Award Number: W81XWH-09-1-0389

TITLE: Role of Foxm1 in the Pathogenesis of Prostate Cancer

PRINCIPAL INVESTIGATOR: Dr. Tanya Kalinichenko

CONTRACTING ORGANIZATION: Children's Hospital Medical Center
Cincinnati, OH 45229

REPORT DATE: July 2011

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Role of Foxm1 in the Pathogenesis of Prostate Cancer

6. AUTHOR(S)
Dr. Tanya Kalinichenko
E-Mail: Tatiana.Kalin@chmc.org

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Children's Hospital Medical Center
Cincinnati, OH 45229

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

14. ABSTRACT
The main purpose of our work is to understand the role of Foxm1 in the development of prostate cancer, provide information about molecular mechanisms whereby Foxm1 controls epithelial cell proliferation during PCa, and determine whether the inhibition of Foxm1 may potentially be beneficial during PCa therapy, therefore leading to the development of the novel therapeutic target for prostate cancer chemotherapy. During the second year of grant support, we demonstrated that the deletion of Foxm1 from prostate epithelial cells reduced prostate carcinogenesis in mouse model. Decreased carcinogenesis in epFoxm1-/- TRAMP mice was associated with decreased proliferation of tumor cells and reduced expression of cell cycle regulatory genes Cdc25b, Cyclin B1, and PIk-1. Moreover, we demonstrated that Foxm1 directly regulates the expression of VEGF-A expression in prostate tumor cells, suggesting the role of Foxm1 in prostate tumor angiogenesis. Furthermore, our data demonstrated that deletion of Foxm1 from prostate epithelium decreased prostate cancer metastasis in TRAMP mice. Foxm1 transcription factor regulates several genes during prostate cancer progression and metastasis.

15. SUBJECT TERMS
Foxm1 transcription factor, prostate cancer, transgenic mice, epithelial cells

16. SECURITY CLASSIFICATION OF:
a. REPORT U
b. ABSTRACT U
c. THIS PAGE U

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES 14

19a. NAME OF RESPONSIBLE PERSON
USAMRMC

19b. TELEPHONE NUMBER (include area code)
INTRODUCTION

The Forkhead Box M1 (Foxm1) protein is a proliferation specific transcription factor, which is over-expressed in human prostate adenocarcinoma (CaP). Our preliminary studies demonstrated that elevated levels of Foxm1 protein are associated with high proliferation rates in human prostate adenocarcinomas and are directly correlated with the grade of human CaP. Previously, we developed a transgenic mouse line in which Foxm1 is over-expressed in all cell types (Rosa26-Foxm1 mice). These mice were bred with either TRAMP or LADY transgenic (TG) mouse models of prostate cancer. Ubiquitous over-expression of Foxm1 accelerates development of PCa, as well as significantly increases proliferation of prostate tumor cells in both Rosa26-Foxm1/TRAMP and Rosa26-Foxm1/LADY double TG mice. Since Foxm1 is over-expressed in all cell types in Rosa26-Foxm1 mice, the direct role of Foxm1 in prostate epithelial cells, the cells from which prostate cancer arises, remains unknown. The present study seeks to identify the direct role of Foxm1 in prostate epithelial cells during initiation and progression of PCa and its potential regulation by p19 ARF tumor suppressor. We are testing two related hypotheses that (1) Foxm1 is essential for the initiation and progression of prostate cancer by regulating genes critical for proliferation of prostate epithelial cells and (2) that Foxm1 is negatively regulated by p19ARF tumor suppressor during PCa formation. In aim I we will determine whether specific deletion of Foxm1 in prostate epithelial cells in vivo diminishes the initiation and progression of PCa. Moreover, since the p19ARF (human p14ARF) gene is frequently inactivated in prostate tumors, in aim II we will examine whether loss of p19 ARF function will stimulate the ability of Foxm1 to promote prostate tumor formation. Completion of these experiments will increase our understanding of the role of Foxm1 in the development of prostate cancer, provide information about molecular mechanisms whereby Foxm1 controls epithelial cell proliferation during prostate tumorigenesis, and determine whether the inhibition of Foxm1 may potentially be beneficial during PCa therapy.

