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Abstract

The problem of estimating the parameters of multiple independent continuous-time Markov on-

off processes is considered. The objective is to minimize the total mean square error (MSE) under a

constraint on the total sensing time. The Fisher information matrix for the primary traffic model and

the maximum likelihood estimator are obtained. A sequential estimation strategy is proposed which

operates under an epoch structure with growing epoch length. It is shown that this sequential estimation

strategy is asymptotically efficient as the total sensing time increases. This result finds application in

opportunistic spectrum access where secondary users need to estimate the channel occupancy model of

the primary system for efficient exploitation of spectrum opportunities.

Index Terms

Channel estimation, continuous-time Markov process, sequential estimation, cognitive radio, oppor-

tunistic spectrum access (OSA).

I. INTRODUCTION

In opportunistic spectrum access, secondary users sense andaccess temporally unused channels

in the spectrum without causing unacceptable interference to primary users [1]. An accurate

stochastic modeling of the primary system channel occupancy plays a crucial role in designing
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the National Science Foundation under Grant CCF-0830685. Part of this work was presented at IEEE SPAWC, June, 2011.
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the optimal algorithms for sensing, tracking, and exploiting spectrum opportunities. For instance,

in [2]–[4], the channel occupancy of the primary system is modeled as a continuous-time Markov

on-off process. Given these parameters, optimal sensing and access strategies of the secondary

users are designed. In practice, however, the stochastic model of the primary traffic may not be

known a priori; such a model must be learned through channel sensing.

In this paper, we consider the problem of estimating the parameters of multiple independent

continuous-time Markov on-off processes. The objective is to minimize the total mean squared

error (MSE) across all channels under a constraint on the total sensing time. To this end, we

obtain the Fisher information matrix and the maximum likelihood estimator (MLE). Given that

the optimal allocation of the total sensing time to multiple channels depends on the unknown

parameters, a sequential estimation strategy is proposed which dynamically adjusts the allocation

of sensing time based on the partial learning results obtained up to the current time. Referred

to as SEINE (Sequence Estimation with Increasing Nested Epochs), the proposed sequential

estimation policy operates under an epoch structure. Within each epoch, channels are sensed in

turn, each for a fraction of the epoch length with the fraction determined by the current estimate

of the channel parameters. The epoch length grows over time to take advantage of the increasing

accuracy of the estimates. It is shown that SEINE is asymptotically efficient,i.e., it achieves the

Craḿer-Rao Bound (CRB) as the total sensing time grows.

Learning the stochastic models of primary channel occupancy has received relatively little

attention. There exist a few published results, all focusing on a single channel and discrete

sampling. For example, in [5], [6], Maximum Likelihood and Bayesian estimation of channel

parameters under a uniform sampling strategy were studied. In [7], relationship between estima-

tion accuracy, the number of samples taken, and the channel state transition probabilities was

analyzed by using the sampling and estimation framework proposed in [5]. Parket al. in [8]

proposed a channel state predictor based on the reinforcement learning techniques where the

channel model is assume to be a hidden Markov process. In [9], a wavelet transform based

channel estimator was proposed. In [10], the performance of the single channel MLE of the

uniform and random discrete-time sampling strategies were compared. It is demonstrated that

when the samples are sparse enough, the random sampling outperforms the uniform sampling.

The analysis of [10] assumes that the utilization factor of the channel is known which reduces the

problem to a single (scaler) parameter estimation problem. A dynamic programming approach



3

is proposed to obtain the best and the worst sampling scheme which can be solved numerically.

For the time-varying channel parameters, an adaptive random sensing scheme is proposed and

shown to outperform its counterpart using uniform sensing.

II. PROBLEM STATEMENT AND FUNDAMENTAL STATISTICS

Consider a network that consists ofM channels. TheseM channels are licensed to an unslotted

primary network. The spectrum occupancy of channelm is modeled as a continuous-time Markov

process with two states:Sm(t) = 1 (busy) andSm(t) = 0 (idle). TheseM Markov processes

are jointly independent. In particular, for channelm, the sojourn times in the busy and idle

states are exponentially distributed with ratesλ1,m andλ0,m, respectively. Theses parameters are

unknown to the secondary system. A secondary user’s objective is to learn the primary network

occupancy model. It aims to estimate the set of channel parameters{λ0,m, λ1,m}M
m=1 by sensing

theseM channels.
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Fig. 1. Channel Sensing Model

We assume that the secondary user can only sense one channel at a time, and there is a

budget for the total sensing time. An illustration of a particular sensing scenario is shown in

Fig 1 where the secondary user monitors a particular channel continuously for a period of time
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before switching to a different channel. It is intuitive that a channel with greater statistical

variance requires longer total sensing time to achieve the same level of accuracy as that for

a channel with smaller variance. The main challenge here is to design a sensing policy that

allocates time spent on each channel optimally.

While the continuous-time on-off Markovian abstraction of the primary channels is widely

accepted, it has several subtle modeling complications. Specifically, the transitions of the primary

traffic are instantaneous. From a signal theoretic point of view, such a process has infinite

bandwidth and no discrete-time sensing can be made without loss of information. In this paper,

we adopt a continuous sensing model where it is assumed that the secondary user can observe

the channel continuously. This of course can only be an approximation of a practical sensing

mechanism, but it has the significant theoretical benefit that the sensing process does not lead

to information loss.

We also have to make a few additional assumptions on sensing. The on-off model requires

a hypothesis test to decide whether a particular channel is idle or busy. When the observation

is noisy, such hypothesis testing suffers from miss detection and false alarm. The modeling of

sensing errors leads to significant complications and is not considered in this paper. In addition,

switching from one channel to another also takes time in practice. This too will be ignored in

our development.

A. Likelihood Function, Sufficient Statistics, and Fisher Information: A Single Interval Analysis

In this section we focus on a single interval sensed from a given channel and derive fun-

damental statistics. These statistics are extended to the multi-interval multi-channel case in the

next section. In the following, the channel index is dropped for the ease of presentation.

The information observed in[t1, t1+T1] from a given channel is illustrated in Fig. 2; it consists

of the stateSt1 of the channel at the beginning of the sensed interval and the realizations of

the consecutive observed idle/busy periods{(zi)
n
i=1}, wheren is the number of such periods.

Hence the observation model for the interval[t1, t1 + T1] will be {St1 , (zi)
n
i=1}. Denote byZi’s

the exponential random variables wherezi’s are respective realizations of what the secondary

user has observed. From Fig. 2, we haveZ1 ≥ z1, Zn ≥ zn, andZi = zi for i = 2, . . . , n − 1.

