Award Number: W81XWH-10-1-0765

TITLE: T-Cell Immunotherapies for Treating Breast Cancer

PRINCIPAL INVESTIGATOR: Laurence Cooper, M.D., Ph.D.

CONTRACTING ORGANIZATION: The University of Texas MD Anderson Cancer Center
Houston, TX 77030-4009

REPORT DATE: September 2011

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
1. REPORT DATE
September 2011

2. REPORT TYPE
Final

3. DATES COVERED
1 September 2010 – 31 August 2011

4. TITLE AND SUBTITLE
T-Cell Immunotherapies for Treating Breast Cancer

5a. CONTRACT NUMBER

5b. GRANT NUMBER
W81XWH-10-1-0765

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)
Laurence Cooper, M.D., Ph.D.

E-Mail: tforeman@mdanderson.org

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The University of Texas MD Anderson Cancer Center
Houston, TX 77030-4009

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
None provided.

15. SUBJECT TERMS
None provided.

16. SECURITY CLASSIFICATION OF:

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>U</td>
<td>U</td>
</tr>
</tbody>
</table>

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
19

19a. NAME OF RESPONSIBLE PERSON
USAMRMC

19b. TELEPHONE NUMBER (include area code)
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Body</td>
<td>2</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>3</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>7</td>
</tr>
<tr>
<td>Conclusion</td>
<td>8</td>
</tr>
<tr>
<td>References</td>
<td>9</td>
</tr>
<tr>
<td>Appendices</td>
<td>16</td>
</tr>
</tbody>
</table>
Introduction

Breast cancer

Breast cancer is the most commonly diagnosed cancer among U.S. women (approximately 28% or more than 1 in 4) with approximately 1 in 8 women expected to develop this malignancy over the course of her lifetime. In 2010, there are an estimated 207,000 newly diagnosed cases of invasive breast cancer resulting in about 39,800 deaths in the United States, a mortality rate higher than all other malignancies, except lung cancer. The 5-year survival rate hovers around 75-90% for women diagnosed in the early stages with a dismal 15% for late stage breast cancer. While there are now more than 2.5 million breast cancer survivors in the U.S., in part due to better diagnostic and therapeutic efficacies, there is still plenty of room for improvement to reduce the mortality rates. Clearly, this is an important disease for women’s health and significant resources are focused on developing novel and more effective treatment options.

Adoptive T-Cell Immunotherapy

We proposed supplementing current breast cancer treatment options with T-cell immunotherapy which can treat malignancies resistant to conventional therapies such as surgery, chemotherapy, and radiation. As breast carcinomas grow despite a functioning immune system they develop strategies to avoid immune recognition and elimination by T cells. Gene reprogramming bestow T cells with tumor targeting capabilities and early-phase clinical trials are currently testing efficacies of T cells with redirected specificity. In addition to redirecting specificity through the expression of a chimeric antigen receptor (CAR) against c-Met, which is highly expressed in aggressive breast cancer cells, we have engineered T cells to exploit tumor hypoxia as a conditional stimulus for activation and proliferation. By programming T cells to activate only in pathological tumor hypoxia (1% O2), our approach seeks to avoid deleterious off-target effects, bypassing physiological normoxic (20% O2) and normal c-Met+ tissues.

Hypoxic tumor microenvironment and c-Met

We selected c-Met, a hypoxia-inducible antigen widely expressed in breast cancer, as the target for redirected T-cell specificity for the following reasons:

1) Poor prognosis of c-Met+ breast tumors

2) Widely expressed in chemo-resistant and hypoxic breast tumors
3) c-Met signaling pathway significantly affects breast tumor survival

Our approach is to exploit the hypoxic breast tumor microenvironment to devise a robust tumor specific T-cell immunotherapy. Relapsed breast tumors are hypoxic and resistant to conventional chemotherapy and radiotherapy regimens. These hypoxic tumors are prone to metastasis leading to widespread treatment failure. Hypoxic breast tumors express high levels of c-Met, a hypoxia-inducible tyrosine kinase receptor for hepatocyte growth factor/scatter factor (HGF/SF), and a multipotent cytokine that induces invasive and metastatic growth. c-Met activation triggers mitogenic, morphogenic, and angiogenic changes in breast tumors, invariably associated with extremely poor prognosis, reduced survival, and high metastatic risks.

Body

We hypothesize that a combination of immunotherapy which exploits the tumor microenvironment would probably be an innovative and novel alternative to supplement current treatment modalities.

