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Delay transition using non- |
equilibrium CO, GAL(H

PROBLEM: In hypersonic flight, heating loads are typically a dominant design factor

Turbulent heat transfer rates can be about an order of magnitude higher than laminar rates at
hypersonic Mach numbers

A reduction in heating loads by keeping the boundary layer laminar longer means less thermal
protection needed and hence less weight to carry, or conversely more payload deliverable for a
given thrust.
OBJECTIVE: Delay transition from laminar to turbulent flow in the boundary
layer of a slender hypersonic body by using nonequilibrium CO,

Transition in high Mach numbers

At relevant conditions, CO,
occurs through the Mack mode -

absorbs most energy at the

Molecular vibration and

dissociation damp
acoustic waves

« § ¢

amplification of acoustic waves
traveling in the boundary layer

frequencies most strongly
amplified by 2" (Mack) mode

Inject CO, to delay transition in air flows of interest
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Background CALCH

* Experimental data show that transition is delayed for CO, flows compared with N, and air
flows for a given stagnation enthalpy, h,

* These observations point to a second mode transition (or Mack mode) for the conditions
studied as well as to the importance of non-equilibrium effects of CO, on stabilizing the flow

Cco,

Air & N,

CO, Transition Re* is
about 5X that of Air and N2

From Hornung, H.G., Adam, P.H., Germain, P., Fuijii, K., Rasheed, A., “On
transition and transition control in hypervelocity flows,” Proceedings of the Ninth
Asian Congress of Fluid Mechanics, 2002
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Background CALCH

Computations show that when pure CO, is in vibrational and chemical non-equilibrium,
these relaxation processes absorb energy from acoustic disturbances in the boundary layer
whose growth is responsible for transition in hypervelocity flows

Confirms trends seen in experiments where CO, exhibits delayed transition with respect to
Air or N, for h,~5-10MJ/Kkg

For CO, _ vibrational relaxation and chemical

For air — no effect from vibrational relaxation : .
reactions stabilizes the boundary layer

and chemical reactions on stabilizing the

boundary layer
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From Johnson, H.B., Seipp, T.G., Candler, G.V., “Numerical study of hypersonic reacting
boundary layer transition on cones,” Physics of Fluids, 10 (10): 2676-2685 Oct. 1998.
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AERIS Background G/\Lé?'f

* Computed acoustic absorption rates (open symbols) — Fujii et. al
®* Computed acoustic amplification rates (solid symbols) — after Reshotko/Beckwith and Mack
* For CO, the broad sound absorption curve peak coincides with the amplification peaks

* This coincidence is most pronounced at enthalpies of ~10 MJ/kg

a) Nitrogen
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Amplification rate/cycle or absorption rate/wavelength

From: Fujii, K., Hornung, H.G, “Experinmental Investigation of
High-Enthalpy Effects on Attachment-Line Boundary Layer
Transition,” AIAA Journal, Vol. 41, No. 7, July 2003
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primary diaphrag;m-\ secondary diaphragm-\
\ T
bl | e
%ﬁ“ LI o / throat region
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\-CT—ST junction

\ER—CT junetion

\ST—nnzzle junction
hock tube (ST)

/ compression tube (CT) /-aecnndnry air reservoir (2R)
= — :

Impulse Facility, test time in the order of ms, but
high stagnation enthalpies and pressures
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AERL,  Free-stream mixtures with CO, CALFZ/
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Mole Fraction CO,

From Leyva, IA, Laurence, S, Beierholm, AK-W, Hornung, HG, Wagnild, R, and
Candler, G, “Transition delay in hypervelocity boundary layers by means of
CO2/acoustic instability interactions,” 47t AIAA Aerospace Sciences Meeting,
AlAA 2009-1287.
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AERL,! Porous Injector GALEH
4 Crln N Porous Injector Rationale
.  Move to a transpiration-like
approach instead of discrete
jets

« High velocity jets disturbed the
boundary layer — penetrate to
shock layer

* Need lower flow penetration into
the boundary layer

1 mm « Can achieve same flow rates as
with jets ~ 0-50 g/s

Porous injector section
Sintered 316LL Stainless Steel
10 um media grade
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LRIEE;* Porous Injector Results (10 MJ/kg) C/\Lfgf

10-micron Porous Injector (Ar injection at 3.7 grams/sec)

Average over test time

(1.500 — 2.100 ms)
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LRIEE;* Porous Injector Results (10 MJ/kg) C/\Lfgf

10-micron Porous Injector (no injection)

