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Abstract 
 

Electrodynamic Tethers (EDT’s) offer a real option for zero-propellant orbital maneuvers in 
the near future. By controlling the electrical current through a long conductive cable aligned with 
the local vertical and in the presence of a magnetic field, the tether experiences an 
electrodynamic thrust.  The local ionosphere provides the necessary electrons for the generation 
of an electrical current. Previous investigation has been focused on feed-forward or open-loop 
control schemes. Open-loop control methods are very susceptible to model error. The relevant 
models for an EDT system are the atmospheric density model and the magnetic field model. This 
paper will be concerned with errors in the atmospheric density model. The problem consists of 
two parts: solving the open loop non-linear optimal control problem and solving the associated 
linear feedback system to generate a control law. 
  

To solve the first part we assume the orbit remains nearly circular. We apply the method of 
averaging to the state dynamics to track secular changes only. The short period motion of the 
spacecraft drives the shape of the control. We vary the coefficients on a five term modified 
Fourier series describing the tether’s alternating electrical control current. The series is modified 
by using square waves rather than sine and cosine waves. The open-loop control solution is then 
used as reference in the feedback problem. 
 

Solving the associated linear feedback system involves linearizing the state dynamics. 
Standard linearization yields a classic state-space structured system using state error to generate 
control corrections. We assume complete state feedback to simplify the solution. Treating the 
system as linear time invariant, we update the gain matrix once per orbit.  
 

Results indicate this strategy improves performance and reliability of a system with model 
errors and un-modeled disturbances, particularly for maneuvers that remain in the LEO regime 
for an extended time. 

 

Keywords: EDT, Electrodynamic Tether, Optimal Control, Feedback Control, model error 
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An Approach to Optimal Control of Electrodynamic Tethers 
in a Stochastically Varying Drag Environment 

Alexander J. Buck* 
 
 

I. Introduction 

The Low Earth Orbit (LEO) environment provides many scenarios where maneuvering in 

orbit—perhaps for an extended duration—is very necessary. The tenuous atmosphere is 

constantly slowing down spacecraft through drag, lowering their altitude; orbital debris can 

travel at relative speeds in excess of 10 km/s, fast enough to damage or destroy a spacecraft; and 

spacecraft are constantly being perturbed out of their orbit by small but constant effects such as 

solar wind, radiation pressure, slight variations in the gravitational field, and the gravitational 

influence from the Sun or Moon.  For example, the International Space Station loses about 90 

meters of altitude per day due to drag [1]. At that rate Station would lose over 30 km in one year 

which is 10% of its orbit altitude. To prevent the station from re-entering the atmosphere and 

burning up after just a few years, every few months resupply modules are launched with extra 

fuel to boost the station back up to a higher altitude. Orbital debris removal is another mission 

requiring large amounts of orbital maneuvering for extended periods of time. In early 2009 the 

Cosmos 2251—a defunct Russian communication satellite—collided with and destroyed Iridium 

33—an operational US communications satellite. This event added roughly 1300 new pieces of 

debris larger than roughly 5cm radius—the approximate detectable radius of the US Space 

Surveillance Network sensors [2]. About once per year the ISS has to perform small maneuvers 

to avoid this debris, as it did in October, 2010 when a piece from a decommissioned NASA 

satellite broke off and had a close approach with the station. A 0.4 m/s boost maneuver was 

                                                           
* Midshipman, Aerospace Engineering Department, m110966@usna.edu 
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executed to move the station away from the debris [3]. Instead of avoiding space debris, there are 

proposed missions to actively rendezvous with space debris in order to clean up the LEO 

environment. This mission profile has a very high maneuverability requirement in order to 

rendezvous with and capture debris in all its various orbits. These three reasons only begin to 

illustrate why we need to have maneuvering capabilities in orbit. 

Chemical propulsion systems are currently the workhorse for this capability. These systems 

are largely reliable but there are certain problems with the technology. Chemical rockets rely on 

a reaction mass to produce the momentum exchange and pressure difference that generate thrust 

but are limited by the amount of propellant they can carry. Due to the disturbances previously 

mentioned, a satellite with no maneuverability becomes a large piece of orbital debris, or a 

“zombiesat” as was clearly shown in April, 2010 when Galaxy 15 turned unresponsive and 

began drifting towards its neighboring satellites [4]. Therefore before a satellite loses the ability 

to maneuver it is disposed of by re-entry or placement into a graveyard orbit. The more a 

spacecraft has to maneuver the faster it uses its available propellant, the shorter its lifespan is.  

This can be problematic because satellites can be large and expensive and we want them to be 

operational for a very long time, often 15 years or more. To support a long mission life, a 

significant amount of propellant (mass) must be launched with the satellite. This extra mass must 

be launched and stored in the spacecraft. Considering that it costs roughly $20,000 [5] to put one 

kilogram of mass into orbit, each kilogram of propellant can add significantly to launch costs.  

Chemical rockets have been around for a long time and their fuel efficiencies—measured by 

specific impulse (Isp)—have gotten better over time, but physical limitations of the combustion 

chemistry have more or less limited the best chemical motors to a vacuum specific impulse of 
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455 seconds. The specific impulse of a motor is directly linked to how much velocity change it 

can induce via the ideal rocket equation,  

( )lnsp i fV I g m m∆ =  

The subscripts i and f denoting initial and final masses, the difference being the propellant 

mass. For a mission that requires a total orbital velocity change (∆V) of 10 km/s with a vacuum 

Isp=455 seconds, 90% of the initial launch mass must be fuel. This means a 100 kg spacecraft 

requires 900 kg of fuel to be launched along with it [6]. Using the $20,000/kg mark cited earlier, 

the total launch cost for this system is roughly $20 million. 

There are other technologies being developed and used to help address some of the 

complications and drawbacks of chemical propulsion systems. One such technology is electric 

propulsion, which accelerates heavy ions through an electromagnetic field to produce thrust. 

