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Abstract

The problem of estimating the parameters of multiple independent continuous-time Markov on-
off processes is considered. The objective is to minimize the total mean square error (MSE) under a
constraint on the total sensing time. The Fisher information matrix for the primary traffic model and
the maximum likelihood estimator are obtained. A sequential estimation strategy is proposed which
operates under an epoch structure with growing epoch length. It is shown that this sequential estimation
strategy is asymptotically efficient as the total sensing time increases. This result finds application in
opportunistic spectrum access where secondary users need to estimate the channel occupancy model of

the primary system for efficient exploitation of spectrum opportunities.

Index Terms
Channel estimation, continuous-time Markov process, sequential estimation, cognitive radio, oppor-

tunistic spectrum access (OSA).

I. INTRODUCTION

In opportunistic spectrum access, secondary users senseeess temporally unused channels
in the spectrum without causing unacceptable interference to primary users [1]. An accurate

stochastic modeling of the primary system channel occupancy plays a crucial role in designing

9The work of P. Tehrani and Q. Zhao was supported by the Army Research Office under Grant W911NF-08-1-0467 and by
the National Science Foundation under Grant CCF-0830685. Part of this work was presented at IEEE SPAWC, June, 2011.
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the optimal algorithms for sensing, tracking, and exploiting spectrum opportunities. For instance,

in [2]-[4], the channel occupancy of the primary system is modeled as a continuous-time Markov
on-off process. Given these parameters, optimal sensing and access strategies of the secondary
users are designed. In practice, however, the stochastic model of the primary traffic may not be
known a priori; such a model must be learned through channel sensing.

In this paper, we consider the problem of estimating the parameters of multiple independent
continuous-time Markov on-off processes. The objective is to minimize the total mean squared
error (MSE) across all channels under a constraint on the total sensing time. To this end, we
obtain the Fisher information matrix and the maximum likelihood estimator (MLE). Given that
the optimal allocation of the total sensing time to multiple channels depends on the unknown
parameters, a sequential estimation strategy is proposed which dynamically adjusts the allocation
of sensing time based on the partial learning results obtained up to the current time. Referred
to as SEINE (Sequence Estimation with Increasing Nested Epochs), the proposed sequential
estimation policy operates under an epoch structure. Within each epoch, channels are sensed in
turn, each for a fraction of the epoch length with the fraction determined by the current estimate
of the channel parameters. The epoch length grows over time to take advantage of the increasing
accuracy of the estimates. It is shown that SEINE is asymptotically effigientit achieves the
Cramér-Rao Bound (CRB) as the total sensing time grows.

Learning the stochastic models of primary channel occupancy has received relatively little
attention. There exist a few published results, all focusing on a single channel and discrete
sampling. For example, in [5], [6], Maximum Likelihood and Bayesian estimation of channel
parameters under a uniform sampling strategy were studied. In [7], relationship between estima-
tion accuracy, the number of samples taken, and the channel state transition probabilities was
analyzed by using the sampling and estimation framework proposed in [5].ePakin [8]
proposed a channel state predictor based on the reinforcement learning techniques where the
channel model is assume to be a hidden Markov process. In [9], a wavelet transform based
channel estimator was proposed. In [10], the performance of the single channel MLE of the
uniform and random discrete-time sampling strategies were compared. It is demonstrated that
when the samples are sparse enough, the random sampling outperforms the uniform sampling.
The analysis of [10] assumes that the utilization factor of the channel is known which reduces the

problem to a single (scaler) parameter estimation problem. A dynamic programming approach



is proposed to obtain the best and the worst sampling scheme which can be solved numerically.
For the time-varying channel parameters, an adaptive random sensing scheme is proposed and

shown to outperform its counterpart using uniform sensing.

[I. PROBLEM STATEMENT AND FUNDAMENTAL STATISTICS

Consider a network that consistsaf channels. Thesé/ channels are licensed to an unslotted
primary network. The spectrum occupancy of channé$ modeled as a continuous-time Markov
process with two statess,,(t) = 1 (busy) andsS,,(¢) = 0 (idle). TheseM Markov processes
are jointly independent. In particular, for channe| the sojourn times in the busy and idle
states are exponentially distributed with ratgs, and),,, respectively. Theses parameters are
unknown to the secondary system. A secondary user’s objective is to learn the primary network
occupancy model. It aims to estimate the set of channel param{eters M., }2_, by sensing

theseM channels.
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Fig. 1. Channel Sensing Model

We assume that the secondary user can only sense one channel at a time, and there is a
budget for the total sensing time. An illustration of a particular sensing scenario is shown in

Fig 1 where the secondary user monitors a particular channel continuously for a period of time



before switching to a different channel. It is intuitive that a channel with greater statistical
variance requires longer total sensing time to achieve the same level of accuracy as that for
a channel with smaller variance. The main challenge here is to design a sensing policy that
allocates time spent on each channel optimally.

While the continuous-time on-off Markovian abstraction of the primary channels is widely
accepted, it has several subtle modeling complications. Specifically, the transitions of the primary
traffic are instantaneous. From a signal theoretic point of view, such a process has infinite
bandwidth and no discrete-time sensing can be made without loss of information. In this paper,
we adopt a continuous sensing model where it is assumed that the secondary user can observe
the channel continuously. This of course can only be an approximation of a practical sensing
mechanism, but it has the significant theoretical benefit that the sensing process does not lead
to information loss.