Average over test time

(1.500 — 2.100 ms)
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LRIEE;* Porous Injector Results (10 MJ/kg) C/\Lfgf

10-micron Porous Injector (CO, injection at 3.7 grams/sec)

Average over test time

(1.500 — 2.100 ms)
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AERLE,  Porous Injector Results 1/2 cAL#2
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No injection: porous section

Transfer Method

w Datareduction: Average Heat >
GAL(H

Argon Injection: 3.7 g/s

COz2 injection: 3.7 g/s
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i@ Data Reduction: Intermittency Method G/\Lfi’f

Shot 2596 Interrmttency (Average by Gauge P031t1on)
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" | | * Mee D.J. and Goyne C.P. (1996) Turbulent spots
08 09 1 in boundary layers in a free-piston shock tunnel
flow. Shock Waves, Vol. 6, No. 6:337-343.
* Narasimha R. (1985) The Laminar-Turbulent
Shot 2600 Intermittency (Average by Gauge Position) Transition Zone in the Boundary Layer. Progress in
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Alternate method to determine transition location
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LRIEE;* Porous Injector Results (10 MJ/kg) C/\LE??
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Summary of results
(intermittency method)
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AEBL, heoretical Injection

GALE

* Free-stream gas is Nitrogen

e Different injection geometry

— 5 degree cone, transpiration from 10 to 90 cm on the cone

Stagnation Conditions Free-stream Conditions
Pressure (MPa) 55.0 Density (kg/m3) 0.051855
Temperature (K) 6958 Temperature (K) 925.5
Entalpy (MJ/kg) 9.39 Velocity (m/s) 4039.7

* Injection based on profile suggested by Malik*

— mdot based on edge conditions and parameter, f,,

. ZReX,OWVW f, Mass Flux (g/s)
* For these cases, f,, held constant W 0.05 1.24
PeVe 0.1 2.47
— Mass flux decreases down the length of the cone 02 4.96
0.3 7.43
0.4 9.92
0.6 14.88

*Malik, M. R., “Prediction and Control of Transition in Supersonic and Hypersonic Boundary Layers,”
AIAA Journal, vol. 27, no. 11, November 1989, pp. 1487-1493.
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AERL,  Computational Results

GALE

®* Transition occurs at N =~9.2

e Significant transition delay
vS. smooth cone for CO2

* Air and N2 injection both
promote transition

* Mass flux = 2.5 grams/sec
(but over entire surface;
“Malik cone”)

N factor versus distance
along cone surface

* Smooth cone, X, = 63 cm

From Wagnild et al 2010
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AERL,  Computational Results  cAL £/

P | DELIVE

CO, at 297K CO, at 1000K
* Transition delay predicted * Pre-heating further delays transition
: . : — CO, able to absorb ti
— Increase in CO, initially results in earlzi:r © 10 absorb acoustit energy
further delay but further increase .
lificati — Higher temperature gas could also
causes more amplification contribute
* ForN,=92 * ForN,=92

— Smooth cone, x,, = 63 cm

— Smooth cone, x,, =63 cm, f, = 0.1,
— f,=0.1,%x,=83cm

Xtr =72cm From Wagnild et al 2010
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" Effect of dT t T it
AFRLY, gas and Temperature on Transi _
e Delay: CFD predictions &Oﬂ’-m

- —4A— CO,
i —v—— Heated CO,
30 - N,
f —<—— Air
> I
c 20
o .
E’ i
o 0
i - B
(] B
T of
w -
O I
Alternate gases only @ .
Increase disturbance o -10F
20+
n ] ] ! ] ! ! ] !

CFD predicts that for the current porous 0 5 10
design and longer porous injectors mdot (g/s)
transition could be delayed for
optimum flow rates and temperature
of CO,
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Citations CALCH

* Aerospace America 2009 — Year in Review: Fluid Mechanics

“AFRL, Caltech, and the University of Minnesota have collaborated in a humerical and
experimental study on control of high-speed boundary layers. The team has demonstrated
significant delays in transition”

* Annual Reviews of Fluid Mechanics 2011, 43:79-95. — Federov, A.
“Transition and Stability of High-Speed Boundary Layers’:

“..Another way to stabilize the second mode and thereby delay transition is to add CO2 into high enthalpy
boundary-layer flow (Leyva et al. 2009). The motivation for this new technique lies in the following findings: Molecular
vibration and dissociation suppress the acoustic instability, and at relevant conditions for hypersonic flight, CO2 absorbs
energy most strongly in the frequency band associated with the second mode.