Electric propulsion still depends on a reaction mass to generate thrust. This means there is still a 

finite fuel life, albeit considerably longer given the orders of magnitude higher Isp values for 

these systems—on the order of 5,000-10,000+ seconds. For the same 10 km/s ∆V mission 

requirement an electric propulsion motor operating at 5,000 seconds Isp can achieve that with 

only 20% of the initial payload launch mass as propellant. To operate a 100 kg spacecraft would 

require 25kg of propellant to be launched along with it reducing the total launch mass by a factor 

of 8. As good as electric propulsion is there is another propulsion technology being tested called 

electrodynamic tethers (EDTs).  
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Figure 1 – An EDT uses a conductive wire to interact 
with the geomagnetic field. Credit Naval Research Labs 
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Electrodynamic tethers offer the real prospect of zero-

propellant maneuvering in the earth orbit environment. This is 

achieved by using a very long conductive tether (Figure 2)—hence 

the name electrodynamic tether—to interact with the geomagnetic 

field via moving electrons (current). The resultant force on the 

conductive tether as described by the Lorentz force, the force on a 

current carrying wire in a magnetic field, is a propulsive force. The 

Lorentz force is defined as I x=F L B  where B is the local magnetic 

field, L  is a vector along the length of the tether and I is the control current causing the force. In 

Figure 1 the force is directed out of the page. This is very different from the momentum 

exchange through particle acceleration that 

both chemical and electric propulsion thruster 

designs operate under. Similar to electric 

propulsion thrusters, EDTs can only generate a 

very small but continuous thrust. Due to the 

geometry of an EDT—we will assume this to 

consist of two small subsatellites at either end 

of the long conductive tether—the system is 

dynamically stable in a nadir pointing orientation due to gravity gradient effects. The nadir 

pointing orientation allows thrust generation but the system is constrained to thrusting in the 

direction of the cross product of the B field and the tether orientation, L . This thrust direction 

constraint combined with the extremely low thrust magnitude pose a significant challenge in 

Figure 2 – An Electrodynamic 
Tether (EDT). Credit Naval Research 
Labs 
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controlling the spacecraft. Despite the system complexity, successful control of an EDT has been 

accomplished in simulations, with a wide range of orbital maneuvers being achievable.  

While an inert tether is dynamically stable in its nadir pointing orientation, it will oscillate, or 

librate, both in and out of the orbital plane around its equilibrium point. The motion is similar to 

a swinging pendulum. These librations are due to the competing torques from gravity gradient, 

atmospheric drag, and if the tether is electrodynamic, the Lorentz force. Furthermore Palaez et al. 

[7 ] have demonstrated that a tether with a constant direct current will eventually become 

unstable. Controlling the Lorentz force by controlling the current has been shown to limit the 

amplitude of the libration to within acceptable limits, as shown by Lanoix et al. [8] and Hoyt [9]. 

Williams [10] demonstrated combined libration control and maneuvering control. He derived a 

numerical method for determining the optimal control of an EDT to maneuver between two 

desired orbits and also demonstrated that the natural librations can be exploited to achieve 

greater thrust by taking advantage of the changing tether orientation. This method works well for 

short duration maneuvers as he uses the instantaneous non-linear equations of motion, however; 

it requires significant computation time as a result. For longer scale maneuvers, on the order of 

weeks or months instead of hours, this method is both infeasible computationally and subject to 

significant accumulated round off error. As a consequence of the low thrust, the instantaneous 

state will only vary slightly from the average state, which slowly changes over many orbit 

revolutions. By applying the method of averaging to the equations of motion, Tragesser and San 

[11] were able to generate sub-optimal solutions to long duration maneuvers by using a periodic 

controller to change the average state of the system. Their work assumes a non-librating, nadir-

pointing tether and no attempt was made to optimize the maneuvers. Stevens [12] took this 

method of averaging and combined it with optimal control theory to generate optimal control 
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solutions to a long duration tether orbital maneuver while considering libration.  This approach 

utilizes a mathematical model of the system (i.e. dynamic equations of motion) and with 

optimization software numerically determines the minimum cost (i.e. time, or fuel consumption) 

trajectory to achieve the desired end state. The validity of this method is subject to the quality of 

the mathematical models it uses. A solution generated with no consideration of atmospheric drag 

in the model will not produce reliable performance in practice. Likewise, a solution generated 

with a poor model of atmospheric density will not produce reliable results when implemented in 

orbit. Our ability to accurately predict the atmospheric density in LEO is very poor. There are 

highly sophisticated statistical models that are very useful in satellite tracking and orbit 

determination but these models do not reliably predict the atmospheric density several weeks 

ahead of time. As such, the optimal control solution generated using these models will not 

reliably maneuver the spacecraft to the desired orbit. The purpose of this paper is to extend the 

work of Stevens by implementing feedback control to the optimal control maneuver in order to 

achieve reliable performance despite modeling inaccuracies. 

This goal will be achieved in four steps as follows: (also visually represented in Figure 3): 

1) Derive the equations of motion for a tether system from the Gaussian variation of 

parameters equations. 

2) Numerically solve the non-linear optimal control problem (NLOCP) for the whole 

maneuver.  

3) Linearize the averaged equations of motion and determine the linear quadratic regulator 

control law to accommodate a dynamic model with a time varying atmosphere. 

4) Test the feedback controller within a numerical simulator to demonstrate reliable 

performance. 
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To produce a dynamic model we will assume: 

• Near circular orbits (e<<1).  

• Negligible sensor error in feedback (complete state feedback). 

• Perfect knowledge of true anomaly (true anomaly as the independent time variable). 

• Constant nadir pointing tether orientation 

• Periodic current control to match the periodic orbit environment 

• Non-tilted dipole model of geomagnetic field 

 

Figure 3 – Block diagram depiction of inner/outer loop structure 

II.  Derivation of Equations of Motion 

The main force driving the equations of motion is central body gravitation. We will also 

consider the influence of the next largest force in the low earth orbit environment which is 

atmospheric drag. To describe an orbit we require six pieces of information that comprise the 

state vector or element set. The orbit can be defined as a state vector in the form of position and 

velocity vectors or as an element set in the form of a scalar magnitude and angular positions. 

Position and velocity vector representations are not the most efficient method for describing 

orbits as the state values will constantly be changing due to periodic motion. Instead we choose 

an element set representation, in particular, the classical orbital elements (we in fact use a partial-
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six classical orbital elements, a, e, i, Ω , ω, ν. Credit: Brandir  
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the size of the orbit, eccentricity (e) defines the elongation of the orbit, inclination (i) defines the 
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lowest point of the orbit is with respect to the line of nodes, right ascension of the ascending 

) defines the location of the ascending equatorial crossings (line of nodes) an

) defines where the satellite is in the orbit with respect to perigee. They have been 

carefully chosen to be static in value during free motion. In forced or perturbed motion, Vallado 
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To avoid confusion with the semi-major axis (a) or with forces (F) we notate the perturbing 

accelerations as a lowercase f.  

 

Figure 5 – The RSW frame. Radial (R), In-track (S), Orbit normal (W). 

For the equation (1.1) the accelerations must be expressed in the Local Vertical Local 

Horizontal (LVLH) frame, sometimes also written as RSW. These axes are directed in the radial 

(R), in-track, (S), and orbit normal (W) directions. 

