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Abstract. This paper studies Lagrangian mixing in a two- 1 Introduction
dimensional barotropic model for hurricane-like vortices.
Since such flows show high shearing in the radial direction,
particle separation across shear-lines is diagnosed through

Lagrangian field, referred to a&field, that measures trajec- voted to the mixing of fluid from different regions of a hurri-

tory Sep aration prthqgonal .to the Lagrangian velocity. Thecane, which is considered as a fundamental mechanism that
shear-lines are identified with the level-contours of anotheris intimately related to hurricane intensity. A complete un-
Lagrangian field, referred to aS—fle!d, that measures the derstanding of these mixing processes, in particular the eye-
average shear-strength along a trajectory. Other fields usegyewall mixing (Bryan and Rotunno 2009a, b; Cram et al
for model diagnostics are the Lagrangian field of finite-time ) . o
Lyapunov exponents (FTL:-Eeld), the EulerianQ-field, and 2007; Braun et al., 2006; Montgomery et al,, 2002, 2006;

the angular velocity field. Because of the high shearing, therIIoughby, 2001), is expected to improve our understanding

S f the physical mechanisms th late hurricane intensity.
FTLE-field is not a suitable indicator for advective mixing, of the physical mechanisms that regulate hurricane intensity

nd in particular d not exhibit rid marking the locati nSince mixing is based on particle motion, the Lagrangian
af finit pzmcu ? bloesndo net bl mgr?i? Ida 'IFh'gELEefiolija ONframe of reference provides the most natural framework in
otfinite-time stable and unstable maniiolds. € which it can be diagnosed. Much progress has been made
is similar in structure to the radial derivative of the angu-

lar velocity. In contrast, persisting ridges and valleys canin recent years in the study of Lagrangian mixing in two-
Y- . oL, Persisting ridges ys dimensional incompressible flows (Haller and Poje, 1997;
be clearly recognized in th&-field, and their propagation

indi : . aller and Yuan, 2000; Haller, 2000, 2001, 2002; Shadden
speed indicates that transport across shear-lines is caused Yal 2005), resulting in a number of different, though re-
Rossby waves. A radial mixing rate derived from tRe " ' g , g

: . ) lated diagnostics, most of which are based on concepts from
field gives a time-dependent measure of flux across the Shea&ynamical systems theory. For applications of Lagrangian

lines. Qn the ot_her hand, a measured mixing rate across th‘f?echniques to atmospheric models, see Joseph and Legras
shear-lines, which counts trajectory crossings, confirms the(2001) and Huber et al. (2001)

results from theR-field mixing rate, and shows high mixing L i L )
Much insight into specific aspects of mixing in hurricanes

in the eyewall region after the formation of a polygonal eye- ) = : -
can be gained from the study of simplified two-dimensional

wall, which continues until the vortex breaks down. The lo- i

cation of theR-field ridges elucidates the role of radial mix- M0dels. Basically there are two classes of such models: Ax-

ing for the interaction and breakdown of the mesovortices'SYmmetric models, most notably the model of Rotunno and

shown by the model. Emanuel (1987), and planar models such as the model of
Kossin and Schubert (2001) and Schubert et al. (1999). In

this paper we apply Lagrangian techniques to analyze mix-

ing in the planar, nondivergent barotropic model of Kossin

Correspondence td3. Rutherford and Schubert (2001). Our analysis confirms a study of
m (rutherfo@math.colostate.edu) Kossin and Eastin (2001) which illustrates that significant
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Several recent studies (Frank and Ritchie, 1999, 2001; Mont-
mery et al., 2006; Hendricks and Schubert, 2009) are de-
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476 B. Rutherford et al.: Advective mixing in a nondivergent barotropic hurricane model

eye-eyewall mixing occurs during polygonal eyewall tran- Okubo-Weiss criterion indicates that high particle separation
sitions. Lagrangian mixing in the axisymmetric model in- predicted from theQ-field typically does not coincide with
troduced in Rotunno and Emanuel (1987) is investigated inLagrangian hyperbolic structures, however the Lagrangian
Rutherford et al. (2009). For another discussion of axisym-Q-field, formed by integrating)-values along particle tra-
metric mixing, see Wirth and Dunkerton (2006). jectories, shows a greater relation to other Lagrangian fields.

The model studied in this paper provides a two- Animportant feature of the particle trajectories calculated
dimensional representation of a hurricane that initiates withfrom our model is that they show an almost circular motion,
an annular ring of enhanced vorticity, and then undergoes @ombined with high shearing in the radial direction. The
vortex breakdown resulting in a monopolar end state. Dur-problem caused by this high shear is that trajectory separa-
ing the breakdown, a polygonal eyewall occurs, which formstion and mixing occur without the entrainment of trajectories,
four elliptical pools of high vorticity. Mixing of potential as the mixing is largely diffusive. A key question that we aim
vorticity, which in this model is proportional to relative vor- to answer is whether coherent structures that play a role in the
ticity, can be visualized using Eulerian diagnostic measuresystematic transport of trajectories can persist through high
of instantaneous particle separation. A commonly used Eushear.
lerian diagnostic is the so called-field, derived from the Distinct regions of trajectories with similar properties be-
Jacobian of the Eulerian velocity field. According to the come more difficult to distinguish through the use of scalar
Okubo-Weiss criterion (Schubert et al., 1999), positive val-fields which measure only distance, such as the field of finite-
ues of this field indicate instantaneous particle separationtime Lyapunov exponents (FTLield). In fact, theFTLE-
whereas negative values indicate contraction. For our modeffield computed from our model does not show distinguished
the O-field shows that regions of high relative vorticity gradi- ridges characteristic of hyperbolic mixing. Instead, the struc-
ent are also places where high trajectory separation and mixture of theFTLE-field is very similar to the structure of the
ing occurs. radial derivative of the angular velocity, indicating that the