BODY

Aim I. Does specific deletion of Foxm1 in prostate epithelial cells diminish the initiation and progression of PCa?

I-A. To delete Foxm1 from prostate epithelial cells of TRAMP and LADY TG mice. We have successfully generated and accumulated the required numbers of prostate epithelial-specific Foxm1 knockout mice (PB-Cre/Foxm1fl/fl). (i) We, first, crossed PB-Cre heterozygous male mice with Foxm1fl/fl homozygous female mice to generate PB-Cre/Foxm1fl/+ mice. Then, male PB-Cre/Foxm1fl/+ mice were crossed with Foxm1fl/fl females to generate PB-Cre/Foxm1fl/fl mice. (ii) At the same time TRAMP TG mice were crossed with Foxm1fl/fl female mice to generate Foxm1fl/fl/TRAMP mice (after 2 generations of back-crossing). After (i) and (ii) were accomplished, the Pb-Cre/Foxm1fl/fl male mice were bred with Foxm1fl/fl/TRAMP female mice (iii) to generate the Pb-Cre/Foxm1fl/fl/TRAMP (epFoxm1-/-/ TRAMP) transgenic mice. Experiments with epFoxm1-/-/ TRAMP transgenic mice are described below.

After multiple attempts, we were unable to complete breeding of LADY mice (available in my laboratory) with Pb-Cre/Foxm1fl/fl mice. It could be due to location of transgene on the same chromosome, or due to unexpected developmental phenotype in triple transgenic mice. We are in the process of acquiring additional breeders for LADY line from Dr. RJ Matusik laboratory. We will use these new breeders during third year of DOD funding. If we will not complete LADY experiment during the third year, we will request for 1 year no cost extension.
I-B. Effect of epithelial Foxm1 deletion on initiation and progression of prostate carcinogenesis in TRAMP transgenic mice.

(i) Epithelial Foxm1 deletion reduced initiation of prostate cancer in TRAMP mice. To compare initiation of prostate tumorigenesis epFoxm1+/−/TRAMP mice, TRAMP mice and Foxm1fl/fl/TRAMP mice were sacrificed at 12 weeks of age. Prior to sacrifice, each mouse was anesthetized and weighed. The genitourinary (GU) tracts consisting of the bladder, urethra, seminal vesicles, ampulary gland, and prostate were excised, weighed and microdissected into individual lobes whenever possible. Paraffin-embedded mouse prostate sections were histologically stained with H&E to evaluate the types of prostatic tumors found in the single and double TG mice as described previously (4). Histological analysis of prostate tissues demonstrated that depletion of FoxM1 from prostate epithelial cells significantly decreased initiation of PINs in epFoxm1+/−/TRAMP mice at 12 weeks of age (Table 1). None of the epFoxm1+/−/TRAMP mice developed PINs. In contrast, all of the TRAMP single transgenic mice and all of control Foxm1fl/fl/TRAMP mice developed prostate hyperplasia and PINs at 12 weeks of age (Table 1). This data is consistent with our hypothesis that Foxm1 in tumor cells is essential for initiation of prostate cancer.