1. Equinoctial Elements – h and k 

Our first step is to modify our element set. We do this because of singularities for zero 

eccentricity and the poor behavior of ω and e for very small eccentricities. These considerations 

are very relevant because a working assumption is that the EDT orbit is at any time 

approximately circular (e~0). We replace the elements ω and e with two elements borrowed from 

R

W

S R

W

S
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the full equinoctial set described by Vallado [15]. We 

choose h and k, defined as, sinh e ν= and cosk e ν= . 

The classical pair, eccentricity and argument of 

perigee, define a vector (magnitude and direction 

respectively) that points towards perigee of the orbit, 

see Figure 6. For very small e, this vector can rapidly 

cross over the origin causing both e and ω to rapidly 

change in an almost discontinuous manner (see Figure 

7 and 8). For closer passes with the origin, the 

behavior would cause numerical errors, eventually becoming non-differentiable.  

The equinoctial elements by contrast represent the Cartesian components of this vector which 

avoid singularities when the orbit is circular. When the eccentricity vector passes by the origin, 

the equinoctial elements exhibit no discontinuities. By avoiding these singularities and rapidly 

changing values, the well behaved equinoctial elements h and k are much more suitable for 

accurate numerical analysis. 

Figure 8 – Discontinuous ω around the origin 

 
Figure 7 – Discontinuous eccentricity around the origin 
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With this element substitution in mind we can now express the rates of change for the new 

elements. As a further reduction we apply our assumption of nearly circular orbits, whereby we 

ignore eccentricities O(e2) and smaller. In deriving the equations of motion we will eventually 

wish to find the averaged state dynamics which will require integration of the dynamic 

equations. To simplify the process of integration we eliminate time and allow true anomaly, the 

angular position, to be the independent variable. Changing the independent variable supposes the 

system has perfect knowledge of the true anomaly, which we take as a simplifying assumption. 

The resultant dynamics, equation (1.2), describe the changes in the element set due to any 

perturbing accelerations in the RSW frame. 
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 (1.2) 

To continue we must now define the perturbing accelerations. 

 
2. Perturbing Accelerations 

There are two major sources of perturbing accelerations we will consider: 

• Electrodynamic forces 

• Atmospheric drag forces 
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We first will consider the electrodynamic forces on the tether. Using a non-tilted dipole model 

of the earth, equation (1.3), and our assumption that the tether remains nadir pointing we derive 

the electromagnetic perturbing accelerations on the tether (1.4) by the Lorentz force definition, 

I x=F L B . 
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With the non-tilted dipole we express the perturbing accelerations as: 
 

 ( )0
3

0

1 3 cos cos

cos( )sin

R
m

S

W tether

f
IL

f e i
ma

f i

γ µ ν
ν ω

   
   = + −   
   +  

 (1.4) 

The acceleration is a function of the state vector, [ ]T
a i h k= Ωx , true anomaly (ν), 

and the current through the tether, I (the control). The remaining parameters are constants: tether 

length( )L , tether system mass( )m , magnetic constant( )7 -2
0 4 ·10 N Aµ π − ⋅= , and the dipole 

moment of the earth( )22 24·10 A mmγ = ⋅ . 

Now we consider atmospheric drag forces. Using the standard definition of drag 

acceleration— * 21 ˆ
2agdr m B Vρ= −F V

 
, where DB

C A

m
=⊻ is the inverse ballistic coefficient—and 

the flight path angle to define the velocity vector in terms of orbital elements, we can describe 

the atmospheric drag as a function of the orbital elements.  Again, ignoring O(e2) and smaller 

terms we find the accelerations due to drag are: 
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With these perturbing accelerations defined we write out fully the system dynamics as rates 

with respect to the fast time variable ν and in terms of the control current I. We capture the 

constant values in 0m
m
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  − 
  = + + + + + + ⋅        

= + − + −
( )2 2

2
cos 2 sin 2 )

2 2

h k hh
I

e
ν ν

  − 
  − + ⋅        

 (1.6) 

We can also write the dynamics in a much more compact form, which we will use for the 

remainder of this paper where the state is denoted as x and A1 and B1 are matrices defined in 

Appendix A. 

 1 1( , ) ( , )
d

I
d

ν ν
ν

= +x
A x B x  (1.7) 

II.  Method of Averaging 

So far the state dynamics are expressed as rates with respect to a fast time variable, the true 

anomaly. We call this “fast” time because it describes variations that occur within a single orbit 

on a short time scale. Numerical modeling with a fast independent variable is problematic for 

very long duration maneuvers. To accurately model each orbit and have a high enough 

“resolution” to the orbit many data points need to be solved for within each orbit. Maneuvers 

consisting of thousands of orbits then require tens to hundreds of thousands of node points. Over 

such long time spans, numerical round-off errors compound and can become significant. 
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Additionally, the computation time for solving the optimal control problem with thousands of 

nodes is infeasibly large. Because the orbit perturbations are small, orbit variations are small 

over short time spans and only exhibit observable secular changes over long time spans. It would 

be computationally advantageous to not model the periodic variations at all, and focus solely on 

the secular changes in the state as in Figure 7.  

 

Figure 7 – Averaging the dynamics over N integral orbits. 

 
This can be achieved through the method of averaging. The secular state changes occur 

slowly enough that we can consider them constant over some small, integral number of orbits, N. 

Averaging the dynamics over that time span has the effect of removing the periodic variations.  
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 (1.8) 

The independent variable in the resulting equations is no longer a fast time variable (ν), but is 

now a slow time variable (T). The slow Equation (1.8) now describes the secular changes in state 

values. These averaged states have no real meaning at any single instant in time, but serve to 

capture the changes in the system state over time. 
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ν( )I ν

Figure 8 – The square wave analog to a 
Fourier series. 

Source of improvement: 
increased control input 

To compute the integral in (1.8) requires 

knowledge of the variable current, I. Looking at 

equation (1.2) we see the accelerations, f, are 

multiplied by periodic functions that oscillate at the 

orbital frequency and twice the orb ital frequency 

(cosν or sinν and cos2ν or sin2ν). To get the 

maximum change (i.e. never work against ourselves) we need to “push” in phase with the natural 

dynamics just like pushing a swing in sync with its motion. To do this we describe the current as 

a square wave analog to a Fourier series. The square wave aspect arises by using the sign of 

cosine and sine functions as opposed to the cosine and sine function themselves.  

