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Abstract. Errors often occur in transferring electronic data, ranging from sensitive gov-

ernment information to everyday bar codes. Encoding information with an error-correcting
code can alleviate the problem of corrupt or lost data. In order to not overburden comput-

ing systems, an efficient code must be used that will quickly encode and decode data while
detecting and correcting a large number of errors. The goal of this project is to construct

and develop efficient codes using recent advances in algebraic geometry, combinatorics, and

commutative algebra.
The mathematics of subspace arrangements and simplicial complexes lend themselves

well for applications to coding theory. A subspace arrangement is a finite collection of

subspaces in a vector space. A simplicial complex is an abstract generalization of a polygon
or Euclidean solid. Fortunately, both simplicial complexes and subspaces arrangements can

be described algebraically by a collection of polynomials, which can be used to construct

a code. Then the combinatorial and geometric properties of subspace arrangements and
simplicial complexes can be used to enumerate these efficient codes.

Scripts and algorithms were written in the computer algebra systems Sage and Macaulay2

to compute properties of the codes. The data led to the main results of the project: formu-
las for the the length, dimension, and minimum distance of polygon and skeletal simplicial

complex evaluation codes. Scripts were written that aided in the construction of proofs

for these formulas. The formulas give favorable lengths (short to minimize computation),
dimensions (large to allow for more codewords), and minimum distances (large to allow

more errors to be corrected and identified) of these polygon and skeletal simplicial complex
evaluation codes.

The last part of the project involved extensions to a cryptosystem based on these codes.

A cryptosystem deals with enciphering a message, which is an algorithmic process designed
to make a sent message unreadable to an interloper, but, after another algorithmic deci-

phering process, is readable to the intended receiver (who, unlike the interloper, knows the

deciphering key). Work was done on extensions to the code-based McEliece Cryptosystem,
which has been demonstrated to withstand theoretical quantum computing attacks that

would render common modern ciphers useless.

Keywords
Coding Theory

Cryptology
Subspace Arrangements

Simplicial Complexes
McEliece Cryptosystem



SUBSPACE ARRANGEMENT CODES AND CRYPTOSYSTEMS 2

Acknowledgements

I would like to thank everyone who has made this project possible. I owe much to Assistant
Professor Max Wakefield for having guided me through three years of research. Through our
time together, I have learned much about the process of mathematical research and paper-
writing. More importantly, my passion for mathematics has continued to grow under his
guidance. I also want to thank the Mathematics Department Chair, Professor Geoffrey Price.
I consider myself honored to have had him as my teacher for three semesters. I am indebted
to the entire Mathematics Department, especially my previous instructors: Professor Robert
Lockhart (who also has been my academic advisor), Professor Craig Bailey (who first fueled
my desire for independent research), Dean Frederic Davis, Assistant Professor Sommer Gentry,
Professor Charles Hanna, Professor Michael Hoffman, Professor W. David Joyner, Associate
Professor Courtney Moen, Professor George Nakos, Assistant Professor Vrej Zarikian, LCDR
Kyle Caudle, USN (ret.), and Professor William Traves. I also thank Professor Carl Wick and
the Trident Scholar Committee for providing me with the opportunity to conduct this research.
In particular, I thank Professor B. Mitchell Baker and Associate Professor Christopher Brown
for being my second readers. There are countless other people who have mentored and helped
me throughout all of my undergraduate studies: I thank you all. I would be remiss, of
course, without thanking those who have engendered my mathematical passions and have
never stopped supporting me: my parents, Jim and Kathy; my sister, Amanda; and my love,
Sarah.



SUBSPACE ARRANGEMENT CODES AND CRYPTOSYSTEMS 3

Contents

1. Introduction 4
2. Basic Definitions 5
2.1. Coding Theory 5
2.2. Hamming Codes 6
2.3. Reed-Muller Codes 6
2.4. Subspace Arrangements 7
3. Subspace Arrangement Codes 8
3.1. Definition of C(A, j) 8
3.2. Code Length and Characteristic Polynomial 9
4. Coordinate Arrangement Codes 11
4.1. Simplicial Complexes 11
4.2. Definition of C(A∆, j) 11
4.3. Upper Bound on Dimension 13
5. Boolean Arrangement Codes 15
6. Binary Simplicial Complex Codes 23
6.1. Dimension 23
6.2. Polygons 25
6.3. Skeletal Codes 27
7. McEliece Cryptosystem 39
7.1. History and Description 39
7.2. Security 42
8. Sage Code 43
8.1. Generating Evaluation Codes and Their Properties 43
8.2. Boolean Arrangement Codes 45
8.3. Binary Skeleton Codes 47
9. Conclusion 47
References 49



SUBSPACE ARRANGEMENT CODES AND CRYPTOSYSTEMS 4

1. Introduction

As error-correcting codes have developed over the past century, so have the mathematical
disciplines of algebra, geometry, and combinatorics, such as the development of the properties
of a characteristic polynomial describing a poset representing a subspace arrangement by
Athanasiadis in [1]. The goal of this project is to construct and develop efficient codes using
recent advances in algebraic geometry, combinatorics, and commutative algebra. In particular,
the mathematics of subspace arrangements and simplicial complexes lend themselves well for
applications to coding theory. A subspace arrangement, A, is a finite collection of subspaces
in a vector space, V . A simplicial complex, ∆, is an abstract generalization of a polygon or
Euclidean solid. Fortunately, both simplicial complexes and subspaces arrangements can be
described algebraically by a collection of polynomials (namely, the ideal IA), which can be
used to construct a code. Let C(A, j) be the evaluation code for the arrangement A with
polynomials up to degree j.

A major problem in linear coding theory is finding codes that have a small number of
digits (length) with a high number codewords (dimension), as well as good error-correction
properties (minimum distance). In addition, for certain classes of codes, finding the length,
dimension, and minimum distance becomes very difficult. Then aim of this project is find
the length, dimension, and minimum distance of codes of the form C(A, j). Fortunately, the
combinatorial and geometric properties of subspace arrangements and simplicial complexes
can be used to find the length, minimum distance, and dimension of these codes.

The formula for the length of C(A, j) for any subspace arrangement A can be extracted from
the characteristic polynomial of the arrangement’s intersection lattice. However, in general,
finding the dimension and minimum distance seems to be a much more difficult task. In Section
5, we find the dimension of C(A, j) for certain cases where A is the arrangement of coordinate
hyperplanes. We then focus on the binary simplicial complex codes C(A∆, j). The dimension
for C(A∆, j) is given by the face vector of ∆. Nonetheless, the minimum distance is still very
difficult to determine. In Section 6.2, we give an explicit formula for the minimum distance of
C(A∆, j) for all values of j when ∆ is a polygon.

The most significant class of codes we study is the skeletal codes C(A∆, j) where ∆ is
a skeleton (a simplicial complex with all possible faces of a certain dimension and all lower
dimensions). These codes turn out to be punctured Reed-Muller codes, as well as being related
to Hamming codes. The main result is Theorem 6.22, which gives a formula for the minimum
distance of C(A∆, 1), a skeletal code with j = 1. Though the minimum distance for j > 1
appears to be very difficult, we prove a few cases of a presented conjecture.

One component of the project involved the production of computer scripts and algorithms
in Sage and Macaulay2. For example, a Macaulay2 algorithm allowed the construction of a
code (from which the properties of the code could be calculated), whereas another algorithm
in Sage created a code but only returned the properties of the code. Other scripts helped
speed up lengthy calculations, making proofs easier to see and construct.

The remainder of the project was focused on the McEliece cryptosystem. A cryptosystem
deals with enciphering (rather than encoding) a message, which is an algorithmic process
designed to make a sent message unreadable to an interloper, but, after another algorithmic
deciphering process, is readable to the intended receipt (who, unlike the interloper, knows
the key to decipher the message). The McEliece cryptosystem is built on error-correcting
codes and is suitable to codes with nice decoding algorithms (see [6], [5], and [18]). Since our
subspace arrangement codes are closely related to Hamming codes and Reed-Muller codes,
it is possible that they also have nice decoding properties. An important note here is that



SUBSPACE ARRANGEMENT CODES AND CRYPTOSYSTEMS 5

the McEliece cryptosystem has been demonstrated to withstand some theoretical quantum
computing attacks that would render common modern ciphers (such as RSA) useless.

2. Basic Definitions

In this section we establish notation and the basic objects of study.

2.1. Coding Theory. We begin by systematically defining all objects of study for this project
with a focus on linear codes as the main character of study. To do this we define all relevant
terms.

A commutative ring is a set of elements closed under two operations (usually called addition
and multiplication) that, under addition, forms an Abelian group (a set of elements with an
operation that has a unit and that is associative and commutative, and inverses exist) and,
under multiplication, forms a commutative monoid (a set of elements with an operation that
has a unit as well as being associate and commutative; inverses do not necessarily exist). The
distributive property also holds in a commutative ring. A field is a commutative ring where
all multiplicative inverses exist. A finite field is a field with finitely many elements. We call Fq
the finite field with q elements and note that q must be a power of a prime. One example is
F2, which is defined as the set {0, 1} with addition and multiplication modulo 2. This example
is of prime importance because of its applicability to computers.

A vector space, V , is a set of vectors, {v1, . . . } closed under addition and scalar multiplica-
tion, with the distributive property holding. The central example we study is the vector space
Fnq . A subset of a vector space which is closed under vector addition and scalar multiplication
is a subspace of the vector space. The minimum number of vectors required to generate all
vectors of a subspace [or vector space] (through scalar multiplication and vector addition) is
the dimension of the subspace [or vector space]. For example, the dimension of Fnq is n.

The aim of coding theory is to develop efficient data transmission processes that will detect
and correct errors. A code consists of a collection of codewords, each of which are assigned
to a symbol (or group of symbols). A simple example is the ISBN 10-digit number used for
cataloging books. The first nine digits are used for identification, and the last digit is a linear
combination of the identification digits that checks for errors when the bar code is scanned
(here, the codewords are the 10-digit numbers assigned to each book).

In order to introduce coding theory terminology, consider the following example. Let M =
{a, b, c, d} be a set of information. A code for M could consist of the subspace of codewords
C = {(0, 0, 0, 0), (0, 1, 0, 1), (1, 0, 1, 0), (1, 1, 1, 1)}, with each codeword representing one element
in M . Note that the codewords in this example all have digits in F2. Formally, a code C is a
subspace of a vector space V = Fnq over the finite field Fq; in this example, C is a subspace of

V = F4
2. The length, n, of a code refers to how many digits are in a codeword, which is also

the dimension of the ambient vector space V ; in the example, n = 4. The dimension, k, of
a code is the dimension of the subspace C; in the example, k = 2. A basis of vectors for the
subspace C provides for the construction of the generating matrix of C, which is the matrix
with the basis vectors forming the rows. In the example, the generating matrix for C is

G =

[
1 0 1 0
0 1 0 1

]
.

Finally, the minimum distance, d, is the minimum number of digits that must be changed to
transform one codeword into another; in this example, d = 2. Minimum distance can also
be defined as the minimum Hamming weight among the non-zero codewords (the Hamming
weight of a codeword is the number of non-zero entries in it). Minimum distance dictates the
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number of errors a code can detect. In particular, a code can detect up to d − 1 errors and
correct up to bd2c errors (note that bzc is the largest integer less than or equal to z). A code
with length n, dimension k, and minimum distance d is referred to as an [n, k, d]q code, where
the digits are elements of Fq. The example is a [4, 2, 2]2 code.

2.2. Hamming Codes. An important class of codes which will relate to the codes developed
in this project is the class of Hamming codes. All binary Hamming codes can be constructed
in a fairly straightforward process, which is described in [9]. For the Hamming code denoted
Hr, first form a matrix with the numbers 1 through 2r−1 in binary as the columns (so there
are 2r − 1 columns). Permute the matrix to form a matrix of the form [A|Ir], where Ir is the
r × r identity matrix (this matrix, termed Hr, is called the parity-check matrix of the code).
Then, Hr can be described by the matrix [I2r−1−r|AT ], where AT is the transpose of A (the
columns of AT are the rows of A, with the ordering of the rows becoming the ordering of the
columns). Each binary Hamming code Hr has the property of being a [2r − 1, 2r − 1 − r, 3]2
code.

Example 2.1. The construction of H4 is provided. First, the matrix of binary numbers is
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

 .
The columns are then permuted to form

H4 =


1 1 0 1 0 0 0 1 1 1 1 1 0 0 0
1 1 0 1 1 1 1 1 0 0 0 0 1 0 0
1 1 1 0 0 1 1 0 0 1 1 0 0 1 0
1 0 1 1 1 0 1 0 1 0 1 0 0 0 1

 .
From this matrix, the generating matrix for H4 is formed:

H4 =



1 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 1 0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 1 0 1 1


.

By inspection, it can be confirmed that H4 is a [15, 11, 3]2 code.

2.3. Reed-Muller Codes. Another class of closely-related codes is the class of Reed-Muller
codes, which are described in detail in [14]. A binary Reed-Muller code, R(j,m), is formed
by examining all polynomials in m variables up to degree j. Each polynomial corresponds to
a codeword by evaluating that polynomial on all possible points in Fm2 . For each R(j,m), a

[2m,
r∑
i=0

(
m
i

)
, 2m−r]2 code is produced.
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Example 2.2. The construction of the R(1, 3) Reed-Muller code will be demonstrated. For
consistency, the following ordering of the points in F3

2 will be used:

x1 x2 x3

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

.

Each codeword is obtained by creating a binary string that represents the evaluation of each
polynomial on the certain states of x1, x2, and x3, with the order given by the above table.
Thus, the following table can be made to display all the codewords:

Polynomial Codeword
0 (0, 0, 0, 0, 0, 0, 0, 0)
x1 (0, 0, 0, 0, 1, 1, 1, 1)
x2 (0, 0, 1, 1, 0, 0, 1, 1)
x3 (0, 1, 0, 1, 0, 1, 0, 1)

x1 + x2 (0, 0, 1, 1, 1, 1, 0, 0)
x1 + x3 (0, 1, 0, 1, 1, 0, 1, 0)
x2 + x3 (0, 1, 1, 0, 0, 1, 1, 0)

x1 + x2 + x3 (0, 1, 1, 0, 1, 0, 0, 1)
1 (1, 1, 1, 1, 1, 1, 1, 1)

1 + x1 (1, 1, 1, 1, 0, 0, 0, 0)
1 + x2 (1, 1, 0, 0, 1, 1, 0, 0)
1 + x3 (1, 0, 1, 0, 1, 0, 1, 0)

1 + x1 + x2 (1, 1, 0, 0, 0, 0, 1, 1)
1 + x1 + x3 (1, 0, 1, 0, 0, 1, 0, 1)
1 + x2 + x3 (1, 0, 0, 1, 1, 0, 0, 1)

1 + x1 + x2 + x3 (1, 0, 0, 1, 0, 1, 1, 0)

.

Note that, since most of the polynomials are linear combinations of one another, R(1, 3) can
be represented by a matrix of a basis for the code (the polynomial is in the first column):

1 1 1 1 1 1 1 1 1
x1 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1
x3 0 1 0 1 0 1 0 1

.

Note that the code is a [23,
1∑
i=0

(
3
i

)
, 23−1]2 = [8, 4, 4]2 code.