In the following we refer tozi’s with i ∈ {2, . . . , n − 1} as completeperiods sinceZi = zi for

them which is not true fori = 1, n.
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Fig. 2. Observation Model

Now assume that a realization of observation for the interval[t1, t1 + T1] is given to be

{St1 = s, Z1 ≥ z1, (Zi = zi)
n−1
i=2 , Zn ≥ zn}. Since the state of the channel duringZ1 is given to

be s, the state of channel duringZi will be si = s + (1+(−1)i

2
)(1− 2s). Therefore the likelihood

function given that idle/busy periods for the given channel are exponentially distributed with

parametersλ0, andλ1 is

f(s, (zi)
n
i=1|λ0, λ1) = Pr{St0 = s|λ0, λ1}Pr{Z1 ≥ z1, Zn ≥ zn}fZ2,...,Zn−1

{z2, . . . , zn−1|λ0, λ1, St0 = s}

= (
λ0

λ0 + λ1
)s(

λ1

λ0 + λ1
)1−s e−λs1

z1Πn−1
i=2 (λsi

e−λsi
zi) e−λsnzn.

Let n0, andn1 be the number ofcompleteidle and busy states (note thati = 1, n are excluded)

respectively. Thus we have

ns = { (n
2
− 1)+ n is even

(n−3
2

)+ n is odd.
(1)

n1−s = (n − 2 − ns)
+. (2)

Therefore the likelihood function can be rewritten as

f(s, (zi)
n
i=1|λ0, λ1) = (

λ1−s

λs + λ1−s

) λns

s e−λs

P⌊n+1
2

⌋

i=1
z2i−1 λ

n1−s

1−s e−λ1−s

P⌊n
2
⌋

i=1
z2i . (3)

The likelihood function in (3) shows that thesufficient statisticsfor a single interval is

(s, n,

⌊n+1

2
⌋

∑

i=1

z2i−1,

⌊n
2
⌋

∑

i=1

z2i). (4)



6

The Fisher information is the negative of the expectation of the second derivative of the log

likelihood function,L(λ0, λ1) = log f(s, (zi)
n
i=1|λ0, λ1), with respect to the unknown parameters,

namely,

I[t1, t1+T1] = E(−∇2
λ0,λ1

L(λ0, λ1))

where

−∇2
λ0,λ1

L(λ0, λ1) =





n0+1{s=1}

λ2
0

− 1
(λ0+λ1)2

− 1
(λ0+λ1)2

− 1
(λ0+λ1)2

n1+1{s=0}

λ2
1

− 1
(λ0+λ1)2



 , (5)

where1s=j = 1 if s = j and zero otherwise. The Fisher information can be expressed in closed

form given in the following Theorem.

Theorem 1:The Fisher information matrix for a single channel which is sensed for a continuous-

time interval[t1, t1 + T ] can be written as,

I[t1, t1+T ] =







T

λ2
0
( 1

λ0
+ 1

λ1
)
(1 + o(T )) − 1

(λ0+λ1)2

− 1
(λ0+λ1)2

T

λ2
1
( 1

λ0
+ 1

λ1
)
(1 + o(T ))






.

Proof: See the Appendix A.

From theorem 1 for the inverse of the Fisher information matrix we get,

I−1
[t1, t1+T ] =





λ2
0
( 1

λ0
+ 1

λ1
)

T
(1 + o(T )) o(T )

o(T )
λ2
1(

1

λ0
+ 1

λ1
)

T
(1 + o(T ))



 . (6)

B. Likelihood Function and Fisher Information for Multiple Intervals

Since the channels are independent, the likelihood function of the network will be the product

of the likelihood functions of each channel. Similarly, the Fisher information of the network will

be the sum of the Fisher information matrices of individual channels. Therefore without loss

of generality, we derive the likelihood function and the Fisher information matrix for multiple

intervals for a given channeli.

Assume that the secondary user has sensedK intervals{[tj, tj + Tj ]}K
j=1 where thejth and

(j + 1)th intervals are separated by∆tj = tj+1 − (tj + Tj). Fig. 3 shows an example where

K = 4.

Using the same notation introduced in section II-A and adding indexj indicating thejth

interval, the likelihood function forK intervals isf({sj, (zh,j)
nj

h=1}K
j=1|λ0,i, λ1,i). Based on the
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Markov property the likelihood function can be reduced to (derivations for two intervals are

given in Appendix B),

f({sj, (zh,j)
nj

h=1
}K

j=1|λ0,i, λ1,i) = ΠK
j=1f(sj, (zh,j)

nj

h=1
|λ0,i, λ1,i) × ΠK−1

j=1

Pr{Stj+1
= sj+1|Stj+Tj

= snj ,j}
Pr{Stj+1

= sj+1}
. (7)

Denote the continuous and discrete parts of the likelihood function by

LC
j = f(sj, (zh,j)

nj

h=1|λ0,i, λ1,i),

LD
j =

Pr{Stj+1
= sj+1|Stj+Tj

= snj ,j}
Pr{Stj+1

= sj+1}
.

The likelihood function can be written as,

f({sj, (zh,j)
nj

h=1}K
j=1|λ0,i, λ1,i) = ΠK

j=1 [LC
j ] ΠK−1

j=1 [LD
j ]. (8)

Note thatLD
j (stands for discrete likelihood) only depends on the state of the channels at two

pointstj +Tj (end point of thejth interval) andtj+1 (the starting point of the(j +1)th interval).

Therefore the termLD
j can be regarded as the factor in the likelihood function coming from the

discrete sampling at single pointstj + Tj , and tj. LC
j (stands for continuous likelihood) is the

likelihood function for the single interval[tj , tj + Tj ] (computed in section II-A).

Therefore the likelihood function for multiple intervals consists of two type of factors, the

likelihood functions of individual intervals (LC
j ’s) and the factors from the discrete sampling

(LD
j ’s) at the end points of the neighboring intervals. Fig. 4 shows continuous sampling (in-

dividual intervals) and discrete sampling for two intervals. The conditional probability can be

written as

Pr{Stj+1
= sj+1|Stj+Tj

= snj ,j} =
λ1−sj+1,i

λsj+1,i + λ1−sj+1,i

+ (−1)snj,j+sj+1

λ1−snj,j ,i

λsnj,j ,i + λ1−snj,j ,i

e−(λ0,i+λ1,i)∆tj
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We also know

Pr{Stj+1
= sj+1} =

λ1−sj+1,i

λsj+1,i + λ1−sj+1,i

.