We also have to make a few additional assumptions on sensing. The on-off model requires
a hypothesis test to decide whether a particular channel is idle or busy. When the observation
is noisy, such hypothesis testing suffers from miss detection and false alarm. The modeling of
sensing errors leads to significant complications and is not considered in this paper. In addition,
switching from one channel to another also takes time in practice. This too will be ignored in

our development.

A. Likelihood Function, Sufficient Statistics, and Fisher Information: A Single Interval Analysis

In this section we focus on a single interval sensed from a given channel and derive fun-
damental statistics. These statistics are extended to the multi-interval multi-channel case in the
next section. In the following, the channel index is dropped for the ease of presentation.

The information observed ifi,, t; +7;] from a given channel is illustrated in Fig. 2; it consists
of the stateS;, of the channel at the beginning of the sensed interval and the realizations of
the consecutive observed idle/busy peridds;)”_, }, wheren is the number of such periods.
Hence the observation model for the interyal t; + 73] will be {S;,, (2;)",}. Denote byZ,’s
the exponential random variables wheré are respective realizations of what the secondary
user has observed. From Fig. 2, we hde> 2z, Z, > z,, andZ; = z; for i = 2,...,n — 1.

In the following we refer toz;’s with i € {2,...,n — 1} ascompleteperiods sinceZ; = z; for

them which is not true foi = 1, n.
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Fig. 2. Observation Model

Now assume that a realization of observation for the inteftal, + 73] is given to be
{8, = 8,71 > 21, (Z; = )=}, Zn, > 2,}. Since the state of the channel durifg is given to
be s, the state of channel during; will be s; = s+ (%‘”i)(l — 2s). Therefore the likelihood
function given that idle/busy periods for the given channel are exponentially distributed with

parameters\y, and \; is

(s, (z)izi|Aos A1) = Pr{Sy, = s|Ao, i} Pr{Z1 > 21, Z,, > 2} [0, 2, {22, - Zn—1] Aoy A1, Sty = s}
oo A
= (+)

Ao+ M Ao+ M1

Let ng, andn; be the number ofompleteidle and busy states (note that 1, n are excluded)

)1—8 e—)\slzlngzz—zl()\Sie—)\siZi) €_>\S"Zn.

respectively. Thus we have

(5 —1)7% niseven
ns = { 3 . (1)
(:54)* mnisodd
n_s = (n—2-—ny". (2)
Therefore the likelihood function can be rewritten as
)\1—8 —\ ZLlJrTlJ . ni— -\ ZL%J .
f(s’ (Zi)?:1|)\07 )\1) — (7) )\Zse s 2 =1  Z2i—1 )‘l—sse 1-s 2052 22 (3)
)\s + )\1—5
The likelihood function in (3) shows that treifficient statisticgor a single interval is
|2t 5]
(57 n, Z2i—1, Z2i)- 4)



The Fisher information is the negative of the expectation of the second derivative of the log

likelihood function,L (Ao, A1) = log f(s, (2;)1| o, A1), With respect to the unknown parameters,

namely,
I[t17 tl""Tl} = E<_V§\0,A1L<)\O7 )\1))
where
notlis=1y 1 1
2 2 2
—vio)qL()\O) )\1) = % 1 Qo) n1+1{S:(§j\O+>\1) 1 s (5)
- (Rota)? A (o +An)?

wherel,_; =1 if s = 5 and zero otherwise. The Fisher information can be expressed in closed
form given in the following Theorem.
Theorem 1:The Fisher information matrix for a single channel which is sensed for a continuous-

time interval[t,, t; + 7] can be written as,

T 1
235ty (1+0(T)) T o2
][tl, t+T] — o 1 T
_4()\0_’_)\1)2 )\%(%O_’_%l_)(l -+ O(T))
Proof: See the Appendix A. [ |
From theorem 1 for the inverse of the Fisher information matrix we get,
Mg tay)
[ | R+ o(T) o(T) ©)
t1, t1+17] — A2( Ly L .
e o(T) B (1 4 o(T))

B. Likelihood Function and Fisher Information for Multiple Intervals

Since the channels are independent, the likelihood function of the network will be the product
of the likelihood functions of each channel. Similarly, the Fisher information of the network will
be the sum of the Fisher information matrices of individual channels. Therefore without loss
of generality, we derive the likelihood function and the Fisher information matrix for multiple
intervals for a given channel

Assume that the secondary user has sersddtervals {[t;, t; + T;]}_, where thejth and
(7 + 1)th intervals are separated layt; = t;.,1 — (¢t; + 1;). Fig. 3 shows an example where
K =4.