While Eulerian measures of mixing can only diagnose in- FTLE-field is dominated by the shear and not by hyperbolic
stantaneous particle separation, Lagrangian techniques utiixing.
lize a moving frame approach along trajectories and com- In order to separate shear from hyperbolic mixing we fol-
pute measures for the average separation over a finite intdew the approach used in Haller and lacono (2003), and de-
gration time. This approach is particularly useful in time- compose the separation of trajectories in the directions along
dependent velocity fields, where trajectories may cross Euand normal to the Lagrangian velocity. This approach allows
lerian streamlines (Dunkerton et al., 2009). Much of the us to identify two Lagrangian fields: ThR-field, which is
recent work in Lagrangian mixing has extended the ideasa diagnostic for hyperbolic mixing normal to the Lagrangian
of hyperbolicity for steady flows to time dependent velocity velocity, and theS-field, which is a measure of shearing, and
fields (Haller, 2002; Haller and Poje, 1997; Haller and Yuan, is used to define shear-lines by its level-contours. In contrast
2000; Green et al., 2006; Ide et al., 2002), generalizing theto the FTLE-field, the R-field shows distinct ridges and val-
concept of stable and unstable manifolds of an equilibriumleys observable as coherent structures. The evolution of these
to the stable and unstable manifolds of a hyperbolic trajec-structures provides a mechanism for mixing through the eye-
tory. These manifolds are referred to as Lagrangian coherenwall, and their speed indicates that this mixing is caused by
structures (LCS’s). Even in two-dimensional flows, time- Rossby waves. The structures are particularly distinct after
dependence can give rise to multiple intersections of thes@olygonal eyewall formation, and they persist until the vor-
manifolds, leading to a partition of the flow into invariant re- tex breaks down, in regions where the Okubo-Weiss criterion
gions (lobes), and to mixing through the lobe dynamics (Idepredicts pools of high separation associated with the forma-
et al., 2002). tion of pools of high vorticity.

Efficient visualization of LCS’s is accomplished through ~ We note that another approach to diagnosing mixing in
the construction of Lagrangian scalar fields, which mea-the presence of shear is based on subtracting a mean shear
sure separation of nearby trajectories. Current Lagrangiafrom the flow. This approach was introduced by Andrews
methods utilize a variety of fields, including finite-time Lya- and Mclintyre (1978) using a generalized Lagrangian mean
punov exponents (Haller, 2002; Haller and Poje, 1997; Hallerfor nonlinear waves, and was subsequently developed further
and Yuan, 2000), finite-size Lyapunov exponents (Koh andand refined to a modified Lagrangian mean to quantify and
Legras, 2002; Green et al., 2006), and relative dispersiordistinguish stirring from irreversible mixing, see Mcintyre
(Huber et al., 2001). Each of these methods defines a scaldf.980) and Dunkerton (1980).
field and the LCS’s as maximal ridges of that field. The time-dependence of our velocity field leads to time-

To study Lagrangian mixing in our model, we compute dependent shear-lines, and regions of high orthogonal (hy-
particle trajectories from the numerically calculated, time- perbolic) separation lead to sets of trajectories that are mixed
varying velocity field. The Lagrangian diagnostic fields are through the shear-lines. We quantify this mixing by introduc-
functions of the initial time and position at which the tra- ing measured (via trajectory counting) and predicted (from
jectories are seeded. A comparison of these fields with thehe R-field) mixing rates. In addition, we study radial mixing
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B. Rutherford et al.: Advective mixing in a nondivergent barotropic hurricane model 477