Therefore the likelihood function is

f({sj, (zh,j)
nj

h=1}K
j=1|λ0,i, λ1,i) = ΠK

j=1[(
λ1−sj ,i

λsj ,i + λ1−sj ,i

) λ
nsj ,j

sj ,i e−λs,i

P⌊
nj+1

2
⌋

h=1
z2h−1,j λ

n1−sj

1−sj
e−λ1−sj

P⌊
nj
2

⌋

h=1
z2h,j ]

× ΠK−1
j=1 [

λ1−sj+1,i

λsj+1,i+λ1−sj+1,i
+ (−1)snj,j+sj+1

λ1−snj ,j ,i

λsnj ,j,i+λ1−snj ,j,i
e−(λ0,i+λ1,i)∆tj

λ1−sj+1,i

λsj+1,i+λ1−sj+1,i

].

The Fisher information is derived from the logarithm of the likelihood function. Therefore by

the same argument given for (8), the Fisher information of the multiple intervals will be the sum

of the Fisher information of the individual intervals plus the sum of the information obtained

from the discrete samplings at the end points of neighboring intervals ,tj +Tj ’s andtj+1’s. Here

we have dropped the channel indexi for the ease of presentation.

I∪K
j=1

{[tj , tj+Tj ]} =
K

∑

j=1

I[tj , tj+Tj ] +
K−1
∑

j=1

ID
j (∆tj). (9)

where

ID
j (∆tj) = E(−∇2

λ0,i,λ1,i
log(

Pr{Stj+1
= sj+1|Stj+Tj

= snj ,j}
Pr{Stj+1

= sj+1}
)), (10)

is the information obtained from the discrete sampling attj + Tj and tj+1 which is a function

of ∆tj (and also the unknown parametersλ0,i, andλ1,i).
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In the following theorem we show the optimality of single interval versus multiple intervals

with the same total length under a sparsity condition.

Theorem 2:There exists a finite valueτ > 0 such that the Fisher information of a single

interval [t0, t0 +T ] is larger than the Fisher information ofK intervals{[tj, tj +Tj]}K
j=1 where

∆tj ≥ τ ∀j ∈ {1, . . . , K − 1}, and
∑K

j=1 Tj = T , i.e.,

I[t0, t0+T ] ≥ I∪K
j=1

[tj , tj+Tj ]. (11)

Proof: See Appendix B.

Therefore if the distance between intervals (∆tj ’s) is quite large (bigger than a constantτ ),

sensing one big interval with the lengthT =
∑K

j=1 Tj has higher Fisher information. Based on

this theorem, a sensing policy is calledsparseif it satisfies the condition in Theorem 2, namely,

minK−1
j=1 ∆tj > τ .

III. M AXIMUM L IKELIHOOD AND MOMENT ESTIMATORS

A. The Maximum Likelihood Estimator

The MLE (maximum likelihood estimator) is obtained by∂L
∂λj

= 0, j = s, 1 − s, where

L = log f({sj, (zh,j)
nj

h=1}K
j=1|λ0,i, λ1,i)

is the log likelihood function, andf({sj, (zh,j)
nj

h=1}K
j=1|λ0,i, λ1,i) is given in section II-B. It is

apparent that the MLE depends on the number of intervalsK and also∆tj ’s and maximizing

the likelihood function does not lead to a convenient form that can be used as a framework for

sensing policy design. It is worth noting, however, that if there is only a single period (K = 1),

a case that can be optimal for some cases, the ML estimator can be obtained in a closed-form

as shown in the following Lemma.

Lemma 1:When there is only a single period (K = 1), the MLE can be obtained in a closed

from (3) in section II-A to be,

λ̂1−s =
1

∑⌊n
2
⌋

i=1 z2i

(
C

C + 1
+ n1−s),

λ̂s = Cλ̂1−s,
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whereC =
√

A2 + B − A, and

A =
1

2
(1 −

∑⌊n
2
⌋

i=1 z2i

∑⌊n+1

2
⌋

i=1 z2i−1

)(1 − 1

1 + n1−s

),

B =

∑⌊n
2
⌋

i=1 z2i

∑⌊n+1

2
⌋

i=1 z2i−1

ns

1 + n1−s

.

The MLE is simply obtained by putting the derivatives of the logarithm of (3) with respect to

λs, andλ1−s equal to zero and solving two equations with two unknowns.

B. A Moment Estimator

We propose a simple heuristic estimator and we prove that it is asymptotically efficient. This

heuristic estimator is based on the sample mean of thecompleteidle and busy periods and is

independent of the sensing structure. It means that the definition of the estimator does not depend

on how many intervals (one single interval or many) are sensed on each channel. Denote by

ni
i(t), andnb

i(t) the number of complete idle and busy periods sensed on channeli up to the

time instantt (which includes the observed periods from all time intervals up to timet), and let

zi
i,j, andzb

i,j be the the duration ofjth such periods. Then the estimators are

λ̂0,i(t) =
ni

i(t) − 1
∑ni

i(t)
j=1 zi

i,j

, (12)

λ̂1,i(t) =
nb

i(t) − 1
∑nb

i (t)
j=1 zb

i,j

. (13)

Note that the numerators of the estimators areni
i(t)−1, andnb

i(t)−1 instead ofni
i(t) andnb

i(t).

This is to make sure that these estimators are unbiased.

When a limited period of timeT is given to the secondary user, it wants to optimally distribute

it among the channels to minimize the total MSE (the sum of the MSE of all parameters). In

the following we show that the heuristic estimators given in (12), and (13) can achieve optimal

efficiency.

IV. SEQUENTIAL POLICY AND ASYMPTOTIC PROPERTIES

A. Optimal Sensing Policy

In this section we consider an optimal sensing policy that distributes total sensing budget to

a set ofM channels. A sensing policyπ is defined byT π = {T π
ij} whereT π

ij is thejth sensing
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interval on channeli under policyπ. Let T π
i =

∑

j T π
ij and the total sensing time is given by

T = |T π| =
∑

i T
π
i .

We first consider the problem of allocating the total amount of sensing time to different

channels in a single installment,i.e., we consider the class of policiesΠ1 where each channel

has asingle interval of durationTi. From (6), we have

I−1
i =





λ2
0,i(

1

λ0,i
+ 1

λ1,i
)

Ti
(1 + o(Ti)) o(Ti)

o(Ti)
λ2
1,i(

1

λ0,i
+ 1

λ1,i
)

Ti
(1 + o(Ti))



 .