Using the same notation introduced in section II-A and adding indéxdicating the jth
interval, the likelihood function fork intervals is f({s;, (z)yZ, 11| Mo, Ar;). Based on the
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Fig. 3. Multiple Intervals

Markov property the likelihood function can be reduced to (derivations for two intervals are
given in Appendix B),

PI‘{Stj+1 = 5j+1|Stj+Tj = S"jvj}

f({s5, (Zh,j)ZLl}filp\o,u)\l,i) = Hﬁilf(sja (zhj)n iy | A0y A1) X HJK:_ll Pr{Ss,, = 5,01 . (M
Denote the continuous and discrete parts of the likelihood function by
LJG = f(Sj,(Zh,j)Z];1|)\o,i7)\1,i),
b — Pr{Sthrl = Sj+1|Stj+Tj = Snjyj}.
! Pr{S,,, = sj1}
The likelihood function can be written as,
Fsjs g Fy [ Xoa, M) = TS [LS] THSH [LP). (8)

Note thatLj.7 (stands for discrete likelihood) only depends on the state of the channels at two
pointst; +7; (end point of thejth interval) andt; ., (the starting point of thé; +1)th interval).
Therefore the teran can be regarded as the factor in the likelihood function coming from the
discrete sampling at single points+ 7;, andt;. L]C (stands for continuous likelihood) is the
likelihood function for the single intervat;, ¢, + 7;] (computed in section II-A).

Therefore the likelihood function for multiple intervals consists of two type of factors, the
likelihood functions of individual intervaIsL(]C’s) and the factors from the discrete sampling
(Lf’s) at the end points of the neighboring intervals. Fig. 4 shows continuous sampling (in-
dividual intervals) and discrete sampling for two intervals. The conditional probability can be
written as

_ M—s, i
Al—s; i + (=1)mgatein 1 m8n; .50 e~ (MoitA1i)AL;

841, + )\l—s]url,i )\snj,j,i + Al—snj_,j,i

Pr{S;, ., = sj11|S,+1;, = sn; 5} = \
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We also know
)\1 S ;
_ _ —Sj+1,?
Pr{Stj+l - Sj+1} - )\ 1 )\ o
Sj+1,0 1-5541,8
Therefore the likelihood function is
)\ nj+1 \_an
n; K . K 1—sj, Ns,j s T2 s A My A Z 27, hj
Fss Grg)nlabizilMois Arg) - = IIj:1[<X__f;_A ,) s € D Ao/ € j h=1 “2h.d]
85,1 1—s;,1

; M—s,, . i
Sj+4152 Sn. i+8; LRV — i : i
X +;\+ +(_1) njsJ J+1)\ +>\J 6 ()‘Ow"l')\l,Z)AtJ
Sj410% 178j+1,’b 7 1*Snj,j71
Alfsj+1,i
AsjypitAlos;yqi

Smj.go

.

The Fisher information is derived from the logarithm of the likelihood function. Therefore by

the same argument given for (8), the Fisher information of the multiple intervals will be the sum
of the Fisher information of the individual intervals plus the sum of the information obtained
from the discrete samplings at the end points of neighboring intetvalsl;;’'s and¢;;’s. Here

we have dropped the channel indefor the ease of presentation.

K K-1
D
Lo . ey = D iy, eymy + 3 17 (M), (9)
j=1 J=1

where

Pr{Sthrl = Sj+1|Stj+Tj = Snj,j}
Pr{SﬁjH = Sj—i-l}
is the information obtained from the discrete sampling;at 7; andt;,; which is a function

IP(Aty) = E(=V3, 5, log(

), (10)

of At; (and also the unknown parameteys;, and\, ;).



In the following theorem we show the optimality of single interval versus multiple intervals
with the same total length under a sparsity condition.

Theorem 2:There exists a finite value > 0 such that the Fisher information of a single
interval [to, to+ 77 is larger than the Fisher information &f intervals{[t;, ¢; +T}]}_, where
Aty >rVje{l,...,K-1},andy " T; =T, e,

][to, t0+T] Z quzl[tj, tj+Tj]‘ (11)

Proof: See Appendix B. [ |
Therefore if the distance between intervalst(s) is quite large (bigger than a constary,
sensing one big interval with the lengih= EleTj has higher Fisher information. Based on
this theorem, a sensing policy is callsparseif it satisfies the condition in Theorem 2, namely,

K1
min;_," At; > 7.

[1l. MAXIMUM LIKELIHOOD AND MOMENT ESTIMATORS
A. The Maximum Likelihood Estimator

The MLE (maximum likelihood estimator) is obtained g% =0, j=s,1—s, where

L =1og f({sj, (znj)niy }ei [ Roi» Avi)

is the log likelihood function, and ({s;, (z5,;),", 1121, Avi) is given in section II-B. It is
apparent that the MLE depends on the number of interfaland alsoAt;’s and maximizing
the likelihood function does not lead to a convenient form that can be used as a framework for
sensing policy design. It is worth noting, however, that if there is only a single pekiod (),
a case that can be optimal for some cases, the ML estimator can be obtained in a closed-form
as shown in the following Lemma.

Lemma 1:When there is only a single perio&’(= 1), the MLE can be obtained in a closed
from (3) in section II-A to be,

M-s = 2] (

5\s = C()\1—87
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whereC = A2+ B — A, and

A = 1 1— & 1— b
N 2( 125 A 14+mn )
Dot 221 o
B — E}E;ﬂ 224 Ng

125

Dot 221 Lt
The MLE is simply obtained by putting the derivatives of the logarithm of (3) with respect to

As, and \;_; equal to zero and solving two equations with two unknowns.