The experiments of Leyva et al. (2009) on a sharp slender cone in the GALCIT T5 tunnel showed that the CO2/N2 free-
stream blends (without injection) lead to significant delay of transition. The transition Reynolds number more than doubled for
mixtures with 40% CO2 mole fraction compared with the case of 100% N2. A similar effect was noted in experiments using
mixtures of air and CO2 as the test gas. Experimental and numerical studies of the CO2 injection system suitable for this
LFC concept are in progress. The effect of the injection and the transition location is gauged by solving the PSEs and using
the semiempirical eN method (Wagnild et al. 2010)..”

Distribution A: Approved for public release; distribution unlimited

20



AERL, Half-Porous/Half-Smooth Injector G/\Lféf
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Latest 2

Boundary Layer Temperatures

5.69-592 ~30 1465 K
8.29 53.8 2149 K
8.60 78.3 2246 K
8.85 53.2 2295 K

9.46-10.32 ~55 2725 K

779K

1272 K
1355 K
1395 K
1728 K
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AERL Ongoing Challenges CALCH

P | BELIVER

10.3 MJ/kg, 55 MPa 8.6 MJ/kg, 78 MPa
Natural transition @ 72 cm Natural transition @ 54 cm
Delay observed Delay NOT observed

* In both cases, T*and T, are above the critical 960K for CO,

* Why is delay not observed for injection in the case on the right?

Distribution A: Approved for public release; distribution unlimited
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AERL Ongoing Challenges CALCH

Possible Explanation

* N-factor at transition is similar (5.0-5.6 for a noisy tunnel) in both cases

* N-factor at the injector section location (13.3 cm from the tip) is therefore significantly
higher for the case with earlier natural transition (right hand plot on previous slide)

* To suppress the 2" mode, mixing must be achieved at a relatively low (but not precisel
known) N-factor

Variables to optimize for attaining delay by injecting CO,
e N-factor at injection location
* (T*or T, of boundary layer base flow) / (T, of CO,)
* (mixing distance for CO, with boundary layer base flow) / (cone length)

* (CO, mass flow rate) / (boundary layer base mass flow)

Collaboration with Alexander Fedorov — Moscow Inst of Physics and Tech

e Determine how low the N-factor at injection must be, and where this physically
occurs on the cone

* Redesign of injector section to move it closer to the tip, achieving injection before
the 2"d mode acoustic waves appear

Distribution A: Approved for public release; distribution unlimited 24



AFRLY

Conclusions C/\Llf%f

* At 10 MJ/kg enthalpy, demonstrated delay versus Argon injection and also versus a smooth
injector

— CO, does make a difference!
® Selected a new condition at about 8-9 MJ/kg for further study

— Meant to show a greater effect because natural transition occurs near the middle of the
cone

— However, CO, injection did NOT seem to delay transition at this condition
* Designed and installed a half-porous, half-smooth porous injector
— Provides a non-injection “control” with every injection experiment

* Collaboration with Alexander Federov to for theoretical/computational input into injector
design and placement
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b
— Preliminary results from resonantly enhanced CALM

field focused schlieren system (REFFSS)

——

'1‘~900 microns

10/13/2011 Distribution A: Approved for public release; distribution unlimited 28
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Preliminary results from resonantly enhanced field
focused schlieren system (REFFSS)

——

A _900 microns |<_ Thermocouple

10/13/2011 Distribution A: Approved for public release; distribution unlimited 29
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Preliminary results from resonantly enhanced field
focused schlieren system (REFFSS)

——

A _900 microns |<_ Thermocouple

10/13/2011 Distribution A: Approved for public release; distribution unlimited 30
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Preliminary results from REFFSS

GALE

RMS Response vs. Time - Shot 2644
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M@ Preliminary results from REFFSS
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GALE

RMS Response vs. Time - Shot 2644
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AERL,  Heated Carbon Dioxide  CAL#&7/

* Baseline condition similar to shot 2541
— Testgasisair
— Free-stream Mach is 5.3
— Isothermal wall at 293 K

* Pre-heated CO,

— Momentum of injection matched with
13.5 g/s of cold carbon dioxide

* Increase in heating results in
decreased amplification

— Reduction in amplification more

efficient near 1000 K
N factor versus distance

Stagnation Conditions Free-stream Conditions along cone surface
Pressure (MPa) 50.92 Density (kg/m3) 0.05572
Temperature (K) 5968.5 Temperature (K) 1369.4
Entalpy (MJ/kg) 9.51 \elocity (m/s) 3957.9