2.4. Subspace Arrangements. Let V be a vector space of dimension ` over a finite field
F of q elements. A subspace arrangement A = {X1, . . . , Xt} in V is a finite collection of
linear subspaces Xi ⊆ V . Some mathematical objects related to subspace arrangements are
now introduced (definitions for some of them are contained in the following sections). These
objects are further discussed in [2]. Let S = Fq[x1, . . . , x`] be the symmetric algebra of the dual
vector space V ∗ (the dual vector space is the set of all linear maps φ : V −→ Fq). The points
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Figure 1. The coordinate planes

of V in A are P (A) =
t⋃
i=1

Xi = {p1, . . . , pn}. Additionally, let I(A) = {f ∈ S|f(P (A)) = 0}

be the defining ideal of A. With these properties of a subspace arrangement, it is possible to
develop an error-correcting code from a subspace arrangement.

3. Subspace Arrangement Codes

3.1. Definition of C(A, j). In order to define the codes we want to study we need to under-
stand polynomials and their roots over a finite field. A polynomial ring, Fq[x1, . . . , x`], is the
set of all polynomials over the variables x1, . . . , x` with usual addition and multiplication and
with coefficients in Fq. A subring of a ring is a subset of a ring that is closed under the ring
operations. An ideal, I, is a subring that is closed under multiplication by any element in the
ring.

Recall the notation of subspace arrangements. We can now construct a code from A by
evaluating all polynomials of certain degrees. Define the evaluation map evA : S≤j → Fn by

evA(f) = (f(p1), . . . , f(pn))

where S≤j is the vector space of all polynomials of less degree than or equal to j in S =
Fq[x1, . . . , x`]. Now we can define our main object of study.

Definition 3.1. The image C(A, j) = im(evA) is a linear subspace in Fnq that we call a
subspace arrangement code.

Now we examine a few examples.

Example 3.2. Let q = 2, ` = 3, j = 1, and A be the xy-, xz-, and yz-planes, as seen in
Figure 1. Then, I(A) = < x1x2x3 >. Thus, V = F3

2 and S = Fq[x1x2x3]. It follows that
P (A) = {(0, 0, 0), (1,0,0), (1,1,0), (1,0,1), (0,1,0), (0,1,1), (0, 0, 1)}, so |P (A)| = 7. Now, to
find im(evA : S≤1 → F7

2), we write a basis for the subspace spanned by the image of the
evaluation map as a matrix (the top row designates a point in P (A), and the first column
delineates the polynomials in S≤1 at which each point is evaluated):

(0, 0, 0) (1, 0, 0) (1, 1, 0) (1, 0, 1) (0, 1, 0) (0, 1, 1) (0, 0, 1)
1 1 1 1 1 1 1 1
x1 0 1 1 1 0 0 0
x2 0 0 1 0 1 1 0
x3 0 0 0 1 0 1 1

.
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Figure 2. The xz- and yz-planes

Close observation yields that the length of the code is 7, the dimension is 4, and the minimum
distance is 3. Therefore, this code is a [7, 4, 3]2 code.

Example 3.3. Let q = 7, ` = 2, j = 2, and A be the xz- and yz-planes as in Figure 2. Then,
I(A) = < x1x2 >. Thus, V = F2

7 and S = F7[x1x2]. It follows that P (A) = {(0, 0), (1,0),
(2,0), (3,0), (4,0), (5,0), (6,0), (0,1), (0,2), (0,3), (0,4), (0,5), (0, 6)}, implying |P (A)| = 13.
Now, to find im(evA : S≤2 → F13

7 ), determine its corresponding matrix:

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0) (6, 0) (0, 1) (0, 2) (0, 3) (0, 4) (0, 5) (0, 6)
1 1 1 1 1 1 1 1 1 1 1 1 1 1
x1 0 1 2 3 4 5 6 0 0 0 0 0 0
x2 0 0 0 0 0 0 0 1 2 3 4 5 6
x2

1 0 1 4 2 2 4 1 0 0 0 0 0 0
x2

2 0 0 0 0 0 0 0 1 4 2 2 4 1

.

Close observation yields that the length of the code is 13, the dimension is 5, and the minimum
distance is 5. Therefore, this code is a [13, 5, 5]7 code.

Example 3.4. Note that if A is the entirety of V = F`q (so I(A) = < 0 >) and q = 2,
then P (A) = V . Thus, the subspace arrangement code is equivalent to a Reed-Muller code.
Specifically, the code is C(F`q, j) = R(j, `). Since skeletal codes (as discussed in Section 6.3)

are a punctured C(F`q, j) code, they are also a punctured Reed-Muller code.

3.2. Code Length and Characteristic Polynomial. Let A be the subspace arrangement
{X1, . . . , Xk}, where for all i, Xi is a subspace of the coordinate hyperplanes. Let IA be the
corresponding ideal in F`q. Let L(A) consist of all intersections of the subspaces of A (note
that the empty intersection is defined as the entire vector space, V ). Then L(A) is a lattice
and a poset by reverse inclusion (a poset is a partially-ordered set, meaning that an order
relation, such as reverse inclusion, exists on some of the elements of the set; a lattice is a poset
where any two elements have a unique least upper bound and greatest lower bound). Next,
the Möbius function, µ, on L(A) is µ : L(A) −→ Z defined recursively by{

µ(V ) = 1
µ(X) = −

∑
Y�X

µ(Y ) .

From this function, the characteristic polynomial for A, χ(A, t), is defined as

χ(A, t) =
∑

X∈L(A)

(µ(X)tdim(X)).



SUBSPACE ARRANGEMENT CODES AND CRYPTOSYSTEMS 10

Figure 3. Poset of 2-Boolean

In [1], Christos Athanasiadis proved a theorem for determining the number of the set of points
of A (in F`q):

|P (A)| = q` − χ(A, q).
Since |P (A)| corresponds to the length of a code, we have the following interpretation of
Athanasiadis’s result.

Corollary 3.5. If n is the length of a code associated with the subspace arrangement A, with
characteristic polynomial χ(A, q), then

n = |P (A)| = q` − χ(A, q).

The following example illustrates this process.

Example 3.6. Let V = F2
3 and A be the x-axis and y-axis. Then, I(A) = < xy >, with

a corresponding poset {a, b, c, d}, where a ≤ b, a ≤ c, a ≤ d, b ≤ d, and c ≤ d. For an
easier understanding of this process, the poset can be interpreted to have a correspondence
to R2 (and the 2-Boolean, which is the Boolean arrangement [discussed in Section 5] in R2)
as follows: a = V = R2, b =y-axis, c =x-axis, and d =origin. Figure 3 is a picture of the
Hasse diagram of this poset. It follows that L(A) = {a, b, c, d} = {V, b, c, d}. Using the
Möbius function, µ(V ) = 1, µ(b) = −µ(V ) = −1 (a ≤ b), µ(c) = −µ(V ) = −1 (a ≤ c),
and µ(d) = −(µ(c) + µ(b) + µ(V )) = −(−1 − 1 + 1) = 1 (c ≤ d, b ≤ d, a ≤ d). Thus, the
characteristic polynomial is

χ(A, t) = [1 ∗ t2] + [−1 ∗ t1] + [−1 ∗ t1] + [1 ∗ t0] = t2 − 2t+ 1

(each bracketed addend corresponds to the evaluation of a, b, c, and d, respectively). Finally,
evaluating using Athanasiadis’s theorem gives

n = |A| = q` −X (A, q) = 32 − χ(A, 3) = 32 − [32 − 2 ∗ 3 + 1] = 5.

Working out P (A) by hand confirms the answer:

P (A) = {(0, 0), (1, 0), (2, 0), (0, 1), (0, 2)} =⇒ |P (A)| = |A| = 5.
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Figure 4. 3-simplex

4. Coordinate Arrangement Codes

We want to study the dimension and minimum distance of C(A, j) for any subspace ar-
rangement A, but doing so is difficult. For the rest of the paper, focus will be placed on
subspace arrangements that are coordinate arrangements, which are described in this section.

4.1. Simplicial Complexes. In order to study subspace arrangements that are intersections
of coordinate hyperplanes, we first define and build a theory for what are called simplicial
complexes. We follow the standard formulation of the correspondence between coordinate
arrangements and simplicial complexes written in [2] by Björner. For convenience, let [k] =
{1, . . . , k} be the set of numbers 1 through k. A simplicial complex, ∆, is a set of subsets of
[k] such that

(1) if σ ∈ ∆ and τ is a subset of σ, then τ ∈ ∆, and
(2) if x ∈ [k], then {x} ∈ ∆

where [k] are the vertices of ∆ and σ is a face of ∆. A k-simplex is a simplicial complex that
contains all subsets of [k]. Geometrically, we can view the 1-simplex as a point, the 2-simplex
as a line segment, the 3-simplex as a triangle, the 4-simplex as a tetrahedron, and such forth.

Example 4.1. Let k = 3 and ∆ = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. We can think
of ∆ geometrically as a filled-in triangle by associating a face of size 3 to the 3-simplex. In
fact, this simplicial complex is exactly the 3-simplex as pictured in Figure 4.

Example 4.2. Let k = 3 and ∆ = {{1}, {2}, {3}, {1, 2}, {2, 3}, {1, 3}}. Here the simplicial
complex is geometrically represented by a triangle with the inside missing, which is pictured
in Figure 5.

The combinatorial setting allows one to easily study higher dimensional geometric objects.
In order to use simplicial complexes to produce codes, we associate an ideal to a simplicial
complex. For a simplicial complex ∆ with vertices [`], the vertices correspond to the variables
of the polynomial ring Fq[x1, . . . , x`], and the ideal is I∆ = {xσ | σ 6∈ ∆}.

4.2. Definition of C(A∆, j). The process of correlating a subspace arrangement with a sim-
plicial complex, as described in [2], is as follows. For {b1, . . . ,bn} (a basis of Fnq ) and each
subset σ = {i1, . . . , is} ⊆ [n], let Kσ = span{bi1 , . . . ,bis}. The subspace arrangement



SUBSPACE ARRANGEMENT CODES AND CRYPTOSYSTEMS 12

Figure 5. Empty triangle

Figure 6. Simplicial complex corresponding to the x-axis and yz-plane

A∆ = {Kσ|σ ∈ ∆} is thus determined by the simplicial complex ∆. With this correlation
in mind, it is now possible to define a coordinate arrangement code.

Definition 4.3. Let ∆ be a simplicial complex with corresponding subspace arrangement A∆.
Then the coordinate arrangement code corresponding to ∆ is the subspace arrangement code
C(A∆, j).

The construction of error-correcting codes from simplicial complexes, as well as the correla-
tion between subspace arrangements and simplicial complexes, can be demonstrated through
examples.

Example 4.4. Let ∆ = {{1}, {2, 3}} ⊆ 2[3]. The subspace arrangement then consists of
the span of the first variable joined with the span of the second and third variables (that
is, < x > ∪ < y, z >). This subspace arrangement thus consists of the x-axis together with
the yz-plane. The simplicial complex and subspace arrangement are depicted in Figure 6.
From the construction described above and recalling the conventions discussed in Section 3.1,
it is clear that ` = 3. Let q = 2 and j = 1 (note that q and j are not contingent on the
construction of ∆), so V = F3

2 and S = F2[x1x2x3]. It follows that I∆ = < x1x2, x1x3 >.
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Figure 7. Tetrahedron

Hence, P (A∆) = {(0, 0, 0), (1,0,0), (0,1,0), (0,0,1), (0, 1, 1)}, implying |P (A∆)| = 5. The
matrix corresponding to im(ev : S≤1 → F5

2) is given below.

(0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (0, 1, 1)
1 1 1 1 1 1
x1 0 1 0 0 0
x2 0 0 1 0 1
x3 0 0 0 1 1
x2x3 0 0 0 0 1

.

Thus, the length is 5, the dimension is 5, and the minimum distance is 1, so the code is a
[5, 5, 1]2 code.

Example 4.5. Let ∆ represent the simplicial complex interpreted geometrically as a tetrahe-
dron with vertices 1,2,3, and 4 and all 1-dimensional faces (the lines connecting each vertex),
as well as the 2-dimensional face (a plane) {2,3,4}. Thus, ∆ lacks three “planes” and is not
“filled in” (since {1,2,3,4} 6∈ ∆). The simplicial complex can be interpreted geometrically as
in Figure 7.

From the construction described above and recalling the conventions discussed in Section
3.1, it is clear that ` = 4. Let q = 2 and j = 1, so V = F4

2 and S = F2[x1x2x3x4]. It follows
that IA∆ = < x1x2x3, x1x2x4, x1x3x4 >. Hence, P (A∆) = {(0, 0, 0, 0), (0,0,0,1), (0,0,1,0),
(0,1,0,0), (1,0,0,0), (0,0,1,1), (0,1,0,1), (0,1,1,0), (1,0,0,1), (1,0,1,0), (0,1,0,0), (0, 1, 1, 1)}, im-
plying |P (A∆)| = 12. The matrix corresponding to im(ev : S≤1 → F12

2 ) is given below.

(0000) (0001) (0010) (0100) (1000) (0011) (0101) (0110) (1001) (1010) (0100) (0111)
1 1 1 1 1 1 1 1 1 1 1 1 1
x1 0 0 0 0 1 0 0 0 1 1 0 0
x2 0 0 0 1 0 0 1 1 0 0 1 1
x3 0 0 1 0 0 1 0 1 0 1 0 1
x4 0 1 0 0 0 1 1 0 1 0 0 1

.

Thus, the length is 12, the dimension is 5, and the minimum distance is 3, so the code is a
[12, 5, 3]2 code.

4.3. Upper Bound on Dimension. In order to find an upper bound on the dimension of
a code, the Hilbert function, H(M, i) will be introduced. The Hilbert function deals with a
graded S-module, M . H(M, i) is defined as the dimension of Mi, the ith graded component
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of M , so H(M, i) =dim(Mi). Furthermore, if M = C[x1, . . . , x`], then

H(M, i) =

(
i+ `− 1

`− 1

)
=

(
i+ `− 1

i

)
.

This formula results from the realization of (given how many variables are in the polynomial
ring) how many different ways there are of choosing a term of a certain degree. The formula
follows from a theorem in discrete mathematics [20], where the number of selections with
repetition of r objects chosen from s types of objects is

(
r+s−1
r

)
(the r objects are each degree

of a term in a polynomial, and the s objects are each variable). For example, if there are three
variables, x1, x2, and x3, and it is sought how many monomials are of degree 2, then there
are three slots to put a total of 2 degrees, so there are

(
3+2−1

2

)
=
(

4
2

)
= 6 different monomials

of degree 2 formed from three variables ({x2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3}). This formula can be

applied in a more general sense to a simplicial complex ∆.
The Hilbert series is obtained from the Hilbert function. The Hilbert series of the graded

module M is defined as HS(M, t) =
∞∑
i=0

H(M, i)ti, meaning that the Hilbert series is a power

series of t such that the terms of degree i refer to the dimension of the ith graded component
of M . For a simplicial complex ∆, vector space V = F`q, and homogeneous ideal I∆, let
F[∆] = S/I∆ be the Stanley-Reisner ring. Since I∆ is homogeneous, F[∆] is graded. The face
vector of a simplicial complex is defined by fi = |{σ ∈ ∆ : |σ| = i}| for 0 ≤ i. The face vector
refers to the number of faces of dimension i − 1 in ∆ (f0 is defined as f0 = 1). The Hilbert
series of the Stanley-Reisner ring (as discussed in [17]) is

HS(F[∆], t) = f0 +
∞∑
i=1

D+1∑
m=1

(
i− 1

m− 1

)
fmt

i,

where D refers to the dimension of ∆. As a corollary to Stanley’s work in [17], an upper bound
for dimension exists.

Corollary 4.6. For a simplicial complex ∆ with corresponding subspace arrangement A∆, an
upper bound for k = dim(C(A∆, j)) exists:

k ≤ f0 +

j∑
i=1

D+1∑
m=1

(
i− 1

m− 1

)
fm.