<table>
<thead>
<tr>
<th>Mice</th>
<th>% mice with PIN</th>
<th>Number of mice with PIN out of total number</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 weeks of age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>epFoxm1+/−/TRAMP</td>
<td>0%</td>
<td>0/7</td>
</tr>
<tr>
<td>TRAMP</td>
<td>100%</td>
<td>9/9</td>
</tr>
<tr>
<td>Foxm1fl/fl/TRAMP</td>
<td>100%</td>
<td>8/8</td>
</tr>
</tbody>
</table>

(ii) Foxm1 was efficiently deleted from prostate epithelium. To ensure that the conditional deletion of Foxm1 floxed alleles was effectively achieved in prostate epithelial cells, we dissected prostates from control Foxm1fl/fl/TRAMP and experimental epFoxm1+/−/TRAMP male mice to perform quantitative real time RT-PCR for Foxm1 mRNA expression and immunohistochemical staining of prostate paraffin sections with antibodies specific to Foxm1 protein as described (2, 5). Decreased Foxm1 mRNA expression (Fig.1, top panel) and lack of Foxm1 protein in the prostate epithelial cells (Fig.1, bottom panels) indicated a high efficiency of Foxm1 deletion. Thus, Foxm1 was efficiently deleted in prostate epithelial cells of epFoxm1+/−/TRAMP mice.

Figure 1. The efficiency of Foxm1 deletion in prostate epithelium.
Real-time RT-PCR shows decreased levels of Foxm1 mRNA in total RNA prepared from epFoxm1+/−/TRAMP prostates (top panel). Expression of Foxm1 protein in prostate epithelium (bottom panels). Prostates from epFoxm1+/−/TRAMP and control Foxm1fl/fl/TRAMP mice, were fixed, paraffin-embedded, sectioned, and stained with Foxm1 antibody (dark brown nuclei) and then counterstained with nuclear fast red (red nuclei). Foxm1 expression was observed in prostate epithelial cells of control Foxm1fl/fl/TRAMP mice. Expression of Foxm1 was dramatically decreased in prostate epithelial cells of epFoxm1+/−/TRAMP mice. Magnification is x200.
(iii) Expression of genes essential for initiation of CaP is decreased in Foxm1 deficient mice. We are in the process of acquiring this data, using mice described in Fig.1.

I-C. Role of Foxm1 in progression and metastasis of prostate cancer.

(i) Foxm1 deletion from prostate epithelial cells reduced prostate cancer progression. We hypothesized that epithelial deletion of Foxm1 might directly reduce the progression of prostate cancer by inhibiting DNA replication and/or mitosis in tumor cells. To study the role of Foxm1 on progression of prostate cancer in vivo, epFoxm1−/−/TRAMP (n=12), Foxm1fl/fl/ TRAMP (n=12), Pb-Cre/ Foxm1fl/fl (n=11) and TRAMP (n=11, not shown) mice were sacrificed at 20 weeks of age. The genitourinary (GU) tracts consisting of the bladder, urethra, seminal vesicles, and prostate were excised, weighed and microdissected. None of the epFoxm1−/−/TRAMP mice developed prostate carcinomas (CaP). However, 90% of the TRAMP single transgenic mice and 80% of control Foxm1fl/fl/ TRAMP mice developed CaP (Table 2). By 20 weeks of age, the weights of the prostate glands from control Foxm1fl/fl/ TRAMP and control TRAMP mice were 2.3 ± 1.2 g and 2.7 ± 2.3 g, respectively. This represents a 20 fold increase compared to epFoxm1−/−/TRAMP mice (Fig. 2). Interestingly, 41.7% of epFoxm1−/−/TRAMP mice developed PINs at 20 weeks of age. Consistent with our hypothesis, Foxm1 deletion from prostate epithelial cells significantly decreased prostate carcinogenesis induced by TRAMP (Fig. 2). These results indicate that Foxm1 expression in prostate epithelial cells is required for the progression of prostate cancer in vivo.

Table 2. Histologic analysis of mouse prostates during progression of prostate cancer.

