equation (7.2) associated with the exterior

Dirichlet problem on the contour shown in Fig. 4.

N R trot tsolvc,l Ere!, I isolvc,2 Ercl,2 isolvc,3 Ercl,3

200 4 2.13e- 03 6.73e- 02 4.39e- 01 1.45e- 01 3.99e- 01 5.04e- 03 3.87e- 01
400 5 6.92e- 03 1.61e- 01 9.03e- 03 6.71e- 01 9.37e- 02 3.89e- 02 9.94e- 03
800 6 1.67e- 02 4.52e- 01 5.33e- 04 2.78e+OO 4.82e- 04 2.61e- 01 5.41e- 04
1600 7 4.91e- 02 1.26e + 00 1.26e- 06 6.90e + 00 1.27e- 06 2.58e + 00 1.02e- 06
3200 8 9.42e- 02 2.63e + 00 3.99e -13 1.04e + 01 5.37e- 13 1.96e + 01 5.32e- 13
6400 9 2.04e- 01 5.73e + 00 3.64e -13 1.69e + 01 6.86e- 13 1.72e + 02 4.72e- 14
12800 10 3.86e- 01 1.20e + 01 8.04e -13 3.42e + 01 5.05e- 13 1.35e + 03 2.61e- 14
25600 11 7.16e- 01 2.17e+01 1.88e- 13 6.16e + 01 6.04e- 13 - -
51200 12 1.43e + 00 4.88e + 01 4.45e- 13 1.27e + 02 3.74e- 13 - -

Table 2: Computational results for the boundary integral equation (7.4) associated with the interior

Neumann problem on the contour shown in Fig. 6.

N R trot isolVe,l Ere!,! isolve,2 Erel,2 isolve,3 Erel,3

200 4 2.22e- 03 7.00e- 02 1.80e- 02 1.19e- 01 1.62e- 02 4.65e- 03 1.72e- 02
400 5 7.30e- 03 1.92e- 01 2.69e- 04 4.75e- 01 2.61e- 04 3.35e- 02 2.66e- 04
800 6 1.86e- 02 5.54e- 01 1.59e- 07 1.74e + 00 1.62e- 07 2.56e- 01 1.62e- 07
1600 7 4.99e- 02 1.34e + 00 6.32e -12 6.03e + 00 6.40e- 12 2.31e + 00 5.87e- 12
3200 8 l.lle- 01 3.00e + 00 1.21e- 12 1.51e + 01 8.73e- 13 1.96e + 01 1.16e- 12
6400 9 2.73e- 01 6.36e + 00 9.81e- 13 2.44e + 01 2.63e- 13 1.61e + 02 7.46e- 13
12800 10 5.63e- 01 1.25e + 01 3.25e -13 4.61e + 01 2.16e- 13 1.38e + 03 1.63e- 13
25600 11 2.10e + 00 2.67e + 01 5.69e -13 9.44e + 01 9.60e -13 - -
51200 12 3.37e + 00 6.13e + 01 2.83e -13 1.97e + 02 3.44e- 13 - -

22

-4 -2

Figure 6: A cross-shaped contour. Its arclength is about 40.

0

(b)

(a) (c)

Figure 7: The original arrangement of the clusters of nodes on the contour in Fig. 6 on (a): the first level

and (b), (c): the second leveL The contour was discretized using 3200 nodes. The rank of interactions

in (a) is about 270 and the ranks of interactions in (b) and (c) are both about 150.

23

(b)

(a) (c)

Figure 8: The clusters on the contour in Fig. 6 on (a): the first level and (b),(c): the second level, as
rearranged by the adaptive rotation scheme. The rank of interactions in (a) is about 64 and the ranks
of interactions in (b) and (c) are both about 45.

24

7.3 Example: A tank-shaped contour

In this subsection, we present results for the tank-shaped contour in Fig. 9. The contour was discretized

using between 200 and 51200 nodes and the integral equation (7.3) associated with the exterior Neumann

problem was solved. Table 3 presents the results.

2 3 4 5 6 7 8 9

Figure 9: A tank-shaped contour. Its arclength is about 23.

We observe that the asymptotic complexity of the multi-lever solver remains the same as for the

contours in Sections 7.1 and 7.2, but the times tsolvc, 2 involve smaller constants. Here, Fig. 10 (a) shows

the original arrangement of the clusters on the first level and the associated rank of interactions, and

Fig. 10 (b) shows the clusters as rearranged by the rotation scheme. In particular, the reduction in rank

is not as substantial as those in the previous examples, and the reduction in CPU times is relatively

insignificant.

