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Abstract—We consider the broadcasting problem in multi-
radio multi-channel ad hoc networks. The objective is to minimize
the total broadcast cost, where the cost can be of any form that is
summable over all the transmissions (e.g., the transmission and
reception energy, the price for accessing a specific channel). Our
technical approach is based on a simplicial complex model that
allows us to capture the broadcast nature of the wireless medium
and the heterogeneity across radios and channels. Specifically,
we show that broadcasting in multi-radio multi-channel ad hoc
networks can be formulated as a minimum spanning problem in
simplicial complexes. We establish the NP-completeness of the
minimum spanning problem and propose two approximation
algorithms with order-optimal performance guarantee. These
two algorithms offer tradeoffs between performance and time-
complexity. In a broader context, this work appears to be the
first that studies the minimum spanning problem in simplicial
complexes and weighted minimum connected set cover problem.

Keywords-Broadcast, multi-radio, multi-channel, ad hoc net-
work, simplicial complex, minimum spanning.

I. INTRODUCTION

Multi-Radio Multi-Channel (MR-MC) wireless networking
arises in the context of wireless mesh networks, dynamic
spectrum access via cognitive radio, and next-generation cel-
lular networks [1]. By the use of multiple channels, adjacent
transmissions can be carried over non-overlapping channels to
avoid mutual interference. Furthermore, each node, equipped
with multiple radios, is capable of working in a full-duplex
mode by tuning the transmitting and receiving radios to two
non-overlapping channels.

The increasing demand for high data rate and the persistent
reduction in radio costs have greatly stimulated research on
MR-MC networks. Considerable work has been done on
capacity analysis, channel and radio assignment [2-5], and
routing protocols [2, 4]. In this paper, we consider the broad-
casting problem in MR-MC ad hoc networks.

A. Broadcasting in SR-SC Networks

Broadcasting is a basic operation in wireless networks for
disseminating a message containing, for example, situation
awareness data and routing control information, to all nodes.
For a Single-Radio Single-Channel (SR-SC) network, a key
question for the network-wide broadcast is which set of nodes
should be selected to transmit during the broadcast such that
the total cost (such as energy consumption or the number of

OThis work was supported by the Army Research Laboratory NS-CTA
under Grant W911NF-09-2-0053.

transmissions) is minimized. In contrast to their counterparts
in wired networks which have polynomial solutions, the broad-
cast problems for minimizing the energy consumption and the
number of transmissions are shown to be NP-complete in [6].
The complexity of the broadcasting comes from the broad-
cast nature of the wireless medium: via an omnidirectional
antenna, a single transmission from one node can reach all the
other nodes within this node’s transmission range, but it may
cause interference to other nearby transmissions. This “node-
centric” nature of the wireless broadcasting problem along
with the mutual interference between concurrent transmissions
complicates the design of efficient broadcasting algorithms.

B. Broadcasting in MR-MC Networks

In an MR-MC ad hoc network, such as the DARPA Wireless
Network after Next (WNaN) [7], each node is equipped with
multiple radios each operating on a different channel. The
introduction of multiple channels and multiple radios further
complicates the design of an efficient broadcasting scheme.
Since the number of radios is usually smaller than the number
of channels, the broadcast scheme should decide not only
which nodes act as relays but also for those relay nodes, which
channel(s) should be assigned to the transmitting radio(s).
Given the selection of the relay nodes, two simple broadcast
schemes are: (i) transmitting multiple copies of the message on
all channels; (ii) transmitting a single copy of the message on
a common channel dedicated to broadcasting. Both schemes
are inefficient. For the latter one, if the broadcast load is high,
the common channel will be overwhelmed, even while there
are plenty of other channels free.

One subtle issue is the complication of the wireless broad-
cast advantage. In an MR-MC network, if the radios of the
neighboring nodes are tuned to different channels, a single
transmission on one channel cannot reach all the neighboring
nodes simultaneously. In other words, only the neighboring
nodes on the same channel can share the wireless broadcast
advantage. More precisely, the concept of neighborhood must
be defined both by radio range and channel. Another subtle
issue is channel heterogeneity. Channels may have different
bandwidth, fading condition, and accessing cost, leading to
different implications in the total broadcast cost.

