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Abstract

Wireless sensor networks, or WSNs, are an emerging commercial technology that
may have practical applications on the modern battlefield. A wireless sensor network
consists of individual sensor nodes that work cooperatively to collect and communi-
cate environmental data. In a surveillance role, a WSN could be deployed across a
geographic area of interest, allowing military commanders to monitor enemy troop
positions and movements. Wireless sensor networks have enormous potential as an
information gathering tool, but they also present many unique challenges to security
engineers. An adversary can easily capture and tamper with one of the many un-
guarded sensor nodes to disrupt or significantly degrade the quality of surveillance
that the WSN provides. This project examined potential attacks against WSNs and
developed a modified routing protocol that increases the overall data integrity and
reliability of wireless sensor networks.

Due to battery limitations of individual sensor nodes, many WSN protocols seek to
conserve power by simplifying computations and reducing the number of radio trans-
missions required for communication. These practices allow the WSN to have a longer
life expectancy; however, such protocols are easy targets for enemy exploitation. In
what is known as a sinkhole attack, a comprised sensor node is maliciously used to
alter the wireless mesh of a sensor network for the purpose of disrupting the logical



flow of information across the network. The purpose of this project is to minimize the
disruption from such an attack. We have proposed modifications to an existing tree
based routing protocol so that it attempts to avoid sinkholes and increase the over-
all data throughput of the network by sacrificing some of the networks transmission
efficiency. The efficacy of the project’s proposed sinkhole avoidance strategy is also
supported through the use of software based WSN network simulations.
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1 Motivation For Research

In business, a misinformed decision may lead to falling stock prices. In war, a misinformed
decision may lead to death. A warrior does not deal in dollars, euros, or yen. He or she deals
in the currency of human life. Command decisions are made based on known information.
Accurate and timely information can lead a commander to make the correct decision under
the severest of time constraints. In a modern war zone, seconds can dictate the difference
between success and failure. An emerging technology — wireless sensor networks — may some
day provide reliable battlefield information to commanders in real time, reducing risk and

saving lives.

2 Introduction

A wireless sensor network, or WSN, refers to a group of small battery powered sensors. An
individual sensor, commonly referred to as a node, consists of five major parts: a processor,
digital memory, a radio, a sensor suite, and a battery. Additionally, a sensor node can
be fitted with actuators that allow it to generate power, move about its environment, or
perform some specific task. At its most basic level, a single WSN node is designed to be a
sensor. Typical sensor suites are capable of detecting changes in light, sound, temperature,
pressure, or acceleration. More sophisticated sensors can be used to detect seismic activity,
chemicals, or even radiation [1]. Wireless sensor networks can be used in a variety of peaceful
applications, for example: equipment monitoring in industrial facilities, pollution monitoring
outside of power plants, or allergen monitoring inside of hospitals. Wireless sensor networks
also have the potential for many military applications. Hundreds or even thousands of
wireless sensors could be dropped from aircraft and spread over a wide geographic area.
These sensors would be able to set up a surveillance network used to monitor enemy troop
and equipment movement. In addition, a wireless sensor network could be strategically
deployed by special forces near points of interest. Considering the small size of sensor
network nodes, a covertly deployed WSN would be an excellent way to secretly monitor a
hostile force or installation without need for maintenance or personnel. Such covert networks
could be tied into a satellite data link, providing constant and instantaneous information to

command centers anywhere on the globe [2].



3 Background

Wireless sensor networks have gained a wide range of attention in the past decade due to
their promise to provide reliable, low maintenance, and relatively low cost sensors that can be
quickly deployed into a wide variety of applications. Wireless sensor networks can generally
be broken up into two categories: structured and ad-hoc. Structured WSNs consist of WSN
networks with a planned deployment of each sensor node with regard to its location. Such
deployments might be seen in industrial applications where Wireless Sensor Networks are
replacing traditional wired sensors (such as safety valve monitoring at an oil refinery). Ad-
hoc WSNs do not have planned deployments. The sensor nodes are distributed across an
area of interest and are allowed to set up their own routing structure with respect to the base
station(s). Ad-hoc WSNs typically consist of many more nodes than a structured WSN;, as
a higher density of nodes is required to ensure that fault tolerant wireless communication is
possible between all nodes in the network and the base station. This project will focus on
ad-hoc wireless sensor networks, as ad-hoc WSNs are more suited to military applications.
An ad-hoc wireless sensor network is more conducive to surveillance over harsh terrain in
remote geographic locations. An ad-hoc WSN gives the user the ability to deploy the network
quickly; such networks could be quickly deployed by fast moving ground forces or military

aircraft [1].

There are a number of different protocols and hardware sets that can be utilized for Wireless
Sensor Networks. One of the first operating systems developed specifically for Wireless
Sensor Networks is the ‘Tiny’ operating system, known as TinyOS. It was developed at the
University of California at Berkeley beginning in 1999. TinyOS is a Linux based operating
system that is significantly parsed down so that it can be utilized by resource limited WSN
nodes. It is written in nesC, which is a variant of the C programming language and is ‘event
driven,” meaning it does not behave like many other operating systems when dealing with
system processes. The entire operating system is only capable of performing one process
at a time, and it does not provide a means to prioritize the order in which processes run.
TinyOS utilizes many short programs, known as ‘event handlers,” to handle large tasks that

the node may be asked to perform, to include data routing [18].



4 Related Work

Security in Wireless Sensor Networks is an issue of critical importance to the development
of WSN technology as a whole. A significant amount of research has been invested into
solving some of the security issues that Wireless Sensor Networks face, to include intrusion
detection, host authentication, and data sinkhole mitigation. In [11], authors I. Krontiris et
al. propose a WSN implementation that would be able to detect sinkhole attacks in Wireless
Sensor Networks that utilize the MintRoute protocol (a routing protocol that is similar to
the Collection Tree Protocol). Such a system could enable a WSN to quickly detect an attack
and trigger its defense mechanisms in order to reduce the volume of data. In [6], authors
U. Colesanti and S. Santini have performed an in depth evaluation of the Collection Tree
Protocol. Their research explains the inner workings of the CTP protocol in depth and tests

the Collection Tree Protocol under several different conditions.

In [10], authors J. Deng et al. enumerate a “Intrusion-tolerant routing protocol for Wireless
Sensor Networks: INSENS.” The INSENS protocol aims to reduce the impact an adversary
could have on a WSN by utilizing a number of security features to include light cryptography;,
positive host identification, and network analysis at the base station. In a similar line of
research, T Shu et al.[8] proposes a method to defeat sinkhole attacks through the utilization
of "randomized dispersive routes.” Under this method, network messages are broken up into
many ‘shares’ that are distributed throughout the network before they converge on the base
station. Once a set number of shares successfully arrive at the base station, the data from
the origin node can be reassembled. Neither of the routing schemes enumerated above utilize
a purely routing based approach to mitigating the sinkhole problem in WSNs. Our approach

uses only changes to network routing in order to avoid sinkholes.

5 Preliminary Project Work

To gain a better understanding of Wireless Sensor Networks, a portion of project time
was spent working with actual WSN hardware. Two types of Wireless Sensor Network
nodes were studied. The first was the MICA2 Wireless Measurement System. The MICA2
is commercially available through Crossbow Technology. The MICA2 platform is small,
measuring only 2.25 x 1.25 x 1.0 inches with its sensor board and battery pack attached.
The unit is powered by two standard AA batteries and has a battery life of up to one year



under continuous operation, given that it is calibrated to use a power saving ’'sleep’ mode
that reduces the number of transmissions and computations that the node performs [17].
The MICA2 has only 128 KB of program memory and the processor only draws 8 mA of
current while active and only 15 A in sleep mode. The transmitter draws 27 mA of current
when transmitting and 10 mA while in receive mode. It is important to note the high cost
of radio transmission in terms of battery drain. The second WSN hardware platform used in
project work was the IRIS Wireless Measurement System. The IRIS WSN is essentially an
improvement on the MICA2 node, and is very similar in terms of size and capabilities [16].
Both WSN node platforms run the TinyOS operating system and are capable of implementing
the Collection Tree Protocol (CTP). TinyOS applications were built, compiled, installed,
and run on both the MICA2 and IRIS hardware platforms. Due to the limited memory and
minimalist premises behind Wireless Sensor Networks, the installation of new programs on
WSN nodes becomes a somewhat difficult task. In order to implement a new application
on the MICA2 or IRIS platform, the entire operating system must be recompiled and then
reloaded individually on to each sensor node. This process is very time consuming and would

generally only be performed as part of a major operating system upgrade.

6 Security in Wireless Sensor Networks

Despite the immense potential of sensor networks, the low cost and small size of a single
sensor node severely restricts an individual node’s computing power and memory. On top
of this, a single unit’s lifetime is dictated by its least sophisticated technology — the battery.
Any activity on the part of a node, in terms of computation and transmission, directly affects
the lifetime of the entire unit. In addition, while the computing power of a comparable sized
unit may increase following Moore’s law!, it is likely that more inexpensive productions of the
same unit will be chosen over more capable components [3]. Thus, security in sensor networks

must be designed and implemented with energy and computing efficiency in mind.

In addition to battery and computational limitations, wireless sensor networks face another
unique problem — node capture. In typical network security schemes, it is assumed that the
individual hosts (nodes) are safe from physical capture or tampering. In WSNs, nodes may

need to be placed in hostile and or easily accessible locations, meaning that the system must

!Moore’s law is the observation that the number of transistors that can be placed on a circuit doubles
roughly every two years
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Figure 1: Comparision of Internet routing and WSN routing

be designed so that the capture or destruction of a node will not disrupt the overall data
transfer capability of the network [4]. Additionally, it can be assumed than an adversary
will be able to extract critical data from a captured node. She may then be able to use this
data to deny service to the network, or otherwise exploit the network’s security system [5].
Threats on WSNs present a unique challenge in that many traditional computer network

security solutions do not directly apply to a WSN.

On the Internet, hosts generally communicate in a one to one fashion, that is, one host uses
the network to communicate with only one other specifically addressed host. Wireless sensor
networks, on the other hand, do not communicate in a one to one fashion. Communication
patterns in a WSN can be broken down into three basic types: many to one, one to many,
and many to many [3]. The pattern of many to one communication stems from the layout
of a typical wireless sensor network: a single ‘base station’ is responsible for collecting data
from many different nodes. The base station is interested in aggregating data from a network
composed of n nodes, where n > 1. The reverse is also true, resulting in a one to many
communication pattern. This type of communication occurs when the base station wishes to
send out configuration information to every node within the network, resulting in a multicast
message that is generated at the base station of the network and is desseminated to every
node in the network. Lastly, nodes within the network may want to exchange information
with other nodes within the network (communication that excludes the base station). Such
communication may occur when nodes are participating in the exchange of local routing
information, aggregating data within a neighborhood of nodes, or ‘voting’ in an effort to
detect an illegitimate node in the network [1]. For the purpose of this research, we will focus

on WSN communication that is many to one.