<table>
<thead>
<tr>
<th>Mice</th>
<th>% mice with PIN</th>
<th>Number of mice with PIN out of total number</th>
<th>% mice with CaP</th>
<th>Number of mice with CaP out of total number</th>
</tr>
</thead>
<tbody>
<tr>
<td>epFoxm1−/−/TRAMP</td>
<td>41.7%</td>
<td>5/12</td>
<td>0%</td>
<td>0/12</td>
</tr>
<tr>
<td>TRAMP</td>
<td>10%</td>
<td>1/10</td>
<td>90%</td>
<td>9/10</td>
</tr>
<tr>
<td>Foxm1fl/fl/TRAMP</td>
<td>20%</td>
<td>2/10</td>
<td>80%</td>
<td>8/10</td>
</tr>
</tbody>
</table>

Figure 2. Foxm1 deletion from prostate epithelial cells reduced prostate carcinogenesis. Experimental epFoxm1−/−/TRAMP and control mice were sacrificed at 25 weeks of age. Prostate glands were collected and weighed from experimental epFoxm1−/−/TRAMP (n=10), control Foxm1fl/fl/ TRAMP (n=12) and control Pb-Cre/ Foxm1fl/fl (n=11) mice. Deletion of Foxm1 significantly decreased (p < 0.05) the weight of prostate glands at 25 weeks of age (top panel). Mean weights of prostate glands (±SD) were calculated from 10-12 mouse prostates per group. A p value < 0.05 is shown with asterisk (*). Using H&E staining (bottom panels), prostate adenocarcinomas were identified in Foxm1fl/fl/ TRAMP mice (left bottom panel) and PINs in epFoxm1−/−/TRAMP prostate (right bottom panel).
(ii). Foxm1 deletion from prostate epithelial cells diminished tumor cell proliferation. Decreased carcinogenesis in epFoxm1^{−/−}/TRAMP mice was associated with decreased proliferation of tumor cells and reduced expression of cell cycle regulatory genes Cdc25b, Cyclin B1, and Plk-1 (Fig. 3 and Fig. 4). Cell proliferation was determined by the immunohistochemical detection of Ki-67, which is a proliferation specific marker. To detect prostate tumor cells undergoing mitosis, we used antibodies against phospho-Histone H3 (pH3), specific marker for cells undergoing mitosis. We did not observe any differences in the number of apoptotic cells in the tumors from control and epFoxm1^{−/−}/TRAMP mice (data not shown).

Figure 3. Foxm1 deletion from prostate epithelial cells diminished tumor cell proliferation. Mouse prostate glands were harvested 25 weeks after birth and used for immunohistochemistry with antibodies against Foxm1, Ki-67 and pH3 as described. Decreased proliferation of tumor (Tu) cells was observed in Foxm1-deficient prostates as demonstrated by reduced numbers of Ki-67-positive and pH3-positive tumor cells in epFoxm1^{−/−}/TRAMP prostate glands compared to control mice. Magnification is x100.

Figure 4. Foxm1 is essential for proliferation of prostate cancer cells by regulating genes critical for cell cycle progression. Decreased mRNA levels of Cdc25b, Cyclin B1 and Plk-1 in epFoxm1^{−/−}/TRAMP prostates was demonstrated by qRT-PCR. b-actin mRNA was used for normalization. A p value <0.05 is shown with (*).

(iii). Role of Foxm1 in tumor metastasis. To study the role of Foxm1 on metastasis of prostate carcinomas, experimental epFoxm1^{−/−}/TRAMP (n=10) and control Foxm1^{fl/fl}/TRAMP (n=12) mice were sacrificed at 25 weeks of age. Prostate glands were collected and weighed. All pelvic lymph nodes were harvested. To detect pulmonary metastasis, the lungs of each mouse were inflated with 4% paraformaldehyde for histological analysis. Grossly evident metastatic lesions were harvested and fixed for histological analysis. Total numbers of metastatic lesions were counted in each mouse. Deletion of Foxm1 significantly decreased (p < 0.05) the
number of mice with the metastasis (Figure 7). We continue these experiments to identify molecular mechanisms regulated by Foxm1 in tumor metastasis.