 

 T T
m mI II = =Ψ Ψu u  (1.9) 

where u and Ψ are, 

 [ ]1 2 3 4 5
T u u u u u=u  (1.10) 

 [ ]( )sign 1 cos( ) sin( ) cos(2 ) sin(2 )T ν ν ν ν=Ψ  (1.11) 

and Im is the maximum RMS current. The control coefficients, u1 through u5, are bounded as: 

 
11 1

[2,5],  2 2i

u

i u

− ≤ ≤

∈ − ≤≤
 

The difference between u1 and u2 through u5 is because the u1 term applies to the DC term 

while the u2 through u5 terms apply to the AC sinusoidal terms. This satisfies the RMS current 

constraint, 

 
5

2 2 2 2
1 ,

2

1

2RMS i RMS Limit
i

I u u I
=

= + ≤∑  (1.12) 
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Again note the sign function in equation(1.11), this is a departure from previous work in the 

field by Stevens [16]. In his work Stevens assumed a sinusoidal periodic controller. We have 

found a ~27% improvement, a factor of 4

π
 
 
 

, by using square wave periodic controller. Visually 

the improvement is seen as the increased area under the square wave and above the sine or 

cosine wave (Figure 8). As the cosine or sine function approaches zero the current would 

decrease in a sinusoidal controller while this square wave controller keeps the control input 

(current) high until the natural switching point of the dynamics at which point the natural 

tendency of the dynamics reverses and so the influence of the coefficient switches from positive 

to negative (as sinν passes from positive to negative the effect of its u coefficient switches sign). 

With the system dynamics fully described by (1.2), (1.4), and (1.5), we now undertake the 

method of averaging. The matrices found below are explicitly defined in Appendix B. By 

combining those three equations and rearranging we can express the state dynamics in a matrix 

form. 

 1 1( , ) ( , ) ( )Td

d
νν

ν
ν= +x

A x B Ψx u  (1.13) 

Vector A1 represents the changes due to uncontrolled perturbations, i.e. drag. Vector B1 

represents the changes due to electrodynamic forces caused by some current I in the tether. It is 

possible to extract the fast time dependence from A1 and B1, resulting in '( ) ( )νA x Φ and 

'( ) ( )νB x Φ . This simplifies the integration by only requiring integration of periodic functions of 

the fast time variable. Most of the terms in the product average out to zero. Only non-periodic 

secular terms survive the integration. 

The resulting averaged dynamic equations of motion are as follows: 

 2 2( ) ( )
d

dT
= +x

A x B x u  (1.14) 
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where 

2

2 1

0

1
' ( )

2

N

d
N

π

ν ν
π

= ∫A A Φ       and      
2

2 1

0

1
' ( ) ( ) ·

2

N
T d

N

π

ν ν ν
π

= ∫B B Φ Ψ u  

  Complete expressions for the preceding equations can be found in Appendix B. Equation 

(1.14) will serve as the basis for the remaining two steps. 

  

III.  Numerically Solve Nonlinear Optimal Control Problem 

The optimal control problem (OCP) is to find the control vector that will maneuver from a 

starting point to a final end point while minimizing some cost of the problem. Common OCP’s 

are minimum fuel maneuvers; however as EDTs are not fuel limited we seek minimum time 

orbit transfers. To formally pose the OCP we must find the control function that will: 

 Minimize the cost function,  ( )( ),f ftJ tφ= x , (2.1) 

 subject to the dynamic constraints ( ),=x f x uɺ , (2.2) 

 boundary constraints,  ( )( ),f ft t =φ x 0 , (2.3) 

 and path constraints,  ( ), =g x u 0 . (2.4) 

We then construct the Hamiltonian as  TH = λ f  (2.5) 

and the auxiliary function TφΦ = + ν φ  (2.6) 

where λ is the costate vector and ν is a Lagrange multiplier. The necessary conditions for 

optimality are then the adjoint equations H∂= −
∂

λ
x

ɺ  (2.7) 

and the control optimality condition H∂ =
∂

0
u

 (2.8) 

subject to the transversality conditions ( ) |
ff t ttλ =

∂Φ= −
∂x

 (2.9) 
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and ( ) | 0
ft tH

t =
Φ +

∂
=∂  (2.10) 

From these necessary conditions we have a two point boundary value problem. Conceptually 

we have a set of coupled partial differential equations consisting of state dynamics (equation 

(2.2)) and costate dynamics (equation (2.7)) with various initial or final conditions. There are 

many methods for solving such systems numerically. We implement a program called DIDO to 

find a candidate optimal control function. The reason we chose this software is that it provides 

quick and accurate solutions without a first guess of the solution. Additionally the software is 

easy to use and it does not require the user to fully understand pseudospectral (PS) methods (the 

method used internally to find a solution). The user simply has to write the OCP much as they 

would on paper (or as above). The PS method does not use propagation and thus it is not 

susceptible to the round-off errors associated with other methods. For a full description of PS 

methods and their benefits see Refs [17], [18]. 

IV.  Linear Control Loop 

The optimal control solution is a pure open-loop control and assumes a perfect dynamic 

model of the system. In reality however, poor density and geomagnetic field models can lead to 

significant errors. To combat these inaccuracies and ensure reliable performance we introduce 

linear feedback as shown in Figure 3. Due to the exceptionally small thrust produced by an EDT, 

maneuvers happen over very long time scales. The states change slowly and can be considered to 

be constant within a single orbit period. With this assumption we linearize the dynamics from 

(1.14) with the intent of generating a linear-quadratic regulator (LQR) control law. The 

linearized dynamics we generate here will have state dependent gains. To maintain this as a 

linear time invariant system we update the gains once per orbit. The computation time for this 
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method is short compared to the hold time, with at most several seconds for the computation and 

90 minutes of orbit at minimum. This avoids treating the system as linear time varying by doing 

a zero order hold—computing the gains at the beginning of the orbit with the states at that time 

and not updating until the next orbit.  

Using the following procedure (fully developed in Appendix C) we linearized the averaged 

equations of motion. 

 ( , )=x f x uɺ  (3.1) 

Making a first order approximation of we say that  

 ( (, ) , ) x u+ = + ++f x f xδx u δu u f δx f δu  (3.2) 

We can reduce this to the following 
 x u= +δx f δx f δuɺ  (3.3) 

The subscripts on f denote the Jacobian of f with regards to the state or control vector, as 

appropriate. For the linear system, Equation (3.3), with the following quadratic cost function 

 ( )
0

f

T T

t

t

dJ t+= ∫ x Qx u Ru  (3.4) 

The feedback control law that minimizes the cost is  

 = −δu Kδx  (3.5) 

where K is the solution the linear quadratic regulator problem and is given by 

 1 T−=K R B P  (3.6) 

and P is the solution to the continuous time Riccati differential equation.  
 