The host to host nature of Internet communication generally follows a simple one to one
communication model, where a host is capable of sending out messages with a foreign address
and receiving data that has been addressed to it. The host is able to hand off a packet to
a router that has a wider knowledge of the network topology. The router then sends the
packet to a series of other routers that guide the message datagram to its eventual destination.
Under this model, a host is only expected to know the address of the host that the message
will be sent to. Conversely, in the role of a receiver, the host only has to listen for packets
that are addressed to it. Routing across the network is not handled by hosts; it is handled
instead by routers that are built and configured specifically for that task. In a wireless sensor
network, routing is handled differently. Every node within a wireless sensor network can be
expected to act as a receiving node, a transmitting node, and a routing node. Depending
on the layout of the sensor network at deployment time, the topology of the network can
leave any sensor in the network in one or a combination of all three of the roles mentioned
above. This difference between Internet routing and WSN routing further complicates the

application of Internet based networking protocols to WSN topologies.

A majority of secure traffic over the Internet utilizes the Transmission Control Protocol.
The Transmission Control Protocol utilizes two features that are generally not implemented
in WSN protocols in order to save battery life (too many extra transmissions). The first
feature is that of ‘three way handshaking.” Before data is transmitted between two hosts
on the Internet, TCP ensures that there is a valid and reliable connection between the two
hosts. The sender initiates the ‘handshake’ by first querying the receiver. Upon receipt of
the query, the receiving host will then send back an acknowledgement (known as an ACK),
which lets the originating host know that a data exchange session has been set up between
the sender and the receiver. Finally, the sending host sends its data to the receiving host
(which also implicitly serves as an acknowledgement — the third part of the handshake).
Three way handshaking allows a data transmission session to be set up between two hosts
before actual information is exchanged. The second feature of TCP is an extension of the first
— the use of acknowledgments. The Transmission Control Protocol performs accounting on
the information that is transfered between hosts. Each datagram message that is exchanged
between the two hosts is acknowledged in an ACK process that is similar to the three way
handshake described above. If transmitted data is incomplete or lost, TCP will retransmit
the data to ensure its accurate and complete arrival. Unfortunately, most Wireless Sensor
Network protocols do not implement acknowledgements due to the extra transmissions that

are required to ensure data delivery [15].
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Internet

Wireless Sensor Networks

One to One communication
Assumption of host’s physical security
Strong cryptography
Transmission Acknowledgements

Many to One Communication
No assumption of node security
Weak or no cryptography
Little or no acknowledgements

Table 1: Comparison of differences between Internet and WSN communication protocols
7 Wireless Sensor Network Topology

In order to understand the establishment of routing protocols in wireless sensor networks, we
must first understand the properties of the network graph. We define the network graph to
be the set of all WSN nodes, to include the base station (the base station is also commonly
referred to as the ‘root’ or ‘sink’ of the network). We assume that the uninitialized network
graph is a connected, undirected graph, meaning that every node in the network is adjacent
to at least one other node in the network (they can communicate wirelessly). Please reference

Figure 2 and Figure 3 for a further visual explanation.
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(a) Key for network diagrams

Figure 2

Adjacency in a wireless sensor network is dictated by the radius of communication R, and
is best described as a unit disk graph: each node lies at the center of a unit disk (with unit
radius 7), and an edge is defined whenever two disks overlap. For sensor networks, we then
have r = R./2 [9]. This requirement on the edges imposes a sense of distance in the graph.

It is important to note that arbitrary edge sets are not possible; in particular, edges that
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(a) Unit disk graph with radii ‘r.” Overlapping ‘> (b) All possible connections of the network graph,
indicates a possible network edge with higher quality network connections represented
in bold

Figure 3: An arbitrary network graph with possible network connection edges given the ‘7’
of each node

exceed 2r in length cannot occur, so widely distributed edges cannot be connected directly,

and hence must be connected by a path through the graph as shown in Figure 3.

The tree structured routing utilized by wireless sensor networks is established through the
utilization of some sort of path metric. In general, the selection of edges is based on the ‘best
path’ between two nodes, given the path metric. The Collection Tree Protocol (CTP) seeks
to find the best path to the root node by transmitting as few times as possible (it seeks to
transmit over the most reliable path to the base station). This path metric in CTP is known
as the ETX value which stands for ‘Expected Transmissions’). The ETX value represents
the predicted number of node transmissions that will need to occur for a message to reach
the base station. The ETX value is established during network setup and is based on the
number of transmissions that are necessary to successfully transmit a routing query message
between two nodes. An optimal ETX value between any set of nodes is ‘1, as only one
transmission is required to successfully transmit the data. The base station is a special case,
as it does not need to transmit in order to communicate with itself, thus, the base station
has an ETX value of ‘0.” Every other node in the network will have an ETX value that is
greater than ‘1,” and the ETX value of any node in the network will the be the sum of the
ETX value of its parent and the ETX value of the link between the aforementioned node
and its parent. A valid data transmission over a routing tree using CTP is shown in Figure
4
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We model a sensor network as a unit disk graph G(V, E), composed of the set V |V| = N of

vertices (sensors) and the set F of edges determined by radio reception.

The tree T'(V, E') C G(V, E) is defined by the TinyOS Collection Tree Protocol, rooted at
the base station. We will usually denote this tree simply as Top-

We make the following assumptions about the sensor network:

e Each sensor node is identical in terms of initial battery life, transmitter and receiver

capacity.
e Only one base station is placed.
e Once placed, the sensors are fixed.

e The sensors are uniformly distributed; for any sensor v and neighborhood
N, £ {vi | dp(v,07) < Tradio}

we have, on average, |N,| = k for any v € GG, with sufficient small variance to allow for

simple analysis.

(a) The green node is attempting to transmit data (b) The data follows the path directed by the net-

to the base station work tree and successfully reaches the base station

Figure 4: Normal data routing in a WSN
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Figure 5: A depiction of the risk gradient, where nodes in green represent a low risk of data
loss,and nodes in red represent a high risk of data loss

8 Threat Model

The essential function of a sensor network is to report data. The data flows across the
deployment region, routed via the minimum weight spanning tree (MST). Each sensor routes
data along the minimum weight path to a base station that acts as a root node (we will use
‘node’ and ‘sensor’ interchangeably when there is no confusion). For the purpose of our
research, we assume that the base station is secure and has not been tampered with by an
adversary. This is a reasonable assumption, as the compromise of the base station would
allow the adversary to control the entire WSN and serves to trivialize the avoidance of a

routing sinkhole, which is our project focus.

A sensor node that has been compromised by an attacker can act as a ‘sinkhole’ and ma-
nipulate all network data that is forwarded to it. Our research focuses on an adversary that
controls a sinkhole in the network and chooses to drop all network data that is forwarded
to it. In particular, the adversary influences the routing so that it maximizes the amount of
traffic flowing to it. This is the ‘sinkhole’ attack and is the focus of this work. We assume

that the adversary is able to completely compromise one sensor. The adversary will then
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have the ability to influence how the minimum spanning tree is established. A compromised
sensor would be able to advertise a favorable metric so as to be included in the tree as a
routing node instead of a leaf node. We assume that the adversary may enhance the sensor
to support this metric. In this way, the compromised sensor will receive traffic from down-
stream nodes for examination (whereas a leaf node does not have downstream nodes). The
adversary may achieve her goal through a combination of positioning herself close to the
base, or influencing how the minimum spanning tree is established through fraudulent route
costs, wherein a compromised sensor will advertise a favorable metric so as to be included in
the tree as a routing node instead of a leaf node. We assume that the adversary only drops
traffic. This means that the adversary will try to influence as much traffic as possible by
positioning herself close to the base, resulting in a “risk gradient” where nodes that are far

from the base are less likely to be compromised, as shown in Figure 5.

(a) The green node is attempting to transmit data (b) The data follows the path directed by the net-
to the base station in the presence of a sinkhole work tree and is intercepted by the sinkhole before

it reaches the base station

Figure 6: WSN Routing Example

The position of a sinkhole node in the network will affect the impact that the sinkhole is
able to have on the network as a whole. In a network that utilizes tree structured routing,
every node in the network must rely on its parent to forward data closer to the base station.
In a sense, tree structured routing creates a communication chain that can be broken by
removing a single link. The closer the broken link is to the base station, the more links
that will be severed from the base station. This idea ties into the risk gradient depicted in

Figure 5. If a sinkhole node happens to be positioned at the root of a subtree, then the
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sinkhole will be able to disconnect that entire subtree from the base station. Depending on
the distribution of nodes in the sensor network, this could mean that a large geographic area

of the sensor network will be unable to report its data.

(a) A WSN with a sinkhole, given the green trans- (b) The sinkhole is at the root of the subtree, which
mitting node and the red sinkhole effectively cuts off the rest of that subtree from the

network

Figure 7: The effect of a sinkhole in a WSN

9 Description of Protocols

9.1 Generic Protocol Description

In order to better describe the complex distributed protocols enumerated in this project, we
will first define an abstract distributed protocol. Our abstract scenario will describe barking
dogs in a neighborhood. Our distributed protocol will give instructions for a dog to execute

once an event occurs. Each dog in the neighborhood executes the same protocol.

When (I hear another dog bark)
Then
1 I bark once

This abstract protocol can be used to imagine how a WSN initializes the routing infrastruc-
ture of the network. A dog that is in the center of his neighborhood would initiate a bark.

This bark would then move outward towards the edges of the neighborhood until every dog
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in the neighborhood is barking. The CTP protocol initiates itself in a similar manner, except
that beacons are used instead of barks, and that many of the events are triggered by timers

in order to reduce the number of transmissions required by each node.