Since channels are jointly independent, we have

I−1 =















I−1
1

I−1
2

. . .

I−1
M















.

Since Cramer-Rao bound (CRB) is a lower bound on the MSE, first we minimize the lower

bound (Cramer-Rao Bound), then later we show that we can achieve the optimal lower bound.

The total variance (Cramer-Rao bound) is given by

M
∑

i=1

(λ2
0,i + λ2

1,i)(
1

λ0,i
+ 1

λ1,i
)

Ti

. (14)

The problem is to minimize (14) under the condition

M
∑

i=1

Ti = T. (15)

This problem can be solved by Lagrangian multiplier which gives the following solution,∀1 ≤
i, j ≤ M ,

Ti
√

(λ2
0,i + λ2

1,i)(
1

λ0,i
+ 1

λ1,i
)

=
Tj

√

(λ2
0,j + λ2

1,j)(
1

λ0,j
+ 1

λ0,j
)
,

which results in

Ti = αiT, (16)

where

αi =

√

(λ2
0,i + λ2

1,i)(
1

λ0,i
+ 1

λ1,i
)

∑M
i=1

√

(λ2
0,i + λ2

1,i)(
1

λ0,i
+ 1

λ1,i
)
. (17)
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Therefore the optimal (minimum) CRB for all policiesπ ∈ Π1 where each channel has a single

interval is

min
π∈Π1

CRB(T π) = CRB∗(T ) =
1

T

M
∑

i=1

(λ2
0,i + λ2

1,i)(
1

λ0,i
+ 1

λ1,i
)

αi

. (18)

Here we denote by CRB∗(T ) the optimal CRB whenT = |T π| under the class of policiesΠ1

with single installment per channel.

Derivations above show that the optimal time distribution among the channels depends on

the values of the unknown parameters{λ0,i, λ1,i}M
i=1. Since channel parameters are unknown, to

achieve asymptotic optimality, we consider the class of sequential policies that involves multiple

rounds of estimation, each round is based on data collected up to the previous round. For

example, within each round, the sensing time spent on each channel can be allocated based on

the most current channel estimates according to (17). Note that the use of data in sensing makes

the sensing policy random, which complicates the MSE analysis presented in Section IV-E.

B. SEINE: Sequential Estimation with Increasing Nested Epochs

We describe here policy SEINE—an adaptive estimation scheme that adjust data collection

strategies based on current estimates. In Section IV-E, we will establish the asymptotic optimality

of SEINE. The key of SEINE is to involve multiple rounds with increasing duration. Within each

round, sensing time of each channel is allocated according to (17) based on the estimated channel

parameters using all data collected up to the previous round.

Policy SEINE (Sequence Estimation with Increasing Nested Epochs):

(1) Round0: Pick a constantc0 = C large enough with respect to the average idle busy times

of all channels. Sense all channels equally byC
M

time.

(2) Roundn (n ≥ 1): Use all the observations from rounds0, . . . , n − 1 to obtain the channel

parameter estimates{λ̂0,i(n), λ̂1,i(n)}M
i=1 using (12) and (13) wheret =

∑n−1
j=0 cj. Substitute

these estimated parameters in (17) to get the estimatesα̂i(n)s to distribute time among channels.

Pick the total round timecn and spend̂αi(n)cn amount of time on channeli, where{cn}∞n=1 is

an increasing sequence such thatlimn→∞

Pn
i=1

ci

n
= ∞.

In what follows we consider three asymptotic properties of the estimator and policy proposed

above.



13

C. Asymptotic Statistics Properties: Strong Consistency

A sequence of estimatorŝλ(T ) for parameterλ is strongly consistent if̂λ(T ) convergesalmost

surely to λ.

λ̂(T )
T→∞−−−→ λ a.s. (19)

The first step to show consistency is to make sure the number of samples required for the

estimators in (12) and (13) tends to infinity as time grows. This fact is shown in the following

lemma which will be used later too.

Lemma 2:Define the event

Ei
n

∆
={in the nth round, at least one complete idle busy period is sensed on channeli}

, then

Pr{Ei
n i.o.} = 1.

Proof: Let γi = min{λ0,i, λ1,i}, then

Pr{Ei
n} ≥ FErlang(cn, 4, γi) = 1 −

3
∑

k=0

e−γicn
(γicn)k

k!
, (20)

whereFErlang(x, 4, γi) is the CDF of the Erlang distribution of order4 with parameterγi.

Based on the definition of the policy SEINE,

lim
n→∞

cn = ∞. (21)

Therefore

lim
n→∞

Pr{Ei
n} = 1, (22)

so that we can conclude

Pr{Ei
n i.o.} = Pr{lim sup Ei

n} ≥ lim
n→∞

Pr{Ei
n} = 1. (23)

Theorem 3:The estimators defined in (12) and (13) are consistent.

Proof: Based on lemma 2, we know

lim
T→∞

[λ̂0,i(T ), λ̂1,i(T )] = [ lim
n0→∞

λ̂0,i(n0), lim
n1→∞

λ̂1,i(n1)]. (24)
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Since the complete periods are i.i.d random variables, based on the strong Law of Large Numbers

[ lim
n0→∞

1

λ̂0,i(n0)
, lim
n1→∞

1

λ̂1,i(n1)
] = [ lim

n0→∞
(
n0 − 1

n0

1

λ̂0,i(n0)
), lim

n1→∞
(
n1 − 1

n1

1

λ̂1,i(n1)
)] (25)

= [
1

λ0,i

,
1

λ1,i

] a.s.

From probability theory we know that If

lim
n→∞

Xn = C a.s. (26)

whereC > 0, then

lim
n→∞

1

Xn

=
1

C
a.s. (27)

Since allλj,i’s are strictly positive, by choosingXn = 1

λ̂j,i
, consistencyfollows from (27).

D. Asymptotic Statistics Properties: Asymptotic Distribution

Perhaps the most common distribution to arise as an asymptotic distribution is the normal

distribution. In particular, the central limit theorem provides an example where the asymptotic

distribution is the normal distribution.