Figure 7. Deletion of Foxm1 from prostate epithelium in TRAMP mice decreased prostate cancer metastasis. A p value < 0.05 is shown with asterisk (*).

(iv) Expression of genes essential for progression of CaP is decreased in Foxm1 deficient mice. Since angiogenesis plays an essential role in prostate cancer progression and VEGF-A is a main angiogenic factor produced by tumor cells, we compared the levels of VEGF-A mRNA in epFoxm1\(^{-/-}\)/TRAMP and control mice prostates. Mouse prostate glands were harvested 25 weeks after birth and used to isolate total prostate mRNA. Using real time RT-PCR, we demonstrated that mRNA levels of VEGF-A in epFoxm1\(^{-/-}\)/TRAMP prostates were significantly decreased (Fig. 5). Thus, Foxm1 in prostate tumor cells is critical for VEGF-A expression during cancer progression.

Figure 5. Deletion of Foxm1 from prostate epithelium decreased VEGF levels during PCa. Mouse prostate glands were harvested 25 weeks after birth and used to isolate total prostate mRNA. Decreased mRNA levels of VEGF in epFoxm1\(^{-/-}\)/TRAMP prostates was demonstrated by qRT-PCR. b-actin mRNA was used for normalization. A p value <0.05 is shown with (*).

Decreased expression of VEGF-A in epFoxm1\(^{-/-}\)/TRAMP prostates suggested that this genes is a transcriptional target of Foxm1. To determine whether Foxm1 regulates expression of VEGF-A gene in vitro, U2OS human cells were transfected with short interfering RNA (siRNA) specific to the human Foxm1 mRNA (siFoxm1) or with mutant siFoxm1, containing 5 mutations in recognition sequence (2). Seventy-two hours after siRNA transfection, total RNA was prepared from the U2OS cells and analyzed for Foxm1 expression by qRT-PCR. siFoxm1 transfection efficiently reduced Foxm1 mRNA (Fig. 6A). Consistent with our in vivo studies (Fig. 5), Foxm1-depletion in cultured tumor cells significantly decreased VEGF-A mRNA.

Since Foxm1 deficiency was associated with decreased VEGF-A expression in vivo and in vitro (Fig. 5 and 6A), we investigated whether Foxm1 transcriptionally activated promoter regions of VEGF-A gene. The potential Foxm1 DNA binding sites were identified in the -2.3Kb promoter region of the human VEGF-A gene. To determine whether the Foxm1-binding sites were transcriptionally active, co-transfection experiments were performed using CMV-Foxm1b expression vector (1, 3) and luciferase (LUC) reporter construct driven by -2.3Kb VEGF-A promoter regions. Co-transfection of the CMV-Foxm1b expression vector significantly increased activity of the reporter when compared to CMV-empty vector (Fig. 6B). These results demonstrated that Foxm1 transcriptionally activated the human VEGF-A promoter region, suggesting that VEGF-A gene is a direct Foxm1 target.
Figure 6. VEGF is a direct target of Foxm1 transcription factor. A. Foxm1 depletion in A549 human adenocarcinoma cells reduced VEGFa mRNA expression. A549 cells were mock transfected (control siRNA) or transfected with short interfering RNA (siRNA) duplex specific for Foxm1 mRNA (Foxm1 siRNA). Human b-actin mRNA was used for normalization. B. VEGFa is a direct transcriptional target of Foxm1. Luciferase assay demonstrated that Foxm1 induced the transcriptional activity of VEGFa promoter. U2OS cells were transfected with CMV-Foxm1b expression vector and luciferase (LUC) reporter driven by -2.3kb human VEGFa promoter region. CMV-empty plasmid was used as a negative control. Cells were harvested at 24 hr after transfection and processed for dual LUC assays to determine LUC activity. Transcriptional activity of the human VEGFa promoter was increased by CMV-Foxm1b transfection. A p value < 0.05 is shown with asterisk (*).