9.2 The Collection Tree Protocol

The Collection Tree Protocol (CTP) is the standard protocol that our project aims to improve
upon. CTP attempts to transmit data over the lowest cost path. In simple terms, the ‘cost’ of
a spanning tree is the sum over all edges of the transmission quality. This quality is captured
by the Expected Transmissions value (ETX), and is used by CTP for the construction of
the minimal spanning tree. From the description: “CTP is a tree-based collection protocol.
Some number of nodes in a network advertise themselves as tree roots. Nodes form a set of
routing trees to these roots. CTP is address-free in that a node does not send a packet to a
particular root; instead, it implicitly chooses a root by choosing a next hop. Nodes generate
routes to roots using a routing gradient.” [7] We seek to expand CTP so that it supports
bridge discovery. The challenge is to implement our changes to the source code in such a
way that does not break the protocol or significantly add to the complexity of the protocol
in terms of battery cost (extra transmissions and computations). We are most concerned
with taking advantage of the distributed nature of the protocol so as to keep the routing

complexity on an individual node to a minimum.

Our modification of CTP will occur inside the routing engine. We will focus on four functions
within the code that have important roles in initializing routing within CTP. We refer to
these functions as event handlers, as they are executed when a specific routing related event
occurs. These event handlers allow CTP to build and update the routing tables? necessary
for the protocol to successfully implement tree structured routing. The four event handlers
we will modify are: the Send Beacon Handler, the Beacon Message Received Handler, the
Table Update Handler, and the Update Route Handler. We also describe the Beacon Timer
Handler, as it directly influences two of the other event handlers that we modify within the

routing engine.

2CTP stores the information of neighboring nodes in a data structure know as a Routing Table. By
default, this data structure is limited to 10 entries.



Beacon Timer Handler

When (The send beacon timer expires)

Then
1 Reset send beacon timer

2 Send event to Send Beacon Handler
3 Send event to Update Route Handler

Source code?:

void CtpRoutingEngine:: event_-BeaconTimer_fired (){
if (radioOn && running) {
if (! tHasPassed){

post_updateRouteTask () ;
post_sendBeaconTask () ;
trace ()<<”Beacon_timer._fired .”;

remainingInterval () ;

}
else{

decaylInterval () ;
}

Send Beacon Handler

When (A send beacon event is received)
Then
1 Send a beacon with my information: 1D, Parent 1D, ETX

Source code:

void CtpRoutingEngine ::sendBeaconTask () {

error_t eval;
if (sending){

return;

beaconMsg—>setOptions (0) ;

if (cfe—>command_CtpCongestion_isCongested () ) {

beaconMsg—>setOptions (beaconMsg—>getOptions () | CTP.OPTECN);

beaconMsg—>setParent (routelnfo . parent);
if (state_is_root){

}

beaconMsg—>setEtx (routelnfo.etx);

3A complete listing of all source code is printed in the appendix




18

else if(routelnfo.parent = INVALID_ADDR){
beaconMsg—>setEtx (routelnfo.etx);
beaconMsg—>setOptions (beaconMsg—>getOptions () | CTP.OPT_PULL);
} else{
beaconMsg—>setEtx (routelnfo.etx + le—>command_LinkEstimator_getLinkQuality (
routelnfo . parent));

trace ()<<”sendBeaconTask._—_parent:.”"<<(int)beaconMsg—>getParent ()
<<’ ._etx:.”’<<(int)beaconMsg—>getEtx () ;

beaconMsg—>getRoutingInteractionControl () .lastHop = self ; // ok
eval = le—>command_Send_send (AM BROADCAST_ADDR, beaconMsg—>dup () ) ;

if (eval = SUCCESS){
//statistics
collectOutput (”Ctp_-Beacons” ,”Tx”)
sending = true;
} else if(eval = EOFF){
radioOn = false;
trace ()<<”sendBeaconTask_—_running:.”<<running<<” _radioOn:."<<radioOn;

Beacon Message Received Handler

When (A beacon message is received)

Then
1 Read neighbor beacon information: ID, Parent ID, ETX

2 Check parent ID

3 If parent ID matches my own ID, then stop

4 Calculate message ETX using the link estimator

5 Calculate new ETX by adding neighbor ETX to message ETX
6 Send event to Table Update Handler

Source code:

void CtpRoutingEngine:: event_BeaconReceive_receive (cPacket* msg){
Enter_Method (” event_BeaconReceive_receive”);
am_addr_t from;

bool congested;

//statistics
collectOutput (?Ctp_Beacons” ,”Rx”) ;

from = command_-AMPacket_source (msg) ;
CtpBeacon* rcvBeacon = check_and_cast<CtpBeacon*>(msg) ;
congested = command_CtpRoutingPacket_getOption (msg, CTP.OPT_ECN) ;
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trace ()<<” BeaconReceive.receive .—_from.”<<(int)from<<” . [parent:.”
<<(int)rcvBeacon—>getParent ()<<” _etx:."<<(int ) rcvBeacon—>getEtx ()
<<77 ] ” ;

//update mneighbor table
if (rcvBeacon—>getParent () != INVALID_ADDR) {
// If this node is a root, request a forced insert in the link
// estimator table and pin the node.
if (rcvBeacon—>getEtx () = 0){
trace ()<<”from.a.root ,.inserting_.if _not.in_table.”
<<’my_ll_addr:."<<my_ll_addr;
le—>command_LinkEstimator_insertNeighbor (from) ;
le—>command_LinkEstimator_pinNeighbor (from) ;
}
routingTableUpdateEntry (
from ,rcvBeacon—>getParent () ,

rcvBeacon—>getEtx () ;
command_CtpInfo_setNeighborCongested (from , congested) ;
if (command_CtpRoutingPacket_getOption (msg, CTP_.OPT_PULL))
resetInterval ();

delete msg ;

Table Update Handler

When (A table update event is received)

Then
1 Read new neighbor information: ID, Parent ID, ETX

2 If routing table is full, then stop

3 Add new neighbor information to the routing table

Source code:

error-t CtpRoutingEngine:: routingTableUpdateEntry (
am_addr_t from ,
am_addr_t parent ,
uintl6-t etx{

uint8_t idx;
uintl6_t linkEtx;
linkEtx = evaluateEtx(le—>command_LinkEstimator_getLinkQuality (from));

idx = routingTableFind (from);

if (idx = routingTableSize){
trace ()<<’routingTableUpdateEntry .—_FAIL, _table_full”;
return FAIL;
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else if(idx = routingTableActive){
if (passLinkEtxThreshold (linkEtx)){

routingTable [idx |. neighbor = from;
routingTable [idx ]. info.parent = parent;
routingTable [idx ]. info.etx = etx;
routingTable [idx ]. info . haveHeard = 1;
routingTable [idx]. info.congested = false;
routingTableActive++;

trace ()<<”routingTableUpdateEntry —_OK, _new_entry” ;

}

else

trace ()<<”routingTableUpdateEntry _—_Fail ,_link._quality (”

<<(int)linkEtx<<”)._below_threshold”;

}

else{
//found, just update
routingTable [idx |. neighbor = from;
routingTable[idx |. info.parent = parent;
routingTable[idx ]. info.etx = etx;

routingTable[idx |. info.haveHeard = 1;

trace ()<<”’routingTableUpdateEntry .—_OK, —updated_entry” ;

}
return SUCCESS;

Update Route Handler:

When (An update route event is received)
Then

1 Read all neighbor information from the table
2 Pick the neighbor with the best ETX
3 Set that neighbor as the new parent

: ID, Parent ID, ETX

Source code:

void CtpRoutingEngine :: updateRouteTask () {

uint8._t 1i;
routing_table_entry* entry;
routing_table_entryx best;
uintl6_-t minEtx;

uintl6_t currentEtx;
uintl6_t linkEtx , pathEtx;

if (state_is_root)

return;

best = NULL;
/* Minimum etz found among mneighbors, initially

minEtx = MAXMETRIC;

infinity */
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/* Metric through current parent, initially infinity */
currentEtx = MAXMETRIC;

trace ()<<”updateRouteTask” ;

/* Find best path in table, other than our current x/
for(i = 0; i < routingTableActive; i++){
entry = &routingTable[i];

// Awvoid bad entries and I—hop loops
if (entry—>info.parent = INVALID_ADDR ||
entry—>info.parent = my_ll_addr){

trace ()<<”routingTable ["<<(int)i<<”]: _neighbor:_[id:.”
<<(int)entry—>neighbor<<” _parent:._”’<<entry—>info .parent
<<” __etx: NO_ROUTE]” ;

continue;
// Compute this mneighbor’s path metric
linkEtx = evaluateEtx (le—>command_LinkEstimator_getLinkQuality (entry—>neighbor));
trace ()<<”routingTable [?<<(int)i<<”]: _neighbor:_[id:_."<<(int)entry—>neighbor
<<”_parent:._."<<entry—>info.parent<<”__etx:.”<<(int)linkEtx
<<77 } ” .,
pathEtx = linkEtx 4+ entry—>info.etx;
/* Operations specific to the current parent */
if (entry—>neighbor = routelnfo.parent){
trace ()<<” already._parent”;

currentEtx = pathEtx;

/* update routelnfo with parent’s current info %/

routelnfo.etx = entry—>info.etx;
routelnfo.congested = entry—>info.congested;
continue;

/* Ignore links that are congested */
if (entry—>info.congested)
continue;
/* Ignore links that are bad x/
if (! passLinkEtxThreshold (linkEtx)){
trace ()<<”did.not.pass_.threshold.”;

continue;

if (pathEtx < minEtx){
minEtx = pathEtx;
best = entry;



}
if (minEtx != MAXMETRIC) {
if (currentEtx = MAXMETRIC ||

(routelnfo.congested && (minEtx < (routelnfo.etx + 10)))
minEtx + PARENT_SWITCH.THRESHOLD < currentEtx){

parentChanges++;

trace ()<<” Changed._parent..from.”<<(int)routelnfo.parent<<”.to.”

<<(int)best—>neighbor;

le —>command_LinkEstimator_unpinNeighbor (routelnfo.parent)
le—>command_LinkEstimator_pinNeighbor (best—>neighbor)
le —>command_LinkEstimator_clearDLQ ( best —>neighbor)

routelnfo.parent = best—>neighbor;

routelnfo.etx = best—>info.etx;

routelnfo.congested = best—>info.congested;

}
else if (!justEvicted &&

currentEtx =— MAXMETRIC &&
minEtx != MAXMETRIC)
signal_Routing_routeFound () ;

justEvicted = false;

9.3 Protocol Modification

The Collection Tree Protocol (CTP), which is described in detail above, is used as the basis

for our routing protocol. Our work has added the awareness of principle subtrees to CTP.

Our changes to CTP are described below.