Using the combinatorial formula discussed at the beginning of this section, the upper bound
can also be described as

k ≤
j∑

m=0

(
m+ `− 1

m

)
.

An example illustrates this upper bound.

Example 4.7. For V = F2
2, let ∆ correspond to two connected points, so A∆ is a plane (and

the entirety of V ), so I∆ = < 0 >. Thus, f0 = 1, f1 = 2, (for each of the two 0-dimensional
points), and f2 = 1 (for the single edge). An upper bound for the dimension of C(A∆, 1) can
be found. Using the above formula for the Hilbert series,

HS(F[∆], t) = f0 +

j∑
i=1

D+1∑
m=1

(
i− 1

m− 1

)
fm
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= f0 +
1∑
i=1

1+1∑
m=1

(
i− 1

m− 1

)
fm

= f0 +
1∑
i=1

((
i− 1

0

)
f1 +

(
i− 1

1

)
f2

)
= f0 +

(
0

0

)
f1 +

(
0

1

)
f2

= (1)(1) + (1)(2) + (0)(1) = 3.

As a check, note that there are exactly 3 polynomials in F2[x1x2] of degree less than or equal
to 1: {1, x1, x2}. Thus, the upper bound is 3.

5. Boolean Arrangement Codes

In this section, the Boolean arrangement (consisting of all coordinate hyperplanes for a
vector space) is used to produce ideals and codes. Notation concerning Boolean arrangement
codes follows.

Definition 5.1. A Boolean arrangement code, BC(`, j), is a code generated by the coor-
dinate hyperplane arrangement and the ideal I = < x1 · · ·x` >.

This section is concerned with results dealing with the dimension of Boolean arrangement
codes in certain circumstances.

Proposition 5.2. The dimension of BC(`,1) is k = `+ 1.

Proof. Previous work allowed the extension of a theorem by Richard Stanley to be applied to
this class of error-correcting codes, establishing an upper bound for dimension:

k ≤
j∑

m=0

(
m+ `− 1

m

)
=

1∑
m=0

(
m+ `− 1

m

)
=

(
`− 1

0

)
+

(
`

1

)
= `+ 1.

The dimension of ` + 1 refers to the number of linearly independent row vectors produced
by the matrix construction of the evaluation map evA for generating the code. Each row
corresponds to a polynomial. The polynomials are 1, x1, . . . , x`. Thus, it suffices to show that
the row vectors v0,v1, . . . ,v` produced by the respective polynomials 1, x1, . . . , x` are linearly
independent. Define ei as the point (0, 0, . . . , 0, 1, 0, . . . , 0) in F`2 such that all components in
ei are 0 except for the ith position. Furthermore, define e0 as the origin, (0, 0, . . . , 0, . . . , 0).
Note that regardless of the selection of q, ei for i = 0, . . . , ` evaluates to 0 on I, so ei ∈ P (A)
for i = 0, . . . , `. For simplicity (but without loss of generality), let e0, . . . , e` correspond to the
first `+ 1 columns in the generating matrix G:

e0 e1 e2 · · · e`−1 e` · · ·
1 1 1 1 · · · 1 1 · · ·
x1 0 1 0 · · · · · · 0 · · ·
x2 0 0 1 0 · · · 0 · · ·
...

...
...

. . .
. . .

. . .
. . . · · ·

x`−1 0 0 · · · 0 1 0 · · ·
x` 0 0 · · · · · · 0 1 · · ·

.

G is clearly upper triangular and hence (by the properties of an upper triangular matrix) has
linearly independent rows. �
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Remark 5.3. For j > 1, the process becomes increasingly difficult. Some results for specific
selections of `, q, and j follow. For results concerning the case q = 2, see Section 6.3.

Proposition 5.4. The dimension of BC(2,2) whenever q > 2 is k = 5.

Proof. Since q > 2, F2
q contains at least 3 elements, 0, 1, and ω. In the matrix construction,

let the first 5 columns correspond to the respective points (0, 0), (1, 0), (0, 1), (ω, 0), and (0, ω),
and let the rows correspond to the respective polynomials 1, x1, x2, x

2
1, and x2

2. Thus, the
resulting generating matrix, G, is as follows:

(0, 0) (1, 0) (0, 1) (ω, 0) (0, ω) . . .
1 1 1 1 1 1 . . .
x1 0 1 0 ω 0 . . .
x2 0 0 1 0 ω . . .
x2

1 0 1 0 ω2 0 . . .
x2

1 0 0 1 0 ω2 . . .

.

We show the rows are linearly independent by computing a maximal minor and showing it is not
equal to zero. The minor we examine is the minor with columns 1 through 5. Computing the
cofactor expansion down the first column gives that the determinant is equal to the determinant
of the following matrix:

G′ =


1 0 ω 0
0 1 0 ω
1 0 ω2 0
0 1 0 ω2

 .
The determinant of G′ (and the maximal minor) is ω2(ω− 1)2 6= 0 since Fq is a field and thus
an integral domain, meaning it has no zero divisors (note that ω 6= 0, ω 6= 1). �

Proposition 5.5. The dimension of BC(3,2) whenever q > 2 is k = 10.

Proof. First note that 10 corresponds to the upper bound:

j∑
m=0

(
m+ `− 1

m

)
=

2∑
m=0

(
m+ 2

m

)
=

(
2

0

)
+

(
3

1

)
+

(
4

2

)
= 10.

The upper bound corresponds to the polynomials 1, x1, x2, x3, x
2
1, x

2
2, x

2
3, x1x2, x1x3, x2x3.

Thus, carefully selecting the points in P (A) for the columns (which can be ordered in any
way), the left part of the generating matrix G is

0 (1, 0, 0) (0, 1, 0) (0, 0, 1) (ω, 0, 0) (0, ω, 0) (0, 0, ω) (1, ω, 0) (1, 0, ω) (0, 1, ω) . . .
1 1 1 1 1 1 1 1 1 1 1 . . .
x1 0 1 0 0 ω 0 0 1 1 0 . . .
x2 0 0 1 0 0 ω 0 ω 0 1 . . .
x3 0 0 0 1 0 0 ω 0 ω ω . . .

x2
1 0 1 0 0 ω2 0 0 1 1 0 . . .

x2
1 0 0 1 0 0 ω2 0 ω2 0 1 . . .

x2
3 0 0 0 1 0 0 ω2 0 ω2 ω2 . . .

x1x2 0 0 0 0 0 0 0 ω 0 0 . . .
x1x3 0 0 0 0 0 0 0 0 ω 0 . . .
x2x3 0 0 0 0 0 0 0 0 0 ω . . .

.
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Then subtract rows 1, 2, and 3 from rows 4, 5, and 6, respectively. The resulting 10 × 10
matrix to the left is upper triangular with ω2 − ω on the diagonal of columns 4, 5, and 6:

(0, 0, 0) (1, 0, 0) (0, 1, 0) (0, 0, 1) (ω, 0, 0) (0, ω, 0) (0, 0, ω) (1, ω, 0) (1, 0, ω) (0, 1, ω) . . .
1 1 1 1 1 1 1 1 1 1 1 . . .
x1 0 1 0 0 ω 0 0 1 1 0 . . .
x2 0 0 1 0 0 ω 0 ω 0 1 . . .
x3 0 0 0 1 0 0 ω 0 ω ω . . .

x2
1 0 0 0 0 ω2 − ω 0 0 1 1 0 . . .

x2
1 0 0 0 0 0 ω2 − ω 0 ω2 0 1 . . .

x2
3 0 0 0 0 0 0 ω2 − ω 0 ω2 ω2 . . .

x1x2 0 0 0 0 0 0 0 ω 0 0 . . .
x1x3 0 0 0 0 0 0 0 0 ω 0 . . .
x2x3 0 0 0 0 0 0 0 0 0 ω . . .

.

Since q > 2, these entries (as well as all other diagonal entries) are not zero, so the determinant
of the matrix (and the maximal minor) is non-zero, directly implying that the rows are linearly
independent. �

Proposition 5.6. The dimension of BC(`,2) whenever q > 2 and ` ≥ 3 is k = `2+`
2 + `+ 1.

Proof. First note that k = `2+`
2 + `+ 1 corresponds to the upper bound:

j∑
m=0

(
m+ `− 1

m

)
=

2∑
m=0

(
m+ `− 1

m

)

=

(
`− 1

0

)
+

(
`

1

)
+

(
`+ 1

2

)
= 1 + `+

(`+ 1)!

(`− 1)!(2)
= 1 + `+

(`+ 1)(`)

2
=
`2 + `

2
+ `+ 1.

Notice that since this number is the upper bound, the proposed dimension corresponds to
all polynomials in Fq[x1, . . . , x`] of degree 0, 1, and 2. Thus, it is sufficient to show that all
`2+`

2 + ` + 1 rows in the generating matrix, G, are linearly independent. Since q > 2 there
exists ω ∈ Fq such that ω 6= 0, 1. We choose a specific order on the points of the arrangement
so that the matrix G can be viewed as

0 (10 . . . 0) . . . (ω0 . . . 0) . . . (0 . . . 0ω) (1ω0 . . . 0) . . . (10 . . . 0ω) . . . (0 . . . 01ω) . . .
1 1 1 . . . 1 . . . 1 1 . . . 1 . . . 1 . . .
x1 0 1 . . . ω . . . 0 1 . . . 1 . . . 0 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . . .
x` 0 0 . . . 0 . . . ω 0 . . . ω . . . ω . . .

x2
1 0 1 . . . ω2 . . . 0 1 . . . 1 . . . 0 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . . .

x2
` 0 0 . . . 0 . . . ω2 0 . . . ω2 . . . ω2 . . .

x1x2 0 0 . . . 0 . . . 0 ω . . . 0 . . . 0 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . . .
x1x` 0 0 . . . 0 . . . 0 0 . . . ω . . . 0 . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . . .
x`−1x` 0 0 . . . 0 . . . 0 . . . 0 . . . 0 ω . . .

.

Subtract rows 1, . . . , ` from rows `+1, . . . , 2`, respectively. The resulting leftmost square ma-
trix is upper triangular with non-zero entries on the diagonal, so it has a non-zero determinant.
Thus, the maximal minor is non-zero, implying that the rows are linearly independent. �

Proposition 5.7. The dimension of BC(4,3) whenever q > 3 is k = 35.

Proof. Of first note is the upper bound for these parameters:

k ≤
j∑

m=0

(
m+ `− 1

m

)
=

3∑
m=0

(
m+ 3

m

)
=

(
3

0

)
+

(
4

1

)
+

(
5

2

)
+

(
6

3

)
= 1 + 4 + 10 + 20 = 35.
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Thus, in order to show that the dimension is 35, it suffices to show that each row vector in
the matrix construction of the code (of which there are 35 for each polynomial of degree less
than or equal to 3) is linearly independent. Furthermore, careful ordering of the columns of
the matrix construction will lend themselves to a clear determination of linear independence.
Let ω ∈ Fq\{0, 1} such that ω 6= ω2 and ω 6= −1. Thus, the matrix construction can be as
follows:

G =

 M1 ∗ ∗
0 M2 ∗
0 0 M3

 .

M1, M2, and M3 are all square sub-matrices (of different dimensions) along the diagonal of
G (thus, 0 and ∗ represent square sub-matrices elsewhere in the matrix, where 0 denotes all
entries in the sub-matrix are 0). It will be demonstrated that M1, M2, and M3 are all able
to be made to be upper triangular, meaning that G can be made to be upper triangular and
implying that all of the rows are linearly independent.

First, M1 contains the rows corresponding to the polynomials { 1, x1, x2, x3, x4, x2
1, x2

2, x2
3,

x2
4, x3

1, x3
2, x3

3, x3
4 } and the columns corresponding to the points { (0,0,0,0), (1,0,0,0), (0,1,0,0),

(0,0,1,0), (0,0,0,1) (ω,0,0,0), (0,ω,0,0) (0,0,ω,0) (0,0,0,ω), (ω2,0,0,0), (0,ω2,0,0), (0,0,ω2,0),
(0,0,0,ω2)}. Observe that M1 is as follows:

M1 =



1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 ω 0 0 0 ω2 0 0 0
0 0 1 0 0 0 ω 0 0 0 ω2 0 0
0 0 0 1 0 0 0 ω 0 0 0 ω2 0
0 0 0 0 1 0 0 0 ω 0 0 0 ω2

0 1 0 0 0 ω2 0 0 0 ω4 0 0 0
0 0 1 0 0 0 ω2 0 0 0 ω4 0 0
0 0 0 1 0 0 0 ω2 0 0 0 ω4 0
0 0 0 0 1 0 0 0 ω2 0 0 0 ω4

0 1 0 0 0 ω3 0 0 0 ω6 0 0 0
0 0 1 0 0 0 ω3 0 0 0 ω6 0 0
0 0 0 1 0 0 0 ω3 0 0 0 ω6 0
0 0 0 0 1 0 0 0 ω3 0 0 0 ω6



.

In order to make M1 upper triangular, it suffices to use row-reduction techniques on M1. To
describe the row-reduction techniques being used, some new notation will be introduced. Let
the rows 1-4 of the above matrix be collective called A, the next four B, and the last four C
(the 0th row does not need to change during the operations and thus is not included). Let
operations cA + dB be defined as the multiplication of each row in A and B by c and d,
respectively, and then the component-wise addition of A and B (so the first row in A is added
to the first row in B; this process is analogous to creating a new vector space). Thus, (through
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row-reduction) replace B by B−A, and replace C by C−B− ω(B−C):

1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 ω 0 0 0 ω2 0 0 0
0 0 1 0 0 0 ω 0 0 0 ω2 0 0
0 0 0 1 0 0 0 ω 0 0 0 ω2 0
0 0 0 0 1 0 0 0 ω 0 0 0 ω2

0 0 0 0 0 ω2−ω 0 0 0 ω4−ω2 0 0 0
0 0 0 0 0 0 ω2−ω 0 0 0 ω4−ω2 0 0
0 0 0 0 0 0 0 ω2−ω 0 0 0 ω4−ω2 0
0 0 0 0 0 0 0 0 ω2−ω 0 0 0 ω4−ω2

0 0 0 0 0 0 0 0 0 ω6−ω5−ω4+ω3 0 0 0
0 0 0 0 0 0 0 0 0 0 ω6−ω5−ω4+ω3 0 0
0 0 0 0 0 0 0 0 0 0 0 ω6−ω5−ω4+ω3 0
0 0 0 0 0 0 0 0 0 0 0 0 ω6−ω5−ω4+ω3


.

Note that this is an upper triangular matrix, so the determinant of it is the product of the
diagonal entries:

14(ω2 − ω)4(ω6 − ω5 − ω4 + ω3)4

= ω4(ω − 1)4
(
ω3
(
(ω − 1)(ω + 1)(ω − 1)

))4

= ω16(ω − 1)12(ω + 1)4.