Broadcasting in MR-MC networks is thus a multi-faceted
problem, involving channel assignment, relay node selection,
and channel selection for the source and relay nodes. In
this paper, we focus on the latter two issues by assuming
a given channel-to-radio assignment. To avoid the hidden
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channel problem [5], two nodes that are two-hops away from
each other are assigned two distinct sets of channels. Our
design objective is to minimize the total broadcast cost, where
the cost can be of any form that is summable over all the
transmissions, including, for example, the transmission and
reception energy’, the price for accessing each channel.

C. A Simplicial Complex Model

Our technical approach is based on a simplicial complex
model of the broadcasting problem in MR-MC networks. A
simplicial complex is a collection of nonempty sets with finite
size that is closed under the subset operation. In other words,
if a set s belongs to the collection, all subsets of s also belongs
to the collection. An element of the collection is called a
simplex or face. This constraint is often satisfied in the network
context. For example, subsets of a broadcast/multicast group
are broadcast/multicast groups, subsets of a clique are cliques.
While the concept of simplicial complex has been around since
the 1920’s, many well-solved fundamental problems in graph
remain largely open under this more general model.

We use a simplicial complex model rather than a graph
because the simplicial complex more naturally captures the
broadcast channel, and the distinction and disjointness between
broadcasting on different channels. Further, costs can be
attached to simplices in a way not easily possible with graphs.

Consider an example MR-MC network. As shown in Fig. 1,
after the channels are assigned, the network is partitioned into
cliques of nodes. A clique consists of the nodes which share
at least one common channel, and two cliques are spliced
via nodes operating on multiple channels commonly shared
by the two cliques. Within each clique, depending on the
cost function, the transmitter decides which dimension simplex
(i.e., a subclique or the clique itself) in a clique complex to
activate. The message for the network-wide broadcast is thus
propagated through a sequence of cliques, possibly of different
dimensions. Note that the unicast case corresponds to a clique
of dimension 1 (an edge). This example could also apply to
the case where nodes may have multiple radios, perhaps of
different modality (e.g., RF and optical); in this case, there
may also be a cost associated with switching modes.

In this case, the network-wide broadcast problem can be
formulated as the minimum spanning problem in simplicial
complexes. A clique in the MR-MC network is modeled
as a simplex in the simplicial complex (see Fig. 1), and
since a subset of a clique is still a clique, the constructed
simplicial complex meets the requirement of being closed
under the subset operation. The minimum spanning problem in
a simplicial complex is to find a connected subset of simplices
that covers all the vertices with the minimum total weight, i.e.,
the Minimum Connected Spanning Subcomplex (MCSSub)?.

IThe ‘reception energy’ denotes the energy consumed by the radio in
reception mode.

2Strictly speaking, a subcomplex should also be closed under the subset
operation, but without loss of generality, we do not include this condition
in the definition of minimum connected spanning subcomplex, which is also
more relevant to the broadcasting problem at hand.
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Fig. 1. An illustration of an MR-MC network and the constructed simplicial
complex. The parameters within the braces are the channels which each node
can access. In the communication graph derived from the network, a link
exists between two nodes if and only if two nodes are within each other’s
transmission range and they share at least one common channel. Notice that a
clique in the communication graph may not be a clique in the MR-MC network
(correspondingly, a simplex in the simplicial complex), e.g., the three nodes
of the right empty triangle.

{f1, fa, f5}

Then the solution to the network-wide broadcast problem can
be obtained by solving the MCSSub problem.

D. Minimum Spanning Problem in Simplicial Complexes

The minimum spanning problem in a graph is to find a
connected subgraph that covers all the vertices with minimum
total weight. The solution must be a tree for graphs with
nonnegative weights (hence called the Minimum Spanning
Tree (MST)). There are several polynomial-time algorithms
for MST, e.g., Kruskal’s Algorithm and Prim’s Algorithm [8].

With the addition of high dimensional simplices, the mini-
mum spanning problem in a simplicial complex is fundamen-
tally different and much more difficult than its counterpart in
a graph. First, unlike the case in a graph, the MCSSub of
a simplicial complex may not be a “tree”®. As illustrated in
Fig. 2, the MCSSub of the simplicial complex is the three
filled triangles which form a cycle. Second, while simple
greedy-type polynomial-time algorithms exist for finding the
minimum spanning tree in a graph, the minimum spanning
problem in a simplicial complex is NP-complete as established
in this paper (see Sec. III-A).

Vo
V1 V2
2 2
U3 V4
2 2
Us

Fig. 2. A simplicial complex where its MCSSub is the three filled triangles,
and is not a “tree” (the integers are the weights of the simplices).