Our protocol:

Primary Subtree .
Identification # .Brldge
Discovery

and Assignment

Primary Subtree
Routing
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(a) Directed tree utilized by the network protocol (b) The different subtrees of the entire network tree
for data forwarding are highlight in different colors

Figure 8: Network tree topology that illustrates the multiple principle subtrees of the entire
network
Principle Subtree Identification and Assignment

o After CTP network setup is complete, determine which nodes have the base station as

a parent
e Identify these nodes as the roots of the principle subtrees
e Each of these root nodes receives an index value assigned by the base station

e The subtree roots then disseminate their principle subtree index (PST ID) to the

members of their principle subtree
Bridge Discovery - reference Figure 9
e Each node in the network queries its list of neighbors and obtains their PST 1D

e If a node has a neighbor with a PST ID value different from its own, then the neighbor

node is a bridge

e Fach bridge in a principle subtree T}, with index j, that contains the sinkhole ‘re-runs’
the CTP tree establishment protocol by advertising a very low-cost route to the base.
This advertisement is limited to only those sensor nodes in 7}, and results in multiple
CTP tree roots with routes to the base. Sensor node routing tables are modified to keep

track of whether next hops (to parents) are routed towards bridges, giving nodes the
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chance to pick a next hop at random from among the available bridges. This approach
is feasible since we have implemented the ability for sensor nodes to determine their

subtree index as part of the bridge discovery simulations.

(a) The transmitting node has multiple neighbors (b) One neighbor of the transmitting node is a bridge
that it can potentially forward data to, represented to another subtree, which is indicated by the blue

by the blue nodes node and its dashed line to the alternate subtree

Figure 9: Bridge node identification

Principle Subtree Routing - reference Figure 10

e [f a node suspects that there is a sinkhole in its subtree, it chooses a bridge node and
routes in that direction (adding the bridge node ID to the packet to ensure proper

downstream routing)

e A bridge node that receives data from a different subtree will forward the data to the

base station via the Collection Tree Protocol
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(a) The transmitting node is attempting to transmit (b) The transmitting node routes data to a bridge
data to the base station in the presence of a sinkhole node, who then routes the data to a different subtree.
Once in a different subtree, the data is routed to the

base station via the normal directed network tree

Figure 10: Principle Subtree Routing using a bridge between principle subtrees

Our changes to the CTP protocol occur within four event handlers that are a part of the
CTP routing engine: the Send Beacon Handler, the Beacon Message Received Handler,
the Table Update Handler, and the Update Route Handler. We modify these functions
so as to implement bridge descovery through the addition of a priniciple subtree index
(PST_ID). Inclusion of the PST_ID in the protocol will only add two bytes! to each beacon

message.

Beacon Timer Handler®

When (The send beacon timer expires)

Then .
1 Reset send beacon timer

2 Send event to Send Beacon Handler
3 Send event to Update Route Handler

4One byte is equal to 8 bits.
5We do not modify this event handler; however, it is important to understand it’s function as it is
responsible for triggering the Send Beacon Handler and the Update Route Handler.
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Send Beacon Handler®

When (A send beacon event is received)
Then

1 Send a beacon with my information: 1D, Parent ID, ETX, PST_ID

Source code:

void CtpRoutingEngine ::sendBeaconTask () {
error_t eval;
if (sending){

return;

beaconMsg—>setOptions (0) ;

if (cfe—>command_CtpCongestion_isCongested () ) {
beaconMsg—>setOptions (beaconMsg—>getOptions () | CTP.OPTECN);

beaconMsg—>setParent (routeInfo.parent);
if (state_is_root){
beaconMsg—>setEtx (routelnfo.etx);
}
else if(routelnfo.parent = INVALID_ADDR){
beaconMsg—>setEtx (routelnfo.etx);
beaconMsg—>setOptions (beaconMsg—>getOptions () | CTP-OPT_PULL);
} else{
beaconMsg—>setEtx (routelnfo.etx + le—>command_LinkEstimator_getLinkQuality (

routelnfo.parent));

beaconMsg—>setPstld (my_pstld);

trace ()<<”sendBeaconTask.—_parent:.”"<<(int)beaconMsg—>getParent ()
<< _etx:."<<(int)beaconMsg—>getEtx () ;

beaconMsg—>getRoutingInteractionControl () .lastHop = self ; // ok
eval = le—>command_Send_send (AM_.BROADCAST_ADDR, beaconMsg—>dup () ) ;

if (eval = SUCCESS) {
//statistics
collectOutput (” Ctp_Beacons” ,”Tx”)
sending = true;
} else if(eval = EOFF) {
radioOn = false;
trace ()<<”sendBeaconTask._—.running:.”’<<running<<” .radioOn:.”<<radioOn;

6Changes to the original CTP protocol are printed in italics



Beacon Message Received Handler

When (A beacon message is received)

Then
Read neighbor beacon information: ID, Parent ID, ETX,PST_ID

Check parent ID

If parent ID matches my own ID, then stop

If parent ID s root, set my PST_ID to my ID

If parent is not root, set my PST_ID to my parent’s PST_ID
Calculate message ETX using the link estimator

Calculate new ETX by adding neighbor ETX to message ETX
Send event to Table Update Handler

0 N O U = W N+

Source code:

void CtpRoutingEngine:: event_BeaconReceive_receive (cPacketx msg){
Enter_Method (” event_BeaconReceive_receive”);
am_addr_t from;

bool congested;

//statistics
collectOutput (?Ctp_Beacons” ,”Rx” ) ;

from = command_-AMPacket_source (msg) ;
CtpBeacon* rcvBeacon = check_and_cast<CtpBeacon*>(msg) ;
congested = command_-CtpRoutingPacket_getOption (msg,CTP_.OPT_ECN) ;

trace ()<<” BeaconReceive.receive .—_from.”<<(int ) from<<”_[parent:.”
<<(int)rcvBeacon—>getParent ()<<’ _etx:.”<<(int )rcvBeacon—>getEtx ()
<< opstld: . ’<<(int)recvBeacon—>getPstld ()<<’ ]”;

//update meighbor table
if (rcvBeacon—>getParent () != INVALID_ADDR){
// If this node is a root, request a forced insert in the link
// estimator table and pin the node.
if (rcvBeacon—>getEtx () = 0){
trace ()<<”from_a._root ,_inserting.if_not_in_table.”
<<’my-ll_addr:."<<my_ll_addr;
le—>command_LinkEstimator_insertNeighbor (from) ;
le—>command_LinkEstimator_pinNeighbor (from) ;
// since i hear root, i’m the root of a principle subtree
my_pstld = my_ll_addr;

if (rcvBeacon—>getEtx () = 0)
routingTableUpdateEntry (
from ,rcvBeacon—>getParent (),

rcvBeacon—>getEtx () ,



my-pstld);
else
routingTableUpdateEntry (
from ,rcvBeacon—>getParent () ,
rcvBeacon—>getEtx (),
rcvBeacon—>getPstld ());

command_CtpInfo_setNeighborCongested (from , congested) ;
if (command_CtpRoutingPacket_getOption (msg, CTP.OPT_PULL))
resetInterval ();

delete msg ;

Table Update Handler

When (A table update event is received)

Then
1 Read new neighbor information: 1D, Parent ID, ETX, PST_ID

2 If routing table is full, then stop
3 If neighbor PST_ID is not equal to my PST_ID, I am a bridge

4 Add new neighbor information to the routing table

Source code:

error_t CtpRoutingEngine:: routingTableUpdateEntry (
am_addr_t from,
am_addr_t parent ,
uintl6_t etx,
am_addr_t pstld){

uint8_t idx;
uintl6_-t linkEtx;
linkEtx = evaluateEtx (le—>command_LinkEstimator_getLinkQuality (from));

idx = routingTableFind (from);

if (idx = routingTableSize){
trace ()<<”routingTableUpdateEntry .—_FAIL, _table_full”;
return FAIL;

}
else if(idx = routingTableActive){
if (passLinkEtxThreshold (linkEtx)){
routingTable [idx ]. neighbor = from;

routingTable [idx ]. pstld = pstld;

routingTable [idx ]. info.parent = parent;

routingTable [idx ]. info . haveHeard 1;

[
[

routingTable [idx ]. info.etx = etx;
[

routingTable [idx ]. info.congested = false;
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routingTableActive++;
trace ()<<”routingTableUpdateEntry .—_OK, _new_entry” ;
if (pstld != my_pstld)
trace ()<<"##-my_pstld:."<<(int)my_pstld<<” _neighbor_pstld:.”
<<pstld;
}
else
trace ()<<”routingTableUpdateEntry _—_Fail ,_link_quality (”
<<(int)linkEtx<<”)_below._threshold”;

}

else{
//found, just update
routingTable[idx |. neighbor = from;
routingTable[idx |. info.parent = parent;
routingTable[idx ]. info.etx = etx;
routingTable[idx |. info.haveHeard = 1;
trace ()<<”’routingTableUpdateEntry .—_OK, —updated_entry” ;

}
return SUCCESS;

Update Route Handler:

When (An update route event is received)

Then
1 Read all neighbor information from the table: ID, Parent ID, ETX, PST_ID

2 Pick the neighbor with the best ETX
3 Set that neighbor as the new parent

Source code:

void CtpRoutingEngine :: updateRouteTask () {

uint8_t 1ij
routing_table_entry* entry;
routing_table_entry* best;
uintl6_-t minEtx;

uintl6_-t currentEtx;
uintl6_-t linkEtx, pathEtx;

if (state_is_root)

return;

best = NULL;

/* Minimum etz found among neighbors, initially infinity x/
minEtx = MAXMETRIC;

/* Metric through current parent, initially infinity */
currentEtx = MAXMETRIC;

trace ()<<”updateRouteTask”;
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/* Find best path in table, other than our current x/
for(i = 0; i < routingTableActive; i++){

}

entry = &routingTable[i];

// Awvoid bad entries and I—hop loops
if (entry—>info.parent = INVALID_ADDR ||
entry—>info.parent = my_ll_addr){

trace ()<<”routingTable [?<<(int)i<<” ]: _.neighbor:.[id:.”
<<(int)entry—>neighbor<<” .parent:.”’<<entry—>info . parent
<<’ .oetx: NO_ROUTE]” ;

continue;
// Compute this neighbor’s path metric
linkEtx = evaluateEtx (le—>command_LinkEstimator_getLinkQuality (entry—>neighbor));
trace ()<<”routingTable [?<<(int)i<<”]: _neighbor:_[id:_."<<(int)entry—>neighbor
<<”_parent:._."<<entry—>info.parent<<”__etx:.”<<(int)linkEtx
<< _pstld:.”<<(int ) entry —>pstld<<’]7;
pathEtx = linkEtx 4 entry—>info.etx;
/* Operations specific to the current parent */
if (entry—>neighbor = routelnfo.parent){
trace ()<<” already.parent”;

currentEtx = pathEtx;