B. A Moment Estimator

We propose a simple heuristic estimator and we prove that it is asymptotically efficient. This
heuristic estimator is based on the sample mean ottimpleteidle and busy periods and is
independent of the sensing structure. It means that the definition of the estimator does not depend
on how many intervals (one single interval or many) are sensed on each channel. Denote by
ni(t), andnl(t) the number of complete idle and busy periods sensed on chamugeto the
time instantt (which includes the observed periods from all time intervals up to tipand let
zi ;, andz!; be the the duration ofth such periods. Then the estimators are

5\o,z‘(t) = %a (12)
j=1 ~ij
G = mO-L (f?t)_ L (13)
Z;‘Zl 2
Note that the numerators of the estimatorsie) — 1, andn®(¢) — 1 instead ofni(t) andn®(t).
This is to make sure that these estimators are unbiased.

When a limited period of timé" is given to the secondary user, it wants to optimally distribute
it among the channels to minimize the total MSE (the sum of the MSE of all parameters). In
the following we show that the heuristic estimators given in (12), and (13) can achieve optimal

efficiency.

V. SEQUENTIAL PoLICY AND ASYMPTOTIC PROPERTIES
A. Optimal Sensing Policy

In this section we consider an optimal sensing policy that distributes total sensing budget to
a set of M channels. A sensing policy is defined by7™ = {77} whereT; is the jth sensing
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interval on channel under policyr. Let 7" = . 777 and the total sensing time is given by
T = |T7T| = Zz Tz'w-

We first consider the problem of allocating the total amount of sensing time to different
channels in a single installmente., we consider the class of policids, where each channel

has asingleinterval of duration7;. From (6), we have

A%,i(%"‘ ii)
i | T e(T) o(T)
v Aii()‘;i—i_Alli)
o(T3) — 75—+ 0o(T}))

Since channels are jointly independent, we have

I
L'

I Ly ]

Since Cramer-Rao bound (CRB) is a lower bound on the MSE, first we minimize the lower

bound (Cramer-Rao Bound), then later we show that we can achieve the optimal lower bound.
The total variance (Cramer-Rao bound) is given by

M+ M) s T a)

> T . (14)

1=1

The problem is to minimize (14) under the condition

M
Y T,=T (15)
i=1

This problem can be solved by Lagrangian multiplier which gives the following solutibrs
i, <M,
Li _ T

VOB ARG T30 08+ M)G5 + 5

1,7

which results in
,—Ti = OéiT, (16)

where

VO&+ MG+ )

Y 2 2 1 1y (17
D oict ()‘o,z + Au)(ﬁ + T)

%
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Therefore the optimal (minimum) CRB for all policiese 11; where each channel has a single

interval is

M
min CRB(7") = CRB'(T) = Z

(18)
Here we denote by CRBT') the optimal CRB wherl” = |77™| under the class of policied;
with single installment per channel.

Derivations above show that the optimal time distribution among the channels depends on
the values of the unknown parameté¢ps ;, \; ;}2,. Since channel parameters are unknown, to
achieve asymptotic optimality, we consider the class of sequential policies that involves multiple
rounds of estimation, each round is based on data collected up to the previous round. For
example, within each round, the sensing time spent on each channel can be allocated based on
the most current channel estimates according to (17). Note that the use of data in sensing makes

the sensing policy random, which complicates the MSE analysis presented in Section IV-E.

B. SEINE: Sequential Estimation with Increasing Nested Epochs

We describe here policy SEINE—an adaptive estimation scheme that adjust data collection
strategies based on current estimates. In Section IV-E, we will establish the asymptotic optimality
of SEINE. The key of SEINE is to involve multiple rounds with increasing duration. Within each
round, sensing time of each channel is allocated according to (17) based on the estimated channel
parameters using all data collected up to the previous round.

Policy SEINE (Sequence Estimation with Increasing Nested Epochs):

(1) Round0: Pick a constant, = C' large enough with respect to the average idle busy times
of all channels. Sense all channels equally%wme.

(2) Roundn (n > 1): Use all the observations from rounds...,n — 1 to obtain the channel
parameter estimate§\,;(n), Ari(n)}, using (12) and (13) where = Y "~ ¢;. Substitute
these estimated parameters in (17) to get the estimatess to distribute time among channels.
Pick the total round time,, and spendy;(n)c, amount of time on channe| where{c,}°°, is

LiniG o,
n

an increasing sequence such that,_.
In what follows we consider three asymptotic properties of the estimator and policy proposed

above.
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C. Asymptotic Statistics Properties: Strong Consistency

A sequence of estimatoﬁe{T) for parameten is strongly consistent if\(T) convergeslmost
surelyto \.

NT) =20 as. (19)

The first step to show consistency is to make sure the number of samples required for the
estimators in (12) and (13) tends to infinity as time grows. This fact is shown in the following
lemma which will be used later too.

Lemma 2:Define the event
E;é{in the nth round at least one complete idle busy period is sensed on chahnel
, then
Pr{E! i.0.} =1.

Proof: Let v; = min{\p;, A1}, then

3 k
; —~ic iCn
PI’{E;L} Z FErlang(Cna4v 72) =1- Z e e (7]{:' ) ) (20)
k=0 '

where F,iang(7, 4, ;) is the CDF of the Erlang distribution of ordérwith parametery,.
Based on the definition of the policy SEINE,

nh—>nolo Cp = 0. (21)
Therefore
nhj{)lo Pr{E'} =1, (22)
so that we can conclude
Pr{E! i.0.} = Pr{limsup E'} > lim Pr{E'} =1. (23)
u

Theorem 3:The estimators defined in (12) and (13) are consistent.