To identify potential Foxm1 targets, expression of several genes critical for prostate cancer progression and metastasis was examined. Total RNA was isolated from excised prostate glands. Using real time RT-PCR analysis, we demonstrated that several genes were significantly down-regulated in epFoxm1⁻/⁻/TRAMP prostates (Fig. 8). Our results suggest that reduced expression of these genes can contribute to reduced tumor metastasis in Foxm1-deficient mice.

Figure 8. Foxm1 transcription factor regulates epithelial genes critical for prostate cancer progression and metastasis. qRT-PCR shows reduced mRNA levels of Atoh1, Fzd1, Igf1, CXCR4, AR and CXCL12 in epFoxm1⁻/⁻/TRAMP prostates.

Aim II. Does deletion of p19Arf tumor suppressor promote Foxm1-mediated prostate carcinogenesis?

II-A. To generate Pb-Foxm1 and Pb-Foxm1/TRAMP transgenic mice. To address this specific aim we already generated mice with Dox-inducible Foxm1 expression. During the second year of DOD funding, we bred TetO-GFP-FoxM1-ΔN transgenic mice with TRAMP transgenic mice to generate double transgenic mice (TetO-GFP-FoxM1-ΔN/ TRAMP). These double transgenic mice were bred with Pb-Cre^{tg/} / LoxP-stop-LoxP-rtTA(Rosa26)^{tg/tg} mice, the latter of which contained a reverse tetracycline activator (rtTA) knocked into Rosa26 locus. In Pb-Cre^{tg/} / LoxP-stop-LoxP-rtTA(Rosa26)^{tg/tg} mice, Dox treatment results in prostate epithelial-specific expression of rtTA due to excision of LoxP-stop-LoxP cassette by the Cre recombinase. After all these breeding, Pb-Cre^{tg/} / LoxP-stop-LoxP-rtTA(Rosa26)^{tg/tg} / TetO-GFP-FoxM1-ΔN ^{tg/tg} / TRAMP transgenic mice were generated (we abbreviated this mouse line as Pb-Foxm1-ΔN / TRAMP mice). Transgenic mice Pb-Cre^{tg/} / LoxP-stop-LoxP-rtTA(Rosa26)^{tg/} / TetO-GFP-FoxM1-ΔN ^{tg/tg} were abbreviated as Pb-Foxm1-ΔN. In these mice the over expression of Foxm1 in prostate epithelium is inducible by Dox which allow us to study the role of Foxm1 depending on the stage of cancer.

II-B. To determine whether Foxm1 expression in prostate epithelium will stimulate prostate tumorigenesis. In our pilot experiment, Pb-Foxm1-ΔN (n=4) mice were sacrificed at 15 weeks of age. The genitourinary (GU) tract consisting of the bladder, urethra, seminal vesicles, and prostate were excised, weighed and microdissected. Our pilot experiment with 7 mice demonstrated that Pb-Foxm1-ΔN mice
developed PINs at 15 weeks of age (Table 3), suggesting that over-expression of Foxm1 in prostate epithelial cells causes epithelial hyperplasia and PIN formation. We are in the process of accumulating additional numbers of triple transgenic mice to increase statistical power of our experiments. 22 additional mice were generated and treated with Dox. These mice will be sacrificed in November-December to examine prostate tumors.

Table 3. Histologic analysis of mouse prostates during progression of prostate cancer. Over-expression of Foxm1 in prostate epithelial cells caused PIN formation, but did not progress to carcinomas by 15 weeks of age. No PINs were found in control mice at this time point.