/* update routelnfo with parent’s current info */

routelnfo.etx = entry—>info.etx;
routelnfo.congested = entry—>info.congested;
continue;

/* Ignore links that are congested x/
if (entry—>info.congested)
continue;
/* Ignore links that are bad x/
if (! passLinkEtxThreshold (linkEtx)){
trace ()<<”did _not._pass_threshold.”;

continue;

if (pathEtx < minEtx) {
minEtx = pathEtx;
best = entry;

if (minEtx != MAXMETRIC) {

if (currentEtx = MAXMETRIC ||
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(routelnfo.congested && (minEtx < (routelnfo.etx + 10))) ||
minEtx + PARENT_SWITCH.THRESHOLD < currentEtx){

parentChanges++;

trace ()<<” Changed._parent.._from.”<<(int)routelnfo.parent<<”_to.”
<<(int)best—>neighbor<<” _with_pstld."<<(int)best—>pstld;

le—>command_LinkEstimator_unpinNeighbor (routelnfo.parent) ;
le—>command_LinkEstimator_pinNeighbor (best—>neighbor) ;
le—>command_LinkEstimator_clearDLQ ( best —>neighbor) ;

routelnfo.parent = best—>neighbor;
routelnfo.etx = best—>info.etx;
routelnfo.congested = best—>info.congested;
my_pstld = best—>pstld;

}
else if (!justEvicted &&

currentEtx =— MAXMETRIC &&
minEtx != MAXMETRIC)

signal_Routing_routeFound () ;

justEvicted = false;

10 Simulations

Our research has utilized simulations in order to increase our understanding of how the C'TP
works, and also to show some principles of the network. Our network simulations utilize the
Castalia v3.0 wireless sensor networks simulator, which operates on top of the OMNeT++
v4.1 network simulator. In the Castalia simulator, we have modified an implementation of
the CTP protocol adapted for the C++ language used by Castalia. The original C++ code
for the CTP protocol has been provided to us by the authors of [6].

In our project, we simulated networks of 50, 150, and 300 MICA2 WSN nodes with a single
base station. The simulated WSN networks were programmed to use the CTP protocol
for routing. After successfully simulating a network of 50 nodes, we moved on to simulating
larger networks. In addition, we implemented a sinkhole node in the simulation network. The
sinkhole actively sends and receives network beacons but does not forward actual application

(sensor) data to the base station.
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Data from sixty simulation runs are shown in Appendix A.1. The graph shows the effect a
sinkhole can have on a WSN that utilizes CTP. The graph shows simulations on a 300 node
network. In these simulation runs, thirty individual network topologies were used. Each
topology was generated using a random uniform distribution. Within each distribution, two
simulations were run: one that tested the network with a sinkhole, and one that tested the
network without a sinkhole. The graph shows the individual topologies as two columns: the
red column represents packet loss” (as a percentage) with a sinkhole, while the blue column
represents the packet loss without a sinkhole. It is important to note that there can be packet
loss when there is no sinkhole in the network — these losses can be attributed to simulated

data collisions® or errors.

Simulations were also conducted using our modified protocol. Through the trace file gener-
ated during each simulation run, we were able to determine that bridge nodes were success-

fully discovered by our protocol.

11 Conclusion

This project has developed a novel strategy to mitigate sinkhole attacks in WSNs that utilize
tree structured routing. Our work has shown that an implementation of this strategy in the
CTP protocol is feasible based on simulations that show the existence of ‘bridge nodes’
in ad-hoc WSNs that are initialized using CTP. Future work on this area might include
implementing our sinkhole mitigation strategy into a working version of the Collection Tree
Protocol (CTP) and testing its effectiveness with respect to the overall data delivery ratio

in the Castalia wireless sensor networks simulator.
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A Appendix

A.1 Effect of Sinkhole in Simulation

Note: This graph is described in the Simulations section
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A.2

Source Code

CTP Routing Engine:

#include
#include
#include

7 CtpRoutingEngine.h”
?”CtpForwardingEngine .h”
?"LinkEstimator .h”

Define_Module (CtpRoutingEngine) ;

void CtpRoutingEngine:: initialize (){

LIS/ Castalia Implementation ////////////////////
A A s

//Pointers to other modules for direct function calls.
cfe = check-and_cast<CtpForwardingEnginex>(getParentModule ()—>getSubmodule(” CtpForwardingEngine”))

le = check_and_cast<LinkEstimator*>(getParentModule ()—>getSubmodule(” LinkEstimator”)) ;

//Id of the node (like TOS_NODE_ID)
self = getParentModule ()—>getParentModule ()—>getParentModule ()—>getIndex () ;

// The default values are set in CtpRoutingEngine.ned

// but they can be overwritten in omnetpp.ini

routingTableSize = par(”routingTableSize”); // default 10 entries
minlnterval = par(”minlInterval”); // default 128

maxInterval = par(”maxInterval”) ; // default 512000
ctpReHeaderSize = par(”ctpReHeaderSize”) ; // default header size: 5 bytes
isRoot = par(”isRoot”) ; // sets this node as root

// Clock drift simulation (it is present at each layer)
if (getParentModule ()—>getParentModule ()—>getParentModule ()—>findSubmodule (” ResourceManager”) !=
-1 {
resMgrModule = check_and_cast <ResourceManager*>(getParentModule ()—>getParentModule ()—>
getParentModule ()—>getSubmodule (” ResourceManager” ) ) ;
} else {
opp-error ("\n[Mac]:\n_Error_in_geting._a_valid_reference_to_ResourceManager_for._direct.
method_calls.”);

}

setTimerDrift (resMgrModule—>getCPUClockDrift ());

A A s
A A A A s

LI/ CipForwardingEngine (default) /////////////////
A A Vs

ECNOff = true;

radioOn = true ; // TO IMPLEMENT ————— radioOn in stdcontrol
running = false ;

sending = false ;

justEvicted = false ;

routingTable = new routing_table_entry [routingTableSize] ;
currentInterval = minInterval;

A A A A A A A A A s
A A A A A A A A A s

A AR R N AN O R e as
A A A N A s

routeUpdateTimerCount = 0;
parentChanges = 0;
state_is_root = 0;

routeInfolnit(&routelnfo);
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}

routingTablelnit () ;
my_ll_addr = command_AMPacket_address ()

beaconMsg = new CtpBeacon ()
beaconMsg—>setByteLength (ctpReHeaderSize) ;

// Call the corresponding rootcontrol command

isRoot? command_RootControl_setRoot () : command_RootControl_unsetRoot () ;

A A A A A A A A A A s
VA A A A A A A A s

L1107 7777777777/ Statistics J/////// /771177111
A A a4

declareOutput (”Ctp~Beacons”)

A A A A a4
A N VA4

void CtpRoutingEngine:: handleMessage (cMessage* msg) {

}

int msgKind = msg—>getKind () ;
switch (msgKind) {

case TIMER_SERVICE:{
handleTimerMessage (msg) ;

break;
}
default:{

opp-error (”Unkown_message_type.”)
}

}

delete msg ;

void CtpRoutingEngine:: timerFiredCallback (int timer)

{

}

trace () << "CtpRE_—_TimerFiredCallback ,_value:_."<<timer;
switch (timer) {

case ROUTE._TIMER: {

setTimer (ROUTE_TIMER, tosMillisToSeconds (BEACONINTERVAL)) ; // because it ’s a
periodic timer.

event_RouteTimer_fired ()
break;

}

case BEACON_TIMER: {
event_BeaconTimer_fired ()
break;

}

case POST_-UPDATEROUTETASK: {
updateRouteTask () ;
break ;

}

case POST_SENDBEACONTASK:{
sendBeaconTask () ;

break ;
}
default:{

opp-error (”Unexpected _message!”);
}

CtpRoutingEngine::” CtpRoutingEngine () {
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delete beaconMsg ;
beaconMsg = NULL ;

delete [] routingTable ;
routingTable = NULL ;

}

void CtpRoutingEngine:: chooseAdvertiseTime () {
t = currentInterval;
t /= 2;
t += command_Random_rand32(1) % t;
tHasPassed = false;

setTimer (BEACON_TIMER, tosMillisToSeconds (t)) ;

void CtpRoutingEngine:: resetlnterval () {
currentInterval = minlnterval;

chooseAdvertiseTime () ;

void CtpRoutingEngine:: decaylInterval () {
currentInterval x= 2;

if (currentInterval > maxInterval) {

currentInterval = maxInterval;
}
chooseAdvertiseTime () ;
¥
void CtpRoutingEngine:: remaininglnterval () {
uint32_t remaining = currentlnterval;
remaining —= t;
tHasPassed = true;

setTimer (BEACON_TIMER, tosMillisToSeconds (remaining)) ;

error_-t CtpRoutingEngine:: command_StdControl_start () {
Enter_Method (" command_StdControl_start”) ;
//start will (re)start the sending of messages
if (!running) {
running = true;
resetInterval ();
setTimer (ROUTE.TIMER, tosMillisToSeconds (BEACONINTERVAL)) ;
trace ()<<”stdControl.start_.—_running.”’<<running<<” _radioOn:."<<radioOn

}
return SUCCESS;

error-t CtpRoutingEngine:: command_-StdControl_stop () {
Enter_Method (”command_-StdControl_stop”)
running = false ;
trace ()<<”stdControl.stop_—_running ."<<running<<” _radioOn:_"<<radioOn ;
return SUCCESS;

void CtpRoutingEngine:: event_RadioControl_startDone(error_t error) {
Enter_Method (” event_RadioControl_startDone”) ;
radioOn = true;
trace ()<<”radioControl.startDone_—_running .”<<running<<” _radioOn:_."<<radioOn ;
if (running) {
uintl6_-t nextlnt;
nextInt = command_Random_rand16(0) % BEACONINTERVAL ;
nextInt += BEACON.INTERVAL >> 1;
setTimer (BEACON_TIMER, tosMillisToSeconds (nextInt));

void CtpRoutingEngine:: event_-RadioControl_stopDone(error-t error) {
Enter_Method (” event_RadioControl_stopDone”) ;
radioOn = false;

trace ()<<”radioControl.stopDone_—_running._”’<<running<<” _radioOn:."<<radioOn ;