rates defined by angular averages of Hid_E-field, the S- 2 Model overview
field, and theR-field. The mixing rates defined through the
former two fields are characteristic of shearing and give spu-The model used in this paper is the 2-D nondiver-
riously a false sense of mixing during the initial phase of thegent barotropic model for hurricane-like vortices studied
model, where “true mixing” occurs after the polygonal eye- by Kossin and Schubert (2001); Kossin and Eastin
wall formation. (2001); Schubert et al. (1999). The velocity field,
In previous work on the same model, Hendricks and Schul(X.1)=(u(X,1),v(x,1))* with x=(x,y)* € R? (asteriks de-
bert (2009) have applied the Lagrangian-Eulerian hybridnote transposed vectors or matrices), is given as the solution
method of effective diffusion (Nakamura, 1996; Shuckburghon thef-plane of the incompressible Navier Stokes equation,
and Haynes, 2003). Here diffusive mixing properties are g, 1 )
computed based on the increasing lengths of the vorticity7 - + (U-Vju— fBu + ;Vp =vV-u, (1)
contours, with the computations initialized at the initial time
of the model. The resulting mixing rate is a function of an V.u =0, 2
effective radius and the integration time, and shows similar
structures as our mixing rates. where
Our methods depart from those of Hendricks and Schu- 01
bert (2009) in that we utilize a moving time window, which B= <_1 0)’
attributes mixing to short-time advective events. Rather than
determining contour lengths, we study transport across con? IS the pressure the constant density, the constant Cori-
tours of theS-field. The resulting mixing rates are com- ©lis parameter, and the constant viscosity, chosen to be
pletely determined by the given velocity field, that is, they 100nFs ™. In the choice ofv we follow Schubert et al.
do not depend on a chosen initial profile of the tracer distri-(1999), while Kossin and Schubert (2001) used*snt.
bution. The choice of viscosity may have an effect on long time
The outline of the paper is as follows. We begin, in Sect. 2,Mixing processes, which could be studied by the methods
with an overview of the nondivergent barotropic model, and ©f Hendricks and Schubert (2009). Expressing the velocity
of the numerical methods used to compute the velocity fieldin terms of a streamfunctiog (x,7) asu=—BVy and elim-
and the particle trajectories. In Sect. 3 we introduce the scalaihating the pressure from Eq. (1), leads to the equation
fields utilized for diagnosing mixing and shear: The Eulerian 5. 5y 9¢  ay a¢ 5
Q-field, the LagrangiarQ-field, the angular velocity field, 5~ + 2 2= — -2 =vV%, (3)
. . ) ) x dy dy dx
the Lagrangiaf-TLE-field, the R-field, and theS-field. The
latter two fields are extracted from the transformed varia-where; =V2y is the relative vorticity. Following Kossin and
tional system introduced in Haller and lacono (2003). TheSchubert (2001), we impose periodic boundary conditions
main results of the paper are presented in Sects. 4 to 6. Ion  with a fundamental domain of 600 kmx600 km, and
Sect. 4 we study the behavior of the three Lagrangian fieldshoose as initial condition an almost circular symmetric ring
for a fixed initial time of 6 h, after a polygonal eyewall has of vorticity, ¢o(r,0), to model a 2-D hurricane after an initial
formed, and for different integration times. The ridge, valley, eyewall has formed. The defining equationzefr,0) is the
and edge structures observed in théield are identified with  equation used in Kossin and Schubert (2001).
coherent structures and invariant sets relative to the shear- Equation (3) was solved numerically using a Fourier
ing. In Sect.5 we fix the integration time to 1 h and study pseudospectral method with 512x512 collocation points.
the diagnostic fields for varying initial times. The structures Dealiasing results in 170x170 Fourier modes. The ODE-
observed in these fields are related to different mixing pro-system for the Fourier modes was solved via Matlab’s
cesses occurring during the three main phases of the modetide45 routine, which implements a fourth order Runge-Kutta
crystalization in which polygonal eyewall features form and method with adaptive time steps.
develop filamentation, vortex interaction and merger which In our humerical calculation off and¢, we reproduced
destroy the symmertry, and final collapse into a monopolethe behavior observed fchubert et al. (1999). The annular
Section 6 is devoted to the mixing rates mentioned beforering of high vorticity fluid develops a wavenumber 4 asym-
which are displayed as functions of initial time and either ra- metry, which is present in the vorticity fields as early as 2 h,
dius or value ofS along a shear-line. Concluding remarks and develops into a polygonal eyewall, with 4 mesovortices
and an outlook on future work are given in Sect. 7. after 6 h. After 8 h, the mesovortices begin to break down and
merge. The breakdown of the mesovortices is nearly com-
plete after 12 h, and mixing of high and low vorticity occurs
along long filament structures. The relative vorticity fields
during these times can be seen in Figs. 6 to 11a. After 24 h,
diffusive mixing along the filaments leads to a more mixed
state. Few pools of high or low vorticity fluid remain, with a
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478 B. Rutherford et al.: Advective mixing in a nondivergent barotropic hurricane model

pool of low-vorticity fluid from the eye migrating through the that is, from the Hessian determinant of the streamfunction,
eyewall, and high vorticity fluid redistributing in the eye. Af- which is referred to as th@-field,

ter 48 h, a high vorticity eye and a low vorticity environment

remain in a monopole endstate. The eyewall is no longer@(X.1) = Y2, (X.1) — Yex (X, )iy (X, 1). (4)

present as there is no longer a strong angular velocity gradi- i ) .
ent. According to the Okubo-Weiss criterion (Schubert et al.,

In this paper we study Lagrangian mixing in the model, 1999), regions withQ>0 show local trajectory repulsion,

which is based on following trajectories for varying initial whereas regions witl <0 show local attraction. Th@-

times. The trajectories were calculated with the same spatiafl'e'd allows diagnosis of instantaneous separation, which typ-

and temporal resolution as the model output, using a fourtHCally differs from Lagrangian measures of separation.
order Runge-Kutta method with a fixed time step of 7.5 S:312  Angular velocit
Because of time and memory limitations associated with the™ ™ g y

large number of trajectories needed for quantifying Mixing ¢ syrong rotation and near symmetry of the flow suggests
over asequence of initial t!mes, the trajectories used for COMyp ot polar coordinateg-,6) provide a useful coordinate sys-
putlng tlme]:(ét(e)penctdent mixing r?tﬁs Werel c?lculﬁted W"Fh &em for displaying fields calculated from the velocity field. In
time step o S. Lomparison o t eresu f[s_ or the two time articular, the quasi-circular behavior of trajectories suggests
steps for a small random set of initial conditions showed thal hat the angular velocityp=r—1u-(—sing, co®)*, is an ap-
t_he u;e_of t_h_e coarser time resolution in the mixing CaICUIa'proximate measure of the particle speéd, and the derivative
tions s justified. dw/0r is an approximate measure of shearing.

