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Abstract

We consider the restless multi-armed bandit (RMAB) problem with unknown dynamics. In this
problem, at each time, a player chood€sout of N (N > K) arms to play. The state of each arm
determines the reward when the arm is played and transits according to Markovian rules no matter the
arm is engaged or passive. The Markovian dynamics of the arms are unknown to the player. The objective
is to maximize the long-term reward by designing an optimal arm selection policy. The performance
of a policy is measured by regret, defined as the reward loss with respect to the case where the player
knows which K arms are the most rewarding and always plays thi€sbest arms. We construct a
policy, referred to as Restless Upper Confidence Bound (RUCB), that achieves a regret with logarithmic
order of time when an arbitrary nontrivial bound on certain system parameters is known. When no
knowledge about the system is available, we extend the RUCB policy to achieve a regret arbitrarily
close to the logarithmic order. In both cases, the system achieves the maximum mean reward offered by
the K best arms. Potential applications of these results include cognitive radio networks, opportunistic

communications in unknown fading environments, and financial investment.

Index Terms

Restless multi-armed bandit, non-Bayesian formulation, regret, logarithmic order

I. INTRODUCTION

The Restless Multi-Armed Bandit (RMAB) problem is a geneaatiion of the classic Multi-
Armed Bandit (MAB) problem. In the classic MAB, there akeindependent arms and a single
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player. At each time, the player chooses one arm to play and receives certain amount of reward.
The reward i(e., the state) of each arm evolves as an i.i.d. process over successive plays. The
reward distribution of each arm is unknown to the player. The objective is to maximize the long-
term reward by designing an optimal arm selection policy. This problem involves the well-known
dilemma between exploitation and exploration. For exploitation, the player tends to select the
arm suggested by past reward observations as the best. For exploration, the player selects an arm
to learn its reward statistics. Under the non-Bayesian formulation, the performance measure of
an arm selection policy is given by regret, defined as the reward loss compared with the optimal
performance in the ideal scenario of a known reward model [1]. Note that in the ideal scenatrio,
the player will always play the arm with the highest mean reward. The essence of the problem
is to identify the best arm without engaging other inferior arms too often.

In 1985, Lai and Robbins showed that the minimum regret grows with time in a logarithmic
order [1]. A policy was further constructed to achieve the minimum regret (both the logarithmic
order and the best leading constant) [1]. In 1987, Ananthaataah extended Lai and Robbins’s
results to accommodate multiple simultaneous plays [2] and Markovian reward model where the
reward of each arm evolves as an unknown Markov process over successive plays and remains
frozen when the arm is not played (the so-called rested Markovian reward model) [3]. For both
extensions, the minimum regret growth rate has been shown to be logarithmic [2], [3]. There
are also several simpler index policies that achieve logarithmic regret for the classic MAB under
an i.i.d. reward model [4], [5]. In particular, the index policy—referred to as Upper Confidence
Bound 1 (UCB1)—proposed in [5] achieves the logarithmic regret with a uniform bound on the
leading constant over time. In [6], UCB1 was extended to the rested Markovian reward model
adopted in [3].

A. Restless Multi-Armed Bandit with Unknown Dynamics

Different from the classic MAB, in an RMAB, the state of each arm can change (according
to an unknown Markovian rule) even when the arrmas played. The unknown state transition
matrix when the arm is played can be different from that when it is not played. We consider
the general case whei€ (K < N) arms are simultaneously played at each time. Even with a
known model, the RMAB problem has been shown to be P-SPACE hard in general [7].

In this paper, we address the RMAB problem with unknown Markovian dynamics. Similar to
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the classic MAB, we measure the performance of a policy by regret, defined as the reward loss
compared to the case when the player knows whictarms are most rewarding and always
plays theK best arms. We show that for RMAB, logarithmic regret can also be achieved as in
the classic MAB. Specifically, we construct a policy that achieves logarithmic regret when an
arbitrary nontrivial bound on certain system parameters is known. When no knowledge about
the system is available, we show that a variation of the policy achieves a regret arbitrarily close
to logarithmic orderj.e, the regret has ordef(¢) log(t) for any increasing functiorf(¢) with

f(t) — oo as timet — oo. In both cases, the proposed policy achieves the maximum mean
reward offered by thd< best arms.