As we are assuming no sensor feedback we are able to define a state space system with x=A f , 

u=B f . Upon proper definition of weighting matrices, Q and R this is now sufficient information 

to solve for the LQR gain matrix, K . We generate a solution using the built-in LQR(…) function 

in MATLAB 7.10.0 (R2010a). 
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The candidate solution output from DIDO consists of averaged states thus a simple 

interpolation of those would not give us an appropriate reference trajectory. The instantaneous 

trajectory is known to have periodic oscillations (the entire reason for averaging to begin with), 

and so to generate the reference trajectory we propagate forwards one orbit using the state 

predicted by DIDO as the initial state. This method of on-the-fly reference generation avoids the 

numerical issues that arise if the entire reference is propagated from the beginning. Numerical 

propagation over a significant number of time steps accumulates round-off errors. For maneuvers 

lasting 100 orbits and each orbit consisting of roughly 5-10,000 time steps there is considerable 

room for accumulated errors. The problem is only compounded as the maneuver duration is 

increased. In our method the propagating time span is at most one orbit period thus there is no 

significant accumulated round off error. 

V. Results & Analysis 

To test the control law we must simulate the system numerically because we cannot recreate 

the EDT dynamics physically on the ground. Using MATLAB we created a simulator, the 

structure of this process is captured in Figure 9. This is essentially identical to the block diagram 

presented earlier (Figure 3), the main difference being the “Plant” is now simply another 

numerical propagator with modeling error introduced rather than a physical system. 
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During numerical testing (using the above scheme) we sought to characterize the performance 

of a linear controller when atmospheric density model errors were introduced. To implement 

these errors we applied a lognormal distribution to the density. Measured data for altitudes 

ranging from 120km up to 750km have proven to be consistent with a lognormal distribution 

rather than the more common normal distribution, [19], [20]. The lognormal distribution is 

appropriately named because the log of the values is normally distributed. Lognormally 

distributed values, X, can be generated from a set of normally distributed numbers, Z, by  

 
ZX e σ µ+=  (4.1) 

where σ is the standard deviation of the logarithmic values, ln( )X , andµ is their mean. The mean 

is obtained in a table look-up of the 1976 Standard Atmosphere and the standard deviation is 

fixed at 1% of the mean. For this example a mean of 10-11kg m-3 was chosen purely for 

illustrative purposes.  

Begin Next Orbit 
Load DIDO 
Reference 

Propagate Reference 
Generate LQR 

control law 

Correct Reference 

Controller 
dU=K*dX 

Plant End of Orbit? 
Yes 

No 

Maneuver 
Loop 

Orbit Loop 

Figure 9 – Flowchart of Control Law testing. Generate the control law and 
also generate the corrected reference. Iterate through the Orbit Loop until 

one full orbit has passed then restart the process for the next orbit. 
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Figure 10 – The probability density function for density is a log-normal distribution. 

 

Considering the linear system, the “noise” due to density variations is not white however; the 

values do have a mean of zero because the lognormal values only ever occur with a -1 attached 

to it, shifting them over 0. Comparing this shifted lognormal distribution with a Gaussian 

distribution for low values of standard deviation (<0.1) we find that the two distributions are 

markedly similar, with only a slight skew to the right in the lognormal distribution. Under this 

premise, linear quadratic control is still valid, though not “optimal” because of the non-white 

noise. Using this method we set about to demonstrate the performance under the following 

conditions.  

Maximum altitude raise in a fixed time span: 
Initial Altitude : 250km  
Initial Inclination : 1 degree 
Initial Eccentricity : .051 
Duration : 20 orbits 



 

Figure 11 – A comparison of controlled and uncontrolled responses during an orbit raise maneuver.
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between the reference and the measured state, so for altitudes that are decreasing faster than 

expected, the state error tends towards the positive. This causes a steadily increasing state error 

in the uncontrolled response (the error is “noisy” but it is overlaid onto a roughly linearly 

increasing component).In the controlled scenario we see a steady state bias towards the positive. 

The bias is again due to the non-white (lognormal) distribution of the atmospheric density noise. 

The LQR method only generates the optimal gain matrix for white noise systems so the 

emergence of a steady state error is due applying LQR to lognormal noise.   

VI.  Conclusion 

We have successfully applied linear feedback control principles to a non-linear optimal 

control problem, specifically electrodynamic tether maneuvers. We have demonstrated a flaw 

with existing non-linear optimal control methodologies due to model uncertainties. Under solely 

the influence of the “optimal control” when the atmospheric density varies lognormally, there is 

introduced a significant state error. After applying linear feedback control via a linear quadratic 

regulator, the state errors remain bounded. This method allows for reliable and predictable, if 

perhaps slightly sub-optimal, performance of an electrodynamic tether.  

There are also many ways to extend the work completed here. A more sophisticated 

geomagnetic field model or one with model uncertainties can be implemented. Other smaller 

perturbations can be considered such as solar radiation pressure and non-spherical earth 

dynamics. Additionally, linear feedback control methods other than linear quadratic regulators 

can be investigated for better performance and reduced stead state error when subject to 

lognormal noise. Such improvements will further enhance the reliability this method provides to 

precision maneuvering of electrodynamic tethers.  
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Glossary 

a = Semi-major axis 

A1 = Environmental response vector – instantaneous dynamics 

B1 = Control response vector – instantaneous dynamics 

A2 = Environmental response vector – averaged dynamics 

B2 = Control response vector – averaged dynamics 

A3 = Environmental response vector – linearized dynamics 

B3 = Control response vector – linearized dynamics 

B = Local magnetic field vector 

B* = Inverse ballistic coefficient 

e = Eccentricity 

Fe = Resultant electromagnetic force vector 

F = Force vector in RSW frame 

f = Accelerations in RSW frame 

h = First equinoctial element 

i = Inclination 

I = Time variant control current 

k  = Second equinoctial element 

L = Tether length vector 

µ0 = magnetic constant 

µ = Standard gravitational parameter 

n = Mean motion 

ω = Argument of perigee 

Ω = Right ascension of ascending node 

p = Semi-parameter 

Q = State weighting matrix 

R = Control weighting matrix 

t = Short scale time 

T = Long scale time 

ν = True anomaly 

u = Control coefficient vector 

Ψ = Control periodic function vector 
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Appendix A

DERIVATION OF EQUATIONS OF MOTION  

All equations references are from “Fundamentals of Astrodynamics and Applications” by David 

A. Vallado. We begin with the Gaussian VOP equations from Vallado.  
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We now undergo a process of applying several transformations. These are: 

