Genome-Enabled Molecular Tools for Reductive Dehalogenation

- A Shift in Paradigm for Bioremediation -

Alfred M. Spormann
Departments of Chemical and of Civil & Environmental Engineering
Stanford University
Genome-Enabled Molecular Tools for Reductive Dehalogenation

Chloroethenes, including vinyl chloride, are widespread groundwater pollutants. A comparative genomic analysis revealed that the vinyl chloride reductase operon, vcrABC, of Dehalococcoides sp. strain VS is embedded in a horizontally-acquired genomic island that integrated at the single-copy gene ssrA. The high similarity between vcrABC sequences from diverse Dehalococcoides is quantitatively consistent with recent horizontal acquisition driven by ~100 years of industrial pollution with chlorinated ethenes. Moreover, most rdh genes relevant for bioremediation appear to be predominantly acquired by Dehalococcoides via this mechanism. This talk will discuss the implications of these finding for development and use of molecular tools for monitoring and predicting in situ remediation of chloroethenes via anaerobic reductive dehalogenases.
GENOME-ENABLED MOLECULAR TOOLS FOR REDUCTIVE DEHALOGENATION

PROFESSOR ALFRED SPORMANN
Stanford University
Departments of Chemical Engineering, and of Civil & Environmental Engineering
318 Campus Drive
Stanford, CA 94305
(650) 723-3668
spormann@stanford.edu

Chloroethenes, including vinyl chloride, are widespread groundwater pollutants. A comparative genomic analysis revealed that the vinyl chloride reductase operon, vcrABC, of Dehalococcoides sp. strain VS is embedded in a horizontally-acquired genomic island that integrated at the single-copy gene ssrA. The high similarity between vcrABC sequences from diverse Dehalococcoides is quantitatively consistent with recent horizontal acquisition driven by ~100 years of industrial pollution with chlorinated ethenes. Moreover, most rdh genes relevant for bioremediation appear to be predominantly acquired by Dehalococcoides via this mechanism. This talk will discuss the implications of these finding for development and use of molecular tools for monitoring and predicting in situ remediation of chloroethenes via anaerobic reductive dehalogenases.
The ‘old’ paradigm

Bioremediation is mediated by a single important gene in a single strain that is robust to environmental perturbations

= Dehalococcoides sp.

= reductive dehalogenase genes
Reductive dehalogenation of chloroethenes as a microbial community process
Reductive dehalogenation of chloroethenes as a microbial community process

Dehalobacter sp.
Desulfitobacterium sp.
Dehalospirillum sp.
Geobacter sp.
Dehalococcoides sp.

Dehalococcoides sp.
Reductive dehalogenation of chloroethenes as a microbial community process

Dehalobacter sp.
Desulfitobacterium sp.
Dehalospirillum sp.
Geobacter sp.
Dehalococcoides sp.

Dehalococcoides sp.
Dehalococcoides sp.

Müller et al. AEM 2004
16S rRNA gene-based phylogeny

Dehalococcoides sp. GT
Dehalococcoides sp. BAV1
Dehalococcoides sp. CBDB1
Dehalococcoides ethenogenes 195
Dehalococcoides sp. VS
Dehalogenimonas lykanthroporepellens BL-DC-9

hupL-based phylogeny

Dehalococcoides sp. GT
Dehalococcoides sp. CBDB1
Dehalococcoides sp. BAV1
Dehalococcoides sp. VS
Dehalococcoides ethenogenes 195
Dehalogenimonas lykanthroporepellens BL-DC-9
Evolution of reductive dehalogenation traits in *Dehalococcoides sp.*

Reductive dehalogenase genes move as mobile elements in *Chloroflexi* populations

The ‘old’ paradigm

The new paradigm

= Dehalococcoides sp.

= reductive dehalogenase genes
Reductive dehalogenation of chloroethenenes as a microbial community process

Dehalobacter sp.
Desulfitobacterium sp.
Dehalospirillum sp.
Geobacter sp.
Dehalococcoides sp.

Dehalococcoides sp.
Reductive dehalogenation of chloroethenenes as a microbial community process

Dehalobacter sp.
Desulfitobacterium sp.
Dehalospirillum sp.
Geobacter sp.
Dehalococcoides sp.

Dehalococcoides sp.

$0.5 - 2 \text{ nM } H_2$

PCE \rightarrow TCE \rightarrow cisDCE \rightarrow VC \rightarrow Ethene

pceA \rightarrow tceA \rightarrow vcrA

Acetate
CH$_4$
H$_2$S
Fe$^{2+}$

vcrA
$'bvcA'$

primary fermenters secondary fermenters

H_2 thresholds
30-300 nM H_2
~ 10 nM H_2
1-10 nM H_2
How to assess gene dynamics and H$_2$ flux in heterogeneous environments?
How to assess gene dynamics and H$_2$ flux in heterogeneous environments?

Design of a tiled functional gene array

Hydrogenase gene array (H$_2$ase Chip)

~2300 diverse hydrogenase genes

Reductive dehalogenase gene array (Rdh Chip)

~280 diverse rdh genes
H₂ flux in complex environments

5L Lactate/PCE Chemostat

Analysis by H₂ase gene chip

Hydrogenase chip can predict H₂ flux in complex communities

How do different (indirect) H₂ donor effect Dhc populations?

Dynamic changes in *Dehalococcoides* populations upon change in H$_2$ source

The new paradigm

Bioremediation is largely due to activity of mobile genes in heterogeneous populations that exhibit fluctuations upon environmental perturbations.

Electron donor: formate, lactate, propionate

= Dehalococcoides sp.

= reductive dehalogenase genes
How do competing *electron acceptors* effect Dhc populations?
How do competing electron acceptors effect Dhc populations?

SO₄²⁻ addition

SO₄²⁻ addition

Dynamic change in Dehalococcoides population upon alternate acceptor addition
PM5L chemostat batch cultures (sulfide vs. sulfate addition experiments)

Sulfide addition is sufficient to explain *Dehalococcoides* population shift
Useful molecular tools reveal a shift in paradigm for reductive dehalogenation in complex environments.

The new paradigm

Chloroethene bioremediation is largely due to dynamic, evolving, and heterogeneous populations of dehalogenating *Chloroflexi* that respond differentially to environmental perturbations.
Acknowledgement

Stanford group
Ian Marshall
Joey McMurdie
Koshlan Mayer-Blackwell
Sebastian Behrens
Spormann group
Susan Holmes

Oregon State group
Lew Semprini
Mohammed Azizian
Frank Löffler, U Tenn/ORNL
Elizabeth Edwards, U Toronto

Funding:

Graduate Research Fellowship