Referred to as the Restless Upper Confidence Bound (RUCB), the proposed policy borrows the
basic index form of the UCB-1 policy developed in [5] for the classic MAB under i.i.d. reward
models. To handle the restless nature of the problem, the basic structure of the proposed RUCB
policy is fundamentally different from that of UCB-1. Specifically, the basic structure of RUCB
consists of interleaving exploitation and exploration epochs with carefully controlled lengths
to bound the frequency of arm switching and balance the tradeoff between exploitation and
exploration. Another novelty of this paper is a general technique in choosing policy parameters
whose value may have to depend on the range of certain system parameters. We show that by
letting these policy parameters grow with time (rather than fixemtiori), one can get around
with the dependency of the policy parameters on system parameters and achieve a regret order
arbitrarily close to logarithmic without any knowledge about the system.

We point out that the definition of regret adopted in this paper, while similar to that used for
the classic MAB, is a weaker version of its counterpart in the classic MAB. In the classic MAB
with either i.i.d. or rested Markovian reward, the optimal policy under known model is to stay
with the best arm in terms of the reward mean. For RMAB, however, the optimal policy under
known model is no longer given by staying with the arm with the highest mean reward. Defining
the regret in terms of this optimal policy would require that a general RMAB with known model
be solved and optimal performance analyzed before the regret under unknown model can be
approached. Unfortunately, RMAB under known model itself is intractable in general [7]. In
this paper, we adopt a weaker definition of regret where the performance is compared with a
“partially-informed” genie who knows only which arms have the highest mean reward instead

of the complete system dynamics. This definition of regret leads to a tractable problem, but at
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the same time, weaker results. Whether stronger results for a general RMAB under unknown
model can be obtained is still open for exploration (see more discussions in Sec. I-C on related

work).

B. Applications

The restless multi-armed bandit problem has a broad range of applications. For example, in a
cognitive radio network, a secondary user searches among several channels for idle slots that are
temporarily unused by primary users. The state of each channel (busy or idle) can be modeled
as a two-state Markov chain. At each time, a secondary user chooses one channel to sense and
subsequently transmit if the channel is found in the idle state. The objective of the secondary
user is to maximize the long-term throughput by designing an optimal channel selection policy
without knowing the traffic dynamics of the primary users.

Consider opportunistic transmission over multiple wireless channels with unknown Markovian
fading. In each slot, a user senses the fading realization of a selected channel and chooses its
transmission power or date rate accordingly. The reward can model energy efficiency (for fixed-
rate transmission) or throughput. The objective is to design the optimal channel selection policies
under unknown fading dynamics.

Another potential application is financial investment, where a Venture Capital (VC) selects
one company to invest at each year. The statg, @nnual profit) of each company evolves as a
Markov chain with the transition matrix depending on whether the company is invested or not.
The objective of the VC is to maximize the long-run profit by designing the optimal investment
strategy without knowing the market dynamgsriori.

The proposed policy for RMAB also provides a basic building block for constructing decen-
tralized policies for MAB with multiple distributed players under a Markovian reward model [8]
(Decentralized MAB was first formulated and solved under an i.i.d. reward model in [9]). In the
decentralized MAB with Markovian reward, multiple distributed players select arms to play and
collide when they select the same arm. Arms are restedthey do not change states when they
are not played. However, from each player’s point of view, each arm is restless since its state
can be changed by other players. Applying the RUCB policy proposed here to the decentralized

rested multi-armed bandit problem leads to the optimal logarithmic order of the regret [8].
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C. Related Work

This paper is among the few first attempts on RMAB under uknown models. There are two
parallel independent investigations reported in [10] and [11]. In [10], Tekin and Liu adopted the
same definition of regret as used in this paper and proposed a policy that achieves logarithmic
(weak) regret when certain knowledge about the system parameters is available [10]. The policy
proposed in [10] also uses the index form of UCB-1 given in [5], but the structure is different
from RUCB proposed in this paper. In [11], a stronger definition of regret is adopted, where
regret is defined as reward loss with respect to the optimal performance in the ideal scenario of
known reward model. However, the problem can only be solved for a special class of RMAB.
Specifically, when arms are governed by stochastically identical two-state Markov chains, a
policy was constructed in [11] to achieve a regret with an order arbitrarily close to logarithmic.