• Replacement of e, ω with h, k (partial equinoctial set). 

o sin( ) cos( )h e eω ω+=ɺ ɺ  

o cos( ) sin( )k e eω ω= −ɺ ɺ  

• Nearly circular orbits (e<<1). 

o This allows us to simplify many expressions containing O(e2) terms. Also 

terms dividing by (1 )e− become multiplied by (1 )e+ etc… 

• Replacement of time as independent variable. 

o Multiply each equation of the system dynamics by ( )
3

1 2 cos
d

e
t

d

a ν
µν

−=  

This leads us to the reduced dynamics in the partial equinoctial set.  
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d a
e f

d i

h k
dh a

h k h
d

k i

ν ν
ν µ

ν ν ω
ν µ

ν ων
ν µ

ν ω ν ν
ν ω ν ν ν ν

ν µ
ν ω

⊕

⊕

⊕

⊕

= + −  

= − +

Ω += −

 − + − −
= + + − −
 − +

2

2
2 2

sin( ) sin(2 ) 2 cos ( )

2cos( ) sin ( ) 5 sin( ) cos( ) 4 cos ( )

sin( ) cot( )

T

R

S

W

T

R

S

W

f

f

f

k h f
dk a

k h k f
d

h i f

ν ω ν ν
ν ω ν ν ν ν

ν µ
ν ω⊕

  
  
  
   

 + − −  
   = + + + −   
   +   

 

 

The accelerations due to electrodynamic interactions are a result of the Lorentz force, 

I x=F L B  where L  is of magnitude L in the Radial direction and B is the local geomagnetic field 

vector. We used a non-tilted dipole model, 
( ) ( )

( ) ( )
( )

( )-1 -10
3

2sin sin

cos sin   · m

c s

A

o

Nm

i

i
r

i

ν ω
γ µ ν ω

− + 
 +
  

= B , though any 

model could be used. We need accelerations rather than forces, so we write f m= F  to express 

the accelerations in the LVLH frame. 

 ( ) ( )-20
3

0

1 3 cos( ) cos( )   m·s

cos( )sin( )

m
tether

IL
f e i

ma
i

γ µ ν
ν ω

 
 = + − 
 + 

  

To characterize the accelerations due to drag we first express the force as  

21 ˆ
2rag Dd C VAρ= −F V . We can determine the velocity at any point via 

 
2

V
r a

µ µ= −   

The direction of the velocity vector is defined by the flight path angle, fpaφ . This is the angle 

measured from the local horizontal to the velocity vector.  
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sin(

c

0

ˆ o )

)

s(

fpa

fpa

φ
φ

 
 =  
 
 

V  (4.2) 

It is thus unnecessary to definefpaφ exactly as it is much easier to define the sine and cosine of 

this angle. From Vallado we can say: 

 
2

sin(
sin

)
)

1 2 cos
(

( )
fpa

e

e e

νφ
ν

=
+ +

 (4.3) 

 
2

1 cos( )
cos )

1 2 cos(
(

)
fpa

e

e e

νφ
ν

+=
+ +

 (4.4) 

From this we can fully express the drag acceleration. Before we do this, we introduce a new 

variable, B*. We define this “inverse ballistic coefficient” as * DB
C A

m
= . Finally we express the 

drag accelerations as 

 

sin( )
1

1 2 cos( )
2

0
Df

e

B e
a

ν
µρ ν
 
 = − + 
  

⊻  (4.5) 

Putting together the tether and drag forces with the general system dynamics we arrive at the 

following equations,
 
 

 

( ) ( )

( )

* 2

2

2 22

2 2

*

2 cos( ) 1 2 cos( ) 1 cos( )

sin( )cos ( )

sin( )cos( )

3 2 2
cos( ) cos( ) sin( ) cos(2 ) sin(2 )

2 2 2 2

1

2

m

m

m

m

da
C i e I B a e

d
Cdi

i I
d a

Cd
I

d a

k k hCdh h h k h hk k
i I

d a e e e e

B a h

ν ρ ν
ν

ν ω
ν

ν ω ν ω
ν

ν ν ν ν
ν

ρ

= + ⋅ − +

−
= + ⋅

−Ω = + + ⋅

  − 
  = + + + + + + ⋅        

− +

( )2 22

2 2

*

2 2
cos( ) sin( ) cos(2 ) sin(2 )

3 2 2
cos( ) cos( ) sin( ) cos(2 ) sin(2 )

2 2 2 2

1 2 2
cos( ) sin( ) cos(2 ) sin(2 )

2

m

h k
h k

e e

h k hCdk k k h k kh h
i I

d a e e e e

k h
B a k k h

e e

ν ν ν ν

ν ν ν ν
ν

ρ ν ν ν ν

 + − − 
 

  − 
  = + − + − − + ⋅        

 − + − − + 
 
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 Where 0m
m

L
C

m

γ µ
µ⊕

= . This is a very cumbersome set of equations to work with. We can notice 

many common terms, notably, sine and cosine of ν or 2ν. If we extract these terms and write 

these five equations as matrices, we arrive at the following, 

 x

( )

2 2

2 2

2 2

2 2

2 22

2 2

2cos( ) 4 cos( ) 0 0 0

1
sin( ) 0 0 sin( ) sin( )

2 2

0 0 0
2

3 2 2
cos( ) cos( ) cos( ) cos( ) cos( )

2 2 2 2

3 2 2
cos( ) cos( ) cos( )

2 2

m

i e i

k h hk
i i i

a ae ae

hk k h

ae aed
C

d k k hh h k h hk k
i i i i i

a ae ae a ae a ae

k k h k kh
i i i

a ae ae a

ν

−− −

−− −
=

 − 
 + +      

− −

x

( )2 22

2 2

*

1

cos( )

sin( )

cos(2 )

sin(2 )

cos( ) cos( )
2 2

0 0 0
10 0 0 0 0

cos( )0 0 0 0 0
sin( )

cos(2 )2

2

I

h k hh
i i

ae a ae

a ae

B a h h k
h k

e e
k k h

k h
e e

ν
ν
ν
ν

ν
ρ ν

ν

 
 
 
 

  
  
  
  
  
  
    

  −   − +       

 
 
 
 
 −
 − −
 
 
 − −
 

sin(2 )ν

 
 
 
 
 
 
  

 

Which we can reduce compactly to the following matrix form which is the basis of the 

remaining analysis, 

1 1( , ) ( , )
d

I
d

ν ν
ν

= +x
A x B x  
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Appendix B 

M ETHOD OF AVERAGING – M ATRICES  

The purpose of this appendix is to define the matrices found when applying the method of 

averaging. Those matrices would be A and B and their many variations, and the Ψ-Φ product. 