For any scalar fielg(x,¢), a measure for the radial varia-
tion is provided by the angular average, indicated by an over-

3 Diagnostic fields for mixing and shear bar

In this section we introduce the scalar fields utilized to di- 27

agnose the particle flow resulting from the numerically cal- @(F,l)=g/ @(r,0,1)do.

culated velocity field. A main characteristic feature of the 0

model is an almost circular motion, the trajectories encir- Contours Of%_(;) are shown in Figs. 6 to 11d—f showing the re-
cle the Origin in the counterclockwise direction. The model |ationship of maxima (maximum normal propogating Shear),

shows a Strong variation of the particle Sp({lﬂﬂdn the radial and minima (maximum counter propogating Shearz_i’éfto
direction. This variation leads to high shearing that dom-features of other scalar fields.

inates the particle separation, but is not the result of hyper-
bolic trajectory separation. Superimposed on this shear effec8.2  Lagrangian fields
is hyperbolic mixing due to trajectory separation in directions

orthogonal to the velocity. Let ¢§0(x0) be the flow map associated with the equation
In order to diagnose hyperbolicity, we exploit the La-
grangian field introduced imaller and lacono (2003), in X = U(X,1) (5)

which hyperbolic trajectory splitting is separated from par-
vp J y Spiing P P for particle trajectoriex(z), that is, the solution of Eq. (5)

ticle separation due to shearing. The more comm®dhE- ith initial it 7 Small bati in th
field is also analyzed, however, this field is dominated by theV't Imltladg_on ftion X(IO)_XIO' dma perturbat:jons In the
shear and hence not suitable as an indicator for hyperbolid'tial condition, yo=Xo+£o, lead to a perturbed trajectory
mixing. In order to quantify hyperbolic mixing, we define y(O)=x(1)+&(). For sufficiently small£o|, the perturbation

closed shear lines as contour lines of a suitably defined she&r(t) can be approximated through the Jacobian of the flow

field, and measure and predict transport across these lindgap as
(Sect. 6). Further indicators used in our study are two Eu- ot
lerian fields: The Hessean determinant of the streamfunctiorﬁ (1) = Ve, (x0)&o. ©)
(Q-field), and the radial gradient of the instantaneous angulaiyhich satisfies the variational equation
velocity.

§ = VuXx@),né. Q)
3.1 Eulerian fields

3.2.1 Finite time Lyapunov exponents
3.1.1 Q-field

Finite time Lyapunov exponents have become a standard in-
Eulerian trajectory separation occurs when the linearized vedicator for Lagrangian trajectory separation (Haller and Poje,
locity shows local expansion of area. The local variation of 1997; Haller, 2000; Haller and Yuan, 2000; Haller, 2002).
area can be inferred from the Jacobian of the velocity field,Consider a time ranggo, 7o+ 7] with fixed integration time

Atmos. Chem. Phys., 10, 475-497, 2010 www.atmos-chem-phys.net/10/475/2010/



B. Rutherford et al.: Advective mixing in a nondivergent barotropic hurricane model 479

T. The growth of|&(¢)| during this time range is governed fluid velocity is non-autonomous, its time variation is slow,

by the Cauchy-Riemann deformation tensor, so thatu(x(z), ¢) is still close to a solution of Eq. (7) for finite
o T . o T times. The transformed system fprcan be written in the
A0, 10)=(dxotrg (X)) (dxora = (X0)), form (Haller and lacono, 2003),
and becomes maximal whép is aligned with the eigenvec- j = [A(;) + b(;)B]n, (10)
tor corresponding to the larger eigenvalugax(A), of A.
The quantity where
—r(X(1),1) a(X(1),1)

1 A(t)= ,

o (X0, 10)==—IN Amax(A (X0, t0)) @) ( 0 r(X(t),l))

2|7

is theFTLE-field (considered as a function gf) at the ini- b(;)zizuL.u Ix=x(1)
tial time 7. One distinguishes forwarBTLE-fields (7'>0) lul

and backward=TLE-fields (T'<0). Maximal ridges of the 1 ., L
forward and backwar&TLE-fields play the role of unsta- V(XJ)IW(U )" (Vuu
ble (repelling) and stable (attracting) manifolds over the time
range considered (Haller, 2000; Shadden et al., 2005). Inthe_i(uzv vy o)+ )
limit T— o0 or T— —o0, o approaches the true Lyapunov ~ |[u]2% yo i
exponent, and the maximal ridges approach the stable and . ,
unstable manifolds, of the full trajectory seeded>a, 70). and the non-diagonal entryis composed of two parts,
Data limitations in the case of numerically computed veloc-q(x,¢)=s(X, )+d(X,1),

ity fields allow only finite time integrations, and restrict the
analysis to FTLE's.

For our velocity field, the particle separation is dominated
by the shearing in the radial direction. As a result, the FTLE-
values measure growth of perturbations in approximately an-
gular directions, and high FTLE-values (ridges) occur near=_2(uzuﬂ.uv(vv_ux)_vzvx),
extrema ofdw/dr, whereas low FTLE-values occur near ul )
zero contours odw/dr. GenerallyFTLE-fields are not suit- 1
able as indicators of hyperbolic mixing in the presence ofd(X,/)=—— (U")*(Vu)u
high shear. ul

where

1
s(x,z)zmu*(Vu)uL

_i(z Fuv(vy—u)—v2uy)
3.2.2 Integrated Q-field T\ Uity i) Uy )