The RMAB with known reward model has been extensively studied in the literature. In [12],
Whittle proposed a heuristic index policy that generalizes Gittins optimal index policy for
the classic MAB with known reward model [13]. Weber showed that Whittle index policy is
asymptotically optimal (as the number of arms goes to infinity) under certain conditions [14].
In the finite regime, the optimality of Whittle index policy has been shown for certain special

families of RMAB (see, for example, [15]).

[I. PROBLEM FORMULATION

In the RMAB problem, we have one player andindependent arms. At each time, the player
can choosé{ (K < N) arms to play (we focus o = 1 for the simplicity of presentation).
Each arm, when played (activated), offers certain amount of reward that models the current state
of the arm. Lets;(¢) denote the state of arghat time¢. No matter an arm is played or not, the
state of the arm changes according to a Markovian rule. In general, the transition matrices in
the active mode and the passive mode are not necessarily the same. The player does not know
the transition matrices of the arms. The objective is to choose one arm to play at each time in
order to maximize the expected total reward collected in the long run.

Let S; denote the state space of amEach arm is assumed to have a finite state space.
Different arms can have different state spaces. Retlenote the active transition matrix of arm
J and @; the passive transition matrix. All transition matrices are assumed to be irreducible,

aperiodic, and reversible. Let; = {7/}.cs, denote the stationary distribution of armin the
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active mode i(e., under P;), wherer! is the stationary probability (unded?;) that armj is in
states. The stationary mean rewayd is given by, = Zsesj sml. Let o be a permutation of
{1,---, N} such that

Ho(1) = Ho@) 2= Po(3) = = Mo(N)-

A policy @ is a rule that specifies the arm to play based on the observation histor.(Lgt
denote the time index of theth play on armj, andT;(t) the total number of plays on arm
by time t. Notice that both;(n) and7}(¢) are random variables with distributions determined

by the policy®. The total reward by time is given by

N T;(t)

R(t) = Z si(t(n)). (1)

7j=1 n=1
As mentioned in Sec. |, the regret(t) achieved by policyd is defined as the reward loss
with respect to the case where the player knows which arm has the highest mean reward and

always plays this best arm. We thus have

ro(t) = tion) — EoR(t), (2)

wherelEg denotes the expectation with respect to the random process induced by polite

objective is to minimize the growth rate of the regret.

[1l. THE RUCB PoLIcY

The proposed policy RUCB is based on an epoch structure. Weedilie time into disjoint
epochs. There are two types of epochs: exploitation epochs and exploration epochs (see an
illustration in Fig. 1). In the exploitation epochs, the player calculates indexes of all arms and
play the arm with the highest index, which is believed to be the best arm. In the exploration
epochs, the player obtains information of all arms by playing them equally many times. The
purpose of the exploration epochs is to make decisions in the exploitation epochs sufficiently
accurate. As shown in Fig. 1, in theh exploration epoch, the player plays every atfm!
times. At the beginning of theth exploitation epoch the player calculates index for every arm
(see (4) in Fig. 2) and selects the arm with the highest index (denoted as*arithe player
keeps playing arnu* till the end of this epoch that has lengthx 47~!. How the two types

of epochs interleave is detailed in Stepin Fig. 2. Specifically, whenever sufficiently many
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(DInt, see (3)) observations have been obtained from every arm in the exploration epochs,
the player is ready to proceed with a new exploitation epoch. Otherwise, another exploration
epoch is required to gain more information about each arm. It is also implied in (3) that only
logarithmically many plays are spent in the exploration epochs, which is one of the key reasons
for the logarithmic regret of RUCB. This also implies that the exploration epochs are much less
frequent than the exploitation epochs. Though the exploration epochs can be understood as the
“information gathering” phase, and the exploitation epochs as the “information utilization” phase,
observations obtained in the exploitation epochs are also used in learning the arm dynamics. This
can be seen in Stepin Fig. 2. In calculating the indexes using (4), observations from both the
exploration and exploitation epochs are used. This is different from the policy in [10], which
only uses part of the past observations in calculating indexes. A complete description of the

proposed policy is given in Fig. 2.