[ ]( )sgn 1 cos( ) sin( ) cos(2 ) sin(2 )T ν ν ν ν=Ψ
 

[ ]1 cos( ) sin( ) cos(2 ) sin(2 )T ν ν ν ν=Φ  

*
'1

1 1

0 0 0

0 0 0 0 0

0 0 0 0 0
( )

2

2
( , ) ( ) ( )

a ae

B a h h k
h k

e e
k k h

k h
e e

ρ

ν ν

 
 
 
 
 = −
 − −
 
 
 − −
 

=

A x

A x A ' x Φ

 

( )

2 2

2 2

2 2

2 2

1 2 22

2 2

2cos( ) 4 cos( ) 0 0 0

1
sin( ) 0 0 sin( ) sin( )

2 2

0 0 0
2

'( )
3 2 2

cos( ) cos( ) cos( ) cos( ) cos( )
2 2 2 2

3 2 2
cos( ) cos( ) cos( )

2 2

i e i

k h hk
i i i

a ae ae

hk k h

ae ae
C

k k hh h k h hk k
i i i i i

a ae ae a ae a ae

k k h k k
i i i

a ae ae a

−− −

−− −
=

 − 
 + +      

− −

B x

( )2 22

2 2

1 1

cos( ) cos( )
2 2

( , ) '( ) ( ) ( )T

h k hh h
i i

ae a ae

ν ν ν

 
 
 
 
 
 
 
 
 
 
 
 

 −   − +       

=B x B x Φ Ψ

 

Now we apply the method of averaging, whereby the A’ and B’ matrices are not dependent on 

time, and thus can be pulled out of the integral. This leaves us to integrate Φ, and ΦΨT.
 
 

And those integrals are: 



36 
 

2

0

1

0
1

0
2

0

0

N

d
N

π

ν
π

 
 
 
 =
 
 
  

∫ Φ
 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( )

2

0

1 sgn cos( ) sgn sin( ) sgn cos(2 ) sgn sin(2 )

cos( ) cos( sgn sin( ) cos( ) sgn cos(2 ) cos( ) sgn sin(2 ) cos( )

sin( ) sgn cos( ) sin( ) sin( ) sgn cos(2 ) sin( ) sgn sin(2 ) sin( )

cos(2 ) sg

1
( ) (

n cos( ) cos

)
2

)
1

2

N
T d

N

N

π

ν ν ν ν
ν ν ν ν ν ν ν

ν ν ν
π

ν ν ν ν ν ν ν ν
ν

π
ν

ν

∫ Φ Ψ

( ) ( )
( ) ( ) ( )

2

0

2

0

(2 ) sgn sin( ) cos(2 ) cos(2 ) sgn sin(2 ) cos(2 )

sin(2 ) sgn cos( ) sin(2 ) sgn sin( ) sin(2 ) sgn cos(2 ) sin(2 ) sin(2 )

1 0 0 0 0

0 2 0 0 0
1

( ) ( ) 0 0 2 0 0
2

0 0 0 2 0

0 0 0 0 2

N

N
T

d

d
N

π

π

ν ν ν ν ν ν
ν ν ν ν ν ν ν

ν

π
ν ν ν π

π
π

ν

π

 
 
 
 
 
 
 


 
 
 
 =





 
  

∫

∫ Φ Ψ

That lets us define A2 and B2 as the following: 

2

2 1

0

1
' ( )

2

N

d
N

π

ν ν
π

= ∫A A Φ       and      
2

2 1

0

1
' ( ) ( ) ·

2

N
T d

N

π

ν ν ν
π

= ∫B B Φ Ψ u  

( )

*
2

2 2

2 2

2 2

2 2

2 2 22

2 2

0

0
( ) 1

2
1

2

2 cos( ) 8 cos( ) 0 0 0

1 2
sin( ) 0 0 sin( ) sin( )

2

2
0 0 0

( )
3 4 4 2

cos( ) cos( ) cos( ) cos( ) cos( )
2 1 1

3

m

a

B a
h

k

a i ae i

k h hk
i i i

e e

hk k h

e eC

a k k hh h k h hk k
i i i i i

e e e e

ρ

π

π

π π

 
 
 
 
 = −
 
 
 
 
 

−− −

−− −
=

 − 
 + +      

A x

B x

( )2 22

2 2

4 4 2
cos( ) cos( ) cos( ) cos( ) cos( )

2 1 1

h k hk k h k kh h
i i i i i

e e e e

π

 
 
 
 
 
 
 
 
 
 
 
 

 −   − − − +       
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Appendix C 

L INEARIZATION  

Beginning with the averaged equations of motion  

2 2( ) ( )
d

dT
= +x

A x B x u  

we apply a first order approximation for ,( )+ +f δx u δux as the following: 

( (, ) , ) x u+ = + ++f x f xδx u δu u f δx f δu  

fx and fu are the Jacobian of dx/dT with respect to the state vector, x, and the control vector, u. 

The second term is simple enough to compute by had because it reduces to 
( )2

3
2

2

d

d

+
==

A B u
B B

u
because 

neither A2 nor B2 are functions of u. 

The first term however, is significantly more difficult. Both A2 and B2 are functions of the state vector 

and thus have filled Jacobians. This operation was done with the help of a symbolic manipulator to ensure 

no human errors were introduced in the transcription of the equations due to their complexity. Also, even 

in simplified expressions, these matrices are too large to display properly on a page and for that reason 

will not shown in “equation form”. The best definition of A3 is as 
( )2

3
2d

d

+
== x

A B u
A f

x
. The matrix is 

presented element-wise in the form used in the computer code. 