5
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/x Is this quality measure better than the minimum threshold? x/
// Implemented assuming quality is EETX
bool CtpRoutingEngine:: passLinkEtxThreshold (uintl6_t etx) {
return true;
// return (etzx < ETX_THRESHOLD) ;

/* Converts the output of the link estimator to path metric

* wunits, that can be xadded* to form path metric measures =/

uint16_-t CtpRoutingEngine:: evaluateEtx (uintl6_-t quality) {
trace ()<<”evaluateEtx.—.”<<(int) quality <<” —>_."<<(int) (quality +10);
return (quality + 10);

/* updates the routing information, wusing the info that has been received
* from mneighbor beacons. Two things can cause this info to change:
* meighbor beacons, changes in link estimates, including neighbor eviction x*/
void CtpRoutingEngine :: updateRouteTask () {
uint8_t 1ij;
routing_table_entrys* entry;
routing_table_entrys* best;
uintl6_-t minEtx;
uintl6_-t currentEtx;
uintl6_-t linkEtx, pathEtx;

if (state_is_root)
return;

best = NULL;

/* Minimum etz found among neighbors, initially infinity =/
minEtx = MAXMETRIC;

/* Metric through current parent, initially infinity x/
currentEtx = MAXMETRIC;

trace ()<<” updateRouteTask” ;
/* Find best path in table, other than our current x/
for (i = 0; i < routingTableActive; i++) {

entry = &routingTable[i];

// Avoid bad entries and I—hop loops

if (entry—>info.parent == INVALID_.ADDR || entry—>info.parent == my_ll_addr) {
trace ()<<”routingTable ["<<(int)i<<” ]:_.neighbor:.[id:.”<<(int)entry—>neighbor<<”.
parent:."<<entry—>info .parent<<” ._etx: _NO_ROUTE]”
continue;
}

/* Compute this neighbor’s path metric x/
linkEtx = evaluateEtx(/*call LinkEstimator.getLinkQuality (entry—>neighbor) changed with:
%/ le—>command_LinkEstimator_getLinkQuality (entry—>neighbor));
trace ()<<”routingTable [”’<<(int)i<<” ]:_neighbor:_[id:_.”"<<(int)entry—>neighbor<<” _parent:._.”
<<entry—>info .parent<<” ._etx:.”<<(int)linkEtx
<<’ _pstld:_”<<(int)entry —>nonepstld<<”]”;
pathEtx = linkEtx + entry—>info.etx;
/* Operations specific to the current parent x/
if (entry—>neighbor == routelnfo.parent) {
trace ()<<” already._parent”;
currentEtx = pathEtx;
/* update routelnfo with parent’s current info x/

routelnfo.etx = entry—>info.etx;
routelnfo.congested = entry—>info.congested;
continue;

}
/* Ignore links that are congested */
if (entry—>info.congested)
continue;
/* Ignore links that are bad */
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/*

if (!passLinkEtxThreshold(linkEtx)) {
trace ()<<” did._not._pass_threshold.”;
continue;

if (pathEtx < minEtx) {
minEtx = pathEtx;
best = entry;

/* Now choose between the current parent and the best neighbor x/
/* Requires that:
1. at least another mneighbor was found with ok quality and not congested
2. the current parent is congested and the other best route is at least as good
8. or the current parent is not congested and the neighbor quality is better by
the PARENT_-SWITCH.-THRESHOLD.

Note: if our parent is congested, in order to avoid forming loops, we try to select
a node which is not a descendent of our parent. routelnfo.ext ts our parent’s
etr. Any descendent will be at least that + 10 (1 hop), so we restrict the
selection to be less than that.

*/

if (minEtx != MAXMETRIC) {
if (currentEtx == MAXMETRIC ||

(routelnfo.congested && (minEtx < (routelInfo.etx 4+ 10))) ||
minEtx + PARENT SWITCH.THRESHOLD < currentEtx) {

// routelnfo.metric will not store the composed metric.

// since the linkMetric may change, we will compose whenever

// we need it: i. when choosing a parent (here);

// ii. when choosing a mnexzt hop

parentChanges++;

trace ()<<” Changed_parent._from_."<<(int)routelnfo.parent<<”_to_"<<(int)best—>
neighbor<<” _with_pstld.”<<(int)best—>nonepstld;

le—>command_LinkEstimator_unpinNeighbor(routeInfo.parent) ;

le—>command_LinkEstimator_pinNeighbor (best—>neighbor) ;

le —>command_LinkEstimator_clearDLQ (best —>neighbor) ;

routelnfo.parent = best—>neighbor;
routelnfo.etx = best—>info.etx;
routelnfo.congested = best—>info.congested;

nonemy_pstld = best—>nonepstld;

/* Finally, tell people what happened: x/
/* We can only loose a route to a parent if it has been evicted. If it hasn’t
* been just evicted then we already did not have a route x/
if (justEvicted && routelnfo.parent == INVALID_ADDR)
signal_Routing_-noRoute () ;
/* On the other hand, if we didn’t have a parent (no currentEtz) and now we
* do, then we signal route found. The exception is if we just evicted the
* parent and immediately found a replacement route: we don’t sigmnal in this
* case x/
else if (!justEvicted &&
currentEtx == MAXMETRIC &&
minEtx !'= MAXMETRIC)
signal_Routing_routeFound () ;
justEvicted = false;

send a beacon advertising this node’s routelnfo x/

// only posted if running and radioOn

void CtpRoutingEngine :: sendBeaconTask () {

error-t eval;
if (sending) {

return;




336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

352
353
354
355
356

357
358
359

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

41

beaconMsg—>setOptions (0) ;

/x Congestion notification: am I congested? x/
if (cfe—>command_CtpCongestion_isCongested ()) {
beaconMsg—>setOptions (beaconMsg—>getOptions () | CTP.OPTECN) ;

beaconMsg—>setParent (routelnfo.parent) ;
if (state_is_root) {
beaconMsg—>setEtx (routelnfo.etx) ;
}
else if (routelnfo.parent == INVALID_ADDR) {
beaconMsg—>setEtx (routelnfo.etx) ;
beaconMsg—>setOptions (beaconMsg—>getOptions () | CTP.OPT_PULL) ;
} else {
beaconMsg—>setEtx (routelnfo.etx + le—>command_LinkEstimator_getLinkQuality (routelnfo.
parent)) ;

beaconMsg—>nonesetPstIld (nonemy_pstld); // hmm; i should have set my_pstld to that of my parent

trace ()<<”sendBeaconTask_—_parent:.”<<(int)beaconMsg—>getParent ()<<” _etx:_"<<(int)beaconMsg—>
getEtx () ;

beaconMsg—>getRoutingInteractionControl () .lastHop = self ; // ok
eval = le—>command_Send_send (AM_.BROADCAST_ADDR, beaconMsg—>dup () ); // the duplicate will be deleted
in the LE module, we keep a copy here that is reused each time.

if (eval == SUCCESS) {
//statistics
collectOutput (”Ctp_Beacons” ,”Tx”) ;

sending = true;
} else if (eval == EOFF) {
radioOn = false;

trace ()<<”sendBeaconTask._—_running:_"<<running<<” .radioOn:._"<<radioOn ;

void CtpRoutingEngine:: event_-BeaconSend_sendDone (cMessage* msg, error_-t error) {
Enter_Method (” event_BeaconSend_sendDone”) ;
if (!sending) {
//something smells bad around here
opp-error (”something_smells_bad_around_here”);
return;

}

sending = false;

void CtpRoutingEngine:: event_-RouteTimer_fired () {
if (radioOn && running) {
post_updateRouteTask () ;

void CtpRoutingEngine:: event_BeaconTimer_fired () {
if (radioOn && running) {
if (!tHasPassed) {
post_updateRouteTask () ; // always the most up to date info
post_sendBeaconTask () ;
trace ()<<”Beacon_timer_fired .”;

remaininglnterval () ;

}
else {
decaylInterval ();
}
}
}
/*

* We don’'t mneed a pointer to the header, we can wuse the methods of cPacket




403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

428
429
430
431
432
433
434
435
436
437
438

439
440
441
442
443

444
445

446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

42

* instead , we return a pointer to CtpBeacon and that’s it.

*/

CtpBeacon* CtpRoutingEngine:: getHeader (cPacket* msg){
return check_and_cast<CtpBeacon*>(msg) ;

/+* Handle the receiving of beacon messages from the neighbors. We update the
* table, but wait for the nexzt route update to choose a new parent */
void CtpRoutingEngine:: event_BeaconReceive_receive (cPacket* msg) {
Enter_Method (” event_BeaconReceive_receive”)
am_addr_t from;
bool congested;

//statistics
collectOutput (”Ctp~Beacons” ,”Rx”)

// we skip the check of beacon length.

//need to get the am_addr_t of the source
from = command_AMPacket_source(msg) ;

CtpBeacon* rcvBeacon = check_and_cast<CtpBeacon*>(msg) ;
congested = command_CtpRoutingPacket_getOption (msg,CTP.OPT_ECN) ;

trace ()<<” BeaconReceive.receive .—_from."<<(int)from<<” _[parent:."<<(int)rcvBeacon—>getParent ()<<’ _
etx:.”’<<(int)rcvBeacon—>getEtx ()
<<”_pstld:_”"<<(int)rcvBeacon—>nonegetPstld ()<<”]”;
//update meighbor table
if (rcvBeacon—>getParent () != INVALID_.ADDR) {

/x If this node is a root, request a forced insert in the link

* estimator table and pin the node. x/

if (rcvBeacon—>getEtx () == 0) {
trace ()<<”from._a._root ,_.inserting_if_not-in_table_."<<’my_ll_addr:_."<<my-_ll_addr;
le—>command_LinkEstimator_insertNeighbor (from) ;
le—>command_LinkEstimator_pinNeighbor (from) ;
nonemy_pstld = my_ll_addr; // since i hear Toot, t’m the root of a principle

subtree

}

//TODO: also, if better than my current parent’s path etz, insert

if (rcvBeacon—>getEtx () == 0)
routingTableUpdateEntry (from, rcvBeacon—>getParent (), rcvBeacon—>getEtx (),
nonemy _pstld) ;
else
routingTableUpdateEntry (from, rcvBeacon—>getParent (), rcvBeacon—>getEtx (),
rcvBeacon—>nonegetPstId ());

command_CtpInfo_setNeighborCongested (from , congested) ;

if (command_CtpRoutingPacket_getOption (msg, CTP.OPT_PULL)) {
resetInterval ();

¥

delete msg ;

// we do mnot return the message, we delete it.