Distribution A: Approved for public release; distribution unlimited
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AEBL, Computational Model  CAL &

Computations done using STABL software suite
— Mean flow

* 2" order accurate fluxes
* Modified Steger-Warming
* 1storder Implicit DPLR method for time integration
* Finite rate chemistry and T-V energy exchange

— Disturbances
e STABL PSE-chem solves the parabolized stability equations
* PSE predict amplification of disturbances
* Finite rate chemistry and T-V energy exchange

* Semi-empirical eN method used for determining transition location
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M@ Data Reduction: Intermittency Method G/\LM

LEAD § ESCOVER | DEVELCS | GELIVE

Shot 2600 Intermittency (Average by Gauge Position)

X x
=os
B) X x X
g 0.6
£ x
2 04} . ) .
g x % x x Turbulent intermittency
= 0.2 X X X _
= x
X
0 -3—%—%—%—x— ' ' ' ' '
0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Shot 2600 F(v) (Average by Gauge Position)
2 T T T T T T T
1.5 o o
_— x =0.32738 m
KO t .. ;
= Transition location
05 determined from intersection
%.2 0j5 016 0j7 0i8 0i9 1

Distance from tip (m)
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AFERL, Data Reduction: Intermittency Method G/\L(EW

Shot 2596 Intermittency (Average by Gauge Position)
0.25 ‘ ‘ : : ‘ : ‘

X
X

o
(S

o
-
[3)]

x | Turbulent intermittency

Intermittency ()
=}
x

0.05F

o—x—x—x—x—x—tx—x—w—x—x—xxx‘xx
7
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Shot 2596 F(-y) (Average by Gauge Position)

x,=0.73133 m ° | Transition location
determined from intersection

.5 0.6 0. 0.8 0.9 1
Distance from tip (m)
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Lﬁlﬁy' Porous Injector Results (10 MJ/kg) C/\ngf

10-micron Porous Injector (Ar injection at 11.6 grams/sec)

Heatflux distribution — Shot #2600
T

0.3 ' -

0.2r-

0.1}

| 1 |
-098 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3
Cone surface coordinate (m)

Transitional flow HE @ e

|
0.5 1 1.5 2 25 3 35 4 4.5 5
Heat Flux (MW/m?)

Re, = 2.88 x 106
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Porous Injector Results (10 MJ/kg) C/\Lé%f

10-micron Porous Injector (no injection)

Initially laminar flow

Re, = 4.12 x 108

Heatflux distribution — Shot #2588

0.3

0.2

0.1r

1 | |
-0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3
Cone surface coordinate (m)

2.5 3 35 4 4.5 5
Heat Flux (MW/m?)

Distribution A: Approved for public release; distribution unlimited

40



LEAD § ESCOVER | DEVELCS | GELVER

M@ Porous Injector Results (10 MJ/kg) G/\LM

10-micron Porous Injector (CO, injection at 11.6 grams/sec)

Heatflux distribution — Shot #2530
T T 1

0.3

0.2

0.1

| 1
-0.9 -0.8 -0.7 -0.6 -0.5 -04 -0.3

Completely |am|nar ﬂOW Cone surface coordinate (m)

Re, >=5.22 x 108

Heat Flux (MW/m?)
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M@ Porous Injector Results (10 MJ/kg) G/\LM

55 T T T

HEETILEE
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® Smooth
35 ) i
€ Argon (Porous Injector)
2-5 | | | | | | | |
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Injection Mass Flow Rate(g/s)

Summary of results (average
heat transfer method)
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Re vs. injection @ ~10 MJ/kg, ~55 MPa
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Transition Reynolds Number

Porous Injector Results (10 MJ/kg) C/\Lé%f

Re vs. injection @ ~10 MJ/kg, ~55 MPa
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Ar injection 4 g/s

Porous Injector Results (6 MJ/kg) C/\LE??