In addition to the instantaneo@-field, Eq. (4), we consider  The terms in the transformed linearized system (Eq. 10) mo-
the integrated-field, formed by integrating along trajec-  tivate the definition of Lagrangian fields as diagnostics for

tories hyperbolic mixing and shear. Since our velocity field is
o+ T slowly varying in time, the terms associated witky) in
O(X,1) = / 0 (Xo(t),1)dt. (8) Eq. (10) are neglected in these definitions.
Io
3.3 R-field

3.2.3 Lagrangian fields for hyperbolic mixing and shear

As a consequence of incompressibility, the makix) has

Following Haller and lacono (2003), in order to separatene eigenvaluesr (x(1), 7). Fixing an integration timé, the
mixing and shear in the variational system (Eq. 7), a MOV-integrated fieldR,

ing frame of reference is introduced by setting

to+7T
£ = MX(®1),0) 7, @)  R(xo,70) = f (0" (X0), 7) d, (11)
1o
where the component vectors of the matvix describes the growth of a perturbation in the direction orthog-
onal to the Lagrangian velocity, and the raig|T| plays
M(X,t)= U] U, 0),utx,0), ut=(—v,u)*, the role of a finite-time Lyapunov exponent in this direction.

ThusR is a measure of attractio® 0) or repulsion (R>0)
are the normalized fluid velocity/|u|, and the unit vector of nearby trajectories towardst) over the integration inter-
orthogonal tou. This transformation is motivated by the val [#0,70+7]. Due to incompressibility, expansion orthog-
fact that for autonomous velocity fields=u(x), u(x(z)) is onal tou is combined with contraction in the direction of

a solution of Eq. (7). Although our numerically computed and vice versa.
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480 B. Rutherford et al.: Advective mixing in a nondivergent barotropic hurricane model

We note that in the limiT'— oo, R reduces to the mixing structures near the polygonal eyewall, since the effect of the
efficiency proposed by Ottino (1989), when this efficiency is shear is not so pronounced over this short time range. For
evaluated in the direction orthogonal @o In our study,R increasing T'| the shear becomes dominant, and the FTLE-
will be used as the main diagnostic field for hyperbolicity, level contours evolve into distorted circles (Fig. 1c—f). Com-
and in addition as a means to predict mixing rates across thparison of the azimuthally averaged fields (Sect. 5) shows

shear-lines defined below.
3.4 S-field
The terms(x,¢) can be written in the form

s(x,1) = (V]ux,0)])-ut(x,1), (12)

that high FTLE-values occur near extreme value8wfar.
While high FTLE-values correspond to high trajectory sepa-
ration, they do not give clear LCS’s (ridges) for longer inte-
gration times. LCS's can be seen only at very short integra-
tion times (Fig. 1a and b), and in regions that are predicted
by the Q-field. As integration time is increased (Fig. 1c—
f), the LCS’s do lengthen as expected, but they also become

and hence characterizes the rate of change of the particleroader. In particular, the LCS’s f@t=+15 min that are lo-

speed in the direction orthogonal to the velocity. Thus

a local, Eulerian measure of shear in the fluid flow. We de-

fine theS-field by integratings along trajectories,

fo

S(Xo,t0) = /
0

and useS as a Lagrangian diagnostic field for shearing.

fo+7
250
S( 10

(X0),7) d, (13)

We note that an alternative Lagrangian measure of shear

has been defined iHaller and lacono (2003) using the non-
diagonal entry of the fundamental matrix ¢f= A()y.
However, this field involves a double time-integral and is
computationally more expensive. Tiefield has a straight-
forward interpretation as shear-diagnostic due to Eq. (12)
and requires less computational effort.

As in the case of th& TLE-field, we distinguish forward
(T>0) and backward (7 <0) fields for both andS.

3.5 Shear-lines

For a given integration tim&, we define the shear-line of
strengthC at initial timeg as the level contour of, i.e.,

Sc={Xo|S(Xo0.10)=C}

High values of|C| correspond to lines with high shear.
For our model, the shear lines are all closed curves aroun
the origin (distorted circles). Positive and negative values o
S indicate that the Lagrangian speed increases when mo
ing radially outwards and inwards, respectively. We refer to

cated near the corners of the eyewall, converge into a single
broad ring that represents an annulus of high shear.

The S-field (Fig. 2) is a shear-indicator, and its level con-
tours (the shear-lines) are distorted circles for all integration
times. TheTLE-field shows similar structures as thidield
for longer integration times, confirming that trajectory sepa-
ration is mainly due to shear.

The R-field (Fig. 3) shows structures of high and IRy
values that persist over a series of integration times, making
them coherent. These structures lengthen and become more
resolved (narrower) when the integration time increases. Ini-
tial points on ridges and valleys haRe-0 andR <0, indicat-

ing strong separation and contraction in the (approximately
radial) direction orthogonal to the Lagrangian velocity, re-
spectively. The structures exist in both the forward and back-
ward time fields, and some of the forward and backward time
structures have intersection points. Since Rageld is radi-

ally continuous, high values of the-field lead to trajectories

that show high net movement orthogonal to the Lagrangian
velocity, and hence are more likely to cross shear-lines. Since
the structures span across the shear-lines, they are not La-
grangian, as trajectories with high angular velocity pass tra-
jectories with lower angular velocity.

A prominent feature of the forwar&-field atzy=6 h (and

J]ater) are the filaments observable in Fig. 3a, c and e, which
@re a consequence of the polygonal eyewall. #2h
\LFig. 4a) no filaments are observed. The filamentation con-

cerns the ridges and valleys, as well as the edges between

the first case as “normal propagating shear” and to the sechnem.

ond case as “counter-propagating shear”. Hyperbolic mixing
measured by is associated with transport across the shear-

lines. This will be used in Sect. 6 to define mixing rates.