We thus develop polynomial-time approximation algorithms
for the minimum spanning problem in simplicial complexes.
We propose two algorithms: one reduces this problem to a

3 Although there is no unified definition of tree in simplicial complexes,
a couple of definitions can be obtained by generalizing those equivalent
definitions of tree in a graph. For example, simplicial trees can be defined
based on the universal existence of leaves in any subgraph, or the uniqueness
of simplicial facet paths.



minimum connected set cover problem, and the other reduces
the problem to a node-weighted Steiner tree problem in a graph
derived from the original simplicial complex. We also establish
the approximation ratios of the two algorithms. Both are
shown to be order-optimal. The time-complexity of these two
algorithms is also analyzed, illustrating the tradeoff between
performance and complexity offered by these two algorithms.
In a broader context, this work appears to be the first that stud-
ies the minimum spanning problem in simplicial complexes
and weighted minimum connected set cover problem.

E. Related Work

Broadcasting in MR-MC networks, mostly in the context
of wireless mesh networks, has been studied for different
optimization objectives (see [5, 9-11] and references therein).
Differently from the previous ones, our optimization objective
can be any cost function which is summable over all the trans-
missions, thus taking into account channel heterogeneity (e.g.,
transmissions on different channels may consume different
amounts of energy, due to different bandwidths or different
propagation characteristics or some other factor). We point out
that neither minimizing the total number of transmissions nor
minimizing the total number of radios used in the broadcast is,
in general, equivalent to minimizing the total energy consump-
tion. The reception energy is ignored if the former objective
is minimized, while the transmission energy and the reception
energy are equated if the latter objective is minimized. More
importantly, channel heterogeneity is not addressed if these
two objectives are optimized.

Furthermore, to our best knowledge, our work is the first to
adopt simplicial complexes to model and solve the broadcast
problem in ad hoc networks. For a more detailed discussion
on the potential applications of simplicial complexes in com-
munication and social networks, readers are referred to [12].

II. BASIC CONCEPTS IN SIMPLICIAL COMPLEXES

In this section, we introduce several basic concepts in
simplicial complexes.

An (abstract) simplicial complex is a collection A of
nonempty sets with finite size such that if A € A, then
VY BC A Be€A,ie, A is closed under the operation of
taking subsets. The element A of A is called a simplex of A;
its dimension (denoted by dim A) is one less than the number
of its elements. Each nonempty subset of A is called a face
of A. The dimension of A is the maximum dimension over
all its simplices, or is infinite if the maximum does not exist.
The vertex set V of A is the union of the one-point elements
of A. A subcollection of A that is itself a simplicial complex
is called a subcomplex of A. A subcomplex of A is the p-
skeleton of A, denoted by AW®)if it is the collection of all
simplices of A with dimension no larger than p. Thus, the
1-skeleton is the underlying graph of A.

A facet of a simplicial complex A is a maximal face of A,
i.e., it is not a subset of any other face. A simplicial complex
is connected if its 1-skeleton (i.e., the underlying graph) is
connected in the graph sense.

A weighted simplicial complex (WSC) A is a triple
(V,S,w)*, where V is the set of vertices, S the set of faces of
A,and w: S — {RT U{0}} a nonnegative weight function
defined for each face in S with w(v) =0 for all v € V. We
define the facet-only weight Wr(A) of a WSC A as

Wr(A) = Z w(Fy).

F; e{facet of A}
III. MINIMUM CONNECTED SPANNING SUBCOMPLEX

In this section, we show that the MCSSub problem is NP-
complete, and we propose two approximation algorithms based
on connected set cover and node-weighted Steiner tree. We
also establish the approximation ratios of the two algorithms
and analyze their time complexity.

A. NP-Completeness

The decision version (D-MCSSub) of the MCSSub problem
is stated as follows: let V/(A) denote the vertex set of a WSC
A and Wg(A) the facet-only weight of A. Given a WSC
A = (V,S,w) and K > 0, is there a connected subcomplex
A3 of A such that V(A®*?) = V and Wg(A®b) < K?
Then we have the following theorem.

Theorem 1: The D-MCSSub problem is NP-complete.

Proof Sketch: To prove the NP-completeness, we reduce
a classic NP-complete problem — the unweighted set cover
problem to the MCSSub problem. Details are left in [13]. B

In the following, we present two approximation algorithms
for the MCSSub problem both with performance guarantee
O(Inn), where n is the number of vertices in the WSC. Since
the best possible approximation ratio for the set cover problem
is Inn [14], these two algorithms are order-optimal.