<table>
<thead>
<tr>
<th></th>
<th>% mice with PIN</th>
<th>Number of mice with PIN out of total number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb-Foxm1-ΔN</td>
<td>75%</td>
<td>3/4</td>
</tr>
<tr>
<td>Control (Pb-Cre)</td>
<td>0%</td>
<td>0/3</td>
</tr>
</tbody>
</table>

Il-C. To determine whether loss of p19ARF tumor suppressor will increase Foxm1 dependent prostate carcinogenesis. Since p19ARF protein inhibits Foxm1 transcriptional activity during development of hepatocellular carcinoma, we studied the role of p19ARF in prostate tumorigenesis. For this purpose, we bred the Pb-Foxm1-ΔN mice TG mice with p19ARF +/- mice to generate Pb-Foxm1-ΔN/p19ARF +/- mice. It takes 25 weeks for the prostate cancer to develop. We will harvest the first mice in one month. These groups consist of sixteen Pb-Foxm1-ΔN/p19ARF +/- quadruple transgenic mice and sixteen control mice.

KEY RESEARCH ACCOMPLISHMENTS

- Foxm1 deletion from prostate epithelial cells decreased initiation and progression of prostate cancer in TRAMP mice.
- Foxm1 deletion from prostate epithelial cells diminished tumor cell proliferation.
- Foxm1 is essential for proliferation of prostate cancer cells by regulating genes critical for cell cycle progression.
- Deletion of Foxm1 from prostate epithelium or cultured tumor cells decreased VEGF expression. VEGF is a direct target of Foxm1 transcription factor.
- Deletion of Foxm1 from prostate epithelium in TRAMP mice decreased prostate cancer metastasis.
- New transgenic mice with conditional over-expression of Foxm1 in prostate epithelial cells (Pb-Foxm1-ΔN) were successfully generated. Pilot experiment demonstrated that over-expression of Foxm1 in prostate epithelial cells caused PIN formation, but did not progress to carcinomas by 15 weeks of age.
- The new transgenic Pb-Foxm1-ΔN mice were successfully crossed with p19ARF +/- mice and Pb-Foxm1-ΔN/p19ARF +/- mice were generated.
REPORTABLE OUTCOMES

- The employment of Emily Cross, a research assistant, was supported by this award.
- Data was presented at:
 - 2011 Presentation at the Summer Undergraduate Research Fellowship (SURF) Symposium (August, 2011, University of Cincinnati, Cincinnati, OH). Talk title: “Role of Foxm1 Protein in Initiation and Progression of Prostate Cancer”. Presented by the undergraduate summer student Andrea Hiller.
- We are currently preparing manuscript on the role of Foxm1 in prostate epithelial cells during development of prostate cancer. Manuscript will be submitted to Cancer Research.

CONCLUSIONS

- Pb-Cre efficiently deleted Foxm1 allele from prostate epithelium in PB-Cre/Foxm1^{fs/} mice.
- Foxm1 deletion from prostate epithelial cells decreased initiation and progression of prostate cancer in TRAMP mice by regulating proliferation of tumor cells.
- Foxm1 directly targets VEGF, which is a key player in tumor angiogenesis.
- Deletion of Foxm1 from prostate epithelium in TRAMP mice decreased prostate cancer metastasis.
- Inhibition of Foxm1 may potentially be beneficial during PCa therapy.
REFERENCES.

Abstract.

Background and Objectives. The Forkhead Box M1 (Foxm1) protein is a proliferation specific transcription factor and is over-expressed in human prostate adenocarcinoma. We demonstrated that elevated levels of Foxm1 protein are associated with high proliferation rates in human prostate adenocarcinomas and are directly correlated with the grade of human prostate cancer (PCa). Ubiquitous over-expression of Foxm1 in all cell types accelerates development of PCa, as well as significantly promotes proliferation of prostate tumor cells in transgenic mice. However, the direct role of Foxm1 in prostate epithelial cells, the cells from which prostate cancer arises, remains unknown. The present study seeks to identify the direct role of Foxm1 in prostate epithelial cells during PCa and its potential regulation by p19ARF tumor suppressor. We are testing two related hypotheses that (I) Foxm1 is essential for the initiation and progression of prostate cancer by regulating genes critical for proliferation of prostate epithelial cells and (II) that Foxm1 is negatively regulated by p19ARF tumor suppressor during PCa formation.