4 Lagrangian fields and coherent structures

In Figs. 1, 2, and 3 we show forward and backward FTLE-,
S-, and R-fields, respectively, at the initial timg=6 h, af-
ter the polygonal eyewall has formed, and for integration
times T=+15min, T=+30min, and7=4+120min. For
T=415min, theF FTLE-field (Fig. 1a,b) reveals coherent

Atmos. Chem. Phys., 10, 475-497, 2010

4.1 An advective mixing mechanism

Initial conditionsxg that satisfyR (Xg,70)=0 are invariant in

the sense that there is no net movement of neighboring tra-
jectories relative to the Lagrangian velocity. As can be seen
in Figs. 3 and 4a, ridges and valleys Bfcome in nearby
pairs, and the ridge and valley of a pair are separated by a
segment of a zero contour which forms (approximately) an
edge of theR-field. The edge is neutrally stable, that is, it
attracts from one side (from the ridge) and repels from the
other side (towards the valley). The situation is illustrated in
Fig. 4a ,c and d forp=2 h. At this initial time the motion is

www.atmos-chem-phys.net/10/475/2010/
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(d) zoom of box B showing attracting edge. Integration tim&#60 min. Black lines show the azimuthal velocity at the initial time.

almost circular (Fig. 4b), but motion across shear-lines carmean flow, which can be attributed to the effect of Rossby
be observed already. waves (Montgomery and Lu, 1997).

Let R be a structure (ridge or valley) @t at initial time A coherent structur® has a leading and a lagging end rel-
to. The structure is coherent in the sense that it evolves conative to counterclockwise rotation. Concerning the evolution
tinuously, for varying initial time, into a structuf®’ seen as  of R under the flow map, two cases can occur for structures
a ridge or valley ofR at initial time zp+7. It is, however,  computed in a forward time integration:
not Lagrangian because it is not advected with the flow, that
is, the image ofR under the flow mapR. =¢t’g+t(7g), has (a) If the leading end is at higher angular velocity than the
advanced farther fror® thanR’, and is not a structure of lagging end, then the imager of R under¢,’g+T is
R atrp+t (Fig. 5a). Generally we observe that the coherent lengthened over the integration and tends to align with
structures move at a slower rotational speed than that of the  a contour of thes-field (Fig. 5b).
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(b) If the leading end is at lower angular velocity than the
lagging end, then the flow map rotat®s and for suf-
ficiently large T the imageR tends to align with a RO
contour of theS-field in the opposite direction (Fig. 5c¢). _\/A

For a nearby pair of a ridge and a valley, the relative posi- Y
tion of their flow map images is preserved in case a, whereas '
in case b they switch position. This rotation and position \
switching are a mechanism for the advective mixing during AN A
the polygonal eyewall stage. The square eyewall gives four ey
valleys and ridges aligned in a way that four sets of trajec-
tories pass from outside to inside and four from inside to
outside of anS-contour. The combination of ridge-edge-
valley sets ofR, aligned with the leading ends at lower angu-
lar velocity, can be seen as an indicator of fluid regions that
will roll into mesovortices over the forward integration time.
Thus the strength and size of the surrounding ridges and val-
leys are an indicator of the potential flux in and out of the
mesovortex.

(@)

5 Field diagnostics for varying initial time

I

In Figs. 6 to 11 we show in panel a the relative vorticity, in ;
panel b theQ-field, and in panel c thek-field with over- s contowr
layed vorticity contours chosen to illustrate the relation be- ! \
tween R-field structures, and vorticity structures. We show ' '
the S-field, integratedQ-field, and FTLE field in panel d,
e, and f respectively, together with contours (from inside (b)
to outside) of the maximum normal propogating shear, the
maximum tangential velocity, and the maximum counterpro-
pogating shear. The initial times in these figuresrs h,
4h,6h,8h,10h, and 12 h, and the integration timg=d h.
Since the shear-lines are distorted circles, we can interpret
the averag& (ro,f0) (ro=|xo|) as radial mixing rate. In all
Figs. 6 to 11d-f we observe that extrerge S, and FTLE-
values occur at extrema 6&»/3r, demonstrating that thQ
S, and FTLE-fields are dominated by the shear. A similar ! |
interpretation as radial mixing rates can be attributed to the \
averagess (ro, o) andR (ro, 10). Plots ofS anda reveal these / /
two averages are very similar in structure, as both measure ‘
shear. The quantityk can be interpreted as a measure of :
hyperbolic mixing, which is important for transport through
the eyewall. (c)

5.1 2-4h:initial state Fig. 5. (a)Sketch of a structur® of R at initial timeg, the associ-
ated structur&k’ of R at initial time g+, and the flow map image
At the initial time of 2h (Fig. 6), the model is still close ¢to+r(R) illustrating the non-Lagrangian nature of the co-
to the initial state and shows a broad ring of high vorticity herent structuregb) StructureR crossing ars contour with speed
fluid. While the vorticity,Q, S, andFTLE-fields are almost  above the contour higher than the speed below, and flow map image
circular-symmetric, thek-field shows distinct lines of high Ry after an integration time. Leading and lagging end®Roénd
radial mixing, demostrating that coherent structures can pertheir images orR 7 are marked by a triangle and a square, respec-
sist through dominant shear. The wavenumber four asymtively. (c) Same as (b) with opposite orientationfrelative to the
metry begins to show in th&-field, particularly in the for- ~ contour, leading to a rotation &7
ward time integration, atthough the initial vorticity profile is
nearly preserved, with any asymmetries barely noticible. The
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Fig. 6. (a) Relative vorticity field,(b) Q-field, (c) R-field with vorticity contours overlayed to relate structur, S-field, (e) integrated
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rotation of theR-ridges and valleys in this stage allows the 5.3 Later state: mixing into a monopole
crystallization that is neccessary for mesovortex formation.