Thus, the determinant is 0 if and only if ω = 0, 1,−1, which is not the case. Therefore, M1

can be made to be upper triangular with a non-zero determinant.
Now, examine M2, which contains the rows corresponding to the polynomials { x1x2, x1x3,

x1x4, x2x3, x2x4, x3x4, x2
1x2, x2

1x3, x2
1x4, x2

2x3, x2
2x4, x2

3x4, x1x
2
2, x1x

2
3, x1x

2
4, x2x

2
3, x2x

2
4,

x3x
2
4 } and the columns corresponding to the points { (1,1,0,0), (1,0,1,0), (1,0,0,1), (0,1,1,0),

(0,1,0,1), (0,0,1,1), (1,ω,0,0), (1,0,ω,0), (1,0,0,ω), (0,1,ω,0), (0,1,0,ω), (0,0,1,ω), (ω,ω2,0,0),
(ω,0,ω2,0), (ω,0,0,ω2), (0,ω,ω2,0), (0,ω,0,ω2), (0,0,ω,ω2)}:

M2 =



1 0 0 0 0 0 ω 0 0 0 0 0 ω3 0 0 0 0 0
0 1 0 0 0 0 0 ω 0 0 0 0 0 ω3 0 0 0 0
0 0 1 0 0 0 0 0 ω 0 0 0 0 0 ω3 0 0 0
0 0 0 1 0 0 0 0 0 ω 0 0 0 0 0 ω3 0 0
0 0 0 0 1 0 0 0 0 0 ω 0 0 0 0 0 ω3 0
0 0 0 0 0 1 0 0 0 0 0 ω 0 0 0 0 0 ω3

1 0 0 0 0 0 ω 0 0 0 0 0 ω4 0 0 0 0 0
0 1 0 0 0 0 0 ω 0 0 0 0 0 ω4 0 0 0 0
0 0 1 0 0 0 0 0 ω 0 0 0 0 0 ω4 0 0 0
0 0 0 1 0 0 0 0 0 ω 0 0 0 0 0 ω4 0 0
0 0 0 0 1 0 0 0 0 0 ω 0 0 0 0 0 ω4 0
0 0 0 0 0 1 0 0 0 0 0 ω 0 0 0 0 0 ω4

1 0 0 0 0 0 ω2 0 0 0 0 0 ω5 0 0 0 0 0
0 1 0 0 0 0 0 ω2 0 0 0 0 0 ω5 0 0 0 0
0 0 1 0 0 0 0 0 ω2 0 0 0 0 0 ω5 0 0 0
0 0 0 1 0 0 0 0 0 ω2 0 0 0 0 0 ω5 0 0
0 0 0 0 1 0 0 0 0 0 ω2 0 0 0 0 0 ω5 0
0 0 0 0 0 1 0 0 0 0 0 ω2 0 0 0 0 0 ω5



.

In order to makeM2 upper triangular, it suffices to use row-reduction techniques onM2. Let D,
E, F represent (respectively) the first 6, next 6, and last 6 rows. To make M2 upper-triangular,
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switch E and F. Then, replace E by E−D and F by F−D:

1 0 0 0 0 0 ω 0 0 0 0 0 ω3 0 0 0 0 0
0 1 0 0 0 0 0 ω 0 0 0 0 0 ω3 0 0 0 0
0 0 1 0 0 0 0 0 ω 0 0 0 0 0 ω3 0 0 0
0 0 0 1 0 0 0 0 0 ω 0 0 0 0 0 ω3 0 0
0 0 0 0 1 0 0 0 0 0 ω 0 0 0 0 0 ω3 0
0 0 0 0 0 1 0 0 0 0 0 ω 0 0 0 0 0 ω3

0 0 0 0 0 0 ω2−ω 0 0 0 0 0 ω5−ω3 0 0 0 0 0
0 0 0 0 0 0 0 ω2−ω 0 0 0 0 0 ω5−ω3 0 0 0 0
0 0 0 0 0 0 0 0 ω2−ω 0 0 0 0 0 ω5−ω3 0 0 0
0 0 0 0 0 0 0 0 0 ω2−ω 0 0 0 0 0 ω5−ω3 0 0
0 0 0 0 0 0 0 0 0 0 ω2−ω 0 0 0 0 0 ω5−ω3 0
0 0 0 0 0 0 0 0 0 0 0 ω2−ω 0 0 0 0 0 ω5−ω3

0 0 0 0 0 0 0 0 0 0 0 0 ω4−ω3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 ω4−ω3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ω4−ω3 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ω4−ω3 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ω4−ω3 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ω4−ω3



.

The determinant is ω24(ω − 1)12, which is nonzero because ω 6= 0, 1. Therefore, M1 can be
made to be upper triangular with a non-zero determinant.

Lastly, M3 can be examined, which is as follows:

(1, 1, 1, 0) (1, 1, 0, 1) (1, 0, 1, 1) (0, 1, 1, 1)
x1x2x3 1 0 0 0
x1x2x4 0 1 0 0
x1x3x4 0 0 1 0
x2x3x4 0 0 0 1

.

Clearly, M3 is upper triangular with a non-zero determinant. Thus, G can be expressed as an
upper triangular matrix with the determinant being non-zero. Therefore, all 35 row vectors
are linearly independent, so k = 35. �

Proposition 5.8. For BC(`,j) with q � 0 (l ≥ j), k ≥ `j + 1.

Proof. First, some definitions are necessary. Note that in all of the above matrices in the rows
which correspond to the monomials, for each degree of each monomial, a diagonal submatrix
was formed. For example, examine the following:

(1, 0, 0) (0, 1, 0) (0, 0, 1) (ω, 0, 0) (0, ω, 0) (0, 0, ω)
x1 1 0 0 ω 0 0
x2 0 1 0 0 ω 0
x3 0 0 1 0 0 ω
x2

1 1 0 0 ω2 0 0
x2

1 0 1 0 0 ω2 0
x2

3 0 0 1 0 0 ω2

.

In order to allow for arbitrary ` to be included in the argument, consider the equivalent
abbreviated matrix for this matrix (which is not contingent upon the choice of `):

(1) (ω)
xi 1 ω
x2
i 1 ω2

.

Each entry in this abbreviated matrix corresponds to an ` × ` block of the larger matrix of
the form (entry element)(I`), where I` is the ` × ` identity matrix. If the determinant of this
abbreviated matrix is shown to be non-zero for certain q, then the determinant of the larger
matrix is non-zero.
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Now we recall how a determinant is calculated. An entry in the first row of the matrix is
multiplied by 1 or −1 and then multiplied by the determinant of its cofactor. Repeating this
process until all cofactor determinants are calculated reveals that this process is analogous to
a permutation. Thus, for a matrix A, det(A) =

∑
(−1)aAσ, where Aσ is a permutation and

a is dependent upon whether Aσ is even or odd. Examine the matrix G that consists of the
following `j + 1 rows of the matrix that generates the code:

G =



(1) (ω) (ω2) (ω3) (ω4) (ω5) . . .
1 1 1 1 1 1 1 . . .
xi 1 ω ω2 ω3 ω4 (ω5) . . .
x2
i 1 ω2 ω4 ω6 ω8 (ω10) . . .
x3
i 1 ω3 ω6 ω9 ω12 (ω15) . . .
x4
i 1 ω4 ω8 ω12 ω16 (ω20) . . .
x5
i 1 ω5 ω10 ω15 ω20 (ω25) . . .
...

...
...

...
...

...
...

. . .


.

Observe that for a permutation σ, for the mth row (the initial row, corresponding to the
constant polynomial, is termed the 0th row), a column is uniquely identified (which is identified
with a term of degree im). It follows then that the total degree of the term in the maximal

minor of G for the permutation σ is
j∑

m=0
(m)(im). The term of highest degree (treating ω as

a variable) is sought. The main diagonal has the property that (im) = m, so
j∑

m=0
(m)(im) =

j∑
m=0

m2 = j(j+1)(2j+1)
6 . Thus, if the main diagonal provides the highest degree term in the

maximal minor, it must be demonstrated that
j∑

m=0
(m)(im) < j(j+1)(2j+1)

6 , where it is assumed

that s 6= is for at least one such s.
Proof by induction will be used. The base case is j = 1 (the j = 0 case is a 1×1 matrix, so

the conditions of the inequality cannot be fulfilled). The matrix for the j = 1 case is

(1) (ω)
1 1 1
xi 1 ω

.

The main diagonal term has degree 1, which is collaborated by the summation formula:

1(1+1)(2+1)
6 = 6

6 = 1. The other diagonal (which is the only option for
j∑

m=0
(m)(im) such

that s 6= is for at least one such s) has degree
j∑

m=0
(m)(im) = (0)(1) + (1)(0) = 0. Thus, the

inequality holds for the base case.

Now, assume
j∑

m=0
(m)(im) < j(j+1)(2j+1)

6 . We must show

j+1∑
m=0

(m)(im) <
(j + 1)((j + 1) + 1)(2(j + 1) + 1)

6
,

with s 6= is for at least one such s. Without the loss of generality, assume that s is the maximal
index such that is 6= s. Thus, it = s for some t < s, and ir = r for all r > s.
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Then
j+1∑
m=0

(m)(im) is as follows:

j+1∑
m=0

(m)(im) =
s∑

m=0
m6=t

(m)(im) + (t)(it) +

j+1∑
m=s+1

(m)(im)

=
t−1∑
m=0

(m)(im) +
s∑

m=t+1

(m)(im) + (t)(s) +

j+1∑
m=s+1

m2

=
t−1∑
m=0

(m)(im) +
s−1∑
m=t

(m+ 1)(im+1) + (t)(s) +

j+1∑
m=s+1

m2

=
t−1∑
m=0

(m)(im) +
s−1∑
m=t

(m)(im+1) +
s−1∑
m=t

im+1 + (t)(s) +

j+1∑
m=s+1

m2.

Let {i0, . . . , it−1, it+1, . . . , is} = {a0, . . . , as−1} ⊆ [s− 1] to combine the first two summations:

j+1∑
m=0

(m)(im) =

s−1∑
m=0

(m)(am) +

s−1∑
m=t

im+1 + (t)(s) +

j+1∑
m=s+1

m2.

Use the induction hypothesis on the first term:

j+1∑
m=0

(m)(im) <
(s− 1)(s)(2(s− 1) + 1)

6
+

s−1∑
m=t

im+1 + (t)(s) +

j+1∑
m=s+1

m2.

Summation formulas can be used to simplify the expression:

j+1∑
m=0

(m)(im) <
(s− 1)(s)(2(s− 1) + 1)

6
+

(s− 1)s

2
− (t− 1)t

2
+ ts

+
(j + 1)((j + 1) + 1)(2(j + 1) + 1)

6
− (s(s+ 1)(2s+ 1)

6
.

Thus, it suffices to show

(s− 1)(s)(2(s− 1) + 1)

6
+

(s− 1)s

2
− (t− 1)t

2
+ ts

+
(j + 1)((j + 1) + 1)(2(j + 1) + 1)

6
− (s(s+ 1)(2s+ 1)

6

<
(j + 1)((j + 1) + 1)(2(j + 1) + 1)

6
,

which is analogous to

(s− 1)(s)(2(s− 1) + 1)

6
+

(s− 1)s

2
− (t− 1)t

2
+ ts− (s(s+ 1)(2s+ 1)

6
< 0

and to

(s(s+ 1)(2s+ 1)

6
−
(

(s− 1)(s)(2(s− 1) + 1)

6
+

(s− 1)s

2
− (t− 1)t

2
+ ts

)
> 0.

Algebraic manipulation of the left-hand side of the last inequality follows:

(s(s+ 1)(2s+ 1)

6
−
(

(s− 1)(s)(2(s− 1) + 1)

6
+

(s− 1)s

2
− (t− 1)t

2
+ ts

)
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=
1

6
((s(s+ 1)(2s+ 1)− ((s− 1)s(2s− 1) + 3(s− 1)s− 3(t− 1)t+ 6ts)))

=
1

6
(2s3 + 3s2 + s− (2s3 − 2s− 3t2 + 3t+ 6st)) =

1

6
(3s2 + 3s+ 3t2 − 3t− 6st)

=
1

2
(s2 + s+ t2 − t− 2st) =

1

2
((s− t)(s− t+ 1))

Since t < s, s− t > 0, and s− t+ 1 > 0. Thus,

(s(s+ 1)(2s+ 1)

6
−
(

(s− 1)(s)(2(s− 1) + 1)

6
+

(s− 1)s

2
− (t− 1)t

2
+ ts

)
=

1

2
((s− t)(s− t+ 1)) > 0,

directly implying
j+1∑
m=0

(m)(im) < (j+1)((j+1)+1)(2(j+1)+1)
6 , completing the proof that the term of

maximal degree in the determinant of the abbreviated form of G is obtained by multiplication

along the main diagonal, which evaluates to (j)(j+1)(2j+1)
6 . However, this expression is not the

term of highest degree in G, since each term in the abbreviated form of G describes an ` × `
submatrix. Since this `× ` submatrix is the identity matrix multiplied by a constant, the only
way to keep a term in the determinant of G non-zero is by multiplying along the diagonal of
the submatrix. Thus, for the submatrix corresponding to ωi, instead of contributing a term of
degree i to a term in the determinant using the submatrix, the submatrix contributes a term of

degree (`)(i) to the term. Thus, the term of highest degree in the determinant is ` (j)(j+1)(2j+1)
6 .

It follows from the existence of this term that the determinant is also not zero. By an extension

of the Fundamental Theorem of Algebra to finite fields, there can be as many as ` (j)(j+1)(2j+1)
6

zeros in the expression describing the determinant of G. Let q > ` (j)(j+1)(2j+1)
6 . Thus, there

are more elements in the finite field than zeros in the determinant. Let ω be an element of the
finite field which is not a zero of the determinant, directly implying that the determinant of
G is not zero. Thus, all of the row vectors of G are linearly independent. Therefore, as long
as q is sufficiently large, k ≥ `(j) + 1. �

6. Binary Simplicial Complex Codes

Error-correcting codes are typically binary codes because of the prominence of the binary
system in computer operations. Thus, in this section, only binary codes (q = 2) are examined.
These codes derive from different classes of simplicial complexes. Starting with a proposition
concerning the dimension for any binary simplicial complex code, the section then moves onto
corollaries concerning specific cases of these codes. An examination of polygons and then
skeletons (defined later) follows. The section ends in a significant result regarding minimum
distance for skeletal codes.

6.1. Dimension. An important part of the examination of the dimension of binary simplicial
complex codes is the concept of a face vector, fi, in the simplicial complex.

Definition 6.1. A face vector, fi, represents the number of faces of dimension i−1 for a given
simplicial complex. That is, fi = |{σ ∈ ∆ : |σ| = i}| for 0 ≤ i. The trivial case, f0, is defined
as f0 = 1.

Proposition 6.2. For binary simplicial complex codes, k =
j∑
i=0

fi.
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Proof. This proposition is analogous to the claim that the evaluation of the Hilbert function
upon a Stanley-Reisner ring based upon a simplicial complex (F(∆); the ring is assumed to be
over F`2 for some `) is H(SR(∆),m) = fm (the dimension is merely the sum for these Hilbert
function evaluations from 0 to j, which constitutes the upper bound previously determined).
The main reason that these formulas hold is that in a polynomial ring over F2, xn and x (for
n a positive integer) evaluate the same over F2. Examine the formation of an ideal based
upon a simplicial complex: the ideal is based upon faces that are not a part of the simplicial
complex. Thus, if a point i and a line segment jk are not a part of the simplicial complex,
then xi and xjxk (respectively) are contained in the ideal, meaning that the polynomials xi
and xjxk do not contribute unique row vectors in the matrix describing the code (these row
vectors would be the zero vector since the evaluation of the polynomial at each point that
represents a column would be zero since each such point is in P (A∆)). The argument holds
true for cases for higher dimensional faces. Thus, it readily becomes clear that the maximum
number of linearly independent row vectors in this case directly corresponds to how many faces
of each dimension there are in the simplicial complex. Furthermore, this maximum number
is the exact number because analogously to the previous proofs dealing with the Boolean
arrangement, points in the ideal can be carefully chosen to create an upper triangular matrix.
Therefore, the total number of face vectors of dimension m that are in the simplicial complex
is equal to the evaluation of the Hilbert function at m. Thus, the dimension of the code is the
summation of the Hilbert function from m = 0 to m = j, which is the summation of the face

vectors from f0 through fj : k =
j∑
i=0

fi. �

Corollary 6.3. Let M denote the dimension of the minimum dimensional non-face in a

simplicial complex ∆. Then, if j ≤M − 1, the dimension of C(A∆, j) is k =
j∑

m=0

(
`
m

)
.