Proof: Based on lemma 2, we know

~

lim [Aos(T), Adra(T)] = [ lim Ag(no), Jim Api(ny)]. (24)

T—o00 ny— 00
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Since the complete periods are i.i.d random variables, based on the strong Law of Large Numbers
1 Nng — 1 1 . ny — 1 1

1
[ lim = , lim = ] = [lim R , - )] (25)
n0=00 N i(ng) M=% Ay i(ng) no—oot Mo \gi(ng) Mmoo N A (ng)
B )\0,2‘7 )\u o
From probability theory we know that If
lim X,, =C  a.s. (26)
whereC' > 0, then
nh—>r20 Xin = % a.s. 27)
Since all)\;;'s are strictly positive, by choosing,, = AL consistencyollows from (27).
[ |

D. Asymptotic Statistics Properties: Asymptotic Distribution

Perhaps the most common distribution to arise as an asymptotic distribution is the normal
distribution. In particular, the central limit theorem provides an example where the asymptotic
distribution is the normal distribution.

Consider the reciprocal of the estimators in (12) and (13)

no ok
1 noD g1 %
)

~

Ng(n) =1 n
wherezﬁi’s are i.i.d with exponential distribution and parameter. From CLT (Central Limit

(28)

Theorem) we have
n—1 1 1. 4
— (= ——)=N(0
Vn ()\j,i(n) )\j,z‘> (

In general ifY,, = Xin the distribution of the reciprocal of the non-negative random variahle

1
o)
)\M

(29)

is

Fulo) = Pr{Ya <y} = Pr{g < b =Pr{X, 2 1} = 1= P (1), (30)

n

and for the pdf we have

1 1
fr.(y) = Efxn(g)- (31)
Therefore sincex__l—n) has asymptotic distribution given in (29), the asymptotic distribution of

the estimatoé\jvi(n) can be obtained in closed-form by (30), and (31).
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E. Asymptotic Statistics Properties: Asymptotic Efficiency

We now establish the asymptotic efficiency of SEINE for the class of sparse sensing policies.
The reason to consider only sparse sensing policies is that, in practice, when switching cost is
not negligible, each channel should be observed at least for some minimum amount of time, and
if there are many channels to consider, the gaps between observation intervals are sufficiently
large. Recall that a sensing polieyis defined by the allocation of sensing tinffe = {77}
where T is the duration of thgth sensing interval on channélWe denote the total sensing
time byT" = |T™| = }_,, T;. The MSE of a channel estimator associated with sensing pelicy

is given by
M

MSE(T™) = Z{(S\O,i — Xoa)® + (5\11 — Ai)’t (32)

i=1
For the class of sparse sensing policies (as defined in Theorem 2), Theorem 2 shows that the
Fisher information/ (7 ™) associated with ™ is upper bounded by the Fisher information when

each channel is allocated with a single sensing interval
I(T™) < I(T7), (33)

where I;(77) is the Fisher information when each channel is allocated with a single sensing
interval with total sensing tim&Z ™|. Therefore, for a sparse sensing policythe optimal CRB
is obtained under the class of policiHs (with single installment per channel) in (18). Hence
we define the asymptotic efficiency by
; CRB'(|T7)
T s TMSE(TT)
where CRB(|77|) = min,cn, CRB(7™) defined in (18) is the optimal CRB for the class of

policiesII; which is optimal for the class of sparse policies as well based on (33).

(34)

When the sensing policy is randomized, the resulting allocation of sensingZiimie also
random. We use stopping times (the time instants when a certain number of complete idle and
busy periods are at hand) in the calculation of MSE to deal with the randomness, and we define
the relative efficiency the same way as (34). Note, however, that the relative efficiency is also
random. A sensing and estimation poligyis almost surely asymptotically efficient if

i CRBUTTD

A MSE(TT) =1 a.s. (35)
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The following theorem establishes the a.s. asymptotic efficiency.
Theorem 4:The asymptotic efficiency of the Policy SEINE convergesltasymptotically
almost surely. Namely

SEINE __ : CRB*(|TSE|NE|)
T |7seMEo MSE(TSEINE)

Proof: See Appendix C. [ |

=1 a.s. (36)

V. SIMULATION RESULTS

In this section the simulation results are presented in thusections. First we present the
simulation results showing the consistency of the estimator, then we present the simulation results
regarding the asymptotic distribution of the estimator, and at the end we show the asymptotic
convergence of the MSE of policy SEINE to the Cramer-Rao bound (asymptotic convergence
of efficiency to one). For simulation a network consistingdo€hannels occupied by primary

system is considered with the following parameter set

Xo = [0.1, 0.6, 0.2, 0.5],
A = [0.7, 0.1, 0.8, 0.9].

The sequence of round lengths used in the policy SENE}> , is picked to be exponentially
increasing withn. The policy SEINE is run foR2 rounds for200 monte-carlos. We refer to this

setting as Casé.

A. Consistency

In this section we illustrate the consistency of our estimator by simulation. In Fig. 5 the
estimated)\, and )\, (averaged over all monte-carlo runs) for all channels are presented. It is
shown that all of the estimated parameters converge to their true values.