First Row, Columns 1-5 
 
-2*Bs*p*a, 
 
-2*Cm*sin(i)*u1-8*Cm/pi*(h^2+k^2)^(1/2)*sin(i)*u2, 
 
0, 
 
8*Cm/pi/(h^2+k^2)^(1/2)*cos(i)*u2*h, 
 
8*Cm/pi/(h^2+k^2)^(1/2)*cos(i)*u2*k; 
 
 
Second Row, Columns 1-5 
 
½*Cm/a^2*sin(i)*u1-Cm/pi/a^2*(-k^2+h^2)/(h^2+k^2)*sin(i)*u4-2*Cm/pi/a^2*h*k/(h^2+k^2)*sin(i)*u5, 
 
-1/2*Cm/a*cos(i)*u1+Cm/pi/a*(-k^2+h^2)/(h^2+k^2)*cos(i)*u4+2*Cm/pi/a*h*k/(h^2+k^2)*cos(i)*u5, 
 
0, 



38 
 

 
2*Cm/pi/a*h/(h^2+k^2)*sin(i)*u4-2*Cm/pi/a*(-
k^2+h^2)/(h^2+k^2)^2*sin(i)*u4*h+2*Cm/pi/a*k/(h^2+k^2)*sin(i)*u5-
4*Cm/pi/a*h^2*k/(h^2+k^2)^2*sin(i)*u5, 
 
-2*Cm/pi/a*k/(h^2+k^2)*sin(i)*u4-2*Cm/pi/a*(-
k^2+h^2)/(h^2+k^2)^2*sin(i)*u4*k+2*Cm/pi/a*h/(h^2+k^2)*sin(i)*u5-
4*Cm/pi/a*h*k^2/(h^2+k^2)^2*sin(i)*u5; 
 
 
Third Row, Columns 1-5 
 
2*Cm/pi/a^2*h*k/(h^2+k^2)*u4-Cm/pi/a^2*(-k^2+h^2)/(h^2+k^2)*u5, 
 
0,  
 
0,  
 
-2*Cm/pi/a*k/(h^2+k^2)*u4+4*Cm/pi/a*h^2*k/(h^2+k^2)^2*u4+2*Cm/pi/a*h/(h^2+k^2)*u5-2*Cm/pi/a*(-
k^2+h^2)/(h^2+k^2)^2*u5*h, 
 
-2*Cm/pi/a*h/(h^2+k^2)*u4+4*Cm/pi/a*h*k^2/(h^2+k^2)^2*u4-2*Cm/pi/a*k/(h^2+k^2)*u5-2*Cm/pi/a*(-
k^2+h^2)/(h^2+k^2)^2*u5*k; 

 
Fourth Row, Columns 1-5 
 
-1/2*Bs*p*h-3/2*Cm/a^2*h*cos(i)*u1-4*Cm/pi/a^2*h/(h^2+k^2)^(1/2)*cos(i)*u2-
4*Cm/pi/a^2*k/(h^2+k^2)^(1/2)*cos(i)*u3-Cm/pi/a^2*(h+2*h*k^2/(h^2+k^2))*cos(i)*u4-
Cm/pi/a^2*(k+k*(k^2-h^2)/(h^2+k^2))*cos(i)*u5, 
 
-3/2*Cm/a*h*sin(i)*u1-4*Cm/pi/a*h/(h^2+k^2)^(1/2)*sin(i)*u2-
4*Cm/pi/a*k/(h^2+k^2)^(1/2)*sin(i)*u3-Cm/pi/a*(h+2*h*k^2/(h^2+k^2))*sin(i)*u4-Cm/pi/a*(k+k*(k^2-
h^2)/(h^2+k^2))*sin(i)*u5, 
 
0,  
 
-1/2*Bs*p*a+3/2*Cm/a*cos(i)*u1+4*Cm/pi/a/(h^2+k^2)^(1/2)*cos(i)*u2-
4*Cm/pi/a*h^2/(h^2+k^2)^(3/2)*cos(i)*u2-
4*Cm/pi/a*k/(h^2+k^2)^(3/2)*cos(i)*u3*h+Cm/pi/a*(1+2*k^2/(h^2+k^2)-
4*h^2*k^2/(h^2+k^2)^2)*cos(i)*u4+Cm/pi/a*(-2*k*h/(h^2+k^2)-2*k*(k^2-
h^2)/(h^2+k^2)^2*h)*cos(i)*u5,  
 
-4*Cm/pi/a*h/(h^2+k^2)^(3/2)*cos(i)*u2*k+4*Cm/pi/a/(h^2+k^2)^(1/2)*cos(i)*u3-
4*Cm/pi/a*k^2/(h^2+k^2)^(3/2)*cos(i)*u3+Cm/pi/a*(4*k*h/(h^2+k^2)-
4*h*k^3/(h^2+k^2)^2)*cos(i)*u4+Cm/pi/a*(1+(k^2-h^2)/(h^2+k^2)+2*k^2/(h^2+k^2)-2*k^2*(k^2-
h^2)/(h^2+k^2)^2)*cos(i)*u5; ...  
 
Fifth Row, Columns 1-5 
 
-1/2*Bs*p*k-3/2*Cm/a^2*k*cos(i)*u1-
4*Cm/pi/a^2*k/(h^2+k^2)^(1/2)*cos(i)*u2+4*Cm/pi/a^2*h/(h^2+k^2)^(1/2)*cos(i)*u3-Cm/pi/a^2*(k-
2*k*h^2/(h^2+k^2))*cos(i)*u4-Cm/pi/a^2*(-h-h*(k^2-h^2)/(h^2+k^2))*cos(i)*u5, 
 
-3/2*Cm/a*k*sin(i)*u1-
4*Cm/pi/a*k/(h^2+k^2)^(1/2)*sin(i)*u2+4*Cm/pi/a*h/(h^2+k^2)^(1/2)*sin(i)*u3-Cm/pi/a*(k-
2*k*h^2/(h^2+k^2))*sin(i)*u4-Cm/pi/a*(-h-h*(k^2-h^2)/(h^2+k^2))*sin(i)*u5,  
 
0,  
 
-4*Cm/pi/a*h/(h^2+k^2)^(3/2)*cos(i)*u2*k-
4*Cm/pi/a/(h^2+k^2)^(1/2)*cos(i)*u3+4*Cm/pi/a*h^2/(h^2+k^2)^(3/2)*cos(i)*u3+Cm/pi/a*(-
4*k*h/(h^2+k^2)+4*k*h^3/(h^2+k^2)^2)*cos(i)*u4+Cm/pi/a*(-1-(k^2-
h^2)/(h^2+k^2)+2*h^2/(h^2+k^2)+2*h^2*(k^2-h^2)/(h^2+k^2)^2)*cos(i)*u5,  
 
-1/2*Bs*p*a+3/2*Cm/a*cos(i)*u1+4*Cm/pi/a/(h^2+k^2)^(1/2)*cos(i)*u2-
4*Cm/pi/a*k^2/(h^2+k^2)^(3/2)*cos(i)*u2+4*Cm/pi/a*k/(h^2+k^2)^(3/2)*cos(i)*u3*h+Cm/pi/a*(1-
2*h^2/(h^2+k^2)+4*h^2*k^2/(h^2+k^2)^2)*cos(i)*u4+Cm/pi/a*(-2*k*h/(h^2+k^2)+2*k*(k^2-
h^2)/(h^2+k^2)^2*h)*cos(i)*u5];  