Porous tip — no
injection
vacuum plenum

CO, injection 4 g/s

Injection of CO, and argon
destabilize boundary layer
and transition occurs earlier
at lower enthalpy/temp.
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Before shot

Qualitative visualization G/\L(/%'f

Porous Injector with cone
downstream and 80 psi injection

Schlieren seems to capture the CO2 injection clearly
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AFRIEE; Porous Injector Results

GALE

CO, injection
at 18.5 g/s

Immediately
turbulent flow
(streak due to
injector flaw)

CO, injection
at 26.6 g/s
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AERL, CFD test conditions CALEH

Gas Composition (by
mass fraction)

N2 0.7345
02 0.1844
NO 0.0654

N 0.0

O 0.0157
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AFERLY Why vibration relaxation and

-----------------------------

* Theory known for decades (Lighthill,
1956, Herzfeld and Litovitz, 1959,
Clarke and McChesney, 1964,
Vincentti and Kruger 1967)

* Following Clarke and McChesney, the
linearization of perturbations of
the N-S equations leads to damping
curve as shown — Maximum damping
occurs when ot=a;a,

* Relaxation processes such as
molecular vibration and dissociation
cause damping of acoustic waves
through phase lag between pressure
and density

dissociation damp acoustic wav

GAL(Tl

2
=3

o
g (apw/a;m)"
3 1-0
g
m
2 04 08 =
w
o
5 06 @
o
= @
g o2 04
Q e
a o
< 02
0 ] 0
107! 10° 10’
Equil. € - frozen
(WTw/a)

From Clarke and McChesney

as>a,
\Erozen (OT=00 T~

~—~
\ S

3¢ . Non-Equilibrium ot=1

Energy absorbed by
relaxing process

N\ ~
Lag betwee/n p'and p \:\‘
-1.5 -1 -0.5 0 0.5 1 15

—p'/p' e max
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AFRLY

First injector models

GALE

Hole diameter, angle, «a
Model No. d (mm) No. Rows (deq)
1 0.51 2 12
2 0.76 1 11
3 0.76 1 12
4 1.02 1 11
Model No. 1
CO,out

Model No. 1 internal
/hannels

CO,in

Four injectors designed and built
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Injection Injector Variants

Model No. 2
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AERL, Back-up charts CALCH
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Vibrational temperatures

GALE

species

My
g/moal

Uerot

"
J/mol
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e
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AERL,  Dissociation temperatures CAL#Z/
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w Detalled condition data
—— (old shots) GAL
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Table A.l: Summary of freestream conditions for all shots.
Shot B Ty f Fe T Poc U Mo
[MFPa] [K] [MJ/kg] [kPal [K] [kg/m®  [mfs] [-]

331 522 TaTo 10.75 21L& 1487 402x1077 4286 56
2332 512 V095 10,90 228 1560 406x107F 4211 5.4
2333 500 4434 0.43 4000 2214 BEOx10TZ 3248 40
2334 501 5380 1059 A28 1980 620x100F 3700 4.7
2335 3TE6 3450 5.568 277 1426 O8Ex10TT 2647 46
2336 3v.: 3606 G.12 ITE 1532 04210 2741 46
2337 512 TATO 1137 232 1662 4.74x1077 4338 5.4
2433 391 5305 B34 17.0 1260 5001072 2712 6.4
2434 425 553 BAT 203 1360 S1Tk107? 3816 5.3
2435 480 5843 0.53 245 1522 560x1077 2042 52
24365 455  6GO60 10.07 5.7 1880 BA010CT 4040 B
2437 468 GBRET 11.33 T3 21THR 43Tkl 4363 4.8
2435 4805 G060 10.08 5.5 1660 5A6x107F 4040 6.1
2430 555 4TIS 0.15 266 1423 B5Lx107T 287R 53
2440 538 5216 7.00 251 1182 T.A0107? 3643 5.4
2441 526 45680 7.33 7.7 1286 BOGx1072 3407 6.1
2442 533 4250 T.1% 320 1470 B04x107% 320 48
2443 539  3T0Z 4.38 6.3 1448 1a3x10m! 2038 4.7
444 530 3616 5.00 403 1560 131=<10m! 2740 45
2445 533 3TRZ .61 4id 1674 1211000 283 45
2446 558 4742 .85 224 931 B36x1T? 3AM BT
2447 505 4357 G.06 180 783 84ax1072 2102 58
445 484 4358 6.07 180 783 S01x1072 3103 5.8
2440 457 4286 5.04 171 T2 TRx10? 3164 BB

Distribution A: Approved for public release; distribution unlimited 54



le—@;‘ Preliminary Results with Porous InjectorCALE‘%'f

THE AIR FOROE AESEARCH LABDAATORY
LEAD § ESCOVER | DEVELCS | GELVER

Control Experiment —
Smooth Surface

Porous injector design
looks very promising
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Porous Injector — no
flow

Boundary layer not
disturbed

Preliminary data
with porous injector
and 20 psi CO2 run

tank pressure

Boundary layer not
disturbed
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AERL CO, Injection System  CAL{/