In Fig. 6 two parameters; (Ao for channell), and A3 (Ao for channel3) are chosen
and the estimated sequence is plotted for all the Monte-Carlo runs. As shown in the figure the
estimated sequence converges to the true valueallfdhe Monte-Carlos verifying the almost

surely convergence (strong consistency).
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Fig. 7. Histogram of the\; ; (n)

B. Asymptotic Distribution

In this section we plot the histogram of the estimated sequency fof)\, for channell). Fig.
7 shows the distribution of thém(n) for different round indexes, and how it is distributed

around and converges g ; = 0.7 as the round index grows.

C. Asymptotic Efficiency

In this section we plot the MSE of the policy SEINE vs. the optimal Cramer-Rao bound for
the sparse policies (CRRB Here we consider another network setting with the same number of

channels but different parameter set

X = [0.3, 0.2, 0.3, 0.4],

A = [0.3, 0.3, 0.2, 0.15].
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The policy SEINE is run the same as the caser 22 rounds with200 monte-carlo runs. We

refer to this new setting as ca3eThe MSE of policy SEINE vs. CRBis plotted for both case

1, and case in Fig. 8 and Fig. 9. As you can see the MSE asymptotically converges td CRB

indicating the asymptotic efficiency of the policy SEINE for the estimator within sparse policies.

VI. CONCLUSION

In this paper, we have considered the problem of multichagstehation in OSA. The channel

occupations of the primary system are modeled by two-states Markov processes. Secondary

system'’s objective is to learn the channel parameters in the optimal way in order to maximize

the estimator’s efficiency. A sequential policy is proposed that achieves the optimal efficiency

asymptotically.

we get

0%L
7}
By

where

APPENDIX A: PROOF OFTHEOREM 1

no+1gs—13 i 1 . 1
2 o 2 (Mo+X1)?2 (Mo+X1)2
~ Vien L(do, A1) = ’ 1 n1+1lg,—0) 1 ’
ENCYEDYIE Y OYESYE
A1 Ng Ao ni_s +1 1
E{-—2]s=0 E =1} -
ST Al Al v vl e it Al s v W

Pr{n is even a E{no_cg| 0,n is ever} + Pr{n is odd M ]E{no_cg| 0,n is odd
I S = T S =
Ao + M /\g ’ Ao + A1 /\g ’

. /\0 no — Cl .

Pr{n is eve €ls=1,nis eve
r{ I})\O +A1 { )\%75 |S Y r}

. Ao ng — ¢! . 1

Pr{nis od E %ls=1,nisodd - ———
/\108 + /\Qc(li )\108 + )\00(1)

) + Pr{n is odd(

E{Z—g} + Pr{n is even( )

Ao + M1 Ao+ A1

n
E{3z} + fo.
0

)\102 + )\océ
Ao+ A

)\108 + )\00(1)

fo = Pr{nis ever( Ao+ A1 )

)+ Pr{n is odd( (37)

is a bounded function of parametexg A, andTy, andc’/, andc¢! are some constants depending

onn being even or odd and also but since they are constants, their exact value does not affect
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our final results. Similarly we get

82[/ s
E{=—-}=E{— .
2L \ _ 1
And clearly for the cross terms{;7—7-} = —Goroanz- Note that
T
E{no} = E{ni} = —. (38)
P
Therefore
T 1 1
A%(%ﬂ-%) + fO T (otar)? T (otA)2
T, 0m) = C 1 T 1
"ot pepar s R Rl rES v
From definition off,, and f; we can get
- 1T+ ; )(1 +o(Th)) _(Ao+1/\1)2
Iy, 14 = ot . -
EevEswE m(l +o(T1))

APPENDIX B: PROOF OFTHEOREM 2

Let first consider the Likelihood function for the case we have two disjoint intervals. Assume
that two intervals[t;, t; + T1] U [te, t2 + T5] are observed. Therefore the likelihood function

becomes
F({55: (zng)nls Fimil Ao, A1)
= f(s1, (2n,1)5L1X0s A1) f (52, (2,2) 21 [ Aoy A, Shyemy = )
= f(s1, (2n,1)5L1 ] A0s A1) Pr{St, = $2[ Sty 4y = ' ((2n,2)521 1 A0s A1, Sty = 52)

ni Pr{SQ = 82|Sl Ty = S/} no
= f(s1, (zn1)p11 X0, A1) tPr{StQ :t;} f (52, (2n,2)121] Ao, A1)

f Pr{St2 = 82|St1+T1 = S/}f
n Pr{S;, = so} 2

Here we denote the likelihood function of a single interval of lerifjttas obtained in previous

section byfr,. It is seen that the extra information provided by the discrete sampling is
Pr{St2 = 82‘St1+T1 = S/}

PI‘{Stz = 82} )

It is apparent that when these intervals are far enough saoSthand S, ., are independent,

(39)

this term becomes

Pr{Sy, = 59| Sy4m, = s’}  Pr{S, = s2}

Pr{S, =52} Pr{S,—sa) (40)
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Thus the discrete sampling part will not provide any extra information and the Fisher information
will be the sum of the Fisher information for these two intervals.