Epoch 1 2 3 4 5 6 7 8

Exploration epochs Exploitation epochs

The general structure of RUCB

arm! arm'! ' arm! arm! ' arm! 'arm! tarm
T IR P IR
} | A [}

Slot 1 2 gn—1 2 x 4n—1 (N —1)x4n~t 41 N x 4n—1

Structure of thenth exploration epoch

Clompute the indexes and identify the arm with the highest index (denote it ag*3rm

1 1 1 1
arm; tarm! 'arm
a | ot o
1 1 1 1
S|Ot 1 2 X 4n—1

Structure of thenth exploitation epoch

Fig. 1. Epoch structures of RUCB
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RUCB
Time is divided into epochs. There are two types of epoch, exploration epoch and exploitation egoch. At
the beginning of thexth exploitation epoch, we choose one arm to playZXor 47~! many times. In the
nth exploration epoch, we play every arthi—! many times. Leto(¢) denote the number of exploratipn

epochs played by time andn;(t) the number of exploitation epochs played by time

1. Att =1, we start the first exploration epoch, in which every arm is played once. We)$&t+1) =
1, n7(N +1) =0. Then go to Step2.

2. LetX,(t) = (4™ —1)/3 be the time spent on each arm in exploration epochs by tifi#00se
D according to (5)(6). If

X;(t) > DInt, 3)

go to Step3 (start an exploitation epoch). Otherwise, go to Stefstart an exploration epoch).
3. Calculate indexes,; ; for all arms using the formula below:

Llint

di = 5(t) +

)

wheret is the current timeg;(¢) is the sample mean from arirby time ¢, L is chosen according
to (5), andT;(t) is the number of times we have played aifoy time¢. Then choose the arm with

the highest index and play it far x 47— slots. Increase,; by one. Go to stef.

4. Play each arm fot("o—1) slots. Increase.o by one. Go to Step.

Fig. 2. RUCB policy

IV. THE LOGARITHMIC REGRET OFRUCB

In this section, we show that the regret achieved by the RUCB policy has a logarithmic order.
This is given in the following theorem.

Theorem 1. Assume all arms are modeled as finite state, irreducible, aperiodic, and reversible
Markov chains. All the states (rewards) are positive. kg, = minges, 1<i<n Ty €max =
MAaX1<;<N €, Emin = MIN << €y Smax = MAXse 8, 1<i<N Sy Smin = MiNges, 1<i<n S, ANA|S|max =
max;<;<n |S;| Wheree; is the second largest eigenvalue @f Let M < N denote the number
of optimal arms. Set the policy parametdrsand D to satisfy the following conditions:

1 2082,,[S]2

L > (4 max 4 1()s?

Emin (3 - 2\/§) max)’ (5)
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p> ®)
(:U“ _:uU(M-i-l))

The regret of RUCB at the end of any epoch can be upper bounded by

3
re(t) < ([logy(5(t = M) + 1)]) max A;
+N(|log,(3DInt +1)] + 1) max A,
‘Sz‘ + |8*‘ €max\/z

3
* (T “(t—
+ 2l uz)([0g4(2(t M)+ )]3S (L )
+Z Lt —m [4(3DInt+1) — 1)), 7)
where A; = (minges, 7)Y, s, 5.
Proof: See Appendix A for details. [ |

In RUCB, to ensure logarithmic regret order, the policy paramefe@nd D need to be
chosen appropriately. This requires an arbitrary (nontrivial) bound?0n, |S|max, €min, and
1 — po(v+1)- In the case where these bounds are unavaildblend L can be chosen to increase
with time to achieve a regret order arbitrarily close to logarithmic order. This is formally stated
in the following theorem.

Theorem 2: Assume all arms are modeled as finite state, irreducible, aperiodic, and reversible
Markov chains. For any increasing sequerf¢e) (f(t) — oo ast — o), if L(t) and D(t) are
chosen such thak(t) — oo ast — oo 5% — o0 ast — oo, and {7} — oo ast — oo, then

we have

ro(t) ~ o(f(t)log(t)). (8)
Proof: See Appendix B for details.

V. CONCLUSION

In this paper, we considered the non-Bayesian restless-arafted bandit problem. We adopted
the definition of regret from the classic MAB and developed a policy that achieves logarithmic
regret when an arbitrary (nontrivial) bound on certain system parameters is known. When no
knowledge about the system is available, we extend the RUCB policy to achieve a regret with

an order arbitrarily close to logarithmic.
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APPENDIX A. PROOF OFTHEOREM 1

We first rewrite the definition of regret as

~

N i (1) N

ro(t) = ti" —EaR(t) = Y [WEIL(0] = EDY_ si(t(n)]] + (0" = wE[L(0) (9)

i=1 =1 i=1

To show that the regret has a logarithmic order, it is sufficient to show that both terms in (9)

3

have logarithmic orders. The first term in (9) can be understood as the regret caused by arm
switching. The second term can be understood as the regret caused by engaging a bad arm. First,
we bound the regret caused by arm switching based on the following lemma.