Consider the reciprocal of the estimators in (12) and (13)

1

λ̂j,i(n)
=

n

n − 1

∑n
k=1 zk

j,i

n
, (28)

wherezk
j,i’s are i.i.d with exponential distribution and parameterλj,i. From CLT (Central Limit

Theorem) we have

n − 1√
n

(
1

λ̂j,i(n)
− 1

λj,i

)
d−→ N (0,

1

λ2
j,i

). (29)

In general ifYn = 1
Xn

, the distribution of the reciprocal of the non-negative random variableXn

is

FYn
(y) = Pr{Yn ≤ y} = Pr{ 1

Xn

≤ y} = Pr{Xn ≥ 1

y
} = 1 − FXn

(
1

y
), (30)

and for the pdf we have

fYn
(y) =

1

y2
fXn

(
1

y
). (31)

Therefore since 1

λ̂j,i(n)
has asymptotic distribution given in (29), the asymptotic distribution of

the estimator̂λj,i(n) can be obtained in closed-form by (30), and (31).
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E. Asymptotic Statistics Properties: Asymptotic Efficiency

We now establish the asymptotic efficiency of SEINE for the class of sparse sensing policies.

The reason to consider only sparse sensing policies is that, in practice, when switching cost is

not negligible, each channel should be observed at least for some minimum amount of time, and

if there are many channels to consider, the gaps between observation intervals are sufficiently

large. Recall that a sensing policyπ is defined by the allocation of sensing timeT π = {T π
ij}

whereT π
ij is the duration of thejth sensing interval on channeli. We denote the total sensing

time by T = |T π| =
∑

ij T π
ij . The MSE of a channel estimator associated with sensing policyπ

is given by

MSE(T π) =
M

∑

i=1

{(λ̂0,i − λ0,i)
2 + (λ̂1,i − λ1,i)

2}. (32)

For the class of sparse sensing policies (as defined in Theorem 2), Theorem 2 shows that the

Fisher informationI(T π) associated withT π is upper bounded by the Fisher information when

each channel is allocated with a single sensing interval

I(T π) ≤ I1(T π), (33)

whereI1(T π) is the Fisher information when each channel is allocated with a single sensing

interval with total sensing time|T π|. Therefore, for a sparse sensing policyπ, the optimal CRB

is obtained under the class of policiesΠ1 (with single installment per channel) in (18). Hence

we define the asymptotic efficiency by

ηπ = lim
|T π|→∞

CRB∗(|T π|)
MSE(T π)

, (34)

where CRB∗(|T π|) = minπ∈Π1
CRB(T π) defined in (18) is the optimal CRB for the class of

policiesΠ1 which is optimal for the class of sparse policies as well based on (33).

When the sensing policy is randomized, the resulting allocation of sensing timeT π is also

random. We use stopping times (the time instants when a certain number of complete idle and

busy periods are at hand) in the calculation of MSE to deal with the randomness, and we define

the relative efficiency the same way as (34). Note, however, that the relative efficiency is also

random. A sensing and estimation policyπ is almost surely asymptotically efficient if

lim
|T π |→∞

CRB∗(|T π|)
MSE(T π)

= 1 a.s. (35)
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The following theorem establishes the a.s. asymptotic efficiency.

Theorem 4:The asymptotic efficiency of the Policy SEINE converges to1 asymptotically

almost surely. Namely

ηSEINE = lim
|T SEINE|→∞

CRB∗(|T SEINE|)
MSE(T SEINE)

= 1 a.s. (36)

Proof: See Appendix C.

V. SIMULATION RESULTS

In this section the simulation results are presented in threesubsections. First we present the

simulation results showing the consistency of the estimator, then we present the simulation results

regarding the asymptotic distribution of the estimator, and at the end we show the asymptotic

convergence of the MSE of policy SEINE to the Cramer-Rao bound (asymptotic convergence

of efficiency to one). For simulation a network consisting of4 channels occupied by primary

system is considered with the following parameter set

~λ0 = [0.1, 0.6, 0.2, 0.5],

~λ1 = [0.7, 0.1, 0.8, 0.9].

The sequence of round lengths used in the policy SEINE,{cn}∞n=0, is picked to be exponentially

increasing withn. The policy SEINE is run for22 rounds for200 monte-carlos. We refer to this

setting as Case1.

A. Consistency

In this section we illustrate the consistency of our estimator by simulation. In Fig. 5 the

estimatedλ0 and λ1 (averaged over all monte-carlo runs) for all channels are presented. It is

shown that all of the estimated parameters converge to their true values.

In Fig. 6 two parametersλ0,1 (λ0 for channel1), and λ0,3 (λ0 for channel3) are chosen

and the estimated sequence is plotted for all the Monte-Carlo runs. As shown in the figure the

estimated sequence converges to the true values forall the Monte-Carlos verifying the almost

surely convergence (strong consistency).
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Fig. 7. Histogram of thêλ1,1(n)

B. Asymptotic Distribution

In this section we plot the histogram of the estimated sequence forλ1,1 (λ1 for channel1). Fig.

7 shows the distribution of thêλ1,1(n) for different round indexesn, and how it is distributed

around and converges toλ1,1 = 0.7 as the round indexn grows.

C. Asymptotic Efficiency

In this section we plot the MSE of the policy SEINE vs. the optimal Cramer-Rao bound for

the sparse policies (CRB∗). Here we consider another network setting with the same number of

channels but different parameter set

~λ0 = [0.3, 0.2, 0.3, 0.4],

~λ1 = [0.3, 0.3, 0.2, 0.15].



19

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Case1: MSE of Policy SEINE vs. Cramer−Rao Bound

Time

M
ea

n 
S

qu
ar

e 
E

rr
or

 

 

CRB
MSE

Fig. 8. MSE vs. CRB∗: Case1

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

Time

M
ea

n 
S

qu
ar

e 
E

rr
or

Case2: MSE of Policy SEINE vs. Cramer−Rao Bound

 

 

MSE
CRB

Fig. 9. MSE vs. CRB∗ : Case2



20

The policy SEINE is run the same as the case1 for 22 rounds with200 monte-carlo runs. We

refer to this new setting as case2. The MSE of policy SEINE vs. CRB∗ is plotted for both case

1, and case2 in Fig. 8 and Fig. 9. As you can see the MSE asymptotically converges to CRB∗

indicating the asymptotic efficiency of the policy SEINE for the estimator within sparse policies.

VI. CONCLUSION

In this paper, we have considered the problem of multichannelestimation in OSA. The channel

occupations of the primary system are modeled by two-states Markov processes. Secondary

system’s objective is to learn the channel parameters in the optimal way in order to maximize

the estimator’s efficiency. A sequential policy is proposed that achieves the optimal efficiency

asymptotically.