Proof. First note that in F2[x1, . . . , x`], for n a positive integer, the polynomials xn and x
evaluate the same on 0 and 1. Thus, in the matrix construction of the code, squarefree
monomials need only to be considered (any further ones will result in a row vector being

identical to the row vector corresponding to the squarefree monomial). Thus, there are
(
`
i

)
monomials with unique evaluation over F2 of degree i. Since j ≤M−1, all of these monomials
with unique evaluation are in the Stanley-Reisner Ring (the faces corresponding to these
monomials are in the simplicial complex). For I = {i1, . . . , it}, let eI = ei1,...,it correspond to
the point in F`2 with 1s in the i1, . . . , it positions and 0s elsewhere. For example, if I = {0, 2, 3},
then eI = e0,2,3 = (1, 0, 1, 1, 0, . . . ). Let XI be defined as x1 · · ·xt (note that the origin,
(0, . . . , 0) and the constant polynomial are defined as e{} and X{}, respectively). Thus, for

I 6= {}, XI(eJ) =

{
1 I ⊆ J
0 I * J

. Now, construct G such that the polynomials are normally

ordered (from lowest to highest degree, in lexicographic order within the same degree). Order
the columns such that if XI is in the jth row, then eI is in the jth column (note that A = {}):

G =

eA eB eC eD . . .
XA 1 1 1 1 . . .
XB 0 1 ∗ . . . . . .
XC 0 0 1 ∗ . . .
XD 0 0 0 1 . . .

...
...

. . .
. . .

. . .
. . .

.
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Thus, with this careful ordering, an upper triangular matrix is formed, thereby implying that
each of the row vectors are linearly independent. Since this method of ordering covers all
monomials in the Stanley-Reisner Ring, all row vectors in G are linearly independent, so the

dimension of the code is equal to the number of polynomials up to degree j: k =
j∑

m=0

(
`
m

)
. �

Corollary 6.4. If the subspace arrangement is the Boolean arrangement (I = < x1 · · ·x` >),

then the length is n = 2` − 1 and the dimension is k =
j∑

m=0

(
`
m

)
.

Proof. The formula for the length of the code is trivial: there are a total of 2` points in F`2,
and the only point not in the ideal is the point with each component being 1, (1, 1, 1, . . . , 1).
As for dimension, the previous result can be used. Since the Boolean arrangement is used,

M = `. Clearly, j < `− 1, so k =
j∑

m=0

(
`
m

)
. �

Remark 6.5. While a convenient formula for dimension has been fairly easily determined, the
case for minimum distance is much more difficult. In order to obtain some results on minimum
distance, specific cases (such as letting j = 1) are examined in later portions of this paper.

6.2. Polygons. A specific class of simplicial complexes are now examined; namely, the sim-
plicial complex is a polygon.

Definition 6.6. Let Pm be the simplicial complex that is an m-gon. Thus, Pm = {{1}, {2},
. . . , {m}, {1, 2}, {2, 3}, . . . , {m− 1,m}, {1,m}}.
Proposition 6.7. The characteristic polynomial for a code based upon Pm is χ(APm , t) =
tm −mt2 +mt− 1.

Proof. Recall that L(APm) is a lattice that refers to intersections of all subspaces of the
coordinate hyperplanes corresponding to the simplicial complex ∆. The Hasse Diagram for
L(APm

) is depicted in Figure 8. Clearly, at the bottom of the hierarchy is Pm itself, which
corresponds to the vector space Fmq of dimension m. The level of atoms consists of the edges
in Pm (which has dimension 2), whose intersections from the collection of vertices at the third
level (which has dimension 1). At the top of the diagram is the empty set (with dimension
0), which is the only element in the intersection of two vertices. The next step in determining
the characteristic polynomial is evaluating the Möbius function upon the components of the
diagram (in Figure 8, the evaluation of the Möbius function on each component is in red). By
definition, the Möbius function evaluates to 1 on Pm. The atoms of L(APm

) are then each −1
(which is the negative of the evaluation of the Möbius function on Pm). Each edge has two
vertices ordered below it, along with Pm, so the Möbius function evaluates to −(2(−1)+1) = 1.
For the empty set, there are m vertices (with value 1) and m edges (with value −1), along
with Pm (with value 1), so the Möbius function evaluates to −((m)(1) + (m)(−1) + 1) = −1.
Thus, the characteristic polynomial can be formed by combing the dimension of each level of
the diagram along with evaluation of the Möbius function: χ(APm

, t) = tm−mt2 +mt−1. �

Corollary 6.8. The length of C(APm
, j) is n = 2m+ 1.

Proof. The formula for length, when q = 2 is

n = 2m − χ(APm , 2) = 2m − (2m − 22m+ 2m− 1)

= 2m − 2m + 4m− 2m+ 1 = 2m+ 1.

�
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Figure 8. Hasse diagram of L(APm)

Proposition 6.9. The dimension of C(APm , 1) is m+ 1, and the minimum distance is 3.

Proof. Recall that k =
j∑
i=0

fi. Thus, k =
1∑
i=0

fi = f0 + f1 = 1 +m = m+ 1.

In Fm2 , let ei = (0, . . . , 0, 1, 0, . . . , 0), where the 1 is in the ith position, where i ranges from
0 to m − 1 (so the initial position is the 0th position). For consistency, the origin is defined
as e{}. Let e(i)(j) then be defined as ei + ej . For Pm, APm corresponds to a collection of m
coordinate planes in Fm2 which are spanned by adjacent coordinate axis (that is, the planes
spanned by x0 and x1; x1 and x2; . . . ; xm−2 and xm−1; and x1 and xm−1). The points in the
subspace arrangement are thus

P (APm) =
⋃

X∈APm

Xi = {e{}} ∪ {ei} ∪ {e(i)(i+1)}

for 0 ≤ i ≤ m − 1. Note that i + 1 is addition modulo m. For simplicity, let the polynomials
in the Stanley-Reisner ring up to degree j = 1 be labeled as 1, x0, x1, . . . , xm−2, and xm−1.
For p ∈ APm

,

xi(p) =

{
1 if p = ei, e(i−1)(i), e(i)(i+1)

0 else
.

Thus, since each non-constant polynomial evaluates to 1 for only 3 points in P (APm
), the

minimum Hamming weight among the codewords that form the basis of the code is 3. Observe
that when two codewords (corresponding to polynomials of degree 1) of the basis are added, two
possibilities exist: xi+xj (j > i+1 mod m) and xi+xi+1. For xi+xj , {ei, e(i−1)(i), e(i)(i+1)}∩
{ej , e(j−1)(j), e(j)(j+1)} = {} gives the location of overlapping ones, so the Hamming weight is
3 + 3 = 6. For xi +xi+1, {ei, e(i−1)(i), e(i)(i+1)}∩{ei−1, e(i−2)(i−1), e(i−1)(i)} = {e(i−1)(i)} gives
the location of overlapping ones, so the Hamming weight is 3 + 3 − (2)(1) = 4. Both cases
yield a Hamming weight greater than 3. Additionally, if 3 or more codewords (corresponding
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to polynomials of degree 1) are added (xi + xj + xk + · · · ), then ei, ej , ek, . . . are not in the
intersection, so there are at least 3 non-overlapping ones.

Now, care must be exercised in adding the codeword (1, 1, . . . , 1). When this codeword
is added to any other codeword with Hamming weight w, the Hamming weight becomes
2m + 1 − w. Note that when m = 3, when two codewords corresponding to polynomials
of degree 1 are added, the case is never xi + xj , making the Hamming weight 4. Adding
any two codewords (corresponding to polynomials of degree 1) with the constant polynomial
results in 2m+ 1− 4 = 7− 4 = 3. For m ≥ 4, 2m + 1− 6 ≥ (2)(4)− 5 = 3 (the xi+xj case)
and 2m + 1 − 4 ≥ (2)(4) − 4 = 5 (the xi + xi+1 case), so the minimum Hamming weight is
still 3 after any two codewords (corresponding to polynomials of degree 1) are added with the
codeword (1, 1, . . . , 1). When 3 or more codewords (corresponding to polynomials of degree
1) are added, two cases arise: either 3 or more points evaluate to 1 on multiple polynomials,
or fewer than 3 points have this overlap. If the case is the former, then adding the sum with
the codeword (1, 1, . . . , 1) yields a codeword with Hamming weight of at least 3 (since the
overlapped points had ones that added to 0 since only two codewords [xi, xi+1] can overlap at
e(i)(i+1)). If only 2 points overlap, then it is the case xi−1 + xi + xi+1 + . . . , with xi+2 6= xi−1

(or else 3 points would overlap). Note then that xi+2 cannot be in the sum of codewords
(since it would evaluate to one on the e(i+1)(i+2) with xi+1, creating an additional overlapping
point). Thus, the component of the sum corresponding to ei+1 is 0. When the codewords
are added, the components corresponding to the overlapping points become zero (since only
two codewords overlap at those points), in addition to the component corresponding to ei+1.
Thus, when (1, 1, . . . , 1) is added, at least 3 components of the vector are 1, so the Hamming
weight is at least 3. In the case with 1 point overlapping, the sum must be xi+xi+1 +xj + . . .
with xi−1 and xi+2 not in the sum. Thus, the components corresponding to ei−1 and ei+1 are
0, along with e(i)(i+1) (because of the overlap). Hence when the sum is added to (1, 1, . . . , 1),
the Hamming weight is at least 3. If no points are overlapping, then the sum of codewords is
xi + xj + xk + . . . with xi+1, xj+1, and xk+1 all not in the sum (clearly, xi+1 6= xj+1 6= xk+1).
Thus, in the sum of these codewords, the components corresponding to ei+1, ej+1, and ek+1

are 0. Therefore, when the sum is added to (1, 1, . . . , 1), the Hamming weight is at least 3.
Thus, no matter how many codewords are added, the Hamming weight remains at least 3.
Therefore, d = 3. �

Proposition 6.10. The dimension of C(APm
, 2) is 2m+ 1, and the minimum distance is 1.

Proof. Recall that k =
j∑
i=0

fi. Thus, k =
2∑
i=0

fi = f0 + f1 + f2 = 1 + m + m = 2m + 1. By

Proposition 6.2, n = 2m + 1. Thus, the generating matrix for the code can be made into an
upper triangular (2m+ 1)× (2m+ 1) matrix with 1s along the diagonal (since the row vectors
are linearly independent). Thus the last row of the vector must have have all nonzero entries
with the exception of the last entry (that is, (0, 0, . . . , 0, 1)), giving it a Hamming weight of 1.
Therefore, the minimum Hamming weight (and the minimum distance) of the codes is 1. �

Remark 6.11. The general characterization of binary codes based upon a simplicial complex
which is an m-gon is as follows. The case with j = 0 is trivial and not included. Work above
indicates that if j = 1, a [2m+1,m+1, 3]2 code results, whereas if j ≥ 2, a [2m+1, 2m+1, 1]2
code results. Note that if j > 3, no more linearly independent row vectors are created (since
there are no points in the ideal with three components that are 1 since only edges are vertices
are present in the simplicial complex).

6.3. Skeletal Codes. Computing the minimum distance for a general simplicial complex
evaluation code at this time seems difficult. In this section we focus on one case where the
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minimum distance can be calculated. The proof is elementary but slightly involved. To begin
we define the codes and examine a few examples.

Definition 6.12. For 0 ≤ h ≤ ` an h-skeleton is a simplicial complex, denoted by ∆(`, h), on
` vertices consisting of all possible h− 1 to 0-dimensional faces.

Definition 6.13. A binary h-skeleton code is the binary evaluation code C(A∆(`,h), j)2 of the
associated coordinate arrangement to the h-skeleton and is denoted K(`, h, j).

The length of these codes is obtained by counting the number of points that have at most
h non-zero entries. Hence, the length of K(`, h, j) is

(1) n =
h∑
i=0

(
`

i

)
.

The dimension can be found as a specialization of Proposition 6.2.

Corollary 6.14. For 0 ≤ j ≤ h ≤ `

dim(K(`, h, j)) =

j∑
i=0

(
`

i

)
.

For the remainder of this section we study the minimum distance of the codes K(`, h, j). In
order to obtain more information about K(`, h, j) we need to examine and carefully construct
a convenient generating matrix. To do this we need a little notation. Let σ = {i1, . . . , ir} ⊆ [`]
and let xσ = xi1xi2 · · ·xir . With this notation, the Stanley-Reisner ideal of ∆(`, h) is

I∆(`,h) = (xσ : |σ| = h+ 1).

To denote points in the arrangementA∆(`,h) we let {e1 . . . , e`} be the standard basis for V = F`2
(that is, ei has all components 0 except a 1 in the i-th coordinate). Now for τ = {i1, . . . , is} ⊆
[`] let eτ =

s∑
k=1

eik . Then the set of all points in the arrangement A∆(`,h) is ⋃
X∈A∆(`,h)

X

 = {eτ : 1 ≤ |τ | ≤ h}.

Now we will construct the blocks of the generating matrix for K(`, h, j). Let Brs be the
matrix defined as

(2) Brs = (xσ(eτ ))

where |σ| = r, |τ | = s, and the rows and columns are ordered lexicographically. Then a
generating matrix G(`, h, j) of K(`, h, j) constructed block-wise is

G(`, h, j) = (Brs)0≤r≤j
0≤s≤h

.

We can now denote column and row blocks of the generating matrix.

Definition 6.15. Let CBt = {Brt : 0 ≤ r ≤ h} be the union of the blocks of columns in the
matrix of the code with t ones in each point. Let RBt = {Btr : 0 ≤ r ≤ j} be the union of the
blocks of rows in the matrix of the code with t ones in each point.

This notation for the generating matrix streamlines the computation of minimum distance.
We begin by presenting an upper bound for the minimum distance.
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Lemma 6.16. For 0 ≤ j ≤ h ≤ ` the minimum distance of K(`, h, j) satisfies

d ≤
h−j∑
i=0

(
`− j
i

)
.

Proof. In the generating matrix G(`, h, j) the rows in the last row block RBj have the smallest
weight. The smallest t such that Bjt has no zero entries is when t = j. The Hamming weight

of any row of Bjt for j ≤ t ≤ h is
(
`−j
t−j
)
. Hence, the Hamming weight of an entire row in RBj

is
h∑
i=j

(
`− j
i− j

)
.

�

Remark 6.17. If j = h then K(`, h, j) is a maximum distance separable (MDS) code but the
minimum distance is 1 because the upper bound here is 1. An MDS code is one that satisfies
the Singleton bound of k ≤ n− d+ 1.

If j = 1 then the minimum distance is bounded by d ≤
h−1∑
i=0

(
`−1
i

)
. It seems difficult to

determine the actual minimum distance. The main result of this paper (Theorem 6.22) is that
this upper bound is exactly the minimum distance for the case j = 1. First, we obtain a
formula for the Hamming weight of adding s rows of the generating matrix. In order to do
develop this formula, we need a little more notation. Suppose xi1 , . . . , xis are the degree one
monomials that correspond to the s rows we are to sum in B1a. Let Pa be the set of all points
in F`2 that have exactly a nonzero entries. Note that Pa corresponds to the columns of B1a.