2 3 4 5 6 7 8 9

(a)

2 3 4 5 6 7 8 9

(b)

Figure 10: (a) The original arrangement of the clusters of nodes on the first level for the contour in

Fig. 9. (b) The clusters as rearranged by the adaptive rotation scheme. Each cluster contains about

1600 nodes, and the ranks of interactions between the pairs of clusters in (a) is about 120 and in (b) is

about 40.

7.4 Example: A PacMan-shaped contour

In this subsection, we present results on the PacMan-shaped contour r shown in Fig. 11, which contains

a single corner /o of exterior angle 0.6 radian. The boundary integral equation (7.1) associated with the

interior Dirichlet problem is solved on r.

25

Table 3: Computational results for the boundary integral equation (7.3) associated with the exterior
Neumann problem on the contour shown in Fig. 9.

N R trot tsolve,l Ere!,! t~mlve,2 Erel,2 isolve,3 Erel,3

200 4 2.23e- 03 6.15e- 02 1.19e- 03 6.99e- 02 1.29e- 03 4.67e- 03 1.14e- 03
400 5 7.48e- 03 1.51e- 01 1.60e- 05 2.10e- 01 1.17e- 05 3.35e- 02 1.15e- 05
800 6 1.92e- 02 4.26e- 01 2.28e- 11 5.70e- 01 2.61e- 11 2.56e- 01 2.40e- 11

1600 7 5.37e- 02 9.10e- 01 1.03e- 12 1.38e + 00 l.OOe- 12 2.31e + 00 1.11e- 12
3200 8 1.07e- 01 1.91e + 00 1.37e- 13 2.81e + 00 2.53e- 13 1.92e + 01 1.20e- 13
6400 9 2.63e- 01 4.07e + 00 4.23e -13 5.67e+ 00 4.09e- 13 1.51e + 02 2.98e- 13
12800 10 6.38e- 01 8.92e + 00 1.48e- 13 1.22e + 01 2.63e -13 1.38e + 03 1.70e- 13
25600 11 1.14e + 00 1.94e + 01 2.35e -14 2.79e + 01 1.10e- 13 - -
51200 12 2.42e + 00 4.92e + 01 7.70e- 14 6.44e + 01 8.29e -14 - -

0.6 r
0.4

0.2

'Yo

·0.2

·0.4

.0.6

.0.6 ·0.4 ·0.2 0.2 0.4

Figure 11: A PacMan-shaped contour r with a single corner 'Yo of exterior angle 0.6 radian.

26

Below, we describe a simple expedient we used to obtain a high-accuracy discretization of a boundary

with a corner. The discretization of the boundary integral equation

1 1 1 a -2a(p) + -2 a(y)-;:,-log IP- yidS(y) = f(p)
7r en uvy

(7.5)

via the Nystrom method with piecewise Gaussian quadrature displays high rates of convergence, so long

as the kernel K(x,y) and the layer density a are smooth. However, if the contour r contains corner

points, then the kernel K(x,y) is singular, and so is the layer density a. As a result, piecewise Gaussian

quadrature over an equispaced mesh will not be accurate. Standard approaches for discretizing equations

of the form (7.5) near a corner point 'Yo amount to using a dense mesh of points near 'Yo (see, for instance,

[14, 18, 2]). Following the terminology of [14], we call a subdivision of the interval [0, 1] into subintervals

with the endpoints
1
2i' j = 0,1,2, ... ,s, (7.6)

a simply graded mesh. In this experiment, the integral equation (7.5) is discretized over a small segment

containing 'Yo by first mapping [0, 1] onto a small interval on each side of 'YO· We then use Gaussian

quadrature to discretize the image of each of the subintervals comprising the simply graded mesh on

[0, 1]. Note that the resulting discretization omits a small region around 'Yo· The refinement of the

simply graded mesh around 'Yo is controlled by adjusting a cut-off cr.nt on the minimum length of the

subintervals comprising the mesh; in other words, given €cut, we choose s in (7.6) to be the smallest

integer such that
1
2• < €cut· (7.7)

The part of r away from 'Yo is discretized via an equispaced mesh. The same number of Gaussian nodes

is used for each of the subintervals in the mesh discretizing r. Fig. 12 depicts the subintervals that

comprise the mesh discretizing r when €cut is set at w-s. In this setting, the simply graded mesh

around the corner 'Yo contains about 1150 nodes. The proof of convergence of such a discretization to

the solution of the underlying integral equation is somewhat involved, and can be found, for example,

in [14].
Table 4 presents the result of the experiment. We observe that r is originally parameterized in such a

way that discretization nodes to each side of 'Yo belong to separate clusters (see Fig. 13). As we decrease