Lemma 1 [3]: Consider an irreducible, aperiodic Markov chain with state sgacmatrix of
transition probabilities?, an initial distributiong which is positive in all states, and stationary
distribution7 (7, is the stationary probability of statg. The state (reward) at timeis denoted
by s(t). Let u denote the mean reward. If we play the chain for an arbitrary fimehen there
exists a valuedp < (minyesm,) "' 3, ¢ s such thatB [ s(t) — uT] < Ap.

Lemmal shows that if the player continues to play one arm for tifip¢he difference between
the expected reward arigy, can be bounded by a constant that is independeht @his constant
is an upper bound for the regret caused by each arm switching. If there are only logarithmically
many arm switchings as times goes, the regret caused by arm switching has a logarithmic order.
An upper bound on the number of arm switchings is shown below. It is developed by bounding
the numbers of the exploration epochs and the exploitation epochs respectively.

For the exploration epochs, by timgif the player has began to play tfie+ 1)th exploration
epoch, we have

1
(4" —1) < Dlut, (10)

where (4" — 1) is the time spent on each arm in the firsexploration epochs.

Consequently the number of the exploration epochs can be bounded by
no(t) < [log,(3DInt +1)| + 1. (11)
By time ¢, at most(t — N) time slots have been spent on the exploitation epochs. Thus

na(t) < Mlogy (5t — N) +1)]. (12)
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Hence an logarithmic upper bound of the first term in (9) is

N T (t)

Y WELO] —ED_ siti(n)]] < (ﬂog4(g(t—N)+1ﬂ

i=1 n=1
+N([log,(3DInt+1)| + 1)) maxA;, (13)
where A; = (minges, 70) 7' >0 s, S-
Next we show that the second term of (9) has a logarithmic order. The approach here is to
show that for every bad arm E[T;(¢)] has a logarithmic order. L&t () denote the time spent
on armi in the exploration epochs by time Let 7; ;(t) denote the time spent on aritin the

exploitation epochs by time So we have
Ti(t) = Tio(t) + T4 (1), (14)

We will show that bothE[T; (t)] andE[T; ;(t)] have logarithmic orders.
The logarithmic order ofE[T; ()] follows directly from (11),i.e,

Tolt) < %[4(3Dlnt+ 1) —1]. (15)

) —

The logarithmic order of[T; ,(¢)] is established by boundinBr[i, |, the probability that
armi is played in thenth exploitation epoch.
Recall that if armi is selected in thexth exploitation epoch, it will be played far x 41
times. From the upper bound on the number of the exploitation epochs given in (12), we thus

have
[og, (3 (t—M)+1)]
> 2 x 4"~ Prfi, n] (16)
n=1
[og, (3 (t—M)+1)]
< > 3t, Pr[i, n), (17)
n=1

wheret, denote the starting time of theth exploitation epoch and (17) follows from the fact

E[T:.(t)]

IN

thatt, > %4”‘1. Notice that (17) has only logarithmically many terms, if each term can be
bounded by a fixed constante., if Pr[i,n] has an order of, !, then the sum has a logarithmic
order.

Let C;,, = /(LInt/w) denote the second part of the RUCB index. If aris played in the

nth exploitation epoch, then

Jw < t,,w; <t,, suchthat 5°(t,)+ Cy, 0w < 5(tn) + Cp, ;- (18)
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We thus have
tn—1 tn—1
Prli,n] < > Y Pr[s*(t,) + Ciw < Si(tn) + Cip)] (19)
w=1 w;=DInty,
tn—1 tn—1