Definition 6.18. For 1 ≤ t ≤ s, let Xr := {p ∈ Pa : xir (p) = 1}. Let La,st be the set of all
the sets of points that evaluate to 1 on at least t degree one monomials, so

La,st = {Xk1 ∩ · · · ∩Xkt : {k1, . . . , kt} ⊆ {i1, . . . , is}}.

If we wanted to calculate the size of the union of the sets Xi1 ∪ · · · ∪Xis , then we could use
a standard inclusion-exclusion formula

|Xi1 ∪ · · · ∪Xis | =
s∑
t=1

(−1)t+1
∑

Y ∈La,s
t

|Y |.

However, we want to calculate the Hamming weight of the sum of these row vectors of which
not all points will sum to 1. To do this we will create a generalized inclusion-exclusion formula.

Lemma 6.19. The Hamming weight of adding s row vectors of B1a of the code C(A∆(l,h), 1)
is

s∑
t=1

(−2)t−1
∑

Y ∈La,s
t

|Y |.

Proof. We prove this by induction. The critical idea here is that if a point p is contained in
exactly t sets Xk1 , . . . , Xkt and not in any others, then the entry corresponding to this point in
the sum will be 0 if t is even and 1 if t is odd. Let ct be the coefficient that will be multiplied
to the point p that is contained in exactly t sets Xk1

, . . . , Xkt in the sum (note that points are
the objects being summed here because the Y s consist of points). In the case when t = 1, we
want to count all the points that are in exactly 1 set. We therefore sum the entirety of the sets
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of just one intersection:
s∑
r=1
|Xir |. Thus, the coefficient is c1 = 1 for the t = 1 term. However,

if t > 1, the point p has already been counted in lower terms because it is also a subset of all
possible intersections of these t sets:

Xk1
, . . . , Xkt , Xk1

∩Xk2
, . . . , Xkt−1

∩Xkt , . . . , Xk1
∩ · · · ∩Xkt−1

, . . . , Xk2
∩ · · ·Xkt .

Because we want the coefficient for t odd to be 1 and for t even to be zero, we now have that

t∑
r=1

(
t

r

)
cr =

{
1 t odd
0 t even

.

One method to do this is to set

t∑
r=1

(
t

r

)
cr =

(−1)t − 1

−2
.

Now we prove by induction on t that ct = (−2)t−1. The base is already provided above.

By construction, ct+1 = (−1)t+1−1
−2 −

t∑
r=1

(
t+1
r

)
cr. Then by the induction hypothesis,

ct+1 =
(−1)t+1 − 1

−2
−

t∑
r=1

(
t+ 1

r

)
(−2)r−1.

Using the binomial expansion formula, we see that that

(−1)t+1 = (−2 + 1)t+1 =
t+1∑
i=0

(
t+ 1

i

)
(−2)i1t+1−i =

t+1∑
i=0

(
t+ 1

i

)
(−2)i

= 1 +

t+1∑
i=1

(
t+ 1

i

)
(−2)i = 1 + (−2)

t+1∑
i=1

(
t+ 1

i

)
(−2)i−1.

Hence,

(−1)t+1 − 1

−2
=

t+1∑
i=1

(
t+ 1

i

)
(−2)i−1 = (−2)t +

t∑
i=1

(
t+ 1

i

)
(−2)i−1.

Now add the sum to both sides of this equation to obtain

(−2)t =
(−1)t+1 − 1

−2
−

t∑
i=1

(
t+ 1

i

)
(−2)i−1 = ct.

�

Lemma 6.19 gives a nice method to compute the Hamming weight of the sum of s row
vectors.

Lemma 6.20. The Hamming weight of adding s vectors in RB1 is

h∑
a=1

s∑
t=1

(−2)t−1

(
s

t

)(
`− t
a− t

)
.
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Proof. Note that for any Y ∈ La,st , the size is |Y | =
(
`−t
a−t
)

since t of the nonzero entries must

match up with the t monomials (so there are a− t ones left to chose from the remaining `− t
components of the point). Since we can choose any t subsets of the monomials, we have

|La,st | =
(
s

t

)
.

Then the formula for the Hamming weight is given by applying Lemma 6.19 and summing
over all possible column blocks CBa where 1 ≤ a ≤ h. �

Next we prove a technical lemma that will be used in the proof of the main theorem.

Lemma 6.21. If gsi =
i∑
t=1

(
s−t
i−t
)(
s
t

)
(−2)t−1, then

gsi =

{ (
s
i

)
2|i

0 2 - i .

Proof. We prove this in two cases. Case 1 is when i = 2m. Then

gs2m =

2m∑
t=1

(
s− t

2m− t

)(
s

t

)
(−2)t−1 =

2m∑
t=1

(s− t)!s!
(2m− t)!(s− 2m)!t!(s− t)!

(−2)t−1

=

2m∑
t=1

s!

(2m− t)!(s− 2m)!t!

(2m)!

(2m)!
(−2)t−1 =

s!

(s− 2m)!(2m)!

2m∑
t=1

(2m)!

(2m− t)!t!
(−2)

t−1

=

(
s

2m

)(
−1

2

)[ 2m∑
t=1

(
2m

t

)
(−2)t

]
=

(
s

2m

)(
−1

2

)[ 2m∑
t=0

(
2m

t

)
(−2)t − 1

]

=

(
s

2m

)(
−1

2

)[ 2m∑
t=0

(
2m

t

)
(−2)t(1)2m−t − 1

]
=

(
s

2m

)(
−1

2

)[
(1− 2)2m − 1

]
=

(
s

2m

)(
−1

2

)
(1− 1) = 0.

Case 2 is when i = 2m+ 1. Then

gs2m+1 =
2m+1∑
t=1

(
s− t

2m+ 1− t

)(
s

t

)
(−2)t−1

=
2m+1∑
t=1

(s− t)!s!
(2m+ 1− t)!(s− 2m− 1)!t!(s− t)!

(−2)t−1

=
2m+1∑
t=1

s!

(2m+ 1− t)!(s− 2m− 1)!t!

(2m+ 1)!

(2m+ 1)!
(−2)t−1

=
s!

(s− 2m− 1)!(2m+ 1)!

2m+1∑
t=1

(2m+ 1)!

(2m+ 1− t)!t!
(−2)t−1

=

(
s

2m+ 1

)(
−1

2

)[2m+1∑
t=1

(
2m+ 1

t

)
(−2)t

]

=

(
s

2m+ 1

)(
−1

2

)[2m+1∑
t=0

(
2m+ 1

t

)
(−2)t − 1

]
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=

(
s

2m+ 1

)(
−1

2

)[2m+1∑
t=0

(
2m+ 1

t

)
(−2)t(1)2m+1−t − 1

]

=

(
s

2m+ 1

)(
−1

2

)[
(1− 2)2m+1 − 1

]
=

(
s

2m

)(
−1

2

)
(−1− 1)

=

(
s

2m

)(
−1

2

)
(−2) =

(
s

2m

)
.

�

Notice that the formula in Lemma 6.20 for the case s = 1 is exactly the computation made
in Lemma 6.16. In order to show that this value for s = 1 is exactly the minimum distance, it
is enough to show that the sum for s > 1 is greater than that for s = 1, since q = 2. Now we
can state and prove the main theorem of this paper.

Theorem 6.22. The minimum distance of the codes C(A∆(`,h), 1) = K(`, h, 1) is

h∑
a=1

(
`− 1

a− 1

)
.

Proof. We need to show that the Hamming weight of adding s rows given in Lemma 6.20 is
always larger than the Hamming weight of one row given in Lemma 6.16:

h∑
a=1

s∑
t=1

(−2)t−1

(
s

t

)(
`− t
a− t

)
≥

h∑
a=1

(
`− 1

a− 1

)
This is equivalent to showing

(3)

h∑
a=1

[(
s∑
t=1

(−2)t−1

(
s

t

)(
`− t
a− t

))
−
(
`− 1

a− 1

)]
≥ 0.

Now we use Pascal’s formula to allow for the exchange of terms of 3. We examine the term(
`− t
a− t

)
=

(
`− t− 1

a− t

)
+

(
`− t− 1

a− t− 1

)
=

((
`− t− 2

a− t

)
+

(
`− t− 2

a− t− 1

))
+

((
`− t− 2

a− t− 1

)
+

(
`− t− 3

a− t− 2

))
= . . .

Since, whenever Pascal’s formula is used, each binomial coefficient is broken down into two
binomial coefficients, the process is analogous to Pascal’s triangle: the top number, l − t− x,
corresponds to the xth row, and the bottom number, a− t−x, corresponds to the xth column.

Thus, there are
(
s−t
i−t
)

occurrences of each
(
`−s
a−i
)

for each t. Therefore,
(
`−t
a−t
)

=
s∑
i=1

(
`−s
a−i
)(
s−t
i−t
)
,

so the inequality we are trying to prove is now

(4)
h∑
a=1

[(
s∑
t=1

(−2)t−1

(
s

t

) s∑
i=1

(
`− s
a− i

)(
s− t
i− t

))
−

s∑
i=1

(
`− s
a− i

)(
s− 1

i− 1

)]
≥ 0.

Now focusing on the
(
`−s
a−s
)

terms, 4 becomes

(5)
h∑
a=1

[
s∑
i=1

((
s∑
t=1

(−2)t−1

(
s

t

)(
s− t
i− t

))
−
(
s− 1

i− 1

))(
`− s
a− i

)]
≥ 0
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Notice that the third sum is only nonzero when t ≤ i and that the
(
s−1
i−1

)
term only affects the

t = 1 term of the third sum. Hence, we can rewrite 5 as

(6)
h∑
a=1

[
s∑
i=1

(
(s− 1)

(
s− 1

i− 1

)
+

i∑
t=2

(−2)t−1

(
s

t

)(
s− t
i− t

))(
`− s
a− i

)]
≥ 0

Let dsi be the coefficient of
(
`−s
a−i
)

in 6:

dsi = (s− 1)

(
s− 1

i− 1

)
+

i∑
t=2

(−2)t−1

(
s

t

)(
s− t
i− t

)
.

Recall the numbers gsi from Lemma 6.21:

gsi =
i∑
t=1

(
s− t
i− t

)(
s

t

)
(−2)t−1.

Then

gsi − dsi =
i∑
t=1

(
s− t
i− t

)(
s

t

)
(−2)t−1 − (s− 1)

(
s− 1

i− 1

)
−

i∑
t=2

(−2)t−1

(
s

t

)(
s− t
i− t

)

=

(
s− 1

i− 1

)
.

Thus,

(7) ds2m+1 = gs2m+1 −
(
s− 1

2m

)
,

which, by Lemma 6.21, gives that 7 becomes

ds2m+1 = −
(
s− 1

2m

)
.

Using Lemma 7 again, we get

ds2m = gs2m −
(
s− 1

2m− 1

)
=

(
s

2m

)
−
(
s− 1

2m− 1

)
=

(
s− 1

2m

)
.

Hence,

(8) ds2m+1 = −ds2m.

The main inequality we are trying to prove, 6, can now be written as

(9)
h∑
a=1

[
s∑
i=1

dsi

(
`− s
a− i

)]
≥ 0.

Assume s = 2m is even and expand the left hand side of 9 via odds and evens:

h∑
a=1

[(
m∑
r=1

d2m
2r

(
`− 2m

a− 2r

))
+

(
m−1∑
r=0

d2m
2r+1

(
`− 2m

a− 2r − 1

))]
.

Then using 9 on the odd terms, we get

(10)

h∑
a=1

[(
m∑
r=1

d2m
2r

(
`− 2m

a− 2r

))
−

(
m−1∑
r=0

d2m
2r

(
`− 2m

a− 2r − 1

))]
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Figure 9. ∆(5, 2)

Then using Pascal’s formula on 10, we have

(11)
h∑
a=1

[
d2m

2m

(
`− 2m

a− 2m

)
− d2m

0

(
`− 2m

a− 1

)
+
m−1∑
r=1

d2m
2r

((
`− 2m

a− 2r

)
−
(

`− 2m

a− 2r − 1

))]
.

Then switch sums on 11 to get

(12) d2m
2m

h∑
a=1

(
`− 2m

a− 2m

)
−d2m

0

h∑
a=1

(
`− 2m

a− 1

)
+

[
m−1∑
r=1

d2m
2r

h∑
a=1

((
`− 2m

a− 2r

)
−
(

`− 2m

a− 2r − 1

))]
.

Then the sum in the left portion of 12 telescopes:

(13) d2m
2m

h∑
a=1

(
`− 2m

a− 2m

)
− d2m

0

h∑
a=1

(
`− 2m

a− 1

)
+

[
m−1∑
r=1

d2m
2r

(
−
(
`− 2m

−2r

)
+

(
`− 2m

h− 2r

))]
.

Then notice that d2m
0 = 0 and that 13 becomes

(14) d2m
2m

h∑
a=1

(
`− 2m

a− 2m

)
+

[
m−1∑
r=1

d2m
2r

(
`− 2m

h− 2r

)]
.

Since 14 is the left hand side of 6 and each term is positive, we have proved the theorem. �

Example 6.23. ∆(5, 2)consists of 5 vertices and all 1-dimensional and 0-dimensional faces
(which are the edges and vertices, respectively). This object is a 4-dimensional object, but it
can be approximated in Figure 9. The matrix generating K(5, 2, 1) is as follows:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 1 1 0 0 0
0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0
0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1

 .

Thus, by the formulas given in Equation 1, Corollary 6.14, and Theorem 6.22, K(5, 2, 1) is a

[
h∑
i=0

(
`
i

)
,
j∑
i=0

(
`
i

)
,
h∑
a=1

(
`−1
a−1

)
]2 = [

2∑
i=0

(
5
i

)
,

1∑
i=0

(
5
i

)
,

2∑
a=1

(
5−1
a−1

)
]2 = [16, 6, 5]2 code.
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Now we focus on the case when j > 1. It is more complicated, and we are not able
to calculate the minimum distance. However, we are able to find formulas for summing row
vectors of the generating matrix and and are able to compare these formulas to the conjectured
upper bound.

Definition 6.24. Let B(σ1, . . . , σs) be the Hamming weight of adding s rows of the generating
matrix G(`, h, j) where each row corresponds to a set σi ⊆ [`] = {1, . . . , `}.

The j > 1 analogue to Definition 6.18 is the following.

Definition 6.25. For 1 ≤ t ≤ s let Xσr := {p ∈ Pa : xσr (p) = 1}. Let La,st be the set of all
the sets of points that evaluate to 1 on at least t of the s monomials xσ1

, . . . , xσs
. Thus,

La,st = {Xk1 ∩ · · · ∩Xkt : {k1, . . . , kt} ⊆ {σ1, . . . , σs}}.

Proposition 6.26. For any skeletal code K(l, h, j), the Hamming weight of adding n rows of
the generating matrix is

B(σ1, . . . , σn) =

n∑
e=1

(−2)e−1
∑
I⊆[n]
|I|=e

B

(⋃
i∈I

σi

) =

n∑
e=1

(−2)e−1
∑
I⊆[n]
|I|=e

h−|∪σi|∑
i=0

(
`− |∪σi|

i

) .
Proof. The (−2)t−1 coefficient follows with the same argument as in Lemma 6.19. Then we
realize that the number of points in a t-fold intersection Y = Xk1

∩ · · · ∩Xkt ∈ L
a,s
t is equal

to the Hamming weight of the row corresponding to the union of the sets

t⋃
i=1

Xki .

Note that this row might not actually exist in the generating matrix. However, we can consider
it as a row in the full matrix where j = `. Finally, the remainder of the formula is realized by
applying Lemma 6.16. �

In order to show that the minimum distance is equal to the upper bound, it must be
demonstrated that

(15)

h−j∑
i=1

(
`− j
i

)
≤

n∑
e=1

(−2)e−1
∑
I⊆[n]
|I|=e

h−|∪σi|∑
i=0

(
`− |∪σi|

i

) .
However, this proof turns out to be difficult. For the remainder, we examine a few cases.