Goals

To develop chimeric antigen receptors (CARs) to target antigens on breast cancer cells. Our approach focuses on exploiting the hypoxic tumor microenvironment to conditionally activate reprogrammed T cells specific for the c-Met antigen. Specifically, we want to (1) develop a CAR specific for c-Met antigen to reprogram T cells for antigen-dependent killing of breast cancer cells, and (2) develop a CAR to target breast cancer cells that can be conditionally expressed under hypoxia.

CAR constructs

c-Met specific CAR was constructed by fusing the single-chain variable fragments (scFv) of a mouse anti-human c-Met antibody to the human IgG4 Fc domain and signaling endodomains of human CD28 and CD3ζ (CD247). In addition, to render the CAR oxygen-sensitive, an oxygen-dependent degradation domain from Hypoxia Inducible Factor-1α (HIF-1α, the master transcriptional regulator of cellular hypoxia response) was incorporated into the c-Met CAR yielding c-Met-ODDD CAR, which is oxygen-sensitive. Both the c-Met CAR and c-Met-ODDD CAR were cloned into Sleeping Beauty (SB) transposition vector (transposon DNA, schematic in Appendix). The expression cassettes were flanked by inverted
repeats/direct repeats (IR/DR) for specific recognition by SB transposase, which cuts and pastes the transposon DNA into genomic T cell DNA.

Growing of CAR on aAPC platform

Peripheral blood mononuclear cells (PBMC) were isolated from normal donors by venipuncture and Ficoll fractionation. These cells are nucleofected using Amaza T cell transfection with SB transposase and transposon constructs. The cells were then stimulated using γ-irradiated artificial antigen presenting cells (aAPC), a K562-based HLA^−^ cell line constitutively expressing c-Met antigen, CD86, CD137L, IL-15, and CD64. These co-stimulatory molecules ensure optimal T cell expansion.

Testing of CAR expression based on oxygen condition

T cells were expanded on 1% (hypoxic condition) or 20% (normoxic condition) oxygen supplemented with 5% CO\textsubscript{2} in a humidified environment at 37°C. CAR expression were determined by Fluorescent-Activated Cell Sorting (FACS). Cell numbers were enumerated and fold expansion calculated over a 4-week (4 x 7 days stimulations) period.

Testing of CAR on breast cancer cell lines

c-Met expression was verified on breast cancer cell lines and co-cultures were performed to assay for CAR-directed T cells killing of target tumor cells under either low or normal oxygen conditions (1%, or 20% O\textsubscript{2}).

Key Research Accomplishments

We capitalized on the triple associations of hypoxia, c-Met, and breast carcinoma to develop novel and specific immunotherapy for enhanced therapeutic efficacy. Successful targeting of breast cancer will involve not only redirected specificity, but also modifying T cells to overcome the hostile/hypoxic tumor microenvironment:

Research accomplishments include:

(i) We can use the oxygen-dependent degradation domain (ODDD) to render the expression of red-fluorescent protein sensitive to hypoxia (Figure 1).
(ii) We can fuse ODDD to c-Met-specific CAR to render T cells capable of only expressing the CAR-ODDD under conditions of hypoxia, but nor normoxia (Figure 1). Control c-Met-specific CAR is expressed under hypoxia and normoxia.

(iii) We can propagate c-Met-specific CAR-ODDD to large and clinically-sufficient numbers under hypoxia on γ-irradiated c-Met⁺ aAPC (Figure 2).

(iv) We can demonstrate re-directed effector function of c-Met-ODDD+ T cells based on selected killing of hypoxic tumor cells expressing c-Met (Figure 3).
Figure 1: (A) Expression (in K562 cells) of the red-fluorescent protein AsRed-2, fused to ODDD, under hypoxia (1% O₂) and then loss of expression under normoxia (20% O₂), and followed by re-expression of AsRed2-ODDD as the oxygen tension was reduced. (In these preliminary data, not all the cells express AsRed2-ODDD.) Yellow circles highlight cell fluorescence indicating molecular sensing of O₂ and AsRed-2 expression. (B) Expression of c-Met-specific CAR (without fusion to ODDD) under normoxia and hypoxia (top). The human HIF-1α ODDD was fused in frame to the 3' end of the c-Met-specific CAR (CAR-ODDD) (bottom).