APPENDIX A: PROOF OFTHEOREM 1

From (5)

−∇2
λ0,λ1

L(λ0, λ1) =





n0+1{s=1}

λ2
0

− 1
(λ0+λ1)2

− 1
(λ0+λ1)2

− 1
(λ0+λ1)2

n1+1{s=0}

λ2
1

− 1
(λ0+λ1)2



 ,

we get

E{∂2L

∂λ2
0

} =
λ1

λ0 + λ1

E{ns

λ2
s

|s = 0} +
λ0

λ0 + λ1

E{n1−s + 1

λ2
1−s

|s = 1} − 1

(λ0 + λ1)2

= Pr{n is even} λ1

λ0 + λ1

E{n0 − c0
e

λ2
s

|s = 0, n is even} + Pr{n is odd} λ1

λ0 + λ1

E{n0 − c0
o

λ2
s

|s = 0, n is odd}

+ Pr{n is even} λ0

λ0 + λ1

E{n0 − c1
e

λ2
1−s

|s = 1, n is even}

+ Pr{n is odd} λ0

λ0 + λ1

E{n0 − c1
o

λ2
1−s

|s = 1, n is odd} − 1

(λ0 + λ1)2

= E{n0

λ2
0

} + Pr{n is even}(λ1c
0
e + λ0c

1
e

λ0 + λ1

) + Pr{n is odd}(λ1c
0
o + λ0c

1
o

λ0 + λ1

)

= E{n0

λ2
0

} + f0,

where

f0 = Pr{n is even}(λ1c
0
e + λ0c

1
e

λ0 + λ1
) + Pr{n is odd}(λ1c

0
o + λ0c

1
o

λ0 + λ1
) (37)

is a bounded function of parametersλ0, λ1, andT1, andcj
o, andcj

e are some constants depending

on n being even or odd and alsos; but since they are constants, their exact value does not affect
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our final results. Similarly we get

E{∂2L

∂λ2
1

} = E{n1

λ2
1

} + f1.

And clearly for the cross termsE{ ∂2L
∂λ1∂λ0

} = − 1
(λ0+λ1)2

. Note that

E{n0} = E{n1} =
T

1
λ0

+ 1
λ1

. (38)

Therefore

I[t1, t1+T ] =







T

λ2
0
( 1

λ0
+ 1

λ1
)
+ f0 − 1

(λ0+λ1)2
− 1

(λ0+λ1)2

− 1
(λ0+λ1)2

T

λ2
1
( 1

λ0
+ 1

λ1
)
+ f1 − 1

(λ0+λ1)2






.

From definition off0, andf1 we can get

I[t1, t1+T ] =







T

λ2
0
( 1

λ0
+ 1

λ1
)
(1 + o(T1)) − 1

(λ0+λ1)2

− 1
(λ0+λ1)2

T

λ2
1
( 1

λ0
+ 1

λ1
)
(1 + o(T1))






.

APPENDIX B: PROOF OFTHEOREM 2

Let first consider the Likelihood function for the case we have two disjoint intervals. Assume

that two intervals[t1, t1 + T1] ∪ [t2, t2 + T2] are observed. Therefore the likelihood function

becomes

f({sj, (zh,j)
nj

h=1}2
j=1|λ0, λ1)

= f(s1, (zh,1)
n1

h=1|λ0, λ1)f(s2, (zh,2)
n2

h=1|λ0, λ1, St1+T1
= s′)

= f(s1, (zh,1)
n1

h=1|λ0, λ1) Pr{St2 = s2|St1+T1
= s′}f((zh,2)

n2

h=1|λ0, λ1, St2 = s2)

= f(s1, (zh,1)
n1

h=1|λ0, λ1)
Pr{St2 = s2|St1+T1

= s′}
Pr{St2 = s2}

f(s2, (zh,2)
n2

h=1|λ0, λ1)

= fT1

Pr{St2 = s2|St1+T1
= s′}

Pr{St2 = s2}
fT2

.

Here we denote the likelihood function of a single interval of lengthTj as obtained in previous

section byfTj
. It is seen that the extra information provided by the discrete sampling is

Pr{St2 = s2|St1+T1
= s′}

Pr{St2 = s2}
. (39)

It is apparent that when these intervals are far enough so thatSt2 and St1+T1
are independent,

this term becomes

Pr{St2 = s2|St1+T1
= s′}

Pr{St2 = s2}
=

Pr{St2 = s2}
Pr{St2 = s2}

= 1. (40)
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Thus the discrete sampling part will not provide any extra information and the Fisher information

will be the sum of the Fisher information for these two intervals.

The Fisher information matrix for[t1, t1 + T1] ∪ [t2, t2 + T2] is

I[t1,t1+T1]∪[t2,t2+T2] = I[t1,t1+T1] + I[t1,t1+T2] + ID
[t1,t1+T1]∪[t2,t2+T2], (41)

where

ID
[t1,t1+T1]∪[t2,t2+T2] = E(−∇2

λ0,λ1
log(

Pr{St2 = s2|St1+T1
= s′}

Pr{St2 = s2}
)). (42)

Now based on the above argument and (5), we compare the Fisher information matrixes for

these two cases of single and two intervals.

For the single interval[t0, t0 + T ], the Fisher information matrix is

I[t0, t0+T ] = E





n0+1{s0=1}

λ2
0

− 1
(λ0+λ1)2

− 1
(λ0+λ1)2

− 1
(λ0+λ1)2

n1+1{s0=0}

λ2
1

− 1
(λ0+λ1)2



 .