At 4h (Fig. 7), much of the symmetry of the initial state The period afterg=8 h until 1p=12 h exhibits intense mixing
still remains. A forward time integration begins to display that leads to a collapse into a monopole end state.
asymmetries in the), FTLE- andS-fields, whereas th&- For 1o=10h (Fig. 10), theQ-field is less square, and the
field retains the structures that were present at 2h. At 4hR_f|e|d shows h|gh mixing in two distinct regionsy one with
the backward time integration af (not shown) also shows  expansion and one with contraction. The region of expan-
regions of high orthogonal separation. sion is inside the ring of high vorticity, while the region of
contraction has become organized in the dominant mesovor-
tex, which is the “winner” and survives to become the pri-

. D mary vortex during the collapse into the monopole end state.
At6h (Fig. 8), the vorticity field shows a polygonal eyewall Note that the merging of LCS's into a single LCS is a bifur-

structure, where the flow resembles a nonlinear critical Iayercation and cannot haopen if thev represent true stable and
for dry barotropic instability. A square inner eyewall struc- ' pp yrep

ture forms, with pools of low vorticity fluid organized into unstabl_e manifolds, however the_cqherent_structures here are
L : . not entirely Lagrangian, yet their interactions and bifurca-
the corners of the eye. The fluid is largely unmixed, with . . . SR .
. . ; ) 4 ... tions play an important role in the systematic mixing during
low vorticity fluid organized in the mesovortices, where it is . . . LS
. L mesovortex interaction. As more advection (stirring) in and
largely protected from the outer flow. Since vorticity is ma- out of the eyewall occurs, there is filamentation of the initial
terially conserved, low vorticity fluid from the eye and en- y ’

vironment must replace the fluid that left the eyewall. The vorticity-contours with diffusive mixing occurring along the

fluid that is mixed across the boundaries is consistent Withlengthenmg contour boundaries, leading to an "averaging” of

the ridges and valleys of thR-field. The filamentation that vort|C|tyl/aIues through dn‘fu_smn. . .

develops from the stretching of high vorticity fluid that exits Forp=12h (Fig. 11), the Inner ring of vorticity has_bro-

from the vorticity ring to the environment, can be seen in thekén down. The FTLE- and-fields show the outer rings

form of spiral bands in the vorticity field. converged as a thick ring, and the model is entering the
The Q-field shows that, instantaneously, high trajectory monopole state. Th&-field coherent structures now show

separation occurs along the square boundary of the inner eyd1€ dominant mesovortex migrating to the center and the
wall. The pools of low vorticity show instantaneous con- other mesovortices are disappearing due to their annihilation

traction. The outer vorticity ring shows high trajectory sep- PY the dominant mesovortex. Regions of hi§fvalues are
aration. Even when thETLE-fields are calculated for the Pushed outward, indicationg mixing with the outer flow. At
small integration time of’=3min, there is a noticible dif- thiS Stage, there is a single remaining proteciigdge, on
ference between the separation points ofghéield and the the outside of the remaining high vorticity ring, which has
FTLE-field. The square eyewall formation corresponds tOserved the roI“e Qf pr(,),tectmg the mesovortex that eventually
four structures of high FTLE-values in both the forward and P&cOmes the “winner”.
backward time fields for short integration times. As inte- Beyond 12h, the initial regions of vorticity are not recog-
gration time is increased, the structures lengthen and are n@izable, and high (although not as high as the initial state)
longer distinguishable. vorticity fluid begins to organize into the eye. The low vor-
The R-field shows a series of ridges and valleys that orig- ticity fluid from the eye becomes well mixed, and the eyewalll
inated as coherent structures from the earlier times, but ar@nd environment become filled with relatively low vorticity
not as refined as previous structures. There are also structurdgid. The angular velocity gradient decreases, andSthe
emanating outward from the ring of high vorticity that may field shows no eyewall.
play the role of protecting the ring from interaction with the  Although the fluid that is mixed beyond 12 h is not distin-
outer flow (Dunkerton et al., 2009). If our model was a true guishable based on its initial vorticity, the-field still gives
representation of a wave critical layer, the structures wouldregions of advective mixing, showing that the moving frame
correspond to dividing streamlines, but the high shear pro-of initial conditions still shows regions of fluid that are trans-
hibits this. The maximaR-regions are located at the same ported.
places that show higRTLE-values, but with much greater
resolution than thd=TLE-fields, which are blurred by the
shear. 6 Mixing rates
At 8h (Fig. 9), the polygonal eyewall structure that is
present at 6 h is still clearly visible. ThR-field has simi-
lar properties as th&-field at 6 h (Fig. 8), with the coherent
structures begining to merge, showing intense mixing.