Methodologies. In aim I we are determining whether specific deletion of Foxm1 in prostate epithelial cells in vivo diminishes the initiation and progression of PCa. Moreover, since the p19ARF (human p14ARF) gene is frequently inactivated in prostate tumors, in aim II we will examine whether loss of p19ARF function will stimulate the ability of Foxm1 to promote prostate tumor formation.

Results to data. Aim I. During the first year of grant support, we have successfully generated the prostate epithelial-specific Foxm1 knockout mice (PB-Cre/Foxm1^{fl/fl}). The Pb-Cre/Foxm1^{fl/fl} male mice were bred with Foxm1^{fl/fl}/TRAMP female mice to generate the Pb-Cre/Foxm1^{fl/fl}/TRAMP (epFoxm1^{-/-}/TRAMP) transgenic mice. In these mice Foxm1 is deleted from prostate epithelium. The efficiency of Foxm1 deletion was evaluated by quantitative real time RT-PCR and immunohistochemical staining of prostate paraffin sections with antibodies specific to Foxm1. These studies demonstrated that Foxm1 was efficiently deleted in prostate epithelial cells in epFoxm1^{-/-}/TRAMP mice.

In our pilot experiment, epFoxm1^{-/-}/TRAMP (n=2), TRAMP (n=3) and Foxm1^{fl/fl}/TRAMP (n=2) mice were sacrificed at 12 weeks of age. PINs were observed in TRAMP (3 mice with PINs out of 3) and Foxm1^{fl/fl}/TRAMP (2 mice with PINs out of 2) mice. However, we did not find any PINs in epFoxm1^{-/-}/TRAMP mice (0 mice with PINs out of 2), suggesting that Foxm1 expression in prostate epithelial cells is required for the initiation of prostate carcinogenesis in TRAMP mice. We are in the process of generating additional mice to confirm our conclusion.

Aim II. We are inducing Foxm1 expression in the prostate epithelial cells by generating mice with Foxm1 transgene under control of the Pb promoter (Pb-Foxm1 mice). We will breed these mice with TRAMP and LADY TG mice to generate Pb-Foxm1/TRAMP and Pb-Foxm1/LADY TG mice to examine whether over-expression of Foxm1 in prostate epithelial cells accelerates the formation of prostate tumors. Furthermore, the Foxm1 transgenic mice will be bred into a p19ARF^{-/-} genetic background to determine whether the effect of transgenic Foxm1 protein on prostate tumorigenesis is enhanced in the absence of p19ARF.

Three TetO-GFP-FoxM1-ΔN transgenic mouse lines were established and showed similar phenotypes. We started the breeding of TetO-GFP-FoxM1-ΔN transgenic mice with TRAMP transgenic mice to generate double transgenic mice (TetO-GFP-FoxM1-ΔN/ TRAMP).

Conclusions. New transgenic mice with conditional deletion of Foxm1 from prostate epithelial cells (PB-Cre/Foxm1^{fl/fl}) were successfully generated. The efficient Foxm1 deletion was shown by qRT-PCR and immunostaining. The new transgenic PB-Cre/Foxm1^{fl/fl} mice were successfully crossed with TRAMP mice (epFoxm1^{-/-}/TRAMP). Foxm1 deletion from prostate epithelial cells decreased prostate carcinogenesis in these mice. Construct and mice with Dox-inducible Foxm1 expression were successfully generated.

Impact. Completion of these experiments will increase our understanding of the role of Foxm1 in the development of prostate cancer, provide information about molecular mechanisms whereby Foxm1 controls...
epithelial cell proliferation during prostate tumorigenesis, and determine whether the inhibition of Foxm1 may potentially be beneficial during PCa therapy, therefore leading to the development of the novel therapeutic target for prostate cancer chemotherapy.