The Fisher information matrix for[t1, t1 + T1] ∪ [t2, t2 + T2] is

I[t1,t1+T1]∪[t2,t2+T2] = I[t1,t1+T1] + I[t1,t1+T2] + ID
[t1,t1+T1]∪[t2,t2+T2]. (43)

It can be rewritten as

I[t1,t1+T1]∪[t2,t2+T2] = E





n1
0+1{s1=1}

λ2
0

− 1
(λ0+λ1)2

− 1
(λ0+λ1)2

− 1
(λ0+λ1)2

n1
1
+1{s1=0}

λ2
1

− 1
(λ0+λ1)2



 (44)

+ E





n2
0+1{s2=1}

λ2
0

− 1
(λ0+λ1)2

− 1
(λ0+λ1)2

− 1
(λ0+λ1)2

n2
1
+1{s2=0}

λ2
1

− 1
(λ0+λ1)2



 + ID
[t1,t1+T1]∪[t2,t2+T2]

= E





n1
0+n2

0+1{s1=1}+1{s2=1}

λ2
0

− 2
(λ0+λ1)2

− 2
(λ0+λ1)2

− 2
(λ0+λ1)2

n1
1
+n2

1
+1{s1=0}+1{s2=0}

λ2
1

− 2
(λ0+λ1)2





+ ID
[t1,t1+T1]∪[t2,t2+T2]

,

wherenj
s, j = 1, 2, ands = 0, 1 is the corresponding value ofns for the jth interval. Note that

since chopping the interval[t0, t0 + T ] into two pieces gives smaller number ofcompleteidle

and busy periods in expectation, we have

E[n1
s + n2

s + 1{s1=1−s} + 1{s2=1−s}] ≤ E[ns + 1{s0=1−s}]. (45)
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Using this inequality we get

I[t1,t1+T1]∪[t2,t2+T2] = E





n1
0+n2

0+1{s1=1}+1{s2=1}

λ2
0

− 2
(λ0+λ1)2

− 2
(λ0+λ1)2

− 2
(λ0+λ1)2

n1
1
+n2

1
+1{s1=0}+1{s2=0}

λ2
1

− 2
(λ0+λ1)2





+ ID
[t1,t1+T1]∪[t2,t2+T2]

≤ E





n0+1{s0=1}

λ2
0

− 2
(λ0+λ1)2

− 2
(λ0+λ1)2

− 2
(λ0+λ1)2

n1+1{s0=0}

λ2
1

− 2
(λ0+λ1)2



 + ID
[t1,t1+T1]∪[t2,t2+T2]

= I[t0, t0+T ] −
1

(λ0 + λ1)2





1 1

1 1



 + ID
[t1,t1+T1]∪[t2,t2+T2].

From (40) it is clear that when∆t1 → ∞ the discrete sampling gives no extra information.

Therefore

lim
∆t1→∞

ID
[t1,t1+T1]∪[t2,t2+T2]

=





0 0

0 0



 . (46)

Also note that the matrix1 is positive definite




1 1

1 1



 > 0. (47)

Therefore when∆t1 → ∞ (which makes the matrixID
[t1,t1+T1]∪[t2,t2+T2] zero) we have

I[t1,t1+T1]∪[t2,t2+T2] ≤ I[t0, t0+T ] −
1

(λ0 + λ1)2





1 1

1 1



 < I[t0, t0+T ]. (48)

Thus from (46) we know that∃τ > 0 such that

τ = inf{∆t1 > 0 | ID
[t1,t1+T1]∪[t2,t2+T2]

≤ 1

(λ0 + λ1)2





1 1

1 1



}. (49)

For every∆t1 ≥ τ

I[t1,t1+T1]∪[t2,t2+T2] ≤ I[t0, t0+T ] −
1

(λ0 + λ1)2





1 1

1 1



 + ID
[t1,t1+T1]∪[t2,t2+T2]

≤ I[t0, t0+T ]. (50)

It means that sensing one continuous interval has higher Fisher information than chopping it

into two pieces.

For K intervals withminK−1
j=1 {∆tj} > τ we can use induction. We take the first two intervals

and replace them by one interval to getK − 1 intervals. We do this procedure forK − 1 steps

to get a single interval with lengthT =
∑K

j=1 Tj .
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APPENDIX C: PROOF OFTHEOREM 4

Since the MSE is obtained under the policy SEINE, in what follows we drop the superscript

SEINE for simplicity.

Lemma 3:

lim
n→∞

α̂i(n) = lim
k̄→∞

α̂k̄
i = αi, ∀i ∈ {1, . . . , M} a.s. (51)

where k̄ = (ki)
M
i=1, α̂i(n) is the estimatedαi at the end of roundn, and α̂k̄

i is the estimatedαi

when k̄ complete samples of idle and busy periods is at hand for all channels.

Proof: limk̄→∞ α̂k̄
i = αi is based on the strong Law of Large Numbers

lim
(ki)M

i=1
→∞

(λ̂0,i, λ̂1,i) → (λ0,i, λ1,i) a.s. ∀i ∈ {1, . . .M}, (52)

and the fact thatαi is a continuous function of(λ0,j , λ1,j), j ∈ {1, . . .M}.

limn→∞ α̂i(n) = limk̄→∞ α̂k̄
i a.s. is a direct consequence of lemma 2. (limn→∞ α̂i(n) =

limk̄→∞ α̂k̄
i on the event{Ei

n i.o.} and this event has probability1).

Define the stopping times

τki

∆
= inf{time | exactlyki complete idle and busy periods is sensed on channeli}. (53)

Consider the time sequences{τki
}∞k=1. MSEi

τki
is the sum of MSEs for the parametersλ0,i and

λ1,i at the time instantτki
. It is computed for the estimators in (12), and (13) using the complete

idle or busy periods of channeli which can be rewritten aŝλj,i(ki) = ki−1
Pki

h=1
zh

wherezh’s are

i.i.d exponential random variables with parameterλj,i.

In general ifX =
Pn

i ρi

n−1
whereρis are i.i.d exponentially distributed random variables with

parameterλ, X has Erlang distribution of degreen with parameter(n − 1)λ. Therefore for the

MSE of 1
X

we have

MSE = E{( 1

X
− λ)2} =

∫ ∞

0

(
1

t2
− 2

λ

t
+ λ2)

((n − 1)λ)ntn−1e−λ(n−1)t

(n − 1)!
dt

= λ2

∫ ∞

0

((n − 1)λ)ntn−1e−λ(n−1)t

(n − 1)!
dt +

((n − 1)λ)2

(n − 1)(n − 2)

∫ ∞

0

((n − 1)λ)n−2tn−3e−λ(n−1)t

(n − 3)!
dt

−2λ
((n − 1)λ)

n − 1

∫ ∞

0

((n − 1)λ)n−1tn−2e−λ(n−1)t

(n − 2)!
dt

=
λ2

n − 2
.
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Therefore for our problem we get

MSEi
τki

=
λ2

0,i + λ2
1,i

ki − 2
. (54)

Denote

T (n)
∆
= total time spent on the system at the end of roundn.

Ti(n)
∆
= total time spent on channeli at the end of roundn.

T ∗
i (n)

∆
= total time spent on channeli at the end of roundn

that only includes complete idle/busy periods.

Ti(τki
)

∆
= total time spent on channeli up to timeτki

.