Proposition 6.27. For j > 1, B(σ1, σ2) ≥
h−j∑
i=1

(
`−j
i

)
.

Proof. Let |σ1| = i1, |σ2| = i2. Without the loss of generality, assume (relabeling as necessary)
i1 ≤ i2 and σ1 6= σ2 (else, B(σ1, σ2) = 0). Note that |σ1 ∪ σ2| ≥ i1 + 1. By Proposition 6.26,

B(σ1, σ2) = B(σ1) +B(σ2)− 2B(σ1 ∪ σ2)

=

h−i1∑
i=1

(
`− i1
i

)
+

h−i2∑
i=1

(
`− i2
i

)
− 2

h−|σ1∪σ2|∑
i=1

(
`− |σ1 ∪ σ2|

i

)
.
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Since |σ1 ∪ σ2| ≥ i1 + 1,

h−i1∑
i=1

(
`− i1
i

)
+

h−i2∑
i=1

(
`− i2
i

)
− 2

h−|σ1∪σ2|∑
i=1

(
`− |σ1 ∪ σ2|

i

)

≥
h−i1∑
i=1

(
`− i1
i

)
+

h−i2∑
i=1

(
`− i2
i

)
− 2

h−(i1+1)∑
i=1

(
`− (i1 + 1)

i

)
.

Hence, we prove the inequality for |σ1 ∪ σ2| = i1 + 1. There are now two cases: (1) i1 = i2
or (2) i1 + 1 = i2 and σ1 ⊆ σ2. For Case 1, assume i1 = i2 = a, so the left-hand side of the
proposed inequality becomes

2

(
h−a∑
i=1

(
`− a
i

))
− 2

h−(a+1)∑
i=1

(
`− (a+ 1)

i

) .

Since j ≥ a,
h−j∑
i=1

(
`−j
i

)
≤
h−a∑
i=1

(
`−a
i

)
, so it suffices to show

2

(
h−a∑
i=1

(
`− a
i

))
− 2

h−(a+1)∑
i=1

(
`− (a+ 1)

i

) ≥ h−a∑
i=1

(
`− a
i

)
.

This last expression can be rewritten as

h−a∑
i=1

(
`− a
i

)
− 2

h−(a+1)∑
i=1

(
`− (a+ 1)

i

) ≥ 0.

We can phrase this last inequality by saying, “The Hamming Weight decreases by more than
half in each group of rows (each group of rows corresponds to polynomials of the same degree).”
Since

(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
,

h−a∑
i=1

(
`− a
i

)
− 2

h−(a+1)∑
i=1

(
`− (a+ 1)

i

)
=
h−a∑
i=1

((
`− a− 1

i

)
+

(
`− a− 1

i− 1

))
− 2

(
h−a−1∑
i=1

(
`− a− 1

i

))

= 2

(
h−a−1∑
i=1

(
`− a− 1

i

))
− 2

(
h−a−1∑
i=1

(
`− a− 1

i

))
+

(
`− a− 1

0

)
+

(
`− a− 1

h− a

)
= 1 +

(
`− a− 1

h− a

)
≥ 0.

Thus, for Case 1, B(σ1, σ2) ≥
h−j∑
i=1

(
`−j
i

)
.

For Case 2, since the Hamming Weight decreases by more than half in each group of rows,

B(σ1, σ2) ≥ B(σ1)−B(σ2) ≥ 1

2
B(σ1) ≥ B(σ2) ≥ B(σj),

where B(σj) =
h−j∑
i=1

(
`−j
i

)
, since |σj | ≥ |σ2|. Thus, B(σ1, σ2) ≥

h−j∑
i=1

(
`−j
i

)
. �
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Proposition 6.28. B(σ1, . . . , σn) = B(σ1, . . . , σn−1) +B(σn)− 2B(σ1 ∪ σn, . . . , σn−1 ∪ σn).

Proof. From Proposition 6.26,

(16) B(σ1, . . . , σn) =
n∑
i=1

B(σi)− 2
∑
i1,i2

B(σi1 ∪ σi2) + · · ·+ (−2)n−1B(σ1 ∪ · · · ∪ σn).

Rearranging so that all terms involving σn on the right-hand side of 16 are isolated yieldsn−1∑
i=1

B(σi)− 2
∑

i1,i2 6=n

B(σi1 ∪ σi2) + · · ·+ (−2)n−2B(σ1 ∪ · · · ∪ σn−1)

(17)

+

[
B(σn)− 2

n−1∑
i=1

B(σi ∪ σn) + · · ·+ (−2)n−1B(σ1 ∪ · · · ∪ σn)

]
.

Again, by Proposition 6.26,

(18) B(σ1, . . . , σn−1) =

n−1∑
i=1

B(σi)− 2
∑

i1,i2 6=n

B(σi1 ∪ σi2) + · · ·+ (−2)n−2B(σ1 ∪ · · · ∪ σn−1),

and, since σi ∪ σj ∪ σn = (σi ∪ σn) ∪ (σj ∪ σn),

B(σ1 ∪ σn, . . . , σn−1 ∪ σn)(19)

=
n−1∑
i=1

B(σi ∪ σn)− 2
∑
i1,i2

B(σi1 ∪ σi2 ∪ σn) + · · ·+ (−2)n−2B(σ1 ∪ · · · ∪ σn).

Substituting 18 and 19 back into the right-hand side of 17 yields the claimed formula. �

Proposition 6.29. Let |σ1| ≤ |σ2| ≤ · · · ≤ |σk| ≤ |σk+1| = · · · = |σn−1| = |σn| for k ≤ n. If
|σk| < (n− k) + |σn|, then B(σ1, . . . , σn) ≥ B(σn).

Proof. The proof will be by induction on n. The base case n = 2 is covered by the proof of
Proposition 6.27. Thus, assume B(σ1, . . . , σx) ≥ B(σx) for x < n. It must be demonstrated
that B(σ1, . . . , σn) ≥ B(σn). By the formula in Proposition 6.28,

B(σ1, . . . , σn) = B(σ1, . . . , σn−1) +B(σn)− 2B(σ1 ∪ σn, . . . , σn−1 ∪ σn).

Note that B(σ1 ∪ σn, . . . , σn−1 ∪ σn) is the Hamming weight of n− 1 row vectors being added
together, fulfilling the property that all nonzero entries of the rows σi ∪ σn are also nonzero
entries in the row σn. Hence,

B(σn) ≥ B(σ1 ∪ σn, . . . , σn−1 ∪ σn).

Thus,

B(σ1, . . . , σn) ≥ B(σ1, . . . , σn−1) +B(σn)− 2B(σn)

= B(σ1, . . . , σn−1)−B(σn).

Then using Proposition 6.28 repeatedly, we have

B(σ1, . . . , σn) ≥ B(σ1, . . . , σn−2) +B(σn−1)− 2B(σ1 ∪ σn−1, . . . , σn−2 ∪ σn−1)−B(σn)

≥ B(σ1, . . . , σn−2) +B(σn−1)− 2B(σn−1)−B(σn)

= B(σ1, . . . , σn−2)−B(σn−1)−B(σn)

≥ . . . ≥ B(σ1, . . . , σk)− (B(σk+1) + · · ·+B(σn)).
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By the induction hypothesis,

B(σ1, . . . , σn) ≥ B(σ1, . . . , σk)− (B(σk+1) + · · ·+B(σn))

≥ B(σk)− (B(σk+1) + · · ·+B(σn))

= B(σk)− (n− k)B(σn),

since |σk+1| = · · · = |σn|. Let Tk+m ⊆ [`] such that |Tk+m| = |σk|+m (so B(σn) ≤ B(Tk+m)
for m ≤ (n−k)) and recall from Proposition 6.27 that the Hamming weight between groups of
rows decreases by more than half (also, note that Tk+i is a row with higher Hamming weight
than the row Tk+i+1). Thus,

B(σ1, . . . , σn) ≥ B(σk)− (n− k)B(σn)

≥ [B(σk)−B(Tk+1)]−B(Tk+2)− · · · −B(σn)

≥ [B(Tk+1)−B(Tk+2)]−B(Tk+3)− · · · −B(σn)

≥ . . . ≥ B(Tn−1)−B(σn) ≥ B(σn).

Note that there are exactly enough Tk+m terms for the above inequalities since |σk| < (n −
k) + |σn|. Thus, for |σk| < (n− k) + |σn|, B(σ1, . . . , σn) ≥ B(σn). �

With respect to Equation 15 Propositions 6.26, 6.27, 6.28, and 6.29 give evidence for the
following conjecture.

Conjecture 6.30. The minimum distance of K(`, h, j) is

d =

h−j∑
i=1

(
`− j
i

)
.

Proposition 6.31. The codes K(`, `− 1, `− 2) and H` are permutation equivalent.

Proof. By Theorem 1.8.1 in Huffman and Pless [9], any [2r− 1, 2r− 1− r, 3] code is equivalent
to Hr. The length of K(`, `− 1, `− 2) by Equation 1 is

h∑
i=0

(
`

i

)
=

`−1∑
i=0

(
`

i

)
=
∑̀
i=0

(
`

i

)
−
(
`

`

)
= 2` − 1.

The dimension of K(`, `− 1, `− 2) by Corollary 6.14 is

j∑
i=0

fi =

`−2∑
i=0

fi =

`−2∑
i=0

(
`

i

)
=
∑̀
i=0

(
`

i

)
−
(

`

`− 1

)
−
(
`

`

)
= 2` − `− 1 = 2` − 1− `.

The upper bound on the minimum distance Lemma 6.16 is by

d ≤
h−j∑
i=0

(
`− j
i

)
=

`−(`−1)∑
i=0

(
`− (`− 2)

i

)
=

1∑
i=0

(
2

i

)
=

(
2

0

)
+

(
2

1

)
= 3.

By Corollary 1.4.14 in [9], since the rows in the matrix generating K(`, `−1, `−2) are linearly
independent, d ≥ 3, implying d = 3. Thus, K(`, `− 1, `− 2) ∼= H`. �

Remark 6.32. Since the two codes are permutation-equivalent, there must be some means
by which to transform K(`, ` − 1, ` − 2) into H`. This process is achieved by adding rows,
permuting columns, and permuting rows in the matrix generating K(`, `− 1, `− 2). Since the
matrix (if the points in V (I) are ordered appropriately) can be made into an upper-triangular
matrix adjoined to a (2`− `−1)× ` matrix, adding all rows to rows above them will result in a
[I2`−`−1|A] matrix. In the A block (corresponding to points in V (I) that have only one 0 [and
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thus `−1 ones] as a component), there are (since there are `−2 rows)
`−2−j∑

0

(
`−1−j
i

)
= 2`−1−j−1

ones, which is odd. Thus, when all the rows are added, the A block remains unchanged. This
A block consists of binary strings of length ` that corresponding to polynomials up to degree
`− 2 being evaluated on points with `− 1 ones. These strings, once transposed and combined
with a transposed identity matrix, will consist of all numbers in binary from 1 to 2`, indicating
its equivalence to H`.

7. McEliece Cryptosystem

An important application of the working on coding theory and subspace arrangement codes
is the creation of a cryptosystem. Work has already been done on making ciphers based upon
error-correcting codes. The most prominent example is the McEliece Cryptosystem, which is
described in detail in [6] and [18].

7.1. History and Description. Robert McEliece first proposed the idea of a public key
cryptosystem built from error-correcting codes in 1978. Since McEliece’s development of the
scheme, various proposals have been made with different error-correcting codes, but most of
them have been proven to not be as efficient as McEliece’s proposal to use Goppa Codes [18].
Goppa codes have a closed formula for length, dimension, and minimum distance based upon
two parameters, m and t: n = 2m, k = n−mt, and d = 2t+ 1. The strength of the McEliece
cryptosystem is that it can be very hard to determine what codeword is closest to a random
string of digits. The process for encryption and decryption follows a few basic guidelines. The
receiver will make a public key, and the sender will encrypt their message with the key so that
the receiver can decrypt it (note that in the standard cryptologic terminology, the receiver and
sender are Bob and Alice, respectively). The receiver selects the generating matrix G for C, a
[n, k, d]2 code, so G is a k x n matrix. The receiver also selects S, an invertible k x k matrix
over F2, and P , an n x n permutation matrix. The receiver then calculates G1 = SGP . While
keeping S, G, and P private, the receiver publishes G1 as a public key. The sender who wants
to send a message, x, randomly selects a vector, e, of length n with weight t. The sender then
forms y = xG1 + e and sends y to the receiver. The receiver then needs to decrypt y to find
x. First, the receiver finds y1 by calculating yP−1. Using the error decoder for C (such as
a parity check matrix) the receiver finds x1, the codeword in C that the is the closest to y1.
Next, the receiver finds x0, where x0G = x1. Finally, the receiver recovers x by calculating
x0S

−1. This process can best by explained by an example.

Example 7.1. Let C be the [15, 5, 7]2 skeletal code corresponding to K(4, 2, 1). The matrix
for C is 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 0 0 1 1 1 0 0 0 1 1 1 0
0 0 1 0 0 1 0 0 1 1 0 1 1 0 1
0 0 0 1 0 0 1 0 1 0 1 1 0 1 1
0 0 0 0 1 0 0 1 0 1 1 0 1 1 1

 .
However, to make calculating a parity check matrix easier, replace the first row with the sum
of all five rows:

G =


1 0 0 0 0 1 1 1 1 1 1 0 0 0 0
0 1 0 0 0 1 1 1 0 0 0 1 1 1 0
0 0 1 0 0 1 0 0 1 1 0 1 1 0 1
0 0 0 1 0 0 1 0 1 0 1 1 0 1 1
0 0 0 0 1 0 0 1 0 1 1 0 1 1 1

 .
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Let S =


1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

,

and let P =



0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0



.

Thus, G1 = SGP =


0 1 0 0 0 0 1 1 1 1 1 1 0 0 0
0 1 1 0 0 0 0 0 0 1 1 1 1 1 1
1 0 1 1 0 0 0 1 1 1 1 0 0 0 1
0 0 0 1 1 0 1 1 0 0 1 1 0 1 1
0 0 0 0 1 1 0 1 1 1 1 0 1 1 0

 .
Now, the sender wants to send the message

x =
[

1 1 0 1 0
]
,

with e randomly chosen as

e =
[

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
]
.

The sender then computes y = xG1 + e, resulting in

y =
[

1 1 0 1 1 0 0 0 1 0 1 1 1 0 0
]
.

The receiver then starts decrypting y, first calculating y1 = yP−1 = yP 14

=
[

1 1 0 1 1 0 0 0 1 0 1 1 1 0 0
]


0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0



=
[

1 0 1 1 0 0 0 1 0 1 1 1 0 0 1
]
.
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The next step is to use the parity check matrix, H, of C to correct y1 for errors. Since
G = [Ik|Q], by principle, H = [−QT |In−`]. Thus,

H =



1 1 1 0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 1 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 1 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 1 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 1 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0 1 0 0 0 0
0 1 1 1 0 0 0 0 0 0 0 1 0 0 0
0 1 1 0 1 0 0 0 0 0 0 0 1 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 1 0
0 0 1 1 1 0 0 0 0 0 0 0 0 0 1


.

