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Motivation 

• Feedback cycle between liquid rocket engine (LRE) combustion chamber pressure 
perturbations and unsteady combustion1,2 

• Large amplitude fluctuations in pressure and combustion heat release rates  
combustion instability 

Flow 

Perturbation 

Heat Release 

Oscillation 

Pressure 

Perturbation 

1Harrje, D.T., and Reardon, F.H.. Scientific and Technical Information Office, National Aeronautics and Space 

Administration, NASA SP-194, 1972. 

2Schadow, K.C., Gutmark, E., Parr, T.P., Parr, D.M., Wilson, K.J., and Crump, J.H.. 19th AIAA Fluid 

Dynamics, Plasma Dynamics and Lasers Conference, AIAA 1987-1326 
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Objective 

• Impose external acoustic perturbations, and examine the response and stability 
characteristic of shear-coaxial injector flow to pressure perturbation 

Acoustic/Pressure 

Perturbation 

Shear-Coaxial 

Injector Flow 

• Investigate influence of injector geometry  on flow response to external pressure 
perturbation 

• Vary the outer-to-inner jet momentum flux ratio, J, under subcritical and nearcritical 
chamber pressure conditions, i.e., reduced pressures Pr = 0.44, 1.05 
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• Apply proper orthogonal decomposition of high-speed image pixel intensity 
fluctuations to extract spatial and temporal characteristics of prevalent coherent flow 
structures 
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Previous Works on Jet Instability 

• Michalke and Hermann (1982) did linear, inviscid instability analysis of a circular jet 
with coflow 

• Showed that with increasing coflow velocity, U 
– Helical disturbances more unstable than axisymmetric ones farther downstream of exit 
– Jet flow becomes less unstable, but spectrum of spatial growth rate becomes broader and the peak shifts 

to higher frequencies 
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 • Dahm et al. (1992), Wicker and Eaton (1994) conducted experimental investigation of 
large-scale vortex structures in the near field of coaxial jets 

– For outer-to-inner jet velocity ratios greater than one, found that coherent structures in the outer shear 
layer dominate those in the inner shear layer 

– At large axial distances, shear-layer vortices exhibit helical structures 

Dahm et al., JFM 1992 
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Schematic of Experimental Facility 
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Image of Experimental Facility 
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Injector Configuration 

• Two types of outer-to-inner jet cross-sectional area ratios 

– Large Area Ratio (LAR) 

– Small Area Ratio (SAR) 

LAR SAR 

Injector t D1
 t/D1

 D2
 D3

 D4
 Ao/Ai

 

LAR 0.09 0.70 0.13 0.89 2.44 3.94 10.6 

SAR 0.13 1.40 0.09 1.65 2.44 3.94 1.65 
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Acoustic Field Set-Up: Pressure Antinode 

• Pressure antinode (PAN) – condition of maximum pressure perturbation in the 
acoustic field 

• Piezo-sirens forced in-phase 

• Superposition of quasi-1D acoustic waves traveling in opposite directions  PAN at 
the jet location (geometric center of test section) 
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Proper Orthogonal Decomposition 

• Proper Orthogonal Decomposition (POD) or Principal Component Analysis 

(PCA) was used for extracting dominant dynamical processes embedded in high-

speed images.  

• A time-resolved set of images A(x,t) can be represented as a linear combination 

of orthonormal basis functions k (aka proper orthogonal modes)1,2 :   

1

( , ) ( ) ( )
M

k k

k

A x t a t x



where ak(t) are time dependent orthonormal amplitude coefficients and M is the 

number of modes 

• Main idea: POD modal amplitudes capture the maximum possible “energy” in 

an average sense3, i.e.,  

where bk(t) are the temporal coefficients of a decomposition with respect to an 

arbitrary orthonormal basis k.  

( ) ( ) ( ) ( )k k k k

k k

a t a t b t b t 

1 Chatterjee, A. Current Science, Vol. 78, No. 7 (2000) 
2 Arienti, M, and Soteriou, M.C.. Phys. Fluids 21, 112104 (2009) 
3 Narayanan,V., Lightfoot, M.D.A, Schumaker, S.A., Danczyk, S.A., and Eilers, B.. ILASS Americas, 2011 
4 Berkooz, G., Holmes, P., and Lumley, J.L.. Annu. Rev. Fluid Mech. 25. 539 (1993)  
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Construction of Data Set 

• First, form  a row vector consisting of all pixel intensity values of each 

snapshot image (with resolution of n rows by m columns) in order of increasing 

columns, then increasing rows 

Pixel 

Intensity 
N 

frames 

n 

rows 

m  
columns 

A = 
N time  
steps 

P = n × m  

pixel intensities 

• Then, combine all such row 

vectors for N sequences of image 

frames resulting in a matrix A 

consisting of N rows by P = n × m 

columns of intensity values.  