The Fisher information matrix folt,, t; + 71] U [ta, to + T3] is

I[t17t1+T1}U[t2,t2+T2} = I[tl,t1+Tﬂ + I[t17t1+T2] + I[ltDl,tl—i—Tl}U[tg,tg-i-TQ}a (41)

where

Pr{S;, = $2|St,+7, = 5’}
[UD17t1+T1]U[t27t2+T2} - E(_vioAl log( tzPl"{St :tlzzi’ ) (“42)
2

Now based on the above argument and (5), we compare the Fisher information matrixes for
these two cases of single and two intervals.
For the single intervalt,, ¢, + 7], the Fisher information matrix is

notlisg=13 1 _ 1
A2 (Ao+A1)2 (Ao+A1)?
1 n1t+1{sy—o 1

T Dota)2 27 (Mo+A1)2

The Fisher information matrix foft,, ¢, + 71| U [ta, to + T3] is

I[tm to+T] — E

I[t17t1+T1}U[t2,t2+T2} = I[tl,t1+Tﬂ + I[t17t1+T2] + I[tDl,tl—i—Tl}U[tg,tg—i-Tg}' (43)

It can be rewritten as

[ it =y 1 i

_ A2 (Ao+A1)2 (Ao+A1)?

Iy Ut terrn) = B 1 nitlgs =0y 1 (44)
L (Mo+A1)? A2 (Mo+A1)?
[ 73t ls-y 1 1 i
A2 (Ao+A1)? (Ao+A1)? D

+ E 1 ”%4‘1{32:0} 1 + ][t17t1+T1]U[t27t2+T2}
L (Mo+A1)2 A% (Mo+A1)?
[ ngn 1 =y 2 2

= E Ag (>‘0+>\1)2 ()\0+>\1)2

2 mi+ni s =0y Hsp=0y 2

L (Mo+A1)? A2 (Mo+A1)?

D
+ i Ul o+ 1)

wheren’, j = 1,2, ands = 0, 1 is the corresponding value of, for the jth interval. Note that
since chopping the intervad,, ¢, + 7] into two pieces gives smaller number admpleteidle
and busy periods in expectation, we have

Elng 4+ nd + L —1-) + Lspm1-s)] < Elng + Lgo=1-g))- (45)
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Using this inequality we get

[ nbtng il - tls,-1y 2 2
A2 (Mo+A1)2 (Mo+A1)?2
1 = E 0
[t17t1+T1}U[t2,t2+T2} . 2 77/%"‘"%""1{31:0}"’_1{32:0} _ 2
| (Ao+A1)2 )\% (Ao+X1)2

D
+ [[tl,t1+TﬂU[t27t2+T2]

[ notls-y 9 9
A (Mo+A1)? (Mo+A1)? + P

2 ni +1{SO:O} 2 [t17t1+T1}U[t27t2 +T2}
(Mo+A1)2 A2 T otA)2

IN
&=

1 11 b

][to, to+T] — ()\0 + )\1)2 11 + I[t1,t1+T1}U[t27t2+T2]‘

From (40) it is clear that whed\t; — oo the discrete sampling gives no extra information.
Therefore

5 00

AEI—I}OO [t1.t1+T1)Ult2,t2+T2] — 0 0 . (46)

Also note that the matrix is positive definite

11
> 0. (47)
11
Therefore whem\t; — co (which makes the matriX , . 7., 1,1, Z€r0) we have
1 11
Tty 141Ut 12+ To) < Lltg, 047 — Dot |1 1 < jty, to+1)- (48)

Thus from (46) we know thaiiT > 0 such that

: 1 11
T = 1nf{At1 >0 ‘ I[tD1,t1+T1}U[t2,t2+T2} < m - } (49)
For everyAt, > 71
1 1
Lt i+ )0 24 T) < Lito, to+7) — L + 150 im0t ty] < Lito, to+7)- (50)
’ ’ ’ Mo+M)2 |1 1 [t1,61+T1]Uft2,t2+T2] 0, to

It means that sensing one continuous interval has higher Fisher information than chopping it
into two pieces.

For K intervals Withminf:‘ll{Atj} > 7 we can use induction. We take the first two intervals
and replace them by one interval to gét— 1 intervals. We do this procedure féf — 1 steps
to get a single interval with length’ = ZJK:I T;.
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APPENDIX C: PROOF OFTHEOREM 4

Since the MSE is obtained under the policy SEINE, in what follows we drop the superscript
SEINE for simplicity.

Lemma 3:

lim &;(n) = lim & =y, Vi€ {l,...,M} a.s. (51)
n—oo k—o0

wherek = (k;)M,, é;(n) is the estimatedy; at the end of rounch, and@* is the estimated;
when & complete samples of idle and busy periods is at hand for all channels.

k

Proof: limj_, & = «o; IS based on the strong Law of Large Numbers

o lim (Nosis Aii) = (Mo M) aes. Vi€ {1,... M}, (52)
ki);Z,—00

and the fact thaty; is a continuous function ofAg;, A1), j€ {1,...M}.

. ~ . . _ ~ E
lim, o Gi(n) = limj_ . &;

a.s. is a direct consequence of lemma 2im(, .., &;(n) =
limj,_ & on the evenf{ ! i.0.} and this event has probabilith). u

Define the stopping times
Tk, 2 inf{time | exactly k; complete idle and busy periods is sensed on chaijnéb3)

Consider the time sequencés;, }° ;. MSF;'kZ_ is the sum of MSEs for the parameteyg; and
A1, at the time instanty,. It is computed for the estimators in (12), and (13) using the complete
idle or busy periods of channelwhich can be rewritten aéj,i(k:i) = 2’171 where z;,’s are
i.i.d exponential random variables with paramekey.