5.2 6-8h: polygonal eyewall

The radial mixing rates (ro, 1) and S(ro, o) quantify mix-

ing due to shear, where&ro, 7o) quantifies hyperbolic mix-
ing. In these mixing rates, the lines along and across which
mixing is quantified are circles. Hyperbolic mixing rates that
are more closely related to the shearing structures are mixing
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Fig. 7. (a)Relative vorticity field,(b) Q-field, (c) R-field with vorticity contours overlayed to relate structur, S-field, (e) integrated
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Fig. 12. (a)Averaged angular velocity(r,t), and(b) averaged 30 min and(b) 1 h.
radial derivativedw/dr for t=0-48 h.

rates which quantify transport across shear-lines (level con\—N't.h rad|-u5rc, and the trajectoryﬁ;p (Xo) IS repelllng_. Thus

toursSc of S, see Sect. 3.2.3). trajectprles seeded on the ray with angdeand radial v_al—
ues slightly aboverg move outwards, towards the circle

6.1 Measured mixing rate with radiusrc. This suggests to define a boundary point
(rc—48(6p),60) through the condition

Given a level-contouS¢c of the S-field and an integration

time T, we define the mixing rat®&,, (C, 7o) as the area of ini- eR0:00.10) §(00) 410 = . (14)

tial conditions whose trajectories cra$s during[zo, to+71,

divided by the length of the contour. This mixing rate iscom- _ ) .

puted (“measured”) by seeding a grid of initial conditions POINts on thedo-ray above this boundary point and below

and counting trajectories which croSs. rc can be expected to cross the-circle. If ro>r¢ and
R(Xo,10)>0, trajectories on the ragy with radial values
6.2 Predicted mixing rate slightly below ro move inwards, towards the circle with

radiusr¢ again, which leads to the same boundary point
We define a predicted mixing rate through Rdield as fol-  (Eq. 14), now with§(6p)<0. If R(Xo,%0)<0, the trajectory
lows. Letrc be the average radius alodg. If R(Xo,#0)>0 is attracting, and initial conditions on the opposite side of the
andxp=ro(C0¥p, Sinfp)* with ro<rc, Xg is inside the circle  r¢-circle move towards this circle, provideg is sufficiently
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Fig. 14. Radial S-valuesS (ro, o) for integration timega) 30min  Fig. 15. Radial R-valuesR(ro, o) for integration timega) 30 min
and(b) 1 hr. and(b) 1h.

close to that circle. The corresponding boundary pointis therbw/dr shown in Fig. 12. These rates are measures of shear
defined by(r¢c+3(600),6p), Wheres satisfies and show the highest shear during the initial 6 h, with the
amount of shear dissipating as hyperbolic mixing begins to

eRUC016(60) + re = ro. (15)  oecur during the polygonal eyewall stage.

By varying#p, the conditions (Eq. 14) foR>0 and Eq. (15) The hyperbolic mixing is captured b¥(ro,70), R (C, o),

for R<0 define an annulus of initial conditions around the and R, (C, o). All of these rates show that high hyperbolic

re-circle, whose area we use to define the predicted mix-mixing begins with the polygonal eyewall formation at 6 h

ing rate R ,(C,1o). This mixing rate is an approximation of and continues through the transition to a high vorticity eye at

the measured mixing rate. Of course, several approximationg4 h. In particular, the measured and predicted mixing rates

and simplifying assumptions are involved in this definition, R..(C,to) andR,(C,to) are very similar in structure, and re-

but the results obtained make sense and the structuRg of Vveal strong mixing near the zeocontourSo (jet).

is similar to the structure aR),,. We note that Hendricks and Schubert (2009) studied mix-
Color-coded plots of the mixing rat@&(ro, 10), S(ro, o), ing for the same barotropic model using the concept of effec-

R(ro,t0), Rm(C,10), andR,(C, 1) are displayed in Figs. 13, tive diffusivity (Shuckburgh and Haynes, 2003; Nakamura,

14, 15, 16, and 17, respectively, for integration times1996). This quantity was computed at the initial tige0,

T=30min andr'=1h. The rate& andS should be compared and with an integration time= T (flow map ¢g) varying

to the average angular velocity and its radial derivative over the full duration of the model run of 48 h. The effective
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Sc for integration timega) 30 min and(b) 1 h. integration timega) 30 min andb) 1 h.
diffusivity yields a mixing rate that depends erands. Our High R-values determine sets of trajectories that show

mixing rates have a similar dependencergas the mixing ~ growth orthogonal to the Lagrangian velocity, and result in
rate of Hendricks and Schubert (2009) hadspdue to our  filamentation that enables turbulent diffusion to occur. The
moving frame approach. The mixing rate of Hendricks and R-field gives an advective measure that converges on very
Schubert (2009) shows two radial regions, at approximatelyshort time scales, yet still yields similar mixing rates as
r=30 km and-=50 km, where high mixing occurs durimg6 the effective diffusivity obtained by integration over the full
ands=32h. The similar time and spatial regions associatedmodel time.

with the same high mixing in our study occur ferand S
during#p=6 andr=24 h, when the band of low FTLE-values
(the jet) is less prominent and more hyperbolic mixing oc-
curs. The mixing rate®,, (C.70) and R, (C,70) Show very — \ve have characterized Lagrangian mixing in a two-
similar times of high mixing as the mixing rate of Hendricks gimensjonal, nondivergent barotropic model for hurricane-
and Schubert (2009), and tiecontours for which these high ke yortices through several diagnostic techniques. For this

rates occur are located approximately at the same radial Valmodel, the field of finite-time Lyapunov exponents provided

ues noted above. a measure of total particle separation, but it did not sepa-
rate the effects of hyperbolicity and shear, and did not show

7 Conclusions
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