Image Frame 
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Orthogonal Decomposition Technique 

• Eigenvalue decomposition or singular value decomposition (SVD) can be used 

• SVD preferred since 

1. Applicable to non-square matrices (most likely the case) 

2. Decomposition matrices are orthogonal 

3. Subroutine readily available in MATLAB® 

• Subtracted temporal mean of A  matrix of intensity fluctuations Ã 

• Applied SVD 

TT
QVUSVÃ 

N × N  

Orthogonal Matrix of Left 

Singular Column Vectors of Ã   

N × P 

Orthogonal Matrix of Right Singular 

Column Vectors of Ã  proper 

orthogonal modes  (POM) 

N × N  

Diagonal Matrix of 

Singular Values  

Columns of Q ~ ak(t) contain temporal information 

Columns of V ~ k(x) contain spatial information 
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Results – Subcritical Baseline at Low J 

• LAR, Pr = 0.44, J = 0.5 

POM 2 POM 1 Average Snapshot 

Power Spectral 
Densities (PSD) 
of Temporal 
Coefficients of 
POMs 1 and 2 

Amplitude information 
contained in singular values 
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Identified with Characteristic 

Frequencies 



13 Distribution A: Approved for Public Release; Distribution Unlimited 

Results – Subcritical PAN at Low J 

POM 2 POM 1 Average Snapshot 

• LAR, Pr = 0.44, J = 0.5, forcing Frequency, fF = 3.14 kHz 

Symmetric Structures 
Identified with Characteristic 

Frequency at fF 
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Cross-Power Spectral Density (CPSD)  

• CPSD yields the FFT of the cross-correlation of  the temporal coefficients  

• Magnitude and phase plots used to determine existence of propagating structures 

Baseline 
PAN  

(fF = 3.14 kHz) 

LAR, Pr = 0.44, J = 0.5 

-90o Phase Difference 
Confirmed Downstream 

Propagating Flow 
Structures 

Baseline Spectrum 
Completely Removed in 
PAN Forced Spectrum 



15 Distribution A: Approved for Public Release; Distribution Unlimited 

Sample Animation – PAN (fF = 3.14 kHz) 

• LAR Pr = 0.44, J = 0.5 

Superposition of POMs 1 and 2 Resulted in Downstream Propagating Structures  
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Results – LAR, Pr = 0.44, Baseline 

0 D1 
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20 D1 

J = 2.1 J = 5.2 J = 11 J = 20 

• Antisymmetric flow structures indicated helical type flow instabilities for all J 

Characteristic peaks broadened and shifted to higher frequencies 
with increasing outer jet velocity 



17 Distribution A: Approved for Public Release; Distribution Unlimited 

Results – LAR, Pr = 0.44, PAN 

(fF = 3.12 kHz) (fF = 3.12 kHz) (fF = 3.10 kHz) (fF = 3.11 kHz) 
J = 2.1 J = 5.2 J = 11 J = 20 

0 D1 
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20 D1 

Baseline PAN 

• Gradual shift from symmetric to antisymmetric flow structures with increasing J 

• Response at forcing frequency, fF, dominant at lower J 
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Results – LAR, Pr = 1.05, Baseline 

0 D1 
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20 D1 

J = 0.5 J = 1.9 J = 5.0 J = 12 

• Antisymmetric flow structures indicated helical type flow instabilities for all J 

Similar to Pr = 1.05, peaks broadened and shifted to higher frequencies 
with increasing outer jet velocity 



19 Distribution A: Approved for Public Release; Distribution Unlimited 

Results – LAR, Pr = 1.05, PAN 

(fF = 3.10 kHz) (fF = 3.10 kHz)  (fF = 3.41 kHz) (fF = 3.10 kHz) 
0 D1 
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J = 0.5 J = 1.9 J = 5.0 J = 12 

Baseline PAN 

• Trend in response with varying J similar to Pr = 0.44 

• Gradual shift from symmetric to antisymmetric flow structures with increasing J 

• Response at fF still took over natural (baseline) frequency at lower J 
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Results – SAR, Pr = 0.44, Baseline 

J = 2.0 J = 5.2 J = 12 J = 17 
0 D1 

4 D1 

8 D1 

• Helical type flow instabilities became more well-defined with increasing J 

Unlike LAR flows, characteristic peaks showed minimal variation in 

frequency with outer jet velocity 
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(fF = 2.97 kHz) (fF = 3.02 kHz) (fF = 2.92 kHz) (fF = 2.90 kHz) 
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Results – SAR, Pr = 0.44, PAN 

Baseline PAN 

• Symmetric structures persist despite increasing J 

• Response at fF strong at highest J 
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Results – SAR, Pr = 1.05, Baseline 
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• Antisymmetric flow structures indicated helical type flow instabilities 

Similar to Pr = 0.44, characteristic peaks showed minimal variation in 

frequency with increasing outer jet velocity 
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Results – SAR, Pr = 1.05, PAN 

Baseline PAN 

(fF = 3.07 kHz) (f F = 3.09 kHz) 
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• Similar to Pr = 0.44, symmetric structures persist even at high J 

• Vortex-pairing interactions were most dominant response at 0.5fF
    

• Response at fF strong at highest J 
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Conclusion 

• Proper orthogonal decomposition of high-speed image intensity fluctuation data 
revealed key spatial and temporal characteristics of flow structures 

• In both pressure regimes, LAR injector: 

– Peak frequencies of  baseline flow instabilities became broader and shifted to 
higher frequencies with increasing J 

– PAN forcing at low J produced symmetric flow structures, while at higher J, 
influence of forcing subsided 

– Spectral magnitude plots showed decreasing influence of PAN forcing with 
increasing J  

• In both pressure regimes, SAR injector: 

– Increasing J had minimal influence on peak frequencies of  baseline flow 
instabilities 

– PAN forcing produced symmetric flow structures regardless of J 

– Spectral plots showed strong response to PAN forcing at low and high J 

• Operated at high enough J, LAR injector flows less vulnerable to external pressure 
disturbances 
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Data Summary Tables - LAR 
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Data Summary Tables - SAR 