T ∗
i (τki

)
∆
= total time spent on channeli up to timeτki

that

only includes complete idle/busy periods.

Lemma 4:

lim
ki→∞

T ∗
i (τki

)

Ti(τki
)

= 1 a.s.

Proof: Note thatTi(τki
), and T ∗

i (τki
) differ only at the incomplete idle/busy periods that

only happens at the beginning and the end of each round. Therefore

T ∗
i (τki

)

Ti(τki
)
− 1 = −

∑

incomplete periods
Ti(τki

)
.

Denote

n∗
∆
=sup{n : Ti(n) ≤ Ti(τki

)},

then the number of incomplete periods is at most2n∗ + 1. Thus
∑

incomplete periods
Ti(τki

)
≤

∑

incomplete periods
Ti(n∗)

.

Note that

0 ≤ lim
n∗→∞

∑

incomplete periods
Ti(n∗)

= lim
n∗→∞

((mb + o(mb)) 1
λ1,i

+ (mi + o(mi)) 1
λ0,i

)
∑n∗

j=1 cjα̂i(j)
a.s.

≤ lim
n∗→∞

(2(n∗ + o(n∗)) + 1) 1
γi

∑n∗

j=1 cjα̂i(j)
,
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wheremi + mb = 2n∗ + 1, and,1/γi = max{1/λ0,i, 1/λ1,i}. Sinceαi > 0,

∃ǫi > 0s.t. αi − ǫi > 0.

From lemma 3,

∃nǫi
s.t. ∀n > nǫi

, |α̂i(n) − αi| < ǫi.

Therefore
n∗
∑

j=1

cjα̂i(j) ≥ αm
i

n∗
∑

j=1

cj.

whereαm
i = min{minj=1,...nǫi

{α̂i(j)}, αi − ǫi} > 0. Thus

0 ≤ lim
n∗→∞

∑

incomplete periods
Ti(n∗)

≤ lim
n∗→∞

(2(n∗ + o(n∗)) + 1) 1
γi

∑n∗

j=1 cjα̂i(j)

≤ lim
n∗→∞

(2(n∗ + o(n∗)) + 1) 1
γi

αm
i

∑n∗

j=1 cj

.

By definition limn∗→∞

Pn∗
j=1

cj

n∗
= ∞, therefore

0 ≤ lim
n∗→∞

∑

incomplete periods
Ti(n∗)

≤ 0.

Then the lemma follows.

Lemma 5:

lim
ki→∞

Ti(τki
)

ki

=
1

λ0,i

+
1

λ1,i

a.s.

Proof: From lemma 4 we have

lim
ki→∞

Ti(τki
)

ki

= lim
ki→∞

T ∗
i (τki

)

ki

a.s.

The equality

lim
ki→∞

T ∗
i (τki

)

ki

=
1

λ0,i

+
1

λ1,i

a.s.

is based on the strong Law of large numbers sinceT ∗
i (τki

) is exactly equal to sum ofki complete

idle, and busy realizations divided byki.
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We have

MSEi
τki

=
λ2

0,i + λ2
1,i

ki − 2

therefore from Lemma 5 we get

lim
ki→∞

Ti(τki
)MSEi

τki
= (λ2

0,i + λ2
1,i)(

1

λ0,i

+
1

λ1,i

) a.s.

Note that

∀n ∈ N, ∃¯̃
k = (k̃i)

M
i=1, s.t. Ti(τk̃i

) ≤ Ti(n) ≤ Ti(τk̃i+1).

lim
¯̃
k→∞

Ti(τk̃i
)MSEi

τ
k̃i

≤ lim
n→∞

Ti(n)MSEi
τki

≤ lim
¯̃
k→∞

Ti(τk̃i+1)MSEi
τ
k̃i

Also

MSEi(T (n)) = MSEi
n = MSEi

τ
k̃i

a.s.

Therefore we have

lim
n→∞

Ti(n)MSEi(T (n)) = (λ2
0,i + λ2

1,i)(
1

λ0,i

+
1

λ1,i

) a.s. (55)

Lemma 6:

lim
n→∞

Ti(n)

T (n)
= αi a.s.

Proof: From lemma 3 we have

lim
n→∞

α̂i(n) = αi a.s.

Therefore

∀ǫ > 0, ∃n1 s.t. ∀n ≥ n1, |α̂i(n) − αi| <
ǫ

2
a.s.

For this givenn1, ∃n2 such that∀n ≥ n2,
∑n1

k=1 ck
∑n

k=1 ck

<
ǫ

2
.

Then∀n > n2,

Ti(n)

T (n)
=

∑n

k=1 ckα̂i(k)
∑n

k=1 ck

=

∑n1

k=1 ck(α̂i(k) − αi)
∑n

k=1 ck

+

∑n1

k=1 ckαi +
∑n

k=n1+1 ckα̂i(k)
∑n

k=1 ck

. (56)
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Since0 < α̂i(k) < 1, and0 < αi < 1,

− ǫ

2
< −

∑n1

k=1 ck
∑n

k=1 ck

<

∑n1

k=1 ck(α̂i(k) − αi)
∑n

k=1 ck

<

∑n1

k=1 ck
∑n

k=1 ck

<
ǫ

2
. (57)

Also

αi −
ǫ

2
< αi −

ǫ

2

∑n
k=n1+1 ck

∑n

k=1 ck

<

∑n1

k=1 ckαi +
∑n

k=n1+1 ckα̂i(k)
∑n

k=1 ck

< αi +
ǫ

2

∑n
k=n1+1 ck

∑n

k=1 ck

< αi +
ǫ

2
a.s.

Combining it with (56), and (57), we get∀ǫ > 0, ∃n2, s.t. ∀n > n2,

αi − ǫ <
Ti(n)

T (n)
< αi + ǫ. a.s.

Thus

lim
n→∞

Ti(n)

T (n)
= αi a.s.

From lemma 6 and (55) we get

lim
n→∞

T (n)MSEi(T (n)) =
(λ2

0,i + λ2
1,i)(

1
λ0,i

+ 1
λ1,i

)

αi

a.s.

Therefore

lim
n→∞

T (n)
M

∑

i=1

MSEi(T (n)) =
M

∑

i=1

(λ2
0,i + λ2

1,i)(
1

λ0,i
+ 1

λ1,i
)

αi

a.s.,

or equivalently for the efficiency

lim
T→∞

CRB∗(T )

MSE(T )
= 1 a.s.
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