/% Signals that a neighbor is no longer reachable. need special care if
* that meighbor is our parent x/
void CtpRoutingEngine:: event_LinkEstimator_evicted (am_addr_t neighbor) {
Enter_Method (” event_LinkEstimator_evicted”) ;
routingTableEvict (neighbor);
trace ()<<” LinkEstimator.evicted”
if (routelnfo.parent == neighbor) {
routelnfolnit(&routelnfo);
justEvicted = true;
post_updateRouteTask () ;
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/*

* UnicastNameFreeRouting Inteface

*/

/* Simple implementation: return the current routelnfo x/

am_addr_-t CtpRoutingEngine:: command_Routing_nextHop () {

}

Enter_Method (” command_Routing_nextHop”)

return routelnfo.parent;

bool CtpRoutingEngine:: command_Routing_hasRoute () {

}
//

Enter_Method (” command_-Routing_hasRoute”) ;
return (routelnfo.parent != INVALID_ADDR) ;

/*

* Ctplnfo Interface (Part 1)

*/

error_t

error_t

CtpRoutingEngine :: command_CtpInfo_getParent (am_addr_t* parent) {
if (parent == NULL)
return FAIL;
if (routelnfo.parent == INVALID_ADDR)
return FAIL;
kparent = routelnfo.parent;
return SUCCESS;

CtpRoutingEngine :: command_CtpInfo_getEtx(uintl6_t* etx) {
Enter_Method (" command_CtpInfo_getEtx”)
if (etx == NULL)
return FAIL;
if (routelnfo.parent == INVALID_ADDR)
return FAIL;
if (state_is_root == 1) {
xetx = 0;
} else {
// path etz = etz (parent) + etz (link to the parent)

*etx = routelnfo.etx + evaluateEtx(le—>command_LinkEstimator_getLinkQuality (routelnfo.

parent) );

}
return SUCCESS;

void CtpRoutingEngine :: command_CtpInfo_.recomputeRoutes () {

Enter_Method (" command_CtpInfo_-recomputeRoutes”) ;
post_updateRouteTask () ;

void CtpRoutingEngine:: command_CtpInfo_triggerRouteUpdate () {

Enter_-Method (” command_CtpInfo_triggerRouteUpdate”) ;

resetInterval ();

void CtpRoutingEngine:: command_CtpInfo_triggerImmediateRouteUpdate () {

Enter_Method (”command_CtpInfo_triggerImmediateRouteUpdate”) ;

resetInterval ();

void CtpRoutingEngine :: command_CtpInfo_setNeighborCongested (am_addr_t n, bool congested) {

Enter_Method (?command_CtpInfo_setNeighborCongested”) ;

uint8_t idx;

if (ECNOff)
return;

idx = routingTableFind (n);

if (idx < routingTableActive) {
routingTable [idx]. info.congested = congested;

}

if (routeInfo.congested && !congested)
post_updateRouteTask () ;

else if (routelnfo.parent == n && congested)
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post_updateRouteTask () ;

bool CtpRoutingEngine:: command_CtpInfo_isNeighborCongested (am_addr_t n) {

}

Enter_Method (” command_CtpInfo_isNeighborCongested”)
uint8_t idx;

if (ECNOff)

return false;

idx = routingTableFind (n);
if (idx < routingTableActive) {
return routingTable[idx]. info.congested;

}

return false;

//
/*

*/
VAT
/*

err

err

RootControl Interface

sets the current node as a root, if not already a root */

returns FAIL if it’s mnot possible for some reason */

or_t CtpRoutingEngine:: command_RootControl_setRoot () {
Enter_Method (” command_RootControl_setRoot”) ;

bool route_found = false ;

route_found = (routelnfo.parent == INVALID_ADDR) ;
state_is_root = 1;

nonemy_pstld = 0; // a root is mno principle subtree
routelnfo.parent = my_ll_addr; //muyself
routelnfo.etx = 0;

if (route_found)

signal_Routing_-routeFound () ;

trace ()<<” RootControl.setRoot.—_I 'm_a_root_now!”<<(int) routelnfo.parent

return SUCCESS;

or_t CtpRoutingEngine:: command_RootControl_unsetRoot () {
Enter_Method (" command_RootControl_unsetRoot”) ;
state_is_root = 0;
routelnfolnit(&routelnfo);
trace ()<<” RootControl.unsetRoot_-—_I 'm_not_a_root._now!”
post_updateRouteTask () ;
return SUCCESS;

bool CtpRoutingEngine :: command_-RootControl_isRoot () {

-

Enter_Method (” command_-RootControl_isRoot”) ;
return state_is_root;

3

N ~ ~
* ~N ~N

* ¥ X X X X ¥ X ¥ %X ¥ ¥

*

*/

bool CtpRoutingEngine:: event_CompareBit_shouldInsert(cPacket *msg, bool white_bit)

default events Routing.noRoute and Routing.routeFound skipped —> wuseless

This should see if the mnode should be inserted in the table.

If the white_bit is set, this means the LL believes this is a good
first hop link.

The link will be recommended for insertion if it is better* than some
link in the routing table that is not our parent.

We are comparing the path quality up to the node, and ignoring the link
quality from wus to the node. This is because of a couple of things:

1. because of the white bit, we assume that the I—hop to the candidate
link is good (say, etxz=1)

2. we are being optimistic to the nodes in the table, by ignoring the
1—hop quality to them (which means we are assuming it ’s 1 as well)
This actually sets the bar a little higher for replacement
this 1is faster

4. it doesn’t require the link estimator to have stabilized on a link

{
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Enter_-Method (” event-CompareBit_shouldInsert”)
bool found = false;

uintl6_t pathEtx;

uintl6_t neighEtx;

int i;

routing_table_entrys* entry;

CtpBeacon* rcvBeacon ;

// checks if it is a CtpBeacon

if (dynamic_cast<CtpBeaconx>(msg) == NULL) {
delete msg ;
return false ;

}

/* 1.determine this packet’s path quality x/

rcvBeacon = check_and_cast<CtpBeaconx>(msg); // we don’'t need a pointer to header, we use
methods .

if (rcvBeacon—>getParent () == INVALID_ADDR) {

delete msg ;

return false;

/* the node is a root, recommend insertion! x/
if (rcvBeacon—>getEtx () == 0) {
delete msg ;

return true;
pathEtx = rcvBeacon—>getEtx () ;
/* 2. see if we find some neighbor that is worse x/

for (i = 0; i < routingTableActive && !found; i++) {
entry = &routingTable[i];

//ignore parent, since we can’t replace it
if (entry—>neighbor == routelnfo.parent)
continue;
neighEtx = entry—>info.etx;
//neighEtz = evaluateEtz (call LinkEstimator.getLinkQuality (entry—>neighbor));
found |= (pathEtx < neighEtx);

}
delete msg ;

return found;

/3 ok ok ok o ok ok ok koK o ok ok ok ok ok oK oK ok R oK R ok ok R ok R ok ok oK R S ok R ok R ok oK oK ok R ok ok oKk oK oK K ok R ok ok ok ok ok ok /
/* Routing Table Functions */
/* The routing table keeps info about neighbor’s route_-info ,
and is wused when choosing a parent.
The table is simple:

*
*
* — not fragmented (all entries in 0..routingTableActive)
* — not ordered

*

— no replacement: eviction follows the LinkEstimator table

void CtpRoutingEngine:: routingTablelnit () {
routingTableActive = 0;

/* Returns the index of parent in the table or
* routingTableActive if not found x/
uint8_t CtpRoutingEngine:: routingTableFind (am_addr_-t neighbor) {
uint8_-t i;
if (neighbor == INVALID_ADDR)
return routingTableActive;
for (i = 0; i < routingTableActive; i++) {
if (routingTable[i].neighbor == neighbor)
break;

cPacket
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return i;

¥
error_-t CtpRoutingEngine:: routingTableUpdateEntry (am_addr_-t from, am_addr_-t parent, uintl6_t etx,
am_addr_t nonepstld) {
uint8_t idx;
uintl6_t linkEtx ;
linkEtx = evaluateEtx(le—>command_LinkEstimator_getLinkQuality (from));
idx = routingTableFind (from) ;
if (idx == routingTableSize) {
//mnot found and table is full
//if (passLinkEtzThreshold (linkEtz))
//TODO: add replacement here, replace the worst
//}
trace ()<<”routingTableUpdateEntry .—_FAIL, _table_full”;
return FAIL;
¥
else if (idx == routingTableActive) {
//mot found and there is space
if (passLinkEtxThreshold(linkEtx)) {
routingTable [idx]. neighbor = from;
routingTable [idx ].nonepstld = nonepstld;
routingTable [idx]. info.parent = parent;
routingTable [idx ]. info.etx = etx;
routingTable [idx ]. info .haveHeard = 1;
routingTable [idx]. info.congested = false;
routingTableActive++;
trace ()<<”routingTableUpdateEntry .—_OK, _new_entry” ;
if (nonepstld != nonemy_pstld)
trace ()<< "##-my_pstld: .”<<(int)nonemy_pstld<<” _neighbor_pstld:_."<<nonepstld
} else {
trace ()<<”routingTableUpdateEntry_—_Fail ,_link_quality - (”<<(int)linkEtx<<”)_below._
threshold” ;
}
} else {
//found, just wupdate
routingTable [idx ]. neighbor = from;
routingTable[idx].info.parent = parent;
routingTable [idx]. info.etx = etx;
routingTable [idx]. info.haveHeard = 1;
trace ()<<”routingTableUpdateEntry —_OK, _updated_entry”;
}
return SUCCESS;
¥
/* if this gets ezpensive, introduce indirection through an array of pointers */
error-t CtpRoutingEngine:: routingTableEvict (am_-addr_-t neighbor) {
uint8_-t idx,i;
idx = routingTableFind (neighbor);
if (idx == routingTableActive)
return FAIL;
routingTableActive ——;
for (i = idx; i < routingTableActive; i4++4) {
routingTable[i] = routingTable[i+1];
}
return SUCCESS;
¥

Jroksoksrknskkkk end routing table functions sk skokkokokskokk ok /

// Collection Debug skipped —> not wuseful in our implementation

/*

* CtpRoutingPacket Interface

*/

bool CtpRoutingEngine:: command_CtpRoutingPacket_getOption (cPacket* msg, ctp_-options_t opt) {

return ((getHeader (msg)—>getOptions () & opt) == opt) ? true : false;
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void CtpRoutingEngine :: command_CtpRoutingPacket_setOption (cPacket* msg, ctp_-options_t opt) {

getHeader (msg)—>setOptions (getHeader (msg)—>getOptions () | opt) ;

void CtpRoutingEngine:: command_CtpRoutingPacket_clearOption (cPacket* msg, ctp_-options_t opt) {

getHeader (msg)—>setOptions (getHeader (msg)—>getOptions () & “opt) ;

void CtpRoutingEngine :: command_CtpRoutingPacket_clearOptions (cPacket* msg) {
getHeader (msg)—>setOptions (0) ;

am_addr_-t CtpRoutingEngine:: command_CtpRoutingPacket_getParent (cPacket* msg) {
return getHeader (msg)—>getParent () ;