B. Algorithm Based on Connected Set Cover

Let A be a set with finite number of elements, and B =
{B; CA: i=1,...,n} a collection of subsets of A where
each B; is associated with a weight w(B;) > 0. Let G be a
connected graph with the vertex set 3. A connected set cover
(CSC) S¢ with respect to (A, B, w, G) is a set cover of A such
that S¢ induces a connected subgraph of G. The minimum
connected set cover (MCSC) problem is to find the CSC with
the minimum weight, where the weight of a CSC S¢ is defined

as
w(Sc)= > w(Bi).
B;eSc

From a WSC A = (V,S,w), we derive an auxiliary
undirected graph G in the following way: let S\ V be the
vertex set of Ga, and connect two vertices (non-vertex faces
in A) Sy and S if and only if S; N Sy # (. Then we have
the following theorem on the relation between the MCSSub
problem and the MCSC problem.

Theorem 2: Let A* be the MCSSub of a WSC A =
(V,8,w) and S the MCSC of (V,S \ V,w,Ga). Then we
have

wr(A*) = w(SE).

4(S, w) suffices to denote the WSC since V' C S, but we use the redundant
(V, S, w) for convenience.



Proof: Due to the page limit, details are omitted here,
which can be found in [13]. [ |
1) Algorithm: Based on Theorem 2, we can reduce the
MCSSub problem of a WSC A = (V,S,w) to the MCSC
problem (V, S\ V,w, Ga). We obtain the following Set Cover
based Algorithm (SCA) for the MCSSub problem.

Algorithm 1: SCA for MCSSub:
INPUT: A WSC A = (V, S, w).
OUTPUT: An approximate MCSSub Ax of A.

1. Derive the auxiliary graph Ga.

2. Find an approximate MCSC S¢ of (V,S\ V,w,GAa) by
using the greedy algorithm for MCSC (Algorithm 2).

3. Transform S¢ to a connected spanning subcomplex Ag
by mapping each element of S¢ to a face in A.

Zhang et al. propose a greedy approximation algorithm for
the unweighted MCSC problem [15], i.e., w(B;) = 1 for all 7.
The original algorithm in [15] has a flaw and the established
approximation ratio is incorrect. In [16], the flaw is corrected
and a stronger result on the approximation ratio is shown.
By generalizing their greedy approach, we develop a greedy
algorithm for the weighted MCSC problem.

Before stating the algorithm, we introduce the following
notations and definitions. For two sets S1,5; € S, let
dist;(S1,52) be the length of the shortest path between S;
and S, in an auxiliary graph G, where the length of a path
is given by the number of edges; S; and S, are said to
be graph-adjacent if they are connected via an edge in G
(i.e., distg(S1,S2) = 1), and they are said to be cover-
adjacent if S; N Sy # . Notice that in a general MCSC
problem, there is no connection between these two types
of adjacency. The cover-diameter Do (G) is defined as the
maximum distance between any two cover-adjacent sets, i.e.,

Dc(G) = max{distg(Sl, SQ) | 51,5 €S and 1 NS, 75 @}

For the MCSC problem derived from the MCSSub problem
of a WSC A, we have that Do (Ga) = 1.

At each step of the algorithm, let R denote the collection
of the subsets (faces of A) that have been selected, and U the
vertex subset of A that has been covered. Given R # ) and
aset S € S\R,an R — S path is a path {5, S1, ..., Sk} in
G such that (i) Sy € R; (i) Sk = S; (iii) S1,..., Sk € S\R
We define the weight ratio 7(Pg) of Ps as

w(S(Ps) \R) _ ZSES(PS)\RU’(S)
[V (Ps)| VN (Ps)]
where S(Pg) \ R is the subsets (faces in S) of Pg that are

not in R, and |V (Pgs)| is the number of vertices of A that
are covered by Pg but not covered by R.

r(Ps) = (1)

Algorithm 2: A Greedy Algorithm for MCSC.
INPUT: (V,S\ V,w,GA)
OUTPUT: A CSC R.

1. Choose Sy € S\ V such that the weight ratio r(Sp)
defined in (1) is the minimum, and let R = {So} and
U =25
2. WHILE V \ U # () DO
2.1. For each S € S\ (V UR) which is cover-adjacent
or graph-adjacent with a set in R, find a shortest’
R — S path Pg.

2.2. Select Pg with the minimum weight ratio r(Pg)
defined in (1), and let R = R U Ps (add all the
subsets of Ps to R) and U = U U Vy(Ps).