< Z Z n) <= Cy ] + Pr[si(tn) > pi + Ch, oy
w=1 w;=DInty
+Prlp” < pi +2C;, w,]) (20)

tn—1 tn—1

< Y > (Pr[sT(tn) < pf = Chu] + Pr[Sity) > pi+ Crol), (1)

w=1 w;=DlInty,

where (21) follows from the fact that; > DlInt,
Next we boundPr[s;(t,) > u; + Cy, ;] and Pr[s*(t,,) < u* — C}, ). The events;(t,) >

wi + Cy, ., 1S €quivalent to
w;S;(tn) > wip; + / Lw; Int,,. (22)

The inequality (22) is the event that the sample mean from multiple epochs foi @roo
high. This event implies that the sample mean from at least one epoch is significantly higher
than the true mean. Notice that the tolerant deviation in (22) is of the fgiiaw; Int,. It is
convenient if the tolerant deviation for each epoch is of the fétfiLw Int,, wherew is the
number of plays done on one arm in one epoch @g a constant independent of. In this
way, the tolerant deviations for the sample mean in each epoch and in all the epochs are of
similar forms. The possible values for the number of plays in the exploitation epocBs<are
The possible values of the numbers of plays done on an arm in the exploration epodhs are
Consequently it can be assumed that the player has spenttiorearm: by playing the epochs

with lengths of2™1 =1 2721 ... 9nx—1 with eachn; distinct. Thusw; = S2%, 27! and
J j=1

j j—1
271&—1 _ 2nk—l
St = || Y o]
-\ k=1 k=1

]~

Vw, =

.
Il
-

]~

~ |- -1
\ Zan—l +oni—1 Zan—l}

k=1 k=1

.
Il
-

]~

\/277/]‘—1 _'_ 277,]'—1 _ \/271j—1:|

.
Il
-

(V2 — 1)V2m L, (23)

]~

<.
Il
-
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The tolerant deviation for an continuous period of play with lerjth! is (v/2—1)v/L1Int,2% 1.
Let R;(w) denote the reward gained from aiinin a period with lengtho. An upper bound on
Pr{w;s;(t,) > w;pu; + v/ LInt,w;] is derived below

Pr [w;5;(t,) > wip; + v/ Lnt,w;]

7 -1

< S rinE 2 e VIRE[| S - (S

k=1 1

.

=
Il

< Zpr Ri(27Y) > ;- 277 + (V2 — 1)/ 271 L1nt,,). (24)

The probabilltyPr[Ri(Q”f‘l) > ;- 270 + (V2 — 1)v/2%1LInt,) is for the event that the
sum of reward during a period of time of lengttv—! from armi is significantly deviated from
w2~ It can be written in terms of the numbers of occurrences of states. Specifically, let
Oi(w) denote the number of occurrences of staitom armi in a period with lengthw, we

have

Pr [Ry(2%71) > ;-2 4 (V2 —1)y/2% 1 LInt,,]
= Pr[) (—sOi2%7 ") + 527 '7l) < (V2 —1)y/2% ' Lnt,). (25)

SES;
The above equality leads to

Ri(2%7Y) >y - 2% 4 (V2 = 1)y/2%1LInt, implies that
—05(2m 7Y 42t < (V2 —1)y/2 -1 L1Int, /(s|S;|) for somes € S;.  (26)

Thus the event that the sample mean is significantly deviated from the true mean implies that
at least one state occurs much often than predicted by its stationary probability.

Lemma2 below is used to bound the probability that a state occurs much often than predicted
by its stationary probability.

Lemma 2 (Chernoff Bound, Theorem.1 in [16]): Consider a finite state, irreducible, aperiodic
and reversible Markov chain with state spatenatrix of transition probabilitie®, and an initial
distributionq. Let Ny = [(£),z € S|,. Lete = 1— Ay, where), is the second largest eigenvalue
of the matrixP. e will be referred to as the eigenvalue gap. etz S. Let T'4(t) be the number

of times that states in the sdt are visited up to time¢. Then for anyy > 0, we have

Pr(Tu(t) —tmq > ) < (1+ 1—W)qu—726/20t. (27)
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Using Lemma2, we have

Pr[R;(2"71) > p; - 271 4+ (V2 — 1)y/2% 1 LInt, (28)
< Z P[-0:(2"M 1) 42" 1nt < —(V2 = 1)y/20 1 L1nt, /(s|Si])] (29)
SES;
= ) Plo;(2v7) —2v nl > (V2 - 1)V2u Lt/ (s[Si])] (30)
SES;
e/ Lint /2”1_1 e i 21612
< 1 ! n N~ B=2v2)(Le'/(20(s)%[S:[%))
< D (L ) Nty (31)
SES;
) _(3_2\/5)(%#1033)“)
S |SZ| (1 + 6InaX\/Z)tn 205r2nax‘$‘r2nax ) (32)
Tmin 103min