In order to figure out how to correct y1, the syndrome of y1, termed S(y1), needs to be found.
S(y1) = y1H

T :

[
1 0 1 1 0 0 0 1 0 1 1 1 0 0 1

]



1 1 1 1 1 1 0 0 0 0
1 1 1 0 0 0 1 1 1 0
1 0 0 1 1 0 1 1 0 1
0 1 0 1 0 1 1 0 1 1
0 0 1 0 1 1 0 1 1 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1



=
[

0 0 0 1 1 1 1 1 1 1
]
.
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Note that the syndrome has dimension 10, so there are 210 = 1024 potential error-correction
actions to be taken (with each action being uniquely correlated to a syndrome). Observe that

[
1 1 0 0 0 0 0 0 0 0 0 0 0 0 1

]



1 1 1 1 1 1 0 0 0 0
1 1 1 0 0 0 1 1 1 0
1 0 0 1 1 0 1 1 0 1
0 1 0 1 0 1 1 0 1 1
0 0 1 0 1 1 0 1 1 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


=
[

0 0 0 1 1 1 1 1 1 1
]
,

implying that
[

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
]

(which is equal to eP−1)

is the coset leader for the syndrome
[

0 0 0 1 1 1 1 1 1 1
]
. Thus, to error-

correct y1 to find x1, add the coset leader to y1:

x1 =
[

1 0 1 1 0 0 0 1 0 1 1 1 0 0 1
]

+
[

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
]

=
[

0 1 1 1 0 0 0 1 0 1 1 1 0 0 0
]
.

Next, the vector x0G = x1 must be found. Careful observation reveals that x1 is the sum
of the second, third, and fourth rows of G, so x0=

[
0 1 1 1 0

]
. The last step in the

process is to compute x = x0S
−1:

[
0 1 1 1 0

]


1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

 =
[

1 1 0 1 0
]
.

The original message has been correctly deciphered.

7.2. Security. An important reason to study the McEliece cryptosystem is for its security.
Work done by Hang Dinh, Cristopher Moore, and Alexander Russell in [5] indicate that Shor’s
algorithm is not effective against the McEliece cryptosystem. Shor’s algorithm, discovered in
1994, describes a factoring process possible with quantum computing. This algorithm can be
applied to modern ciphers as a quantum Fourier attack. This attack has been demonstrated to
be successful on a number of cryptosystems, including the widely-used RSA cipher. However,
Hang Dinh, Cristopher Moore, and Alexander Russell show in [5] that Shor’s algorithm of
factoring integers does not aid in solving the nearest codeword problem, which is the central
point of security of the McEliece cryptosystem. Hence, the McEliece cryptosystem is immune
to this attack. Thus, applying skeletal codes to the McEliece cryptosystem could result in a
viable method for encryption if quantum computing is realized.
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8. Sage Code

An integral part of this project has been using Sage to execute calculations that would be
too difficult to calculate by hand. What follows are four script sessions that were part of the
project.

8.1. Generating Evaluation Codes and Their Properties. Work was initially done in the
algebraic geometric software Macaulay2. The following code (in conjunction with an example)
details using a Macaulay2 interface in Sage to construct an evaluation code. The ideal, finite
field, and vector space are used to create the matrix representing the codes. From this matrix,
the dimension of the code can be calculated.

sage: loadPackage "RationalPoints";

sage: S=ZZ/7[x,y,z];

sage: I=ideal(x*y,x*z,y*z);

sage: p=rationalPoints I;

o3 : Ideal of

sage: codelength=length p

19

sage: p

{{0, 0, 0}, {1, 0, 0}, {2, 0, 0}, {3, 0, 0}, {4, 0, 0}, {5, 0, 0}, {6, 0,

---------------------------------------------------------------------------

0}, {0, 1, 0}, {0, 2, 0}, {0, 3, 0}, {0, 4, 0}, {0, 5, 0}, {0, 6, 0}, {0,

---------------------------------------------------------------------------

0, 1}, {0, 0, 2}, {0, 0, 3}, {0, 0, 4}, {0, 0, 5}, {0, 0, 6}}

List

sage: k=basis(0,4,S)

| 1 x x2 x3 x4 x3y x3z x2y x2y2 x2yz x2z x2z2 xy xy2 xy3 xy2z xyz xyz2 xz

---------------------------------------------------------------------------

xz2 xz3 y y2 y3 y4 y3z y2z y2z2 yz yz2 yz3 z z2 z3 z4 |

1 35

Matrix S <---

sage: e=apply(0 .. (rank source k)-1, i->(g_i=(a,b,c)->sub(k_(0,i),

{x=>a,y=>b,z=>c})));

sage: T=matrix toList apply(0 .. (rank source k)-1,j->

toList apply(0 .. #p-1, i->e_j(toSequence p_i)));

ZZ 35 ZZ 19

o43 : Matrix (--) <--- (--)

7 7

sage: C=image transpose T;

sage: C

image |1 0 0 0 0 0000000000000000 0 0 0 0 000000 0 0 0 0 |

|1 1 1 1 1 0000000000000000 0 0 0 0 000000 0 0 0 0 |

|1 2 -3 1 2 0000000000000000 0 0 0 0 000000 0 0 0 0 |

|1 3 2 -1 -3 0000000000000000 0 0 0 0 000000 0 0 0 0 |

|1 -3 2 1 -3 0000000000000000 0 0 0 0 000000 0 0 0 0 |

|1 -2 -3 -1 2 0000000000000000 0 0 0 0 000000 0 0 0 0 |
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|1 -1 1 -1 1 0000000000000000 0 0 0 0 000000 0 0 0 0 |

|1 0 0 0 0 0000000000000000 1 1 1 1 000000 0 0 0 0 |

|1 0 0 0 0 0000000000000000 2 -3 1 2 000000 0 0 0 0 |

|1 0 0 0 0 0000000000000000 3 2 -1 -3 000000 0 0 0 0 |

|1 0 0 0 0 0000000000000000 -3 2 1 -3 000000 0 0 0 0 |

|1 0 0 0 0 0000000000000000 -2 -3 -1 2 000000 0 0 0 0 |

|1 0 0 0 0 0000000000000000 -1 1 -1 1 000000 0 0 0 0 |

|1 0 0 0 0 0000000000000000 0 0 0 0 000000 1 1 1 1 |

|1 0 0 0 0 0000000000000000 0 0 0 0 000000 2 -3 1 2 |

|1 0 0 0 0 0000000000000000 0 0 0 0 000000 3 2 -1 -3|

|1 0 0 0 0 0000000000000000 0 0 0 0 000000 -3 2 1 -3|

|1 0 0 0 0 0000000000000000 0 0 0 0 000000 -2 -3 -1 2 |

|1 0 0 0 0 0000000000000000 0 0 0 0 000000 -1 1 -1 1 |

ZZ ZZ 19

---module, submodule of (--)

7 7

sage: codedimension=rank C

13

The above example describes an evaluation code with length 19 and dimension 13 over the
finite field F7. Note that Macaulay2 lacks any function to calculate minimum distance.

The following code uses a file assembled through help from Professor W. David Joyner that
has been uploaded to the Sage server. The following production of the code shows the various
components of the code simultaneously with an example.

sage: attach /home/wakefield/Downloads/evaluation_codes.sage

sage: R.<x,y,z,w>=PolynomialRing(GF(2),4,"x,y,z,w");

sage: I=R.ideal([x*y*z*w]);

sage: P=get_exps(4,2);

sage: P

[[0, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]

sage: Pts = get_pts(I)

sage: Pts

[[0, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [1, 1, 0, 0], [0, 0, 1, 0],

[1, 0, 1, 0], [0, 1, 1, 0], [1, 1, 1, 0], [0, 0, 0, 1], [1, 0, 0, 1],

[0, 1, 0, 1], [1, 1, 0, 1], [0, 0, 1, 1], [1, 0, 1, 1], [0, 1, 1, 1]]

sage: C = evaluation_code(P, Pts); C

Linear code of length 15, dimension 5 over Finite Field of size 2

sage: C.minimum_distance()

7

The first line of code attaches the file Professor Joyner created. The second establishes
the finite field, and the third creates the ideal. The next two lines find the points on the
ideal based on the selection of j, with the following line formally establishing the code. A
built-in Sage function for minimum distance is used in the last line. The example uses the
ideal < x1x2x3x4 > in F4

2 with j = 1 to find a [15, 5, 7]2 code. An important note is that
with moderately-high parameters used, this Sage code is not efficient and can take significant
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amounts of time, especially to calculate minimum distance. Thus, it is very beneficial to
develop formulas to calculate the properties.

8.2. Boolean Arrangement Codes. A key part of the arguments involved with developing
formulas for the dimension of error-correcting codes generated by the ideal I = < x1 · · ·x` >
in F`q was creating a matrix that represented the code. While a straightforward task for small
values, the process was considerably speed up by the following Sage code that produced the
matrix. The program is described and then examples are provided.

sage: def matrix_code_generator(j):

... """

... A function designed to create the abbreviated sub-matrix of a

matrix for the code corresponding to the coordinate hyperplane arrangement.

The sub-matrix corresponds exclusively to polynomials consisting of one

variable raised to a power. The input is j, the upper bound on the

polynomials used in generation.

... EXAMPLES: See below for j=1,...,10

... INPUT: j

... OUTPUT: factored determinant of the abbreviated sub-matrix

... """

... w=var(’w’)

... row=[0]*j

... for k in range(j):

... row[k]=w^k

... CodeMatrix=[[0]*j]*j

... for l in range(j):

... newrow=[0]*j

... for k in range(j):

... newrow[k]=w^k

... for m in range(j):

... newrow[m]=row[m]**(l+1)

... CodeMatrix[l]=newrow

... CodeMatrixlist=[0]*(j**2)

... for n in range(j):

... for p in range(j):

... CodeMatrixlist[n+j*p]=CodeMatrix[p][n]

... MS=MatrixSpace(PolynomialRing(ZZ,w),j,j)

... Code_matrix=MS.matrix(CodeMatrixlist)

... determinant=det(Code_matrix)

... factored_det=determinant.factor()

... return factored_det

sage: def matrix_code_echelon(j):

... """

... A function designed to create the abbreviated sub-matrix of a

matrix for the code corresponding to the coordinate hyperplane arrangement.

The sub-matrix corresponds exclusively to polynomials consisting of one

variable raised to a power. The input is j, the upper bound on the

polynomials used in generation.

... EXAMPLES: See below for j=1,...,5
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... INPUT: j

... OUTPUT: echelon form of the abbreviated sub-matrix

... """

... w=var(’w’)

... row=[0]*j

... for k in range(j):

... row[k]=w^k

... CodeMatrix=[[0]*j]*j

... for l in range(j):

... newrow=[0]*j

... for k in range(j):

... newrow[k]=w^k

... for m in range(j):

... newrow[m]=row[m]**(l+1)

... CodeMatrix[l]=newrow

... CodeMatrixlist=[0]*(j**2)

... for n in range(j):

... for p in range(j):

... CodeMatrixlist[n+j*p]=CodeMatrix[p][n]

... MS=MatrixSpace(PolynomialRing(ZZ,w),j,j)

... Code_matrix=MS.matrix(CodeMatrixlist)

... echelon=Code_matrix.echelon_form()

... return echelon

sage: matrix_code_generator(1)

1

sage: matrix_code_echelon(1)

[1]

sage: matrix_code_generator(2)

(w - 1) * w

sage: matrix_code_echelon(2)

[ 1 w]

[ 0 w^2 - w]

sage: matrix_code_generator(3)

(w + 1) * (w - 1)^3 * w^4

sage: matrix_code_echelon(3)

[1 w w^2]

[0 w^2 - w w^4 - w^2]

[0 0 w^6 - w^5 - w^4 + w^3]

sage: matrix_code_generator(4)

(w + 1)^2 * (w - 1)^6 * w^10 * (w^2 + w + 1)

sage: matrix_code_echelon(4)

[1 w w^2 w^3]

[0 w^2-w w^4-w^2 w^6 - w^3]

[0 0 w^6-w^5-w^4+w^3 w^9-w^7-w^6+w^4]

[0 0 0 w^12-w^11-w^10+w^8 + w^7-w^6]

sage: matrix_code_generator(5)

(w + 1)^4 * (w - 1)^10 * w^20 * (w^2 + 1) * (w^2 + w + 1)^2

sage: matrix_code_echelon(5)
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[1 w w^2 w^3 w^4]

[0 w^2-w w^4-w^2 w^6-w^3 w^8-w^4]

[0 0 w^6-w^5-w^4+w^3 w^9-w^7-w^6+w^4 w^12-w^9-w^8+w^5]

[0 0 0 w^12-w^11-w^10+w^8+w^7-w^6 w^16-w^14-w^13-w^12+w^11+w^10+w^9-w^7]

[0 0 0 0 w^20-w^19-w^18+2*w^15-w^12-w^11+w^10]

sage: matrix_code_generator(6)

(w + 1)^6 * (w - 1)^15 * w^35 * (w^2 + 1)^2 * (w^2 + w + 1)^3

* (w^4 + w^3 + w^2 + w + 1)

sage: matrix_code_generator(7)

(w + 1)^9 * (w - 1)^21 * w^56 * (w^2 - w + 1) * (w^2 + 1)^3 * (w^2 + w + 1)^5

* (w^4 + w^3 + w^2 + w + 1)^2

sage: matrix_code_generator(8)

(w + 1)^12 * (w - 1)^28 * w^84 * (w^2 - w + 1)^2 * (w^2 + 1)^4

* (w^2 + w + 1)^7 * (w^4 + w^3 + w^2 + w + 1)^3

* (w^6 + w^5 + w^4 + w^3 + w^2 + w + 1)

sage: matrix_code_generator(9)

(w + 1)^16 * (w - 1)^36 * w^120 * (w^2 - w + 1)^3 * (w^2 + 1)^6

* (w^2 + w + 1)^9 * (w^4 + 1) * (w^4 + w^3 + w^2 + w + 1)^4

* (w^6 + w^5 + w^4 + w^3 + w^2 + w + 1)^2

sage: matrix_code_generator(10)

(w + 1)^20 * (w - 1)^45 * w^165 * (w^2 - w + 1)^4 * (w^2 + 1)^8

* (w^2 + w + 1)^12 * (w^4 + 1)^2 * (w^4 + w^3 + w^2 + w + 1)^5

* (w^6 + w^3 + 1) * (w^6 + w^5 + w^4 + w^3 + w^2 + w + 1)^3

8.3. Binary Skeleton Codes. When working on the j = 1 case for codes developed from
the simplicial complex ∆(`, h), to prove the minimum distance formula, observations where
made concerning what the Hamming weight of the sum of s row vectors became. Some Sage
scripts, listed below, facilitated the easy calculation of the Hamming weight of this sum.

def F(l,h,s):

sum = 0

for a in range(1,h+2):

for t in range(1,s+1):

sum=sum + (-2)**(t-1) * (binomial(s,t)) * (binomial(l-t,a-t))

return sum

9. Conclusion

While much has been achieved in the work of this project, room for further research is still
present. There are many other classes of subspace arrangement codes and simplicial com-
plex codes where we know neither the dimension nor the minimum distance. Nonetheless, by
varying the parameters `, h, and j of the skeletal codes K(`, h, j), we are able to produce
many useful codes with various values of length, dimension, and minimum distance. In addi-
tion, it is possible that the minimum distance and dimension formulas developed through this
project might prove useful in understanding theoretical problems in subspace arrangements
and simplicial complexes. Furthermore, we examined a few examples of our skeletal codes in
the McEliece cryptosystem. It has not yet been determined (though it seems likely) that there
are nice decoding algorithms for our codes, thereby making them well-suited for the McEliece
cryptosystem. However, more work is needed to provide a larger class of codes with the same
parameters to make the system practical. This project was exciting, especially since it has
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provided, through open problems such as Conjecture 6.30, many intriguing future research
topics.
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