END WHILE

3. RETURN R.

2) Approximation Ratio: The approximation ratio of SCA
is determined by Step 2, i.e., the approximation ratio of the
greedy algorithm for the MCSC problem. First, we show the
following lemma.

Lemma 1: Given a weighted MCSC problem (V,S \
V,w, Q) with Do(G) =1, let
max{w(S)}

min{w(S)}

R’w = (2)

Then the approximation ratio of the greedy algorithm for
MCSC is at most R, + H(y — 1), where v = max{|S| | S €
S\ V} is the maximum size of the subsets in S and H(:) is
the harmonic function.
Proof: The proof is based on the classic charge argument.

For details, please refer to [13]. [ |

Then, as a direct consequence of Lemma 1, we have the
following theorem on the approximation ratio® of the greedy
algorithm for the MCSC problem with Do (G) = 1.

Theorem 3: Let A* be the MCSSub of a WSC A =
(V,S,w) and A¢ be the solution returned by Algorithm 1.
Let R,, be defined as in (2). Then we have

w F(AC)
where dimA is the dimension of A and H(-) is the harmonic
function.

From Theorem 3, we see that the approximation ratio
depends on the ratio R,, of the maximum weight to the
minimum weight. It is shown in the following theorem that if
R,, is unbounded, then the scaling order of the approximation
ratio can be as bad as linear with respect to the number of
vertices in the simplicial complex.

Theorem 4: Let n be the number of the vertices in a WSC
A = (V,S,w), and R, defined as in (2). If R,, is unbounded,
then the approximation ratio of Algorithm 1 for the MCSSub
problem of A is Q(n).

Proof: This theorem is shown by constructing a specific
example where the approximation ratio is ©(n). Details can
be found in [13]. |

< R, + H(dimA),

SNotice that the shortest path is defined in terms of the number of edges,
not the total weight of all vertices along the path.

5The approximation ratio of the greedy algorithm for general weighted
MCSC problem is still an open problem.



From Theorem 4, we see that Algorithm 1 is not suitable
for the MCSSub problem of a WSC A if its weight function
has a relatively wide range. As shown next in Sec. III-C, the
other approximation algorithm based on the Steiner tree does
not have this issue: its approximation ratio does not depend
on the range of the weight function.

C. Algorithm Based on Steiner Tree

From a WSC A = (V, S, w), we derive an undirected graph
Ha with the vertex set S: for each face S € S\ 'V (i.e., the
faces that are not the vertices of A), we replace it by a vertex
vg in Ha and connect vg to all the vertices of S. The weight
w(vg) assigned to the vertex vg is the weight w(.S) of the face
S. Notice that the weight of vertices in Ha corresponding to
the vertices in A (i.e., V) is zero. Fig. 3 shows an example
of the derivation of the graph from a 2-simplex. We have the
following theorem on the relation between the MCSSub of A
and the Steiner tree of Ha that spans the vertex set V' of A
and the minimum connected dominating set’ of Ha.

A Ha

Fig. 3. The derived graph of a 2-simplex (squares in [ o represent the faces
that are not vertices of A).

Theorem 5: Let A* denote the MCSSub of a WSC A =
(V,S,w), T* the Steiner tree of Ha that spans the vertex set
V of A, and D} the minimum connected dominating set of
Ha. Then we have that

wr(A") = w(T") = w(De).

Proof: Due to the page limit, details are omitted here,

which can be found in [13]. [ |

Based on Theorem 5, we propose the following Steiner Tree
based Algorithm (STA) for the MCSSub problem.

Algorithm 3: STA for MCSSub:

INPUT: A WSC A = (V,S,w).

OUTPUT: An approximate MCSSub A of A.

1. Derive the graph Ha from A.

2. Obtain an approximate Steiner tree 7' of Ha by using
the algorithms given in [17, 18].

3. Transform 7" to a connected spanning subcomplex A¢ of
A by mapping each element of T to a face of A.

Since approximation only occurs in Step 2, the approxima-
tion ratio of STA is equal to that of the algorithm for the

7A dominating set of a graph is a subset of vertices such that every vertex
of the graph is either in the subset or a neighbor of some vertex in the subset,
and a connected dominating set (CDS) is a dominating set where the subgraph
induced by the vertices in the dominating set is connected. The CDS problem
asks for a CDS with the minimum total weight, and it is shown to be a special
case of the MCSC problem [16].

node-weighted Steiner tree problem. The best approximation
ratio is known to be (1.35 + €)Inn for any constant € > 0,
where n is the number of vertices of A and is also the
number of terminals in the Steiner tree of Ha [18]. Here we
do not try to find the CDS D¢ of Ha at step 2, because
the best known approximation ratio for the CDS problem is
(1.35 + €) Inny,) [18, 19]. Since n(y,) > n, the latter
approximation ratio is much worse than the former one.