In general if X = anf where p;s are i.i.d exponentially distributed random variables with
parameter\, X has Erlang distribution of degreewith parameterfn — 1)\. Therefore for the

MSE of + we have

n — n n—le—)\(n—l)t
MSE = N} = / L 2_ o 1>(AT)L ¢ . "
— 2 ((n - 1 "t” Lo=A(n—1)t ((n — 1))\)2 00 ((n _ 1))\)"_215”_3@—)‘(”—1)15
- /0 (”‘1)' dH(n—l)(n—?)/ (n—3)! di
(n—1A) [ ((n— 1A 1n2e A1)t
B /0 (n—2)! dt
)\2
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Therefore for our problem we get

, N+ AL
MSE, - ﬁ (54)
Denote
T(n) 2 total time spent on the system at the end of round
T;(n) 2 total time spent on channeélat the end of roundh.
T (n) 2 total time spent on channeélat the end of rouna:
that only includes complete idle/busy periods
T:(7x,) 2 total time spent on channélup to timer,.
T7(me,) = total time spent on channeélup to timer, that
only includes complete idle/busy periods
Lemma 4:
klgnoo g((::)) =1 a.s

Proof: Note that7;(7,), and 7} (rx,) differ only at the incomplete idle/busy periods that
only happens at the beginning and the end of each round. Therefore

T () - _ )_incomplete periods

Denote
n.Zsup{n : Ti(n) < Ti(m,)},

then the number of incomplete periods is at m&st+ 1. Thus

> incomplete periods< > incomplete periods
Ti(7w,) - Ti(n.)

Note that

0 < lim > incomplete periods
Nk —00 T'Z(n*)

((m” + o(m®)) 5 + (m + o(m)) 5-)

= lim e — a.s.
T 00 Zj:l CjQy (J)

2(n, +o(ny)) + 1)+

o Bl o) 0
ne—oo Y NT €6 (7)

Y
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wherem! + m® = 2n, + 1, and]/vy; = max{1/\g;, 1/A;;}. Sinceq; > 0,
de; > 0s.t.a; — ¢; > 0.
From lemma 3,
Ine,s.t. Yn > ne,, |q;i(n) — ol <.

Therefore

Ty T

wherea]” = min{min;=; ., {&(j)},a; — &} > 0. Thus

0 < lim > incomplete periods
Nx—00 T,(n*)

(2(n. + o(ny)) + 1)%

< lim o —
T —00 ijl ;b (j)
2(n, + o(n,)) + 1)L
< i (2( () )%.

- ™
s =700 a; Zj:l Cj

Z;Lil Cj
n

By definition lim,,, - ! = o0, therefore

[ let iod
0< lim >~ incomplete perio SS
na—00 Ti(n.)

Then the lemma follows. [ ]

Lemma 5:

’Jlféo ki - Ao,i * AL s
Proof: From lemma 4 we have
- Tim,) . T (mw)
The equality
T*(7g. 1 1
lim (7, + a.s.

ki—oo K - Xoi A
is based on the strong Law of large numbers sifitley, ) is exactly equal to sum df; complete

idle, and busy realizations divided ly. [ |
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We have
. Ao+ A%
MSE., = 2"
therefore from Lemma 5 we get
lim Tj(7,)MSE. = (A2, + A2.)( L2 ) as
fisasees i\Tk; k; 0,i 1, )\O,i )\1,2' o
Note that
¥neN, 3k = ()M, st.Ti(r) < Ti(n) < Ti(7i, 1)
lim Y}(Tgi)MSEiT% < lim T;(n)MSE, < lim Y}(T];,JFI)MSE%
k—o00 7 n—oo i ];?—>OO 7 2
Also

MSE(T'(n)) = MSE, = MSE,_  a.s.

Therefore we have

, 1 1
lim T;(n)MSE(T(n)) = (A, + AT)( —+s ) a.s. (55)
n—00 0,i 1,
Lemma 6:
. Ti(n) _
nll—{go Tn) = oy a.s.

Proof: From lemma 3 we have

lim &;(n) =a; a.s.

n—oo

Therefore

Ve >0, dny S.t.Vn > ny, |&i(n) — a4 < % a.s.

For this givenn;, dn, such thatvn > n,,

[
k < -
doh=iCh 2
ThenVn > ns,
Ti(n) _ g awta(k) 3 opky cr(da(k) — aq) N Dok Gk D ari(k)
T(n) > ket Ck D ket Ck D ket Ck

(56)
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Since0 < &;(k) < 1, and0 < o; < 1,

_f o _ glzl % Yy Ck(ndi(k) — ;) < Zglzl % &
2 Zk:l Ck Zk:l Ck Zk:l Ck 2

(57)

n
€ > kg 11 Ch

n n n A~
- fca—f D k=ny 1 Ck < D ket Ok F D g, 1 Ck(F)

2 2 Yo D k1 Ch STy S 2
Combining it with (56), and (57), we gé&te > 0, Iny, S.t. Vn > nao,
a — €< Tl(n) < a; + €. a.s.
T(n)
Thus
T:(n
nh—{EO T((n)) = oy a.s

From lemma 6 and (55) we get

lim T(n)MSE(T(n)) = — i Mt g

n—00 o

Therefore

n—oo

limT(n)ZMSE(T(n)):Z T o L dal

or equivalently for the efficiency

CRB(T) _,
m ————> = .
7o MSE(T) s
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