€cut, the distribution of nodes around 'Yo becomes denser and the rank of interactions rtop of the clusters

increases. In particular, the O(N log2 N) estimate (6.8) on the cost of the multi-level solver does not

apply anymore; indeed, it relies on the assumption (4.25) that the ranks of the off-diagonal blocks depend

logarithmically on the block sizes, and this assumption is not valid in this case (see Table 4).

For this problem, it takes €cut = w- 15 to attain an error on the order of w- 10 . This corresponds to

using about 4370 nodes in total to discretize r, about 2150 of which used for the simply graded mesh

around the corner. At this setting, the multi-level solver, combined with the rotation scheme, performs

about 13.5 times faster than the "brute force" scheme. By extrapolation, we expect the multi-level solver

to gain more considerable advantage in the case of solving (7.5) on domains with multiple corners.

Remark 7.1 The error in Table 4 is the best precision achieved using a simply graded mesh around the

corner in double precision arithmetic. To get a higher precision, one can either run the experiment in

extended precision arithmetic, or adopt discretization methods other than the simply graded mesh.

8 Generalizations and conclusions

We have presented a numerical algorithm for the construction of compressed factorizations of inverses

of matrices possessing rank-deficient off-diagonal blocks. When applied to matrices arising from the

27

0.6
0.04

0.03

0.4
0.02

02 OD1

.0.2
.{),01

.0.02
.OA

.0.03

.0.6 .0.4 .02 0 0.2 OA 0.02 0.04 0.116 0.116 0.1 0.12

(a) (b)

Figure 12: (a) The mesh used to discretize r when Ccut is set at w-8 . There are in total136 subintervals

and about 3260 nodes. (b) A close-up of the simply graded mesh around the corner, contained by the

dashed box in (a). The mesh consists of 48 subintervals and about 1150 nodes .

.0.6 .0.4 .0.2 02 OA

Figure 13: The arrangement of the clusters on the first level under the original parameterization of r.

Table 4: Computational results for the boundary integral equation (7.1) associated with the interior

Dirichlet problem on the contour r shown in Fig. 11. Here, rtop denotes the approximate rank of

interactions of the clusters on the first level under the original parameterization of r, as arranged in

Fig. 13.

ecut N trot tsolve,l Erel,l tsolve,2 Erel,2 Ttop fsolve,3 Erel,3

l.Oe- 05 2784 9.07e- 02 1.32e + 00 9.52e- 05 4.86e + 00 7.66e- 07 192 1.26e + 01 7.22e- 05
l.Oe- 07 3072 8.85e- 02 1.57e + 00 8.48e- 06 9.05e + 00 7.20e- 06 252 1.72e + 01 7.24e- 06

l.Oe- 09 3408 9.58e- 02 2.02e + 00 5.92e- 07 2.10e + 01 5.54e- 07 330 2.27e + 01 4.96e- 07
l.Oe -11 3744 9.74e- 02 2.32e + 00 3.60e- 08 3.96e + 01 3.1le- 08 401 3.15e + 01 3.39e- 08
l.Oe- 13 4032 1.04e- 01 2.85e + 00 4.04e- 09 6.14e + 01 3.78e- 09 464 3.74e + 01 3.40e- 09

l.Oe- 15 4368 1.07e- 01 3.51e + 00 3.84e -10 9.90e + 01 3.59e -10 536 4.76e + 01 3.30e -10

28

discretization of boundary integral equations associated with the solution of Laplace's equation in two

dimensions, the algorithm typically has a cost proportional to N log2 N, where N is the number of nodes

in the discretization of the boundary.
Several straightforward generalizations of the scheme of this paper suggest themselves:

1. The adaptive rotation scheme of this paper generalizes to three dimensions, where it addresses

an outstanding problem of considerable interest. In particular, the scheme extends the applicability of

fast direct solvers to integral operators defined on boundary surfaces, which are usually specified via

parameterizations r: (0, 1] x (0, 1]-> 1R.3 such that the distance between two points (s1 , t1) and (s2 , t2) in

the parameter space bears no relation to the distance llr(s1, t1) - r(s2, t2) II between their corresponding

points on the surface. A generalization of the scheme to this setting will allow fast direct solvers to utilize

the geometry of the boundary that is usually not easily extractable from a given parameterization.