}

void CtpRoutingEngine :: command_-CtpRoutingPacket_setParent (cPacket* msg, am-_addr_-t addr) {

getHeader (msg)—>setParent (addr);

uintl6_t CtpRoutingEngine:: command_CtpRoutingPacket_getEtx(cPacket* msg) {
return getHeader (msg)—>getEtx () ;

void CtpRoutingEngine:: command_CtpRoutingPacket_setEtx(cPacket* msg, uint8_.t etx) {
getHeader (msg)—>setEtx (etx) ;

¥

//

/*
* Ctplnfo Interface (Part 2)

*/
uint8_t CtpRoutingEngine:: command_CtpInfo_numNeighbors () {
return routingTableActive;

uintl6_t CtpRoutingEngine:: command_CtpInfo_getNeighborLinkQuality (uint8_t n) {

return (n < routingTableActive)? le—>command_LinkEstimator_getLinkQuality (routingTable [n]. neighbor

)0 xffff;

uintl6_t CtpRoutingEngine:: command_Ctplnfo_getNeighborRouteQuality (uint8_t n) {

return (n < routingTableActive)? le—>command_LinkEstimator_getLinkQuality (routingTable[n].neighbor

) + routingTable[n].info.etx:0 xfffff;

am_addr_-t CtpRoutingEngine:: command_CtpInfo_getNeighborAddr(uint8_-t n) {

return (n < routingTableActive)? routingTable[n].neighbor:AMBROADCAST_-ADDR
}
//

5

L1107 77 7777777777777/ /7/7// Custom functions //////////////////////////////////7//
A A N Ve

// These functions trigger an event in the module where they should signal it.

void CtpRoutingEngine::signal_Routing_routeFound () {
cfe—>event_UnicastNameFreeRouting_routeFound () ;

¥

void CtpRoutingEngine::signal_Routing_-noRoute () {
cfe—>event_UnicastNameFreeRouting_routeFound () ;

/*

* AMPacket Interface (just what we need)

*/

am-addr-t CtpRoutingEngine:: command_-AMPacket_source(cMessage* msg) {
RoutingPacket* rPkt = check_and_cast<RoutingPacket*>(msg) ;
return (uintl6_t) rPkt—>getRoutinglnteractionControl().lastHop ;
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am_addr_t CtpRoutingEngine:: command_AMPacket_address () {
return self ;

}

//

// these functions simulate the post command of TinyOs
void CtpRoutingEngine:: post_updateRouteTask () {
setTimer (POST.-UPDATEROUTETASK,0) ; // cannot call the updateRouteTask directly.
more similar to the post command in TinyOs.

}

void CtpRoutingEngine :: post_sendBeaconTask () {
setTimer (POST-SENDBEACONTASK, 0)
}

A A A A A A A A A A N aa
A e

By this way it

is

CTP Routing Engine Header:

#ifndef _.CTPROUTINGENGINE_H_
#define _.CTPROUTINGENGINE_H_

#include ”Ctp.h”

using namespace std;
LIS TreeRouting he S/ )/
A e
enum {
AM_TREE_ROUTING_CONTROL = O0xCE,
BEACON_INTERVAL = 8192,
INVALID_.ADDR = O0xffff ,
ETX_THRESHOLD = 50, // link quality=20% —> ETX=5 —> Metric=>50
PARENT_SWITCH.THRESHOLD = 15,
MAX METRIC = OxFFFF,
¥
typedef struct {
am_addr_t parent;
uintl6_t etx;
bool haveHeard;
bool congested;
} route_info_t;
typedef struct {
am_addr_-t neighbor;
am_addr_-t nonepstld;
route_info_-t info;
} routing_table_entry;
inline void routelnfolnit(route_info_-t *ri) {
ri—>parent = INVALID_ADDR;
ri—>etx = 0;
ri—>haveHeard = 0;
ri—>congested = false ;
}
A A A A
A A N e
LIS Custom walwes S/ /)11
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enum{

}

A A A A A A A A A A aa
A A A A A A A A A A s

BEACON_TIMER = 1,
ROUTE.TIMER = 2,
POST_UPDATEROUTETASK = 3,
POST_SENDBEACONTASK = 4,

class CtpRoutingEngine ;

class LinkEstimator ;

class CtpRoutingEngine: public CastaliaModule , public TimerService{

protected:

L1107/ CipRoutingEngineP .nc //////////////////////////
VA A I VA

bool ECNOff ;

bool radioOn ;
bool running ;
bool sending ;
bool justEvicted ;

route_info_t routelnfo ;
bool state_is_root;
am_addr_t my_ll_addr;

am_addr_t nonemy_pstld; // my pstID 4is that of my parent’

cPacket beaconMsgBuffer ;

CtpBeaconx beaconMsg ; // we don’t need a pointer to the header,

/* rTouting table —— routing info about meighbors x/
routing_table_entry* routingTable ;
uint8_t routingTableActive;

/x statistics x/
uint32_t parentChanges;
/* end statistics =/

uint32_t routeUpdateTimerCount;
uint32_t currentInterval

uint32_-t t;
bool tHasPassed;

we use methods of cPacket instead

A A A A A A A A aa
VI VA

L1707/ 777/7 /7)) Custom Variables [/////////////////////////////
Y A A VA

// Pointers to other modules.
CtpForwardingEngine =xcfe ;
LinkEstimator =xle ;
ResourceManager* resMgrModule;

// Beacon Frame size.
int ctpReHeaderSize ;

// Node Id.
int self;

// Sets a node as root from omnetpp.int
bool isRoot ;

// Sets a node as a sinkhole from omnetpp.int
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bool isSink;

// Arguments of generic module CtpRoutingEngineP
uint32_t minlnterval ;
uint32_t maxInterval ;

uint8_t routingTableSize ;

A A A A N A A A s A da
A A A A A A A A A e

L1010 Castalia Functions [////////////////////////////
A e

virtual void initialize ();

virtual void handleMessage (cMessage* msg)
void timerFiredCallback (int timer)
virtual “CtpRoutingEngine ()

A A A A A N AN aa
Y A A VI

L1107/ CipRoutingEngine functions ////////////////////
Y I da

void chooseAdvertiseTime () ;
void resetInterval();

void decaylInterval () ;

void remaininglnterval () ;

bool passLinkEtxThreshold (uintl6_-t etx)
uintl6_-t evaluateEtx(uintl6_-t quality)

void updateRouteTask ()
void sendBeaconTask () ;

void event_RouteTimer_fired () ;

void event_BeaconTimer_fired () ;

CtpBeaconx getHeader (cPacket* msg) ;

void routingTablelnit () ;

uint8_t routingTableFind (am_addr_t) ;

error-t routingTableUpdateEntry (am_addr_-t, am_addr_-t, uintl6-t, am_addr_-t);

error_t routingTableEvict(am_addr_t);

// CtpRoutingPacket Interface

bool command_CtpRoutingPacket_getOption (cPacket* msg, ctp-options_t opt);
void command_CtpRoutingPacket_setOption(cPacket* msg, ctp_options_t opt);
void command_CtpRoutingPacket_clearOption(cPacket* msg, ctp-options_-t opt);
void command_-CtpRoutingPacket_clearOptions(cPacket* msg);

am_addr_t command_CtpRoutingPacket_getParent (cPacket* msg);

void command_CtpRoutingPacket_setParent(cPacket* msg, am_addr_t addr);
uintl6_t command_CtpRoutingPacket_getEtx (cPacket* msg);

void command_CtpRoutingPacket_setEtx(cPacket* msg, uint8_-t etx);

//

VA A A A A A N A a e
VA A A A A A A A A A e

L1010 Custom functions [////// /) /1710000
N da

// generates an event in the module where they should signal it.
void signal_Routing_-routeFound ()
void signal_-Routing_-noRoute () ;

// AMPacket Interface (just what we need)

am_addr_-t command_-AMPacket_source(cMessage* msg) ;
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public:

}s
#Hendif

am_addr-t command-AMPacket_address () ;

//

// functions that simulate the post command of TinyOs
void post_sendBeaconTask () ;
void post_updateRouteTask () ;

VA A A A a e
VA A A A N A A A e

[/ CipRoutingEngine functions ////////////////////
A aa

error-t command-StdControl_start () ;

error-t command_-StdControl_stop () ;

void event_RadioControl_startDone(error_t error) ;

void event_RadioControl_stopDone(error_t error) ;

void event_BeaconSend_sendDone(cMessage* msg, error_t error) ;

void event_BeaconReceive_receive (cPacket* msg);

void event_LinkEstimator_evicted (am_addr_t neighbor) ;

// UnicastNameFreeRouting Interface
bool command_-Routing_hasRoute () ;
am_addr_-t command_Routing_nextHop () ;

//

// Ctplnfo Interface (Part 1)

error-t command_CtpInfo_getParent(am_addr_tx) ;

uint8_t command_CtpInfo_getEtx(uintl6_t* etx) ;

void command_CtpInfo_recomputeRoutes () ;

void command_CtplInfo_triggerRouteUpdate () ;

void command_CtpInfo_triggerImmediateRouteUpdate () ;

void command_CtpInfo_setNeighborCongested (uintl6_t n,bool congested)
bool command_CtpInfo_isNeighborCongested (uintl6_t addr) ;

5

//

// RootControl Interface

bool command_-RootControl_-isRoot () ;
error_-t command_RootControl_setRoot () ;
error_-t command_-RootControl_unsetRoot () ;

//

bool event_-CompareBit_shouldInsert (cPacket *msg, bool white_bit) ;

// Ctplnfo Interface (Part 2)
uint8_t command_CtpInfo_.numNeighbors() ;

uintl6_t command_CtpInfo_getNeighborLinkQuality (uint8_t) ;
uintl6_t command_CtpInfo_getNeighborRouteQuality (uint8_t) ;
am_addr_-t command_CtpInfo_getNeighborAddr(uint8_t) ;

//

VA A A A A A N A a e
VA A A A A A A A A A e