Figure 2: Selective propagation of c-Met-specific CAR-ODDD+ T cells can be numerically expanded on c-Met+ aAPC under hypoxia (1% O₂).
Figure 3: Chromium release assay of c-Met-specific CAR-ODDD T cells under conditions of normoxia and hypoxia. The tumor cells (K562) were transfected to enforce expression of c-met on the cell surface independent of O₂ concentration. The T cells conditionally express the CAR-ODDD under conditions of hypoxia.
Reportable Outcomes

The ability to genetically manipulate T cells and expand them to clinically relevant numbers ex vivo provides new opportunities to enhance their biologic activity in vivo.

Our data demonstrate that:

(i) c-Met CAR⁺ T cells are able to kill c-Met⁺ breast cancer cells only (Figure 4).

(ii) c-Met ODDD CAR⁺ T cells are able to kill c-Met⁺ breast cancer cells only in low oxygen conditions, such as tumor environments (Figure 5).

Table 1. c-Met expression in breast cancer cells

<table>
<thead>
<tr>
<th>Breast cancer cell lines</th>
<th>c-Met expression:</th>
</tr>
</thead>
<tbody>
<tr>
<td>T47D</td>
<td>low / negative</td>
</tr>
<tr>
<td>MCF-7</td>
<td>low/ negative</td>
</tr>
<tr>
<td>MDA-MB231</td>
<td>positive</td>
</tr>
<tr>
<td>SkBr-3</td>
<td>positive</td>
</tr>
</tbody>
</table>

Figure 4: Chromium release assay of c-Met-specific CAR⁺ T cells under conditions of normoxia (20% Oxygen). The breast cancer cells are target based upon expression of c-Met on the cell surface (MDA-MB231 and Sk-Br-3 positive, T47D and MCF-7 negative).
Conclusions

We have generated a CAR coupled to a molecular sensor for oxygen that is capable of targeting c-Met which can be useful in the treatment of breast cancer. Conditional activation of T cells can be a useful way of avoiding unwanted effects with antigens which have a widespread expression profile. Oxygen-sensitive CARs can be used to activate T cells only in tumor microenvironment leaving normal c-Met+ epithelial cells untouched.

c-Met overexpressions are also detected in other malignancies so our platform technology can also be useful in tumors with pathologic HGF/c-Met signaling axis. In addition, this technology can be adapted to target specific antigens of choice for other tumor types.

To our knowledge, no publication is found detailing therapeutic development conditionally targeting c-Met in breast carcinomas. We are therefore at the cutting edge forefront in our attempt to leverage our platform technology to conditionally reprogram T cells to target c-Met in breast cancer.
References/Bibliography of Publications and Meeting Abstracts

Bertotti A, Comoglio PM, Trusolino L. Beta4 integrin is a transforming molecule that unleashes Met tyrosine kinase tumorigenesis. Cancer Res. 65, 10674-9 (2005)

Bigelow RL, Cardelli JA. The green tea catechins, (-)-Epigallocatechin-3-gallate (EGCG) and (-)-Epicatechin-3-gallate (ECG), inhibit HGF/Met signaling in immortalized and tumorigenic breast epithelial cells. Oncogene. 25, 1922-30 (2006)

Castro NE, Lange CA. Breast tumor kinase and extracellular signal-regulated kinase 5 mediate Met receptor signaling to cell migration in breast cancer cells. Breast Cancer Res. 12, R60 (2010)

Lee WY, Chen HH, Chow NH, Su WC, Lin PW, Guo HR. Prognostic significance of co-expression of RON and MET receptors in node-negative breast cancer patients. Clin Cancer Res. 11, 2222-8 (2005)

Pozner-Moulis S, Pappas DJ, Rimm DL. Met, the hepatocyte growth factor receptor, localizes to the nucleus in cells at low density. Cancer Res. 66, 7976-82 (2006)

Tolgay Ocal, I, Dolled-Filhart, M, D’Aquila, TG, Camp, RL, & Rimm, DL. Tissue microarray-based studies of patients with lymph node negative breast carcinoma show that met expression is associated with worse outcome but is not correlated with epidermal growth factor family receptors. Cancer 97:1841-8 (2003).

List of Personnel Supported by Grant

Sonny Oon Ang

Tijuan Mi

Appendices

Schematic of Sleeping Beauty Transposition system consisting of a transposase expression plasmid and a transposon DNA vector.

Left Panel: plasmid construct for SB11 transposase. Right Pane: DNA vector of c-Met specific chimeric antigen receptor (CAR)