2. The scheme of this paper can be readily extended to the case of boundary integral equations

associated with the Helmholtz equation:

(8.1)

assuming w is not too large. This work is in progress and will be reported at a later date.

3. The direct solver presented in this paper can be modified to compute a compressed complete

orthogonal decomposition of the input matrix, rather than a compressed factorization of the inverse.

Such an algorithm will have applications to least-squares solutions of rank-deficient systems of equations:

Ax=b, (8.2)

where A is an n by n matrix of rank k < n.

References

(1] A. BJORCK, Numerical methods for least squares problems, SIAM, Philadelphia, 1996.

(2] G. CHANDLER, Galkerin's method for boundary integral equations on polygonal domains, J. Austral.

Math. Soc., Series B, 26 (1984), pp. 1-13.

(3] S. CHANDRASEKARAN, M. Gu, T. PALS, A fast ULV decomposition solver for hierarchically semi­

separable representations, SIAM Journal on Matrix Analysis and Applications, Volume 28, Issue 3

(August 2006), pp. 603-622.

(4] Y. CHEN, A fast direct algorithm for the Lippmann-Schwinger integral equation in two dimensions,

Adv. Comput. Math. 16(2-3) (2002) pp. 175-190.

(5] W.C. CHEW, An n 2 algorithm for the multiple scattering solution of n scatterers, Micro. Optical

Tech. Lett. 2 (1989) pp. 380-383.

(6] R. COIFMAN, Y. MEYER, Wavelets: Calder6n-Zygmund and multilinear Operators, Cambridge

University Press, 1997.

(7] G. FOLLAND, Introduction to Partial Differential Equations, Princeton University Press, Princeton,

N.J., 1976.

(8] D. GINES, G. BEYLKIN, J. DUNN, LU factorization of non-standard forms and direct multiresolu­

tion solvers, Appl. Comput. Harmon. Anal. 5 (2) (1998) 156-201, MR99c:65087.

29

[9] G. GOLUB, C. V. LOAN, Matrix Computations, Second Edition, Johns Hopkins University Press,
Baltimore, 1989.

[10] L. GREENGARD, V. ROKHLIN, A fast algorithm for particle simulations, J. Computational Physics
73 (1987), pp. 325-348.

[11] MING Gu, STANLEY C. EISENSTAT, Efficient algorithms for computing a strong rank-revealing QR
factorization, SIAM J. Sci. Com put. 17(4) (1996) pp. 848-869, MR 97h:65053

[12] W. HACKBUSCH, A sparse matrix arithmetic based on H -matrices. I. Introduction to H -matrices,
Computing 62 (2) (1999) pp. 89-108, MR 2000c:65039.

[13] W. HACKBUSCH, S. BORM, Data-sparse approximation by H 2 -matrices, Computing 69 (1) (2002)
pp. 1-35, MR 1 954 142.

[14] J. HELSING, R. OJALA, Corner singularities for elliptic problems: Integral equations, graded
meshes, quadrature, and compressed inverse preconditioning, Journal of Computational Physics
227, (2008).

[15] 0. KELLOG, Foundations of Potential Theory, Dover, New York, 1953.

[16] C. KENIG, Elliptic boundary value problems on Lipschitz domains, Beijing Lectures in Harmonic
Analysis, Ann. of Math. Stud., 112 (1986), pp. 131-183.

[17] R. KRESS, Integral Equations, Springer-Verlag, New York, 1999.

[18] R. KRESS, A Nystrom method for boundary integral equations in domains with corners, Numerische
Mathematik, 58 (1991).

[19] P. G. MARTINSSON, V. RoKHLIN, A fast direct solver for boundary integral equations in two
dimensions, Journal of Computational Physics 205 (2005) pp. 1-23

[20] S. MIKHLIN, Integral Equations, Pergamon Press, New York, 1957.

[21] J. STOER, R. BULIRSCH, Introduction to Numerical Analysis, Second Edition, Springer-Verlag,
1993.

[22] G. VERCHOTA, Layer potentials and boundary value problems for Laplace's equation in Lipschitz
domains, Journal of Functional Analysis, 59 (1984), pp. 572-611.

[23] F. WOOLFE, E. LIBERTY, V. ROKHLIN, M. TYGERT, A fast randomized algorithm for the approx­
imation of matrices, Applied and Computational Harmonic Analysis 25 (2008) pp. 335-36.

30