The injection of CO, is
triggered by a proximity
switch sensing the recoil

of TS5, ~100 ms before 'NJEETE‘ER
flow begins in the test
section

Schematic Diagram of CO, supply
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AERL, Experimental model  GALF
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Injector section installed in ~1m long, 5-degree half angle cone
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ﬂ@ Preliminary Results (10 MJ/kg) C/\L(f%f

Control Experiment — Smooth Surface

Heatflux distribution — Shot #2609
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Heat Flux (MW/m?)
Re,, = 4.36 x 10°
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Lnlﬁy Four rows of orifices C/\Lfﬁ
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Injector with four rows of orifices,
installed in T5 test section

Distribution A: Approved for public release; distribution unlimited



THE AIR FOROE AESEARCH LABDAATORY
LEAD § ESCOVER | DEVELCS | GELVER

le—ﬁ;? Preliminary Results C/\LE??

Four-Row Injector (CO2 injection at 26.0 grams/sec)

Heatflux distribution — Shot #2520
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AERL; Preliminary Results C/\ngf

Four-Row Injector (no injection)

Heatflux distribution — Shot #2528
| = T T T T T T T 7]

Cone surfane coordinate (m) 4 o
Immediate Transition L - L _
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AEBL, One row injector G/\Lgﬁ
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One row of orifices
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Llﬁ‘ Preliminary Results C/\ngf

One-Row Injector (no injection)

Heatflux distribution — Shot #2538
oafF T T T T T T T 7]
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Transition (though not B
immediately full turbulence) ' : = ? o )
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A FRL W

T profile and N factor for high and low enthalpy

GALE

conditions
for Po=30MPa, Po_= >aMPa,
i ho=10 MJ/kg
ho=5.7 MJ/kg shot 2569
(shot 2582) ( )
T : solid line

M : dash dot line
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M@ Porous Injector Results (10 MJ/kg) C/\LM
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Summary of results
(intermittency method)

Distribution A: Approved for public release; distribution unlimited

66



AERLE,  Porous Injector Results 1/2 cAL#2

OF AESEARCH LABORATORY
AD | DISCOVER | DEVELDP | DELIVER

Distribution A: Approved for public release; distribution unlimited



	��Effect of gas injection on transition in�hypervelocity boundary layers����
	Slide Number 2
	Background
	Background
	Background
	Facility: T5 Hypervelocity Shock Tunnel
	Free-stream mixtures with CO2
	Porous Injector
	Porous Injector Results (10 MJ/kg)
	Porous Injector Results (10 MJ/kg)
	Porous Injector Results (10 MJ/kg)
	Porous Injector Results 1/2
	Data reduction: Average Heat Transfer Method
	Data Reduction: Intermittency Method�
	Slide Number 15
	Theoretical Injection
	Computational Results
	Computational Results
	Effect of gas and Temperature on Transition Delay: CFD predictions
	Citations
	Half-Porous/Half-Smooth Injector
	Boundary Layer Temperatures
	Ongoing Challenges
	Ongoing Challenges
	Conclusions
	Questions ?
	Back up
	Preliminary results from resonantly enhanced field focused schlieren system (REFFSS)�
	Preliminary results from resonantly enhanced field focused schlieren system (REFFSS)�
	Preliminary results from resonantly enhanced field focused schlieren system (REFFSS)�
	Preliminary results from REFFSS�
	Preliminary results from REFFSS�
	Heated Carbon Dioxide
	Computational Model
	Transition Determination Uncertainty
	Porous Injector Results: Intermittency Method
	Slide Number 37
	Slide Number 38
	Porous Injector Results (10 MJ/kg)
	Porous Injector Results (10 MJ/kg)
	Porous Injector Results (10 MJ/kg)
	Slide Number 42
	Slide Number 43
	Porous Injector Results (10 MJ/kg)
	Porous Injector Results (6 MJ/kg)
	Qualitative visualization
	Porous Injector Results
	CFD test conditions
	Why vibration relaxation and dissociation damp acoustic waves
	First injector models
	Back-up charts
	Vibrational temperatures
	Dissociation temperatures
	Detailed condition data �(old shots)
	Preliminary Results with Porous Injector
	CO2 Injection System
	Experimental model
	Preliminary Results (10 MJ/kg)
	Four rows of orifices
	Preliminary Results
	Preliminary Results
	One row injector
	Preliminary Results
	T profile and N factor for high and low enthalpy conditions
	N2 results
	Slide Number 66
	Porous Injector Results 1/2