. 5 5
Since L > 1 (4M+1082

— €min (3—2\/5) max

) and K < t, in (23), we have

< |SZ| Emax\/z _3

Pr|s; > . 1 .
r[sz (tn) — ILLZ + Ct7L7wl] — ﬂ_mln( + 105m1n )tn (33)
Similarly, it can be shown that
—% * |S*‘ Emax\/z -3
< ut— < .
Pr(s" (1) < 4" = Copa] < (L 222, (34)

So

7 * max L
SIS ) | eI

Tmin 1 OSmin

E[T2(1)] < Nlogy(3(t — M) +1)] ) (35)

Combining (9) (13) (14) (15) (35), we can get the upper bound of regret:
3
re(t) < ([logy(5(t = M) + 1)]) max A;
+N([log,(3DInt+1)| + 1) max A;

SIS ) | VT

Tmin 1 OSmin

+ 370 = ) (oga (50 — M) + 1) )

FY o - ,ui)%[él(?)D Int+1)—1)). (36)

We point out that the same Chernoff bound given in Lenaalso used in [6] to handle the
rested Markovian reward MAB problem. Note that the Cheroff bound in [16] requires that all the
observations used in calculating the sample meanar(d s* in (21)) are from a continuously
evolving Markov process. This condition is naturally satisfied in the rested MAB problem.

However, for the restless MAB problem considered here, the sample means are calculated using
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observations from multiple epochs, which are noncontiguous segments of the Markovian sample
path. As detailed in the above proof, the desired bound on the probabilities of the events in (21)

is ensured by the carefully chosen (growing) lengths of the exploration and exploitation epochs.

APPENDIX B. PROOF OFTHEOREM 2

The choice ofL(t) and D(t) implies thatD(t) — oo ast — oo. By the same reasoning
in the proof of Theoreni, the regret has three parts: The regret caused by arm switching, the
regret caused by playing bad arms in the exploration epochs, and the regret caused by playing
bad arms in the exploitation epochs. It will be shown that each part part of the regret is on a
lower order thanf(t) log(t).

The number of arm switchings is upper bounded¥¥og,(t/N + 1). So the regret caused

by arm switching is upper bounded by
Nlog,y(t/N + 1) max A;, (37)

where A; = (min,es, 72) 7' >0 o 5. Since f(t) — oo ast — oo, we have
. Nlogy(t/N + 1) max; A,
lim
=00 f(t) log(t)
Thus the regret caused by arm switching is on a lower order ftiaiiog(t).

— 0. (38)

The regret caused by playing bad arms in the exploration epochs is bounded by

S - M)g[zl(gp(t) nt+1)— 1] (39)

2

Since {2 _, ~o ast — oo, we have

D(t)
St — ) YEGD(0) It + 1)~ 1]

lim 40
o £(6)1og(®) “o
Thus the regret caused by playing bad arms in the exploration epochs is on a lower order than

() log(t).
For the regret caused by playing bad arms in the exploitation epochs, it is shown below that

the time spent on a bad arircan be bounded by a constant independent of

Since% — oo ast — oo, there exists a time; such thatvt > ¢35, D(t) > [—T—" jf&f) ek
2052

There also exists a timg such thatvt > t, L(t) > — (667‘\5[; + 10s%_ ). The time
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spent on playing bad arms befare= max(¢3,t4) is at mostts;, and the caused regret is at most

(1" — po(ny)ts. After t;, the time spent on each bad ains upper bounded by:

|Sz| + |S*| €max L(t5)
3 p— (1+ 05— ). (41)
An upper bound for the corresponding regret is
. |Si + 157 €max /L (15)
So the regret caused by playing bad arms in the exploitation epochs is
* * 87, + S* €max L(t
(1" = oyt + S0 — ) (1S gy P I @3)

which is a constant independent of timeThus the regret caused by playing bad arms in the
exploration epochs is on a lower order thAft) log(¢).
Because each part of the regret is on a lower order fanlog(t), the total regret is also on

a lower order thary (t) log(t).
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