D. Time Complexity Analysis

Here we compare the time complexity of SCA and STA for
the MCSSub problem.

Theorem 6: Given a WSC A = (V,S,w), let n = |V]|
denote the number of vertices in A, m = |S \ V| the number
of non-vertex faces in A, and d the dimension of A. Then the
running time of SCA is O(nm), and the running time of STA
is O(dnm? + nm?logm).

Proof: Details can be found in [13]. |

From this theorem, we see that the time complexity of STA
is significantly higher than that of SCA. This is mostly because
the approximation algorithm for the Steiner tree requires the
computation of the shortest paths between all vertex pairs. We
point out that while the Steiner tree based algorithm has a
higher complexity, it can offer better performance in a WSC
with a large weight range. In a simulation example of random
simple complexes, we consider a case where each face weight
takes only two values w,,;, and wy,q, with equal probability.
With win = 1, Wiaee = 10000, and 1000 Monte Carlo runs
for a 200-vertex random simplicial complex [20], we find that
the total weight of the solution returned by the set cover based
algorithm can be 1.7 times that of the solution returned by the
Steiner tree based algorithm. These two algorithms thus offer
a tradeoff between performance and complexity.

IV. SIMULATION RESULTS

In this section, we present simulation results on the perfor-
mance of the two approximation algorithms (SCA and STA)
for the broadcast problem in an MR-MC network. We consider
a dense MR-MC network, where all the nodes are within each
other’s transmission range, and we aim to minimize the total
energy consumption of the broadcast.

There are 12 non-overlapping channels f; (1 < i < 12),
possibly with different communication rates r;, available for
the MR-MC network, and each node is equipped with 4 radios.
At the beginning of the broadcast, each node randomly selects
4 of the 12 channels for its 4 radios. As discussed in Sec. I-C,
the nodes which share at least one common channel form
a clique, and there is a one-to-one correspondence between
the cliques and the faces of the derived WSC. The weight
of the face is defined as the energy consumption of the
broadcast within the corresponding clique, i.e., the sum of
the transmission energy and the reception energy. Let S be
a face containing k¥ + 1 nodes and {fs; : j = 1,2,...,q}
the ¢ (1 < ¢ < 12) common channels shared by the k + 1
nodes. Assume that if a node in the clique is selected as
relay, it will choose the common channel with the maximum



communication rate to transmit. Then the weight w(S) of the
face S is given by

L
{rs;}’
j=1

max
=1,....g

w(S) = (P + kPy)

where P, and P,, are the transmission power and the
reception power, respectively, and L is a constant.

1000 T T T T T T
_X_SCA A&
900} [ .. D sTA Pl

=0~ MST Pl
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. . . . . .
20 30 40 50 60 70 80 90
Number of Nodes

Fig. 4. Average total energy vs. number of nodes. Parameters: Piy=1, Prgy =
0.01, L =100, r; = ¢ for 1 <17 < 12.

In Fig. 4, the average total energy of the solutions returned
by SCA and STA is compared with that of the MST with
respect to the underlying graph of the WSC. The average
is taken over 10 random channel assignments. Notice that
although two different links on the same channel are treated
separately when the MST is derived, the transmission energy
corresponding to them is counted only once to exploit the
wireless broadcast advantage when the total energy of the MST
is computed. We see that the performances of SCA and STA
are extremely close, and their performances are significantly
better than that of MST.

V. CONCLUSION

In this paper, we study the minimum cost broadcast problem
in multi-radio multi-channel ad hoc networks, where the total
cost is the sum of the costs associated with the transmissions
during the broadcast. We formulate it as the minimum span-
ning problem in simplicial complexes. We show that it is NP-
complete. We thus propose two approximation algorithms for
this minimum spanning problem: one is to transform it into
the connected set cover problem; the other is to transform
it into the node-weighted Steiner tree problem and then apply
the corresponding algorithm. Despite their distinct approaches,
both approximation algorithms are shown to be order-optimal
and offer a tradeoff in terms of performance vs